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1. Introduction 

Systems consisting of  a large number  of  interconnected 'neurons '  evolving according to difference (in dis- 
crete time) or  differential (in cont inuous  time) equat ions have at tracted considerable at tention lately; see for 
instance the material  on ' recurrent  nets'  in [4]. The basic models considered are those in which the dynamics 
take one of  the following two forms, in discrete or  cont inuous time (to simplify notations,  we drop time argu- 
ments t, and use superscripts ' + ' and ' . '  to indicate time-shift and time-derivative, respectively): 

x+(or  ~) = a ( A x  + Bu), y = Cx,  (1) 

where A, B, and C are, respectively, real matrices of sizes n x n, n x m, and p x n, and a indicates the 
application of a function 

a : ~  

to each coordinate  of an n-vector, a(Xl . . . . .  x,) = (a (x l )  . . . . .  a(x,)) .  See Figure 1 for a block diagram, 
where A indicates either a unit delay or  integration. The complete model  is specified once that a and the triple 
(A, B, C) are given. (In cont inuous  time, one needs to assume also that  a is at least locally Lipschitz, so that  
existence and local uniqueness of the differential equat ion holds.) 

M a n y  questions, mirroring those for linear systems (for which a is the identity) can be posed. In the recent 
work [1], we explored realization questions, and in particular the fact that  all the entries of the matrices A, B, 
and C can be recovered (up to a small number  of symmetries) from the zero-initial state input /output  
behavior, assuming suitable minimality assumptions,  and as long as a is nonlinear enough. This is somewhat  
surprising, since for the linear case one can only recover the parameters  up to basis changes, and it is 
reminiscent of  old work of Rugh and coworkers,  as well as Boyd and Chua  (see for instance [5, 3]) on 
uniqueness of  interconnections containing nonlinearities. (Reference I-2] explains the relation between those 
more  classical facts and the result in [1].) 
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Fig. 1. Block diagram of recurrent net. 

In this paper, we look at questions of observability, i.e. state distinguishability for a known system, as 
opposed to determination of the systems parameters with a known initial state. Our main result is that 
observability can be characterized, if one assumes certain conditions on the nonlinearity and on the system, 
in a manner very analogous to that of the linear case. Recall that for the latter, observability is equivalent to 
the requirement that there not be any nontrivial A-invariant subspace included in the kernel of C. We show 
that the result generalizes in a natural manner, except that one now needs to restrict attention to certain 
special 'coordinate'  spaces. 

The paper is organized as follows. We first state precise definitions and results, then prove the results, and 
in the last sections we compare with linear systems and give some further remarks. 

2. Statement of  main result 

The function a will be assumed to satisfy the following independence property ( ' IP '  from now on): Given 
any positive integer l, any nonzero real numbers bl . . . . .  b~, and any real numbers fll . . . . .  fit such that 

(b i , f i )  5~ "4- (bj, f j )  Vi # j ,  

the functions 

1,a(blU + f l )  . . . . .  a(blu + f l)  

are linearly independent, i.e., 

I 

Co+ ~ c l a ( b l u + f i ) = O  V u ~  ~ Co=C1 . . . . .  c1=0.  
i=1 

The following result [2] provides sufficient conditions for a given function a to satisfy property IP; these 
conditions are weak enough to allow inclusion of most examples of interest in neural networks. 

Fact 1. Assume that a is a real-analytic function, and it extends to an analytic function a : C ~ C defined on 
a subset D ~_ C of  the form 

O = {zl I lmzl < 2}\{Zo,~o} 

for  some 2 > O, where Im Zo = 2 and Zo and Zo are singularities, that is, there is a sequence zn ~ Zo so that 
]a(z,)[ ~ ~ ,  and similarly for  Zo. Then a satisfies property I P. 

Note that if a has a meromorphic extension which has a unique pole of minimal positive imaginary part, 
then it satisfies the above hypotheses. Most rational functions are like this; more interestingly, consider the 
main example in neural networks research, namely, 

1 
a(z) - 1 + e -z" (2) 
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Here the set of poles is the set 

{kM, k odd} 

and one can take Zo = ~i above. Another example which appears often in the context of neural nets is that of 
arctan(x). Here, integrating 1/(1 + z2), one can find a branch defined on the complement of {Re z = 
0, [Imz[ > 1}, so one may pick Zo = i. See [2] for much more on property IP and related matters. 

We will provide results under a restriction on the class of systems (1). We state this condition next. For  any 
matrix M, Mi denotes the i-th row of M. Fix a pair of positive integers m, n. Let 

{ m B i = / = O  for all i =  1 . . . . .  n,} 
~,,m = B e R "× Bi ~ + B i for all i ~ j .  " (3) 

We drop the subscripts n, m when clear from the context. Observe that in the special case in which m = 1, 
a vector b is in ~ if and only if all its entries are nonzero and have different absolute values. 

We denote by b ° the set of all systems (1) for which B e ~ and a satisfies the property IP. 
Let ei ,  i = 1 . . . . .  n denote the canonical basis elements in •". A subspace V of the form V = 0 or 

V = span{e i . . . . . .  ei,}, l > 0 (4) 

will be called a coordinate subspace. Coordinate subspaces are exactly those that are invariant under all the 
projections 

7r, i : [~n __~ [~n, 7~ie j = (~ijei" 

Sums of coordinate subspaces are again of that form. Thus, for each pair of matrices (A, C) with A e •" ×" and 
C e ~P×", there is a unique largest A-invariant coordinate subspace included in ker C; we denote this by 
(9¢(A, C). One way to compute (9¢ = (9¢(A, C) is by the following recursive procedure: 

O. C¢ .= kerC,  

(gek+l.__ ( g c k ( . ~ A - l ( g k e O K l l  k k . -  ( 9 ¢ n ' ' ' n T z ~ l ( 9 ¢ ,  k = O  . . . . .  n - -  1, 

G :  = (91. 

(This can be implemented by an algorithm which employs a number  of elementary algebraic operations 
which is polynomial on the size of n and m. Alternatively, one could give a graph-theoretic algorithm based 
on structural observability techniques.) 

Recall that a system is observable if for each two distinct initial states there is some control sequence that 
gives a different output when the system is started at those states. This definition can be formalized in the 
obvious way both for discrete- and continuous-time systems; see e.g. [7] for details, as well as for references to 
equivalences between this definition and 'single experiment'  definitions. We now state the main result (in fact, 
two different results, one for discrete and another one for continuous time, but the proofs, given in the next 
section, will be essentially the same for both cases). 

T h e o r e m  1. Let Z e 5 a. Then Z is observable if and only if 

kerA n ker C = (9¢( A, C) = O. 

The condition (9¢(A, C) = 0 is equivalent to: no nonzero A-invariant coordinate subspace is included in 
ker C. 

Recall that the pair of matrices (A, C) is said to be observable - in the sense of classical linear systems 
theory; see e.g. [7], Section 5.2 - if the largest A-invariant subspace included in ker C, denoted O(A, C), is 
zero. Since both ¢¢(A, C) and ker A cn ker C are subspaces of O(A, C), the following Corollary holds. 

Corollary 2.1. l f  Z e ~,~ and the pair of  matrices (A, C) is observable then X is observable. 
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A usual case is that  in which A is invertible. In that case, ker A ~ ker C = 0. So in particular, we have the 
following Corollary.  

Corollary 2.2. l f  S ~ 5e and det A # O, then 2 is observable if  and only if  C~(A, C) = O. 

Remark  2.3. It is perhaps remarkable that this latter condit ion is formally the same as the observability 
condit ion (see e.g. [6])  that  results for bilinear systems with transition matrices A, ~ . . . . .  ~z, and output  
matrix C. ~ 

As any coordinate  subspace has the form V = 3~j7%(~"), for some finite set of indices i~ . . . . .  it, for such 
a space C V = 0 implies that  C~% = 0 for all j. In other words, if all columns of C are nonzero then C¢ = 0. 
Thus, we have yet another  sufficient condition. 

Corollary 2.4. I f  S ~ 5 ~, ker A c~ ker C = 0, and each column o f  C is nonzero, then X is observable. 

3. Proof of Theorem 1 

First we introduce some more  notat ions and prove some intermediate technical results. 
For  each matrix D, we denote by ID the following set: 

ID = {i I the i-th column of D is zero} = {iIDn, = 0}. (5) 

Note  that, for a coordinate  subspace V as in equat ion (4), V ~ ker D if and only if all ij e ID. 

Lemma 3.1. Assume that D E R q×" and B ~ ~., , , ,  and that a satisfies property IP. Then the following two 
properties are equivalent, for  each pair o f  vectors ~, ~ ~ R": 

(I) ~j = ~jfor a l l j ¢ l o .  
(2) Da(~ + Bu) = D a ( (  + Bu) for all u ~ ~" .  

Proof. Obviously,  the first property implies the second one. Assume now that the second equality holds for 
some pair ~, ~, but that  for this pair, there exists some J ¢ lo so that ~ j # ~s. Pick any row index i so that the 
entry Dis # O. We will prove that 

Dija(¢j  + (Bu)j) = ~ Dija(~j + (Bu)j) V u ~  ~ "  =~ Dij = 0 Vj = 1 . . . . .  n, (6) 
j = l  j = l  

which contradicts the fact that  Dis # O. Since the terms for which ~j = ~j can be cancelled out, we may assume 
without  loss of generality that ~ # (j for all j. (Not all terms cancel out in this manner  because, by 
assumption, ~s ~ (s.) 

First note that, since B ~ M, there must  exist some t~ ~ ~ "  such that 
• Bi~ = (B~)i ~ 0 for all i = 1 . . . . .  n, 
• B~a = (Bl~)i :/: -4- ( B u ) j  : -4- B j ~  for all i # j .  

Indeed, each of the equations Biu = 0, (Bi + Bj)u = 0, and (Bi - Bj)u = 0 defines a hyperplane in ~" ,  so 
we only need to avoid their (finite) union. 

N o w  pick elements u ~ ~ "  of the form u = tiv and let bi:= B#~ in equation (6). We have that 

Dija(bjv + ~j) - ~ Oija(bjv + (j) = 0 
j = l  j = l  

1 We thank Leonid Gurvits for pointing this out to us. 
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for all v ~ [~. Consider the functions tr(bjv + ~)  and a(b~v + ~) f o r j  = 1 . . . . .  n. As the numbers b~ are all 
nonzero and have distinct absolute values, and because tr satisfies property IP, the only way in which these 
functions could be linearly dependent is if (b~, ~)  = (b~, (~) for some j, i.e. if ~ = (~, contradicting the 
assumption that these are all distinct. [] 

Next we establish some intermediate results useful for proving Theorem 1. 

Lemma 3.2. l f  x is indistinouishable from z then ( Ax)i = ( Az)i for all i¢ lc. 

Proof. We want to prove that, both for discrete time and for continuous time, x indistinguishable from 
z implies 

Ca(Ax  + Bu) = Co(Az + Bu) Vu ~ ~m. (7) 

After this is shown, applying Lemma 3.1 with D = C, ~ = Ax, and ~ = Az to equation (7) provides the desired 
result. 

In the discrete-time case, equation (7) holds since each side of equation (7) represents the output that one 
obtains by applying the one-step control u to the states x (left-hand side) and z (right-hand side). 

Consider now the continuous-time case. Then, for any control value u ~ ~m, let u(t) be the control function 
constantly equal to u. Denote by x(t) and z(t) the solutions of the differential equation (1) starting at x and z, 
respectively. Since both of these solutions exist at least on a small enough interval [0, e), indistinguishability 
implies Cx(t) = Cz(t) for all t ~ [0, e). Taking derivatives in this equality, we conclude that 

C & ( t ) l , = o  - -  C2(t)l,=o, 

which, in turn, says that also in this case equation (7) holds. [] 

For  any two pairs of states (x, z), (¢, ( )~  R" x It~", we denote 

(x,z)~,(~,O 

if, for the discrete-time case, there exists some input sequence ul . . . . .  ut, for some l > 0, such that, if we 
initialize the system at x (or at z), we reach ~ (or (respectively). For  the continuous-time case, we require that 
there exists some (measurable, essentially bounded) control function u(t): I-0, T]  ~ ~ ' ,  such that, if we solve 
the differential equation (1) starting at x (or z), then the solution is defined on the entire interval I-0, T-I, and at 
time T the state ¢ (or () is reached. 

Note that, with this notation, two states (x, z) ~ 11~" x ~" are distinguishable with respect to the system (1), in 
the standard sense of control theory, if and only if there is some pair (~, () e ~" such that (x, z)~,  (~, () and 
C~ ~ C(. Observability means that every pair (x,z)~ R"× ~" with x # z is distinguishable. 

Proposition 3.3. Let ~, ~ 6¢, and pick any pair of states x, z E R". This pair is distinguishable if and only if: either 
x - z ¢ k e r C  or there exists a pair of states x',z' so that (x ,z)~,(x ' ,z ' )  and Aix' ~ Ajz ' for somej¢Ic .  

Proof. Pick any pair of (distinct) states x, z. We first prove necessity. 
Case 1: Assume we are dealing with the discrete-time case. If x is distinguishable from z, then either 

Cx v ~ Cz or Cx = Cz and there exists a pair (~,~) such that (x,z)-~(~,() ,  and C~ :~ C~. If the second 
condition holds, then let (x',z') and u ~ R "  be such that (x,z)~,(x ' ,z ' )  and ~r(Ax'+ Bu)= ~ and 
a(Az' + Bu) = ( (note that such a u exists since necessarily (x, z) # (~, ~)). Then by Lemma 3.1 - applied with 
D = C, ~ = Ax', and ( = Az' - there is s o m e j ¢ I c  such that Agx' ~ A~z'. 

Case 2: Assume we are in the continuous-time case, and Cx = Cz. Then since the pair is distinguishable 
there exists, as before, a pair (~, ~) such that (x, z ) ~ ( ~ ,  0, and C~ ~ C~. Let u(.) :  [0, T]  ~ R m be the control 
function which steers (x, z) to (¢, (). (Note that necessarily T > 0.) We now prove by contradiction that there 
exists some t ~ (0, T]  such that A~x(t) vL Aiz(t ) for somej  ¢ lc (where x(t) (or z(t)) denotes the solution of the 
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differential equat ion (1) with control  function u(t)  and initial condit ion x (or z)). Assume that our  conclusion 
does not  hold, i.e. for all t e (0, T ] :  

A j x ( t )  = A j z ( t )  V j ~ I c .  

This implies that (~(t))~ = (~(t))j for all j ¢  Ic .  Thus, by integrating, we have 

(x( t ) )  2 = (z( t )) j  + (x 2 - z j)  g j ¢ I c .  

Since for each j ~ l c  the j- th column of C is zero, and since C x  = Cz,  the previous equat ion implies: 

C x ( t )  = Cz ( t )  ¥ t  ~ [0, T ] ,  

which, in particular, says that C~ = C x ( T )  = C z ( T )  = C(,  giving the desired contradiction. 
Conversely, assume that the proper ty  holds. If  C x  4= Cz,  the states are distinguishable. Otherwise, from 

Lemma 3.2 we get that  x' is distinguishable from z', which, in turn, implies that x is distinguishable 
from z. [] 

For  any subspace V of ~", and any two x , z  ~ ~", we denote 

x - z mod  V 

if x - z ~ V. Observe that if V is a coordinate  subspace, then 

x - = z m o d V  ~ g ( x ) - g ( z ) m o d V .  (8) 

The next lemma establishes a useful property of  A-invariant  coordinate subspaces. Note  that the 
conclusion for discrete time is slightly different from the one for cont inuous time. 

Lemma 3.4. L e t  V be an A- invar iant  coordinate subspace. As sume  that x - z mod  A - 1 (V) .  P ick  any  (4, ( ) such 
that  ( x , z ) ~ , ( ( , ( ) ,  then 

(1) f o r  the discrete- t ime sett ing,  we have ~ = ~ mod V, 
(2) f o r  the cont inuous- t ime sett ing,  we have ~ - x =- ~ - z rood V. 

Proof.  The discrete-time result is easy to see. If V is A-invariant  and a coordinate  subspace, then 
x =- z m o d A - ~ ( V )  implies A x  + Bu = A z  + B u m o d  V for all u~  W". Thus arguing inductively on the 
length of controls, and using equat ion (8), our  conclusion follows. 

N o w  we establish the cont inuous-t ime result. Wi thout  loss of  generality, we may assume that there exists 
1 < k _ < n s u c h t h a t  

Let 

V = span{el  . . . . .  ek} 

A = A3 A,  ' B 2 ' 

with A1 ~ ~k×k,  A2 ~ ~ k × , - k ,  A3 ~ ~ , - k × k ,  A4 ~ R " - k × " - k ,  B1 ~ ~k×,, ,  and B2 E R "-k×m. Since V is A- 
invariant, we must  have (Ae~h = a ,  = 0 for all l e  {k + 1 . . . . .  n} and iE {1 . . . . .  k}. So A3 = 0. 

For  each y ~  R ~, we denote y = (yl,y2), where y ~ =  (Yl . . . . .  Yk) and y 2 =  (Yk+~ . . . . .  y.). With this 
notation,  we have y - ~ mod  V if and only if y2 = ~2. 

Let p = A x  and q = Az.  Since x = z m o d A - ~ ( V ) ,  we have p2 = q2. Let u(t) :[0,  T ]  ~ ~m be the control  
function that steers ( x , z )  to (~,(). Denote  by x( t ) ,  z ( t )  the corresponding trajectory starting at x and z, 
respectively, and let p(t)  = Ax ( t ) ,  q( t)  = Az( t ) .  Since A3 = 0, we have 

/j2(t) = A 4 a ( p 2 ( t )  + BEU(t)), 

~2(t) = A4a(q2( t )  + B2u(t ) ) .  



F. Albertini, E.D. Sontag / State observability in recurrent neural networks 241 

Thus, p2 (t) and q2 (t) are both  solutions of the same differential equation; since q2 (0) = p2 (0), by uniqueness of 
solutions we may  conclude p2(t) = q2(t) for all t e [0, T] .  This implies ~2(t) = ~2(t), for all t ~ [0, T-I. So, we 
have 

t , t  
x : ( t ) -  xZ(0)=  Jo x2(s)ds = Jo z2(s)ds = zz(t) - z2(0)" 

Evaluat ing the previous equat ion at t -- T, we get 

~ - x  2 = ~ - z  2, 

which implies that  ~ - x - ~ - z rood V, as desired. [] 

Remark 3.5. Since Vis A-invariant,  then V _ A - 1(V), thus, in particular, the previous lemma applies when 
x = z mod  V. 

N o w  we are ready to prove Theorem 1. We will in fact establish the following stronger fact: 

Two states x, z are indistinguishable if  and only if  x = z mod  (A-1(_9 c ~ ker C). (*)  

We first show the sufficiency of  this condition. Assume that  Cx = Cz and A x  =_ Az  mod (9c. N o w  we apply 
Lemma 3.4 to any pair ( 4, () such that (x, z) ~ ,  (4, (). Fo r  the discrete-time case, we get that  ~ - ( ~ (9¢ G ker C, 
so C ~ = C(. For  the cont inuous- t ime case, we have that ~ - ( - (x - z) ~ (9~ ~ ker C, thus, also in this case, 
we conclude C(¢ - () = C(x - z) = 0. So, in both cases, the chosen states cannot  be distinguished. 

N o w  we show necessity of the condition. That  is, we need to see that if x - z ¢ A -  1 (9¢ c~ ker C then the 
states are distinguishable. We wish to apply the criterion in Propos i t ion  3.3. We may  assume that  
x - z E ker C, since otherwise the states are obviously distinguishable. Since ker A n ker C ___ A -  ~ (~ c~ ker C, 
Cx = Cz implies that  A x  4: Az. So for some j it is the case that  rcjAx # njAz.  Hence the following set is 
nonempty:  

J : =  {Jl 3(x ' ,z ' )  [ (x , z ) -~ , (x ' , z ' )  and x' - z ' C k e r n j A ] } .  

Consider  the following coordinate  subspace: 

V =  s p a n { e j l j e  J }. 

Note  that  by definition (case where (x,z)  = (x',z')), A j x  4: A j z  ~ j ~ J, i.e., A x  - Az  ~ V, or equivalently, 
x - z ~ A - x V .  

If we prove that  V is A-invariant,  then it will follow that  either C V 4 : 0  or, by definition of Co, V is included 
in (9~. In  this latter case, we would have that  x - z ~ A - 1 V ~ A -  1 (9~, contradict ing the choice of the pair x, z. 
Thus  it must  be the case that  C V 4: 0, which is the same as saying that  J must  contain some element not  in Ic, 
and then Proposi t ion  3.3 applies. Thus, we only need to prove invariance. 

Pick an index j ~ J. By definition of J, we can write ( x , z ) ~ , ( x ' , z ' )  and Ajx '  4: Ajz' .  Writing ~ := Ax'  and 
( : =  Az', we have that  

~ 4: ~j. (9) 

We wish to prove that  Aej E V, i.e. we need to see that, for each given lCJ,  azj = zt(Ae~) = O. So take one 
such I. 

Then, for the discrete-time case, since l ~ J, it must  be the case that  

n z A a ( A x '  + Bu) = n l A a ( A z '  + Bu) for all u e ~ ' .  (10) 

Assume that  atj 4: 0. Consider  the matrix D = nzA; since a o 4: O, j ¢ I o .  We are then in the situation of 
L e m m a  3.1; this results in a contradict ion between equations (10) and (9). 
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For  the cont inuous- t ime setting, we argue as follows. Let u ~ ~m, and denote by u(t) the control  function 
constant ly  equal to u. Let x'(t) and z'(t) be the corresponding trajectories start ing at x'  and z', respectively; 
note that  these trajectories are defined at least on a small interval [0, e). Since l¢ J, we must  have 

(Ax(t))t = (Az(t))t Vt ~ [O,e). 

By taking the derivative with respect to t in the previous equation,  and evaluat ing at t = 0, we again get 
that  equat ion (10) holds. Thus,  we now conclude as before. 

Now it remains to show that  condi t ion (*) implies Theorem 1. By the definition of observabil i ty,  it is 
enough to see that  the following two condit ions are equivalent:  

A-1Ccc~kerC = 0, (11) 

ker A n ker C = 6'~ = 0. (12) 

Since (9c is A-invariant ,  we have 

C~ ~_ A-1C¢~ kerC. 

Since also ke rA  c~ k e r C  ~ A-1Cc n ke rC ,  it is clear that  (11) implies (12). Moreover ,  if (12) holds, then 
A-~(~c = ker  A, thus also the converse holds. [] 

4. Some examples 

It  is interesting to note that  the observabil i ty condit ions found in Theorem 1, namely,  

ke rA  n k e r C  = (_gc( A, C) = O, 

are necessary for the observabil i ty of any system of type (1), even if it does not  belong to the class 5 e. However ,  
as soon as a part icular  system _r is not in 6~, the previous condit ions are no longer sufficient. 

In this section, we provide two examples  which show that  the assumpt ion  that  the function a satisfies 
Proper ty  IP,  is essential to conclude Theorem 1. To  see that  also the assumpt ion  B ~ ~' , , , ,  is needed, see 
Examples  5.1 and 5.2. 

Example 4.1. Let a ( .  ) be any periodic smooth  function of per iod T; clearly such a function does not  satisfy 
p roper ty  IP. Consider  the following system, with n = 2 and p = m = 1: 

x + (or 2) = a(x + bu), 

y m_ X 1  - -  X 2  ' 

where b is any vector  in ~'z.1. 
These systems satisfy all our  observabil i ty condit ions except for the fact that  a does not have proper ty  

IP  - but  they are not observable.  Indeed, we consider ~ = (T, T). Then C~ = 0, and, since a is periodic of  
period T, it is easy to see that  both  for the discrete-time, and for the cont inuous- t ime cases, ~ is indistinguish- 
able f rom 0. 

Example  4.2. Assume that  a(x) = x 2,  which again does not satisfy proper ty  IP. Consider  first the discrete- 
t ime system, with this function tr, n = 2, m = p = 1, and matrices A, B, and C as follows: 

. : , 1 2 ,  c , 4 , ,  
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Note  that  this system also satisfies all our  observabil i ty  condit ions except for the proper ty  IP,  and  it is not  
observable.  T o  show this last fact, we argue as follows. L e t ,  be any real number ,  and consider the state 
x~ = (at, 40t). We claim that,  with the obvious  notat ion,  

x + (u) = (ct', 4e ' )  for some ct' e R. 

Note  that  if this p roper ty  holds, then the system is not  observable  since all these states are in ker C. 
We have 

4x ~-(u) = 4(2~t + u) 2 = (4ct + 2u) 2 = x~-(u). 

Thus,  our  claim holds with a '  = (2~ +/,/)2. 
Let us consider now the same model  in cont inuous  time. It  is possible to prove  that  this cont inuous- t ime 

system also is not  observable.  Fix, as before, a state of the type x~ = (~t, 4~), which is in ker C. Then  it is easy to 
see that,  if u(t) is a control  function, and we denote by x(t)= (xl(t),x2(t)) the corresponding trajectory 
s tar t ing at x~, then x2(t) = 4xl ( t )  for all t. 

5. Some comparisons with linear systems 

Corol la ry  2.1 showed that,  if B e ~ ,  observabi l i ty  of the pair  (A, C) implies that  the system of interest is 
observable.  But the converse is not  true. Fo r  an example,  consider any system in which each co lumn of C is 
nonzero  but  A is a nonsingular  d iagonal  matr ix,  such as A = I. In  this case, the pair  (A, C) is not  observable  
(if n > 1 and ker  C ~ 0), but, f rom Corol la ry  2.4, we have that, if B e ~ ,  the system is observable.  

On  the other  hand,  observabi l i ty  of  the pair  (A, C) is no longer sufficient if one does not  assume B e ~ .  To  
illustrate this point,  consider the following two examples,  the first in discrete t ime and the second in 
cont inuous  time. 

Example 5.1. Pick any two nonzero  real values x~, x2 in the image of tr such that  

xla-l(x2) ~ x2a-l(xl). (13) 

Such values always exist for nonl inear  a. Consider  the discrete-t ime system with n = 2, p = 1, and B = 0: 

(a-~(x~)/Xl O )  
A = 0 a_l(x~)/x2 , C = (x2, - xl).  

Given  (13) it is easy to see that  the pair  (A, C) is observable;  however,  the nonl inear  system is not. In fact, 
the state x = (x l ,x2)  is an equi l ibr ium state and Cx = 0, so it is indist inguishable f rom zero. 

Example 5.2. Assume that  tr is a smoo th  Lipschitz function, which satisfies p roper ty  I P  and such that  
tr(0) = a(2)  = 0. Pick any two nonzero  distinct real values x l ,  x2, and consider the cont inuous- t ime system 
w i t h n = 2 ,  p =  1, a n d B = 0 :  

(~/oXl 0 ) C = (x2, - xl). A = x/x2 ' 

Since xl  :~ x2, it is easy to see that  the pair  (A, C) is observable;  however,  the nonl inear  system is not. In 
fact, the state x = (Xl,X2) is an equi l ibr ium state and Cx = 0, so it is indist inguishable f rom zero. 

Of  course, if one uses instead a B in ~ in these previous examples,  then the systems become observable.  
This shows that  observabi l i ty  m a y  depend on the matr ix  B, which is a characterist ic of  nonl inear  
systems. 
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