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ON THE OBSERVABILITY OF POLYNOMIAL SYSTEMS,
h FINITE-TIME PROBLEMS*

EDUARDO D. SONTAG?

Abstract. Different notions of observability are compared for systems defined by polynomial
difference equations. The main result states t.hat, for systems having the standard property of (multiple-
experiment initial-state) observability, the response to a generic input sequence is sufficient for final-state
determination. Some remarks are made on results for nonpolynomial and/or continuous-time systems. An
identifiability result is derived from the above.

Introduction. This paper deals with observability problems for (deterministic)
control systems defined by simultaneous polynomial difference equations, and for
other related classes of systems. These problems are natural from a (mathematical)
system-theoretic viewpoint, and a strong motivation for their study is also provided by
the goal of obtaining explicit solutions to filtering and regulation problems for rather
general, yet tractable, classes of nonlinear systems.

Roughly, questions of observability deal with determining the internal state of a
(known) dynamical system on the basis of available input/output data. "Obser-
vability" is a fundamental system property, due, among others, to the following
reasons:

(a) The modern "state-variable" approach to regulator construction is based
upon the possibility of feeding back a function of (good estimates of) the state, which
must be obtained via "observers" operating on input/output data (in the linear case,
"Luenberger observers").

(b) In the stochastic version of the above, the only known effective solution of the
optimal nonlinear filtering problem, the Kalman filter, consists precisely of an
effective observer construction (for a deterministic system), with parameters opti-
mized on the basis of the available statistical data. This view of Kalman filtering as
"deterministic system theory plus elementary theory of Gaussian processes" strongly
suggests that a solution in the nonlinear case may be conditional upon a better
understanding of nonlinear observers. Moreover, for the known cases, estimation is
feasible (in the sense that the error covariance can be made small) only when the
system has suitable observability characteristics, as is known for finite-dimensional
linear systems (see, e.g., Kwakernaak and Sivan (1972, 4.4)) and as recently found
for infinite-dimensional linear systems (Vinter (1977)).

(c) Observability is one of the main concepts in realization theory, where it
appears, under various technical variants, as a characterizing property of canonical
systems.

(d) Even in problems not explicitly involving outputs, observability may appear
as an important question. To insure the stability of the optimal state regulator, the
unstable states must be "observed" by the performance index, as explained intui-
tively-and proved rigorously in the linear case--in Anderson and Moore (1971,

3.2).
(e) Problems of identification, i.e., the possibility of determining the input/out-

put behavior of an unknown system on the basis of a limited number of experiments,
are closely related to observability questions, as further discussed below.
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140 EDUARDO D. SONTAG

The above rough description of observability as a specific property of systems is
highly ambiguous, even at an intuitive, nontechnical, level. This ambiguity arises
mainly in the following senses: it is not clear whether the state to be determined is that
which existed before or after experimentation, nor whether simple or multiple
experimentation is allowed, nor whether the steps in the experiments can be modified
according to partial information (open- vs. closed-loop observation). Finally, other,
rather different, interpretations are possible; for instance, state determination may be
only "asymptotic" in that an infinite procedure permits obtaining progressively better
estimates of the internal state, as opposed to the above "finite-time" interpretation,
where states are precisely determined after experimentation.

As an example of the different possibilities, the canonical realization of any given
input/output behavior is multiple-experiment initial-state observable, while an
observer is a device solving a single-experiment final-state problem. Thus, for
instance, regulator synthesis via the design philosophy "obtain a canonical realiza-
tion/build an observer/feed-back ’observed’ variables" presupposes a positive answer
to the question" "is a canonical realization necessarily final-state observable ("recon-
structible")?"

Possible observability notions. The main variations on" the notions of obser-
vability to be studied and compared are, at an intuitive level"

(a) Observability: this terminology is reserved for the standard multiple-experi-
ment initial-state notion. A system is observable when any two states can be dis-
tinguished by some input/output experiment. Since the experiment (i.e., the input to
be applied) depends on the pair of states to be distinguished, practical determination
of an initial state assumes the possibility of somehow resetting the system to this
(unknown) state after experimentation, or alternatively having a number of copies of
the original system, all in the same initial state. This notion of observability appears
naturally in realization theory, since "canonical" or "minimal" realizations usually
exhibit technical variants of this property (e.g., "algebraic observability," when each
coordinate of the initial state can be obtained by algebraic manipulationswadditions
and multiplicationsmof input data; this property characterizes "canonical" poly-
nomial systems, as discussed in Sontag and Rouchaleau (1975), Sontag (1976a)).

(b) Single-experiment observability: there exists a single input (over some finite
time interval) which by itself permits the determination, through measurement of
ensuing outputs, of the initial state. Clearly this is a much more desirable property
than (a); it turns out to be, however, rather restrictive for discrete-time systems. (This
is not surprising; already Moore (1956) showed that (a) and (b) are far from
equivalent, at least for finite automata. For linear systems (a) is equivalent to (b), and
in fact any long-enough input distinguishes any pair of states, as discussed for instance
in Kalman (1968)or Wonham (1974).)

(c) Final-state determinability: there is an input sequence w which permits
determination of the state of the system resulting after w is applied. (In other words, if
two states produce the same output sequence under input w, then these two states are
necessarily sent into the same state under the action of w.) This property is of interest
from a control viewpoint, since control actions can be taken after the state of the
system is determined, independently of the state before experimentation. Of course,
(b) implies (c). What is not clear is what are the relations, if any, between (a) and (c),
since in the former case multiple experimentation is required. It is known that, for
finite automata, (a) (called in automata theory a "diagnosing" problem) implies (c)
("homing" problem). This was proved by Moore (1956); expositions are given by Gill
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ON THE OBSERVABILITY OF POLYNOMIAL SYSTEMS 141

(1962) and Conway (1971); applications to regulation are given by Gatto and Guar-
dabassi (1976). The same result holds for certain types of finite-dimensional systemsm
e.g., Theorem 4.8 below--; proofs are in fact totally analogous to the finite automata
case, with a new type of finiteness (algebraic, linear, or analytic) replacing a set-
theoretic finiteness.

(d) Generic final-state determinability: while (c)concerns the existence of an
input such that final states can be determined by testing the system with this input, (d)
concerns the much more desirable case when no "experimentation" is needed, but,
strictly speaking, "observation" of the input/output behavior is enough. The extreme
case of (d) would correspond to that case in which any (long-enough) input permits
final-state determination. This extreme case is easily seen to be too restrictive, but it
may be weakened to only requiring that "almost any" (i.e., a "generic") long-enough
input permits this determination. (The rigorous definition of "generic" is a purely
technical question, to be discussed later.) In other words, real-time observation of a
system, not influencing it in any way (or even, observation of data from past behavior)
should be enough for final-state determination. This property is totally different from
(c), except in the very special case of linear systems, where (c)= (d). In the automata-
theoretic case, "genericity" cannot be even defined in a satisfactory way, so this is a
genuinely new system-theoretic concept.

The main result of this paper states that (a) implies (d) for polynomial systems.
Thus, for instance, final states can be determined for canonical realizations of poly-
nomial systems, just observing the "generic" input/output behavior. The proof of the
main result uses some elementary notions from algebraic geometry. Since all results
remain true when system parameters are not necessarily real or complex but belong to
an arbitrary field, everything is stated for arbitrary infinite fields (the finite field case
belongs properly to finite automata theory; infinite fields permit identifying poly-
nomials and polynomial functions). Some technical variants of the above observability
properties are also discussed and relations between all such notions are clarified.

The last section deals with (i) the particular case of state-affine systems, (ii)
generalizations to related classes of systems, in particular state-analytic and continu-
ous-time analytic, and (iii) a restatement of the main result as a system identification
problem.

This paper does not treat questions of closed-loop and/or asymptotic obser-
vability (closely related to problems of stability), nor the effective construction of
"observers." Another interesting set of problems left open is that of finding numerical
values for smallest lengths of observability experiments; except for the state-affine
case, only qualitative results are given (even for the case of finite automata many of
these problems are still unresolved; see Conway (1971)).

The results of this paper strongly suggest that the proper definition of "observer"
in the nonlinear context may be that of a dynamical system which determines the state
of the "observed" system on the basis of a generic set of data.

1. Definitions and characterizations. Let k be an arbitrary but fixed infinite field,
and m, n, p arbitrary positive integers. Recall that an algebraic subset S of the affine
space k q, q _-> 0, is a set defined by polynomial equations S {Q/(xl, , xq)= 0}. An
irreducible algebraic set is one which cannot be expressed as the union of two proper
algebraic subsets. In this context, a subset R of an irreducible algebraic set S is generic
when its complement is contained in a proper algebraic subset of S. (These definitions
are justified by the fact that for k or C, a proper algebraic set is "thin" in most
possible senses, including Baire category and measure-theoretic.)
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142 EDUARDO D. SONTAG

DEFINITION 1.1. A (discrete-time) polynomial system 2, is given by a set of
equations

x(t + 1)= P(x(t), u(t)), y(t)= h(x(t)), t= O, 1, 2,’.’,

where inputs u(t), states x(t) and outputs y(t) belong to algebraic subsets U of k’, X
of k n, and Y of k p respectively, U is irreducible, and P: X x U X and h: X Y are
polynomial maps.

Allowing proper algebraic subsets, rather than insisting on finite dimensional
spaces, for U, X, Y, permits increasing the generality of the results to include input or
state constraints of a polynomial type. The irreducibility assumption on U is made
purely for technical convenience. For instance, the unit real circle U-
{x2+ y2_ 1 0}, as well as any space k m, are admissible input sets. Nonpolynomial
systems will be considered later.

Some extra notation will be useful. The extension of P to input sequences is also
denoted by P:X x U* -X (for the empty sequence e, P(x, e)= x). Applying an input
sequence w Ul Ur to a system in state x produces an output sequence

HW(x) (h(x), h(P(x, ul)), h(P(x, w)))

in yr+l.
In what follows, 2, is a fixed polynomial system. The input sequence w distin-

guishes between the states x and z iff HW(x)HW(z). The following are several
possible definitions of "observability":

(A) Single-experiment observability: there exists an input sequence w which
distinguishes every pair of states.

(B) Single-experiment observability with a generic input: there are a positive
integer r and a generic subset R of U such that any w in R distinguishes every pair of
states.

(C) Observability: each pair of states can be distinguished by some input
sequencel

(D) Finite observability: there are a positive integer r and input sequences
w1," ’, ws of length r such that each pair of states x, z is distinguished by some wi.

(E) (Finite) observability with generic inputs: there are integers r, s and a proper
generic subset R of U such that (D) holds for any set wl,. , w of inputs of length r
for which (Wl, , w) is in R.

(F) Algebraic observability" for each polynomial function 4" X k there are input
sequences wa,..., w and a polynomial function q" Y-->k such that 4(x)=
q (h (P(x, w)),. ., h (P(x, ws))) for all x in X.

(G) Final-state determinability: there is an input sequence w such that for each
pair of states x, z either H (x) H (z) or P(x, w)= P(z, w ).

(H) Final-state determinability with generic inputs: there are a positive integer r

and a generic subset R of U such that (G) holds for all w in R.
The characterizations below are useful in checking observability. They are stated

in terms of the polynomial functions hij defined as follows by induction on/’. First, an

(infinite) basis B is chosen for the vector space of all polynomial functions on U.
(If U k", the natural choice is the set of all m-variable monomials; if U is a proper
algebraic set one may choose a linearly independent subset of such monomials.) The
polynomial map h :X--> Y c_ k p gives rise to p polynomial functions

hol, hop

by composing with the coordinate projections. If the hij have been defined for some
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ON THE OBSERVABILITY OF POLYNOMIAL SYSTEMS 143

and/" 1,..., qi, one may express

(1.2) hir(P(x, u))= ars (x )gs (u ), r 1,..., qi

for some finite subset gl, of B. The h+la are then given by the as, r 1, , qi, all
s, listed in any order except that an a is dropped if it is redundant, i.e., if ar is in the
algebra generated by the previous hq’s.

LEMMA 1.3. (a) E is observable iff the map

(1.4) x - (hx(x), hE(X),’"’, hEl(X),"" ")

is one-to-one.
(b) E is algebraically observable iff each coordinate function xi:X- k, i=

1,..., n, is a polynomial combination of the hii(x).
Proof. Observability clearly implies that (1.4) is one-to-one, since the functions

x-h(P(x, w)) are combinations of the h.. Conversely, from Sontag (1976a, "Main
lemma" (10.7)), the hii(’) are linear combinations of the functions h(P(., w)); it
follows that if x, z are indistinguishable then hij(x)= hij(z) for all i,/’. The proof of (b)
is similar.

The above result permits checking observability without having to consider, for
each pair of states, if there is an input sequence separating them. The result can be
tightened considerably, in that it is theoretically possible to specify an integer s (which
depends only on the degrees of the polynomials defining E) such that it is enough to
check, in order to determine (algebraic) observability, if the map

(1.5) X Y’rs:x (hll(x), hs(x))

is one-to-one (or if each coordinate function is a combination of the hj’s); this follows
from the decidability theory in commutative algebra, as remarked in Sontag and
Rouchaleau (1975). The problem of checking if (1.5), or a general polynomial map, is
one-to-one is very difficult, and it appears also in trying to determine if a system is
observable with respect to a fixed input w U u, since one must then check

x -- (h (x ), h (P(x, u )), h (P(x, w)));

in that context, sufficient conditions for one-to-oneness (with k reals) were surveyed
by Fitts (1972).

As a very simple illustration of Lemma 1.3, take the polynomial system Ea with equa-
tions

Xl(t -t- 1)= Xz(t), xz(t + 1)= x(t), x3(t + 1)= x3(t),

x4(t + 1)= Xl(t)u21(t)"l"x2(t)lg(t)’t-x3(t),

where U kZ, X k4, y k. Then ho the coordinate function x4. From the fourth
equation, and noting that u2, u2z, 1 are linearly independent functions, one has xl, x2,

x3 for the hi. Thus Y_. is algebraically observable, and in particular observable.
If, instead, now U is the circle u + u 2z 1, then u 1- u21 as functions on U, so

+

so hl x2+x3, h12 xl-x2. Now, in obtaining the h2., x-x2 yields xz-x (from the

first two equations), which is -(Xl- x2) and hence belongs to the algebra generated by
previous hi’s. On the other hand, x2+x3 yields x+x3, which is equal to (x-x;)+
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144 EDUARDO D. $ONTAG

(X2 d’-X3), hence in the algebra generated by previous hij’s. Thus no hij are added for
2, 3,. . The system is therefore not observable, since

(x, x, x3, x4) (x4, Xl-x, x +x)

is not one-to-one. In fact, the indistinguishable pairs of states are those in the lines
parallel to {x4 0, x x2 0, x2 + x3 0}.

When k reals or complexes, observability can be checked using only inputs of
arbitrarily small amplitude; this is easily derived from the above characterization using
Sontag (1976a, Lemma (2.11)).

2. Implications among observability notions.
THEOREM 2.1. With the notations in the previous section, the only implications are

those indicated by the following diagram:

F
(2.2)

B -> A--> C D E--> H--> G.

Proof. The following implications are immediate from the definitions" E --> D --> C,
B--> A--> C, H--> G, and F--> C. That C-> D is proved in Sontag and Rouchaleau (1975,
Prop. 7.2). Proofs are given below for D-->E (2.4) and C->H (Theorem 3.5). To
complete the proof of 2.1, counterexamples must be given to B--> F, A-> B, F--> A,
G --> H and H --> C. For the latter it is sufficient to consider the trivial system with both
transition and output maps equal to zero: after one step, the state is known (zero), no
matter which input was "applied", but the initial state cannot be determined. The
remaining counterexamples are given by"

B -> F: let k R, X Y k, U arbitrary, P(x, u)= 0 for all x, u, and h (x)= x 3.
A --> B: let U Y k, X k 2, and ,E2 given by

x(t+ 1)=0, x2(+ 1)=x()+x()u(), y() x().

An input w U ur distinguishes initial states if and only if u 0. But the set of all
such inputs is not generic in Ur, for any r.

F--> A: let U Y k, X k 2, and ,E3 given by

xl(t + 1)-0, xz(t + 1)- xl(t)u(t)-xZ1(t), y(t)- xz(t).

Algebraic observability follows from criterion 1.3" recursively, one generates x2 and
then xl (and Xl2, which is redundant). But no single sequence w serves to distinguish
every pair of states: let w uw’, with u in U; if u 0 then (1 0)’ and (-1 0)’ are not
distinguished by w, while if u 0 then (u 0)’ is indistinguishable from (0 0)’.

G--> H: let U X k and

x( + 1)= x()u(), u()= 0.

Then w U u determines the final state if and only if some ui 0. The set of all
such w is not generic.

It will be now proved that finite observability (D) implies, for polynomial systems,
generic finite observability (E). This is somewhat surprising because the corresponding
implication for single-experiment observability (A--> B) is false. (,E3 above is, however,
generically finitely observable: any two length-one inputs u, v permit observing
x + x2 u, x + x2 v, hence also

Xl [(Xl + X21U)I) --(Xx + XD)ul(v U)-1

is known. Thus the generic set R of all (u, v) in U2 k 2 with u v 0 satisfies definition
E.)
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ON THE OBSERVABILITY OF POLYNOMIAL SYSTEMS 145

The following algebraic result is needed; its proof is essentially the same as that in
Sontag (1976a, Lemma (10.6))"

LEMMA 2.3. Let V, W be algebraic sets, W irreducible, and f’. V W--> k a

polynomial function. There exists then an integer s and a nonzero polynomial function
d" W --> k such that, for each w, Wl, Ws in W there are a , , as in k with

d(wl," ", ws)f(v, w)= E ai[(v, wi).

One can now give the
(2.4) Proof of D--> E. Assume that Y_, is finitely observable, and let if l, , if, be

such that x z implies h(P(x, ’i)) h(P(z, ffi)) for some i. For each i, let fi
h p. x Ur’ --> k. Applying 2.3 with V X, W Ur’, f fi, a di" Us’r’ --> k is obtained

for each i. Let q:=largest of the si. In the definition of generic observability, take

r:=largest of the ri and s:=t.q. An element of U can be written as

(Wll, Wtl, W12, Wt2,’’’, Wtq),

with each w0 in U. Define the proper algebraic subset F of U by the equations

di(Wil," Wis,)--O, i-" 1,’’’, t.

Then generic observability holds with R complement of F.

3. Proof of the main result.
LEMMA 3.1. For any polynomial system E there exists an integer r >= 0 and a proper

algebraic subsetFof Ursuch that, ]:or every w (Ul," , ur) not in F, and]or any x, z in

x,
H(x)=H’(z)

implies that
P(x, w) is indistinguishable from P(z, w).

Proof. Since Y
_
kv for some integer/9 and since a union of proper algebraic

subsets of U is again a proper algebraic subset, it is sufficient to prove the lemma with

Y k. The general case can be reduced to this by considering the p projections Y--> k.
Let s => 0 be such that any pair of distinguishable states is already distinguished by

inputs of length =<s (Sontag and Rouchaleau (1975, Cot. 7.3)).
For any algebraic set Z, let A(Z) denote the algebra of polynomial functions on

Z. Irreducibility of U means that A(U) is an integral domain for all t. Let D be the

direct limit of the sequence of k-algebras

A U)-> -> A U’) --> A U’* ) ->
where

A(ut) A(Ut+I) A(Ut)(R)A(U): f f(R) 1.

Let K be the quotient field of D (which is an integral domain, being a direct limit of

integral domains); K contains all A (Ut).
Since Y=k, a polynomial map XX U’-> Y is an element of A(X

X)@A(Ut); in particular the functions ht defined by

ht(x, z, u,..., ut): h(P(x, Ul,’", ut))-h(P(z, Ul,’", ut))

are in A(X X)(R) K. The latter is a finitely generated algebra over the field K, hence

Noetherian. Thus there is some integer r such that all ht are in the ideal of A(X
X)(R)K generated by h0," , hr. In particular, there are therefore equations

(3.2) chr+i aith,, ]= 1,. s,
t=0
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146 EDUARDO D. $ONTAG

with all ajt in A(X x X)(R)D and c a nonzero element of D. Since D is the union of the
A(Ut), there is some integer q such that all a. are in A(X x X)@A(Uq) and c is in
A(Uq). Without loss of generality, we shall assume that q _-> r + s.

Define the proper algebraic set

F:={(ul,. ur) in U such that C(Ul,. u,. uq)= 0 for all (u+l,. Uq)}.

Claim" F satisfies the requirements of the lemma. Indeed, assume that _w
(Ul,’",ur) is not in F. Take x, z in X such that h(P(X, Ul,...,u))=
h(P(z, u,’", u)) for all t= 0,..., r, i.e.,

(3.3) h,(x, z, u,. , u,)= 0, 0,. , r.

Denote _x := P(x, _w), _z := P(z, w_ ). It must be proved that _x, _z are indistinguishable.
Assume that _x, _z are distinguished by an input sequence v, which can be taken of

length j, 0-</" <= s, by definition of s. let

F := {w in U such that h+i(x, z, w_, w)= 0};

this is an algebraic set, proper because v is not in F1. Let

F2 := {w in U such that c(_w, w, w’)= 0 for all w’ in Uq--i};

this is also an algebraic set, and it is proper because _w was taken not in F.
It follows that F1 U F2 is also a proper algebraic set. Let then w be in neither F1

nor F2. Then c(_w, w, w’) 0 for some w’, so

(3.4) c(w_, w, w’)hr+i(x,z, w_, w)O.

But (3.2), (3.3) and (3.4) taken together are contradictory.
THEOREM 3.5. Observability implies, ]’or polynomial systems, final-state deter-

minability with generic inputs.
Proof. Immediate from the lemma.
Remark 3.6. As shown in Sontag (1976), canonical realizations Zf of polynomial

response maps are not, in general, polynomial systems. So the Theorem above is not

applicable directly (A(Xf) is not Noetherian). However, if f admits a polynomial
realization Z, then the reachable states of Zf form a set which is a quotient of the
reachable set of E. Then Lemma 3.1 can be applied to Y_., implying that the reachable
part of Ef does satisfy Theorem 3.5. Another generalization regards the case in which X
is a nonaffine variety: taking an affine cover of X, equations as in (3.2) result on each
piece of the corresponding decomposition of X x X, and Lemma 3.1 is again true. This
generalization is of interest in identifiability questions, with nonaffine parameter spaces.

4. Particular cases, applications, generalizations.
(Polynomial) State-afline systems. For this class of systems, whose realization

theory was studied in Sontag (1976b), most of the implications among observability
properties are easy generalizations of the linear case.

DF.FINITION 4.1. A polynomial system Y_. is state-affine iff X kn, U k", P is
affine (linear + translation) in states, and h is linear.

Fixing a basis in X, the equations for a state-affine system have the form

x(t + 1)= F(u(t))x(t)+ G(u(t)),

y(t)= nx(t),

where F(. is a (polynomial) matrix function of u, G(. ) is a vector function of u, and H
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ON THE OBSERVABILITY OF POLYNOMIAL SYSTEMS 147

is a constant matrix. A particular case is that of internally-bilinear systems (see, e.g.,
Brockett (1972), D’Alessandro, Isidori and Ruberti (1974), Fliess (1973)), when F
and G are themselves linear or affine in u.

For state-affine systems the table of implications given in 2 collapses to

A=BC=D=E=F-HG.

It must be proved that C F and A- B. That C F is clear from (1.3), since the hii are
linear functions of x, observability thus meaning that the coordinates xi are linear
combinations of the h0. (An explicit matrix criterion for observability is described in
Sontag (1976b, Lemma 1.32).) That A B follows from the following characterization,
which can be also generalized to the case U proper algebraic set by considering a
basis of functions U k instead of all monomials u’:

PROPOSITION 4.2. The state-affine system E is single-experiment observable iff
H
HF(U,)

(4.3) rank n

Lhf(gn-1) F(U1)

over the field K k (UI,. , U,_I) Of rational functions in rn (n 1) variables.
Moreover, if (4.3) holds, then any w Ul u,_ such that the rank in (4.3) remains n

after specializing UI u, , U,-I u, solves the single-experiment observation pro-
blem. (The set of all such w is generic.)

For example, consider the three-dimensional state-affine system Y-a:
Xl(t+ 1)=xl(t)ul(t)+X2(t)u2(t)+x3(t)U3(t) X2(t+ 1)=0, x3(t+ 1)=0,

y(t)=Xl(t).

This system is observable, but (with U1 =[Ull, U21, U31], U2 [U12, U22, U32]) the
matrix in (b) is

gll g21 g31

LU12 Ull U12 U21 U12U3
which has rank two, so the system is not single-experiment observable.

Proof of Proposition 4.2. Single-experiment observability with an input w
U u, is equivalent to the map x -H (x) being one-to-one. Since

H (x)= (Hx," , HF(u,). F(ul)x)+ translation,

H is one-to-one if and only if the rank of

H
HF(u 1)

HF(u,) F(Ul)

is n. Being full rank means that some n n minor is nonzero, so the same minor is
nonzero as a polynomial in u Ux,. , u U (variables) over K. Thus the rank of
this matrix is also n. Consider the chain of subspaces V, of K" defined by

Vr := span over K of F’(U1). F’(Ui)H, < r, j 1,. p,
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148 EDUARDO D. SONTAG

where I-/. is the flh column of H. It is easy to see that if Vr Wr-1 for some r then
Vr- V/I Thus V,, V,/I Vt. This proves that the rank in (4.3) is n.
The rest of the statement is clear from the proof.

The proof of Lemma 3.1 can be rederived for the state-affine case, using only
linear-algebraic methods (over rational function fields). A constructive proof is thus
obtained, with the precise value r n.

Parametric identification. The result in 3 can be applied to the following
identification problem: a family of polynomial systems is given, parametricized by
polynomial functions. It follows that, if the output is known for a generic input, then
the future input/output behavior of the system is completely determined. Specifically,
considering a family (or "structure"--see Bellman and Astr6m (1970)):

(4.4) E’{ x(t+l)=P(h’x(t)’u(t))=P(x(t)’u(t))"
y(t)= h(h, x(t)) h (x(t)),

where P" A x X x U x and h’A x X - y are polynomial maps and A, X, U, Y are
algebraic subsets of k q, k n, k m, k ’ respectively, U irreducible. The input/output map
of 2,. for initial state x is

fx,x" w --H (x ).

THEOREM 4.5. There is a positive integer r and a generic subset R of U such that,
for each input sequence w u u in R,

f,x(W)=f.,z(W)

implies that

B,x(WV)= f,,z(wv) for all input sequences v.

Proof. Let , be the polynomial system with := AxX, = U, I= Y and
equations

a(t+ 1) =, (/), x(t+ 1)=P(a(t),x(t), u(t)),

y(t)= h(A (t), x(t)).

Then Lemma 3.1 applied to gives an r and an R such that /-)w(A, x)=fx.x(w)
determines the final state (, x(r)) up to indistinguishability, i.e., all future outputs
coincide.

For instance, the future input/output behavior of the system Y--5 (with U Y
k,X=k3):

Xl(t+ 1)=X3(/), Xe(t+ 1)=hxl(t)+Xe(t), x3(t+ 1)=xe(t)u(t)+xe(t),

y(t)=x3(t)

is uniquely determined once that the output corresponding to a w U lU2U3, ui --1 is
known, since x3(0), x2(0), hxl(0), and hx3(0) are successively obtained. (Note that the
parameter A itself is in general not determinable, for instance if x3(0) is zero; an
additional "parameter-identifiability" condition is needed on the given family in order
to determine .)

The above definition of family of systems includes the case in which the
identification is desired of a system of which one only has a bound on dimension and a
bound on the degree of the polynomials in its defining equations: it is then obviously
enough to add one parameter for each unknown coefficient and one for each coor-
dinate of the (unknown) initial state. (Such a parametrization is of course highly
redundant; realization theory may give lower order ones; see Remark 3.6.).
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ON THE OBSERVABILITY OF POLYNOMIAL SYSTEMS 149

Nonpolynomial systems. Many of the remarks and results of previous sections
apply to more general finite-dimensional systems than polynomial systems, i.e.,
systems

(4.6) x(t + 1)= P(x(t), u(t)), y(t)= h(x(t))

where, say, U, X, Y are subsets of R’, R", [P (or corresponding complex spaces) and
P, h are analytic, infinitely differentiable, or just continuous, either in both x and u, or
only in x. The "generic" conditions, defined in terms of algebraic sets, should of
course, be redefined according to the category to be worked on (analytic sets, nowhere
dense sets, etc.). We conjecture, but have not yet proved, that Theorem 3.5 is true in
the analytic case. (In certain cases this is trivially true, e.g. for "analytic state-affine
systems," when P, G are analytic in u and linear in x.) The weaker result CG:
observability implies final-state determinability, holds for the following kind of system
(analogous definitions for the complex case):

DEFINITION 4.7. A state-analytic system Y_. has equations (4.6)with X an open
subset of n, y a subset of P, and both P and h analytic in x.

(U, and the dependence of P on inputs u, are completely arbitrary.)
THEOREM 4.8. Let the state-analytic system E be observable. Let K be any

compact subset of X. Then there exists an input sequence w such that, for each pair of
states x, z in K, either H (x H (z ) or P(x, w)= P(x, z ).

Proof. For each input sequence w, let

Kw := {(x, z) in K KIHw (x)-- H (z)}.

Each Kw is a subset of the compact set K x K, defined by analytic equations in X x X.
It can be proved, using compactness and applying the generalized form of the Weir-
strass preparation theorem given by Herv6 [1963, Thm. 2.7, Cor. 3], that sets defined
by analytic equations satisfy a descending chain condition on compact sets. Thus,
there is a minimal Kw.

Then w satisfies the conclusion of the theorem. Indeed, assume that, on the
contrary, there is a pair (x, z)in K x K with H (x)= H (z) but P(x, w) P(z, w). By
observability of E, there is an input sequence v such that

HWV(x) HW(p(x, v)) HW(p(z, v))= HWV(z).

So K is properly contained in K, contradicting minimality of the latter.
Except for our use of the result from analytic functions, the above is essentially

the standard proof of C- G for automata (all sets finite, so there is again a minimal
Kw) and for internally-bilinear systems (all sets are linear subspaces), in particular as
given by Muchnik (1973) and independently (strictly speaking, for continuous-time)
by Grasselli and Isidori (1977).

The compactness assumption cannot be dropped: the one-dimensional state-
anaiytic system ,--,6 with equations

x(t+ 1) 1/2x(t), y(t)=sinx(t)

is observable but is not final-state determinable with any (finite length) input.
Similarly, infinite differentiability (instead of analyticity)will not be sufficient:
consider the one-dimensional system 7 with X := (-1, 1) and

x(t + 1)= a(x(t)), y(t)= b(x(t)),

where a, b are infinitely differentiable with a(x)= 2x on [-1/4, 1/4] (arbitrary otherwise),
and b(x)= 0 on [-1/4, 1/4] and bijective in the complement. Then Y-,7 is observable, but
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150 EDUARDO D. SONTAG

pairs of states in K [-1/4, 1/4] do not satisfy the conclusion of Theorem 4.8. (It is
interesting to remark that in both these examples there is an "asymptotic" final-state
determinability; infinite-time conditions are more appropriate for nonpolynomial
systems.)

Continuous-time. Many of the previous results can be generalized to continuous-
time finite-dimensional systems

(4.9) 2(t)= P(x(t), u(t)), y(t) h(x(t)),

where appropriate restrictions are placed on the state-space, input set, spaces of input
functions, and P, h. The continuous case is simpler than the discrete one, due to the
time-reversibility of (finite dimensional)differential equations. This implies that no
information is lost when an experiment is performed on such a system, i.e., the maps

(*) x- P(x, w)

are homeomorphisms for all w (P(x, w)= solution of (4.9) at time T with x(0)= x and
input w(. on [0, T]). It follows that final-state-determination is equivalent to single-
experiment observability. If P is analytic in both x, u and h is analytic in x (so that the
maps (.) are analytic), and under suitable technical assumptions insuring existence and
uniqueness of solutions of (4.9) for admissible input functions w, it follows by essen-
tially the same argument as in Theorem 4.8 that observability implies single-experiment
observability. (The internally-bilinear case of this result was proved via linear-alge-
braic techniques by Grasselli and Isidori (1977).) When P, h are polynomial in x, the
methods in Sontag and Rouchaleau (1975) can be applied to jets of outputs cor-
responding to smooth inputs, resulting in finiteness results for the continuous case.
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