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ABSTRACT This article uncovers a remarkable behavior in two biochemical systems that commonly appear as components of
signal transduction pathways in systems biology. These systems have globally attracting steady states when unforced, so they
might have been considered uninteresting from a dynamical standpoint. However, when subject to a periodic excitation, strange
attractors arise via a period-doubling cascade. Quantitative analyses of the corresponding discrete chaotic trajectories are con-
ducted numerically by computing largest Lyapunov exponents, power spectra, and autocorrelation functions. To gain insight into
the geometry of the strange attractors, the phase portraits of the corresponding iterated maps are interpreted as scatter plots for
which marginal distributions are additionally evaluated. The lack of entrainment to external oscillations, in even the simplest
biochemical networks, represents a level of additional complexity in molecular biology, which has previously been insufficiently
recognized but is plausibly biologically important.
INTRODUCTION
Many unforced biochemical systems, such as pairs of mutu-
ally repressing genes, or phosphorylation/dephosphoryla-
tion cycles, can exhibit biologically important properties
such as multistability and oscillations (1–8). The experi-
mental observation of these behaviors helps one to distin-
guish among alternative models, and indicates the
necessity of positive or negative feedback loops (9). Biolog-
ical observables exhibited in response to time-dependent
forcing signals (i.e., dynamic phenotypes) can provide
further insight into the structure of biological systems.
Recent examples include scale invariance or ‘‘fold-change
detection’’ (10–12), nonmonotonic behavior under mono-
tonic inputs (13), refractory period stabilization (14), and
nonentrained solutions or ‘‘period skipping’’ when stimuli
are periodic (14).

The goal of Rahi et al. (14) was to find tools that allow
one to distinguish between different perfect adaptation to-
pologies. It is known that adaptation requires the existence
of incoherent feedforward or negative feedback subnet-
works. Either of these works, giving asymptotically the
same behavior under constant stimulation. On the other
hand, responses to nonconstant inputs allow a finer model
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discrimination. Indeed, it is shown theoretically in (14)
that both feedforward loops and positive feedback loops
can never destroy entrainment, leaving negative feedback
as the only explanation for lack thereof. Rahi et al. (14)
found experimentally, in a Caenorhabditis elegans odor-
sensing neuron, responses whose periods are roughly multi-
ples of the period Tof an excitation signal, thus theoretically
implying the presence of negative feedback loops, and went
on to propose a circuit architecture that is capable of dis-
playing the observed dynamic phenotype. These findings
suggest the following theoretical question: what compli-
cated dynamics can arise in the simplest biochemical sys-
tems, more generally, in response to a periodic input?
Here we answer that question by showing that a negative
feedback system motivated by (14), and also the ‘‘nonlinear
integral feedback’’ circuit proposed in (10) for scale-invari-
ance, can both exhibit a rich bifurcation structure and
chaotic behavior in response to pulse-train excitations.

There is an extensive and deep literature that deals with
the analysis of responses of nonlinear systems, and particu-
larly oscillators, to periodic signals. Under the influence of
external periodic environmental forcing, nonlinear systems
can exhibit bifurcations leading to subharmonic responses
and chaos. Such behaviors have been studied theoretically
and experimentally, in squid axons (15), cellular circadian
oscillations subjected to periodic forcing by a light-dark
cycle (16), forced pendulums and other classical physical
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FIGURE 1 Simple biocircuits with an arbitrary periodic input and

a negative feedback output. (a and c) Negative feedback system.

Chaos in Periodically Forced Models
oscillators described by the van der Pol and the Duffing
equations (17–23), and biochemical oscillators such as the
‘‘Brusselator’’ (24,25). Our contribution is to show that
similar behaviors can be found already in two of the
simplest nonlinear systems, which appear in the current sys-
tems biology literature. Furthermore, and perhaps equally
remarkable, our two systems are not rhythmic in the absence
of periodic stimulation; quite the contrary, they have unique
and globally asymptotically stable steady states when the
input is constant. This complexity in ubiquitous systems
that constitute components of typical signal sensing and
transduction networks suggests a previously unrecognized
hidden level of complexity in molecular biology, which is
of significance for biological function (14).
(b and d) Fold-change detection system. (a and b) Arbitrary periodic input.

(c and d) Pulse train input.
MATERIALS AND METHODS

We first discuss the models to be considered, the type of periodic input, and

the notion of chaos.
The two models

Our first example, motivated by (14), where similar models appear, is a

negative feedback system that consists of two species X and Y such that

X enhances the production of Y and Y inhibits the production of X. The

concentrations of X and Y at time t are denoted respectively by x ¼ x(t)

and y ¼ y(t). The interaction terms are modeled by Michaelis-Menten

kinetics, and both X and Yare subject to zeroth-order decay through a mech-

anism such as protease-mediated degradation. An external input U, with

magnitude u¼ u(t) in appropriate units, triggers production of X. The equa-

tions are as follows:

dx

dt
¼ sxuðtÞ

qy þ y
� mxx

Mx þ x
; (1a)

dy syx myy
dt
¼

qx þ x
�
My þ y

; (1b)

where we omit the argument t in x and in y, but leave it in the input to

emphasize its time-dependence. All constants are assumed to be positive.

A diagram of this model is in Fig. 1, a and c, with a general periodic input

or a pulsed input, respectively.

To emphasize that the bifurcation behaviors are not an artifact of artifi-

cially chosen parameter values, we will also consider the special case of

model 1 in which all parameter values are unity (sx ¼ sy ¼ qx ¼ qy ¼
mx ¼ mx ¼ Mx ¼ My ¼ 1). We call this the ‘‘unity’’ model.

Our second example originates in (10) (see (26) for more theoretical

analysis). It is an integral feedback system consisting of a regulator species

X and an output species Y, with equations (using again x, y, and u for con-

centrations and inputs) as follows:

dx

dt
¼ axðy� y0Þ; (2a)

dy cuðtÞ

dt

¼
Kx þ x

� dy: (2b)

In model 2, a ¼ Y0 ¼ c ¼ d ¼ 1.0. Thus, model 2 is also a unity model. We

use a small (nonzero) parameter Kx, 0 < Kx << 1, for the sake of compu-
tational feasibility only to avoid division by zero or very small numbers. For

a Michaelis-Menten constant Kx, 0 < Kx << 1, this system is perfectly

adapting to constant inputs and has the scale invariance or fold-change

detection property, as discussed in (10). A diagram of this model is in

Fig. 1, b and d, with a general periodic input or a pulsed input, respectively.

Both examples have the property that when u(t) is a constant there cannot

be any periodic orbits and, furthermore, all solutions converge to a globally

asymptotically stable steady state (with one minor exception for model 1,

explained in the Supporting Material, which arises when some solutions

become unbounded). For the system defined by model 2, this fact was

proved in (26). For the system described by model 1, this is discussed in

the Supporting Material.
Inputs

For simplicity, and to connect with the experiments in (14), wewill consider

T-periodic input functions u(t) (i.e., u(t)h u(tþ T)), which consist of pulse

trains of period T:

uðtÞ ¼
8<
:

0; 0%t < t1;
m; t1%t < t2;
0; t2%t%T:

(3)

In Eq. 3, t1 ¼ (T – D)/2, t2 ¼ (T þ D)/2, where T and D are the period and

support of the input function u(t), respectively. For the sake of (computa-

tional) simplicity, the support interval, [t1,t2], is centered at the midpoint

of the interval [0,T]. We will analyze the effects of different choices of

the amplitude parameter m or period T.
Chaos

There are many definitions of chaos, the choice of which depends on the

aspect of chaos to be emphasized (22,27–32).

The definition of chaos appropriate for our work is based on periodic

orbits and corresponds to the transition to chaos though period-doubling

cascades (33–35). Following (35), we say that the given dynamic system

has a periodic-orbit chaos or a periodic orbit strange attractor, if it has infi-

nitely many regular periodic saddles.

Specifically, in the context of this work we reduce the bifurcation anal-

ysis of our models to the bifurcation analysis of the corresponding

period-T maps F of the plane, F: R2 / R
2. In this case, periodic solutions

of the models, of period kT, are in one-to-one correspondence with the

respective fixed points of Fk, k – 1,.. We call a k-periodic orbit {z0, .,

zk�1} of the map F a regular saddle periodic orbit or a regular periodic
Biophysical Journal 114, 1232–1240, March 13, 2018 1233
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saddle, znþ1¼F(zn), n¼ 0,., k – 1, with zk ¼F(z0) if the Jacobian matrix

vFk(z0)/vz has two eigenvalues jm1j < 1 and jm2j > 1.

It is instructive to compare our biocircuit models with the Duffing’s equa-

tion, the second-order ordinary differential equation (ODE) with a cubic

nonlinearity describing a driven damped anharmonic oscillator, x00 þ
kx0 þ x3 ¼ Bcosut. Here, the parameter k controls the damping, and the

parameter B controls the amplitude of an external periodically varying

driving force (17,22). Chaotic solutions of the Duffing’s equation were

discovered as early as 1962–63 (20,21,23) and have been the subject of

extensive research (18,34,36). Detailed reviews of the Duffing equation’s

fundamental properties can be found in (22,32). In the examples studied

below, a strange attractor emerges via a cascade of period-doubling

bifurcations (35), the transition to chaos also observed in the Duffing’s

equation (34).

As already explained, when our biocircuits are subject to constant in-

puts, they admit a globally asymptotically stable state. However, when

the external periodic force is allowed to act during a short period of

time, very small relative to the period T, chaotic behavior emerges

(Fig. 2). This phenomenon is discussed in detail throughout the rest of

the article.

We conclude this section with a few qualitative motivating remarks. Spe-

cifically, although we focus on very simple and concrete examples of math-

ematical models manifesting complex chaotic dynamics, the models are

analyzed in the constructive style of the modern theory of dynamical sys-

tems. Despite the fact that this mathematical theory is still complex, it

has evolved to a point where it can be used to predict or, at least to motivate,

both the existence and structure of complex dynamics in a systematic

manner. We illustrate this next through two theoretical approaches.

First of all, by appending a third equation, dq/dt ¼ u with u ¼ 2p/T, to

the above-formulated 2D models, followed by an appropriate Fourier series

approximation of the discontinuous 2p-periodic input function v(q) ¼
u(q.2p) to fulfill formal smoothness conditions, the extended approximated

models can be viewed as a forced relaxation oscillator in the style of (30).

Intuitively, as the steady state of our simple models depends on the input-

level, if these input-levels oscillate, then the overall system’s response is

periodic and what we have is a relaxation oscillator. The theory developed

by Guckenheimer et al. (30) predicts that this class of forced relaxation

oscillators can have a positive measure set of parameter values for which

trajectories with positive Lyapunov exponents exist.
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FIGURE 2 Bifurcation diagrams with respect to the external period T. Here, (a

(e) and (f) correspond to model 2.
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Second, the approach developed by Sander and Yorke (35) provides

insight into the origin of the chaotic dynamics studied below via period-

doubling cascades.
Shift maps by period T

The piecewise definition given in Eq. 3 of the input u(t) makes it inconve-

nient to numerically study bifurcations of limit cycles with respect to model

parameters. It is more convenient to study the corresponding 2D-iterated

maps, or shift maps by period T,

znþ1 ¼ Fðzn;aÞ; z˛R2; (4)

where F(zn,a) is the shift map by period T along the trajectories of the

nonautonomous ODE given by Eqs. 1 or 2, respectively (recall that T is
the (minimal) period of the external input u(t)). More precisely, we define

F(z,a) ¼ 4T(z,a), where 4t(z,a) is the solution of the given ODE, that is,

4t(z,a) ¼ (x(t,a), y(t,a)), with the initial condition z ¼ (x,y) at t ¼ 0. Equa-

tion 4 gives the value of znþ1 as a function of zn (n ¼ 0,1,2,.), and a is the

vector of model parameters. Note that a fixed point in Eq. 4 corresponds to

the appropriate periodic solution of the ODE model considered.

Theoretical homotopy continuation (35) and numerical bifurcation ap-

proaches (37,38), as implemented for instance in the powerful numerical

bifurcation tool MatcontM (38), can then be applied to study numerically

bifurcations of fixed and periodic points of the iterated map F(z,a) defined

in Eq. 4. A technical requirement for these methods is that the map F(z,a)

should be smooth with respect to state variable z and parameter a. This

requirement is easy to verify; see the Supporting Material.
RESULTS AND DISCUSSION

Off-on-off chaos

Numerical analysis of the discrete trajectories in Eq. 4 cor-
responding to the models described in the Supporting Mate-
rial immediately reveals chaotic dynamics in a wide range
of model parameters.
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Specifically, Fig. 2 demonstrates examples of bifurcation
diagrams, when the values of the external period T are
allowed to vary: 1) Fig. 2, a and b, corresponds to a strange
attractor of the map in Eq. 4 for model 1 used with the fixed
parameter values sx ¼ sy ¼ 104, qx ¼ 10, qy ¼ 1, mx ¼ 100,
my ¼ 10, Mx ¼ My ¼ 1, m ¼ 1.75, and D ¼ 10�4;
2) Fig. 2, c and d, corresponds to the map in Eq. 4 for the
unity model 1 (with all parameters ¼ 1) used with
m ¼ 2.0 � 104 and D ¼ 10�2; and 3) Fig. 2, e and f, corre-
sponds to a strange attractor of the map in Eq. 4 for model 2
used with m ¼ 10�5, and D ¼ 0.2.

We observe from Fig. 2 that for large values of the
external period T (that is, low frequencies, u / 0), the dy-
namics in all the three models is asymptotically localized to
a small vicinity of the unique globally stable steady state,
corresponding to oscillations with a very small amplitude.
Indeed, large periods of external forcing allow the dynamics
systems to relax to their globally stable steady states.

However, as soon as the period T of the external input de-
creases, small amplitude oscillations develop into large-
amplitude oscillations, followed by the transition to chaos
via a period-doubling cascade. Remarkably, and counterin-
tuitively, whereas the period T of the external input de-
creases, the period of periodic processes described by
each periodically forced model increases before each model
becomes fully chaotic.

If the external period T is further decreased, the chaotic
dynamics is eliminated and is replaced again by regular pe-
riodic oscillations with period T. This backward transition,
chaos/ periodic oscillations, can be explained by the Kry-
lov-Bogoliubov-Mitropolsky asymptotic theory (39,40).
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FIGURE 3 Power spectra and autocorrelation functions. Power spectra and AC

iterated maps. Here, (a) and (b) correspond to the map in Eq. 4 for model 1 with

with period T ¼ 40; and (e) and (f) correspond to the map in Eq. 4 for model 2
The theory predicts that asymptotically in the limit
u / N, the system dynamics becomes periodic with
vanishing amplitude of oscillations. In this case, the high-
frequency small-amplitude periodic dynamics can be
approximated by a steady state in the corresponding auton-
omous (averaged) system (41).

The strange attractors shown in Fig. 2 are called ‘‘off-on-
off’’ attractors (35), because the chaotic dynamics disap-
pears for small and large values of the bifurcation
parameter, period T in this case, and exists only for interme-
diate values of the parameter. Examples of chaotic time-
resolved solutions for the strange attractors (Fig. 2) with
positive largest Lyapunov exponents (lmax > 0) (42), are
shown in Fig. S3.1.

To gain additional insight into the geometry of the strange
attractors corresponding to the bifurcations trees (Fig. 2)
and their complex time-resolved realizations (Fig. S3.1),
we then plotted their respective phase portraits for appro-
priate iterated maps from Eq. 4 as discussed earlier. In the
case of discrete trajectories generated by the map in Eq. 4,
it is convenient to interpret the phase portraits as scatter
plots for which marginal distributions can be computed
(see the Supporting Material). We observe from Figs. S4.1
and S4.3 that for model 1 with the parameters shown, and
also for model 2, the discrete trajectories are localized along
the axis y, respectively. However, in the special case of the
unity model, the discrete trajectories stochastically jump be-
tween and stochastically move along several attractor loci
(Fig. S4.1).

When instead of the external period T, the strength, m, or
support, D, of the external input, are taken as bifurcation
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Fs are generated from the discrete chaotic trajectories of the corresponding

period T ¼ 1; (c) and (d) correspond to the map in Eq. 4 for the unity model

with period T ¼ 5.
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parameters, similar results can be obtained (Figs. 5 and 6
and S5.1, respectively).
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FIGURE 4 (a and b) A Feigenbaum period-doubling tree. Because of the

very fast accumulation of the bifurcation values of the corresponding pa-

rameters, Tk and mk (k ¼ 1, 2,.), around their respective limits (Table 1),

only the very well-visible onsets of the bifurcation trees are shown.
Power spectra and autocorrelation functions

In the theory of chaotic dynamic systems and discrete iter-
ated maps (43), the power spectrum is computed and used
to distinguish periodic, quasiperiodic, and chaotic motions
described by dynamical systems arising in a broad range
of fields (31). The power spectrum plotted for periodic or
quasiperiodic trajectories has discrete peaks at the harmonic
and subharmonics, whereas chaotic trajectories have a
broadband component in their power spectrum. To illustrate
that phenomenon for chaotic discrete trajectories of the iter-
ated maps given in Eq. 4, we compute the power spectra and
autocorrelation functions for the discrete trajectories corre-
sponding to those values of parameters for which the plots in
Fig. 2 (and Fig. S3.1) are obtained. To compute the power
spectra and autocorrelation function (ACF), we use fast
Fourier transform and ACF functions available from
MATLAB (The MathWorks, Natick, MA) with N0 ¼ 105,
the number of points used to compute both the power
spectra and ACFs (Fig. 3).

Recall that the ACF r(L) is defined and computed as fol-
lows (44):

rðLÞ ¼ lim
N/N

1

N

PN
n¼ 0

yn yn�Lz
1

N0

PN0

n¼ 0

yn yn�L: (5)

Here, N0 is a sufficiently large integer, the integer argument
L is called a lag (31,44), and yn is, for example, the y compo-
nent of the iterated phase point zn, zn¼ (xn,yn), zn¼F(zn�1),
n ¼ 1,2,. (see the Supporting Material).

We also recall briefly that chaotic dynamics implies mix-
ing and, therefore, a positive Kolmogorov entropy (31). As a
result of the mixing effect, r(L) decreases to zero exponen-
tially at a rate determined by the Kolmogorov entropy (45).

We observe from Fig. 3 that the ACF in the case of
model 1 converges to zero slowly, rapidly oscillating be-
tween positive and negative values, Fig. 3, a and b, whereas
the ACF in both case of the unity model, Fig. 3, c and d, and
model 2, Fig. 3, e and f, vanishes rapidly. This observation
could be interpreted as saying that model 1 has a larger
capacity for memory than the other two models in terms
of its remembrance of the past.
TABLE 1 Numerical Approximation of the Feigenbaum

Constant d

k Tk dk mk dk

1 3.46269 � 0.63353 �
2 1.79848 � 1.10720 �
3 1.67155 13.11112 1.23735 3.63917

4 1.66440 17.74194 1.27174 3.78548

5 1.66345 7.52016 1.27984 4.24533

6 1.66326 5.13666 1.28161 4.55884

7 1.66322 4.72916 1.28200 4.64452
Myrberg-Feigenbaum cascades

We continue our discussion of the bifurcation diagrams
(Fig. 2) by analyzing the corresponding period-doubling
cascades as discussed informally below. A rigorous defini-
tion of period-doubling cascades can be found in (33,35).

To begin with, we note that Pekka Myrberg, a Finnish
mathematician, was the first who discovered period-
doubling cascades for periodic orbits with periods p � 2q,
1236 Biophysical Journal 114, 1232–1240, March 13, 2018
q ¼ 1,2,3, ., for a variety of p values in a series of articles
published in 1958–1963 (46,47), reviewed in (35). In the
late 1970s, Mitchell J. Feigenbaum discovered a remarkable
universality for the period-doubling bifurcation cascades in
1D iterated maps (33). Specifically, Feigenbaum discovered
that if dk is defined by dk ¼ pkþ1 – pk, where pk is the
given map’s bifurcation parameter value corresponding to
the k-th period doubling bifurcation with the period transi-
tion 2k / 2kþ1, then

d ¼ lim
k/N

dk
dkþ1

¼ 4:669202.: (6)

The number d, known as the ‘‘Feigenbaum constant’’, is as
fundamental a quantity as the numbers p and e, in that it ap-
pears throughout the realms of science. The constant d can
be found not only in iterative maps but also in certain differ-
ential equations, for example, in the Duffing equation, as
empirically shown in (34). We next check if the correspond-
ing bifurcation values of the parameters T and m also satisfy
the universality law (6).

To carry out the corresponding computations systemati-
cally, we employed the command-line version of MatcontM
(38). Specifically, we used MatcontM to compute the
Feigenbaum (bifurcation) tree (Fig. 4), leading to the rapid
accumulation of regular saddle periodic points which even-
tually form an infinite countable set around the parameter
value T* (Fig. 4 a), or m* (Fig. 4 b), correspondingly.

Here, T* (or m*) corresponds to the Feigenbaum constant
in the limit, Tk / T* (or mk / m*) and dk / d, as k/N
(Table 1).
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We find from Table 1 that whereas the sequence {Tk} con-
verges slowly, the sequence {mk} converges rapidly to its
limit and its rate of convergence approximates the Feigen-
baum constant very well.
Multiple cascades

We next proceed with the discussion of the bifurcation dia-
grams shown in Fig. 2, c and d. Specifically, we discuss the
intervals in the values of the parameter T with chaotic and
regular dynamics interchange, as can be observed from
Fig. 2, c and d. A similar phenomenon holds for the bifurca-
tions with respect to the parameter m characterizing the
input strength (Fig. 5).

The behavior of the unity model turned out to be so com-
plex that it was impossible to employ MatcontM to carry out
a detailed numerical bifurcation analysis similarly to that
completed for model 1, and discussed in the Supporting Ma-
terial. Despite the complexity of the observed dynamics
(Figs. 2, c and d, and 5), we emphasize here that this model
is exactly the type of very complex dynamical system for
which the theory developed in (35) can be applied to attain
insight into the origin of the model’s chaotic behavior. Due
to the theory (35) and our numerical evidence, we have a
strong belief that multiple period-doubling cascades
contribute to the formation of the corresponding strange at-
tractors in these cases. Such multiple cascades lead to the
formation of an infinite countable set of saddle periodic
points that give rise to the emergence of chaos (35).
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Unbounded chaos

We complete our discussion of chaos emerging in these
simple periodically forced models with the case in
which model 2 has a strange attractor that appears to
exist for unbounded values of the bifurcation parameter
m as verified in our intensive numerical computations
(Fig. 6).

We observe from Fig. 6 that although the magnitude of
chaotic changes in the y variable stays bounded as in
Fig. 6 b, the magnitude of chaotic changes in the x variable
grows monotonically as the values of the bifurcation param-
eter m increase as in Fig. 6 a. The complex dynamics within
such strange attractors is called ‘‘unbounded chaos’’ (35).
Moreover, the theory predicts the existence of a cascade
leading to the formation of strange attractors with un-
bounded chaos (35).
Effect of noise

We now briefly explore the effect of additive noise by study-
ing the Itô stochastic differential equation (SDE):

dX ¼
�
sxuðtÞ
qy þ Y

� mxX

Mx þ X

�
dt þ ε1 dWX; (7a)

�
syX myY

�

dY ¼

qx þ X
�
My þ Y

dt þ ε2 dWY : (7b)

In the SDE given in Eqs. 7a and 7b, the parameters ε1
2 and

ε2
2 describe the variance rates for the changes in the net

rates of the random variables X and Y, respectively. Recall
that the stochastic differentials dWX and dWY describe the
standard Winner process (the standard Brownian motion)
(48,49). We write the SDE using a full differential form
because WX and WY are nowhere differentiable with
probability one (48,50), and we solve the SDE numerically
using the Milstein scheme (50,51) implemented in the
MATLAB SDE Toolbox (52).

The results of numerical simulation of the SDE for
different noise levels are shown in Fig. 7 for the set of
8 10

10-6

FIGURE 6 (a and b) Unbounded chaos cascade

in model 2 with respect to input strength m at

T ¼ 5.
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FIGURE 7 Bifurcation diagrams with respect to the external period T in the presence of noise (unity model 1). Here, (a–c) correspond, respectively, to

the noise levels ε2 ¼ 0.01, ε2 ¼ 0.1, and ε2 ¼ 1.0 taken from Eqs. 7a and 7b. In all cases, ε1 ¼ 10�6. The deterministic parameter values are as used in

Fig. 2, a and b.
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parameter values corresponding to model 1, and in Fig. 8 for
the set of parameter values corresponding to the unity
model. In each case, five traces or, equivalently, five sto-
chastic trajectories starting from the same initial conditions
are computed and used to plot the corresponding stochastic
bifurcation diagrams.

We observe that for the smallest variance (the noise level
ε2 ¼ 0.01 in Figs. 7 a and 8, a and b), the stochastic bifur-
cation diagrams are similar to the corresponding fully
deterministic bifurcation diagrams shown in Fig. 2. For
the medium-valued variance (the noise level ε2 ¼ 0.1 in
Fig. 7 b), the structure of deterministic bifurcation dia-
grams is preserved, although large numerical clouds
become clearly visible. For the larger values of the variance
(the noise level ε2 ¼ 1.0 in Fig. 7 c, and ε2 ¼ 0.1 in Fig. 8,
c and d), the structure of the corresponding deterministic
bifurcation diagrams is destroyed. If the values of the var-
1238 Biophysical Journal 114, 1232–1240, March 13, 2018
iances are further increased, the deterministic strange at-
tractors disappear at the cost of stability loss.
CONCLUSIONS

We showed that simple biochemical systems commonly
seen in models of sensing and signal transduction pathways
are able to exhibit a rich bifurcation structure into subhar-
monic oscillations, and even chaotic behavior, in response
to periodic excitations.

The appearance of subharmonic responses is by no means
an automatic property of cellular biochemical systems, how-
ever. For example, models of processes involved in gene
transcription (53) and mRNA translation (54) can be shown
to display the opposite behavior, namely entrainment, which
means that all solutions have the same frequency as the forc-
ing periodic signal. More generally, the synchronization of
FIGURE 8 Bifurcation diagrams with respect to

the external period T in the presence of noise (unity

model 1). Here, (a) and (b) correspond to the noise

level ε2 ¼ 0.01 taken from Eqs. 7a and 7b; and (c)

and (d) correspond to the noise level ε2 ¼ 0.1 taken

from Eqs. 7a and 7b. In all cases, ε1 ¼ 10�6. The

deterministic parameter values are as used in

Fig. 2, c and d.
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oscillators to external signals whose magnitude is large
enough to enter the ‘‘Arnold tongue’’ insures that solutions
will have the same frequency as the input (55). As pointed
out in a recent article (56), entrained responses of biological
systems play a key regulatory role in organisms (57–59).

Although the behavior that we uncovered theoretically is
consistent with the nonentrained responses seen experimen-
tally in (14), it is virtually impossible to mathematically
prove that an experimentally observed behavior is chaotic,
or even perfectly subharmonic, especially in molecular
biology, where noisy and relatively low precision measure-
ments are the rule. Nonetheless, this work can serve as an
indication that a lack of entrainment, complicated bifurca-
tion structure, and chaotic behavior even in some of the
simplest biochemical models, need not necessarily appeal
to randomness or complex hidden regulatory pathways.
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SI-1 Global dynamics of the model (1) with constant imputs

Consider the system described by (1), with a constant input u(t) ≡ u0:

F (x, y) = σxu0

θy + y
− µxx

Mx + x
(SI-1.1a)

G(x, y) = σyx

θx + x
− µyy

My + y
. (SI-1.1b)

We first note that a steady state, if it exists, is unique (clearly because of the increasing or decreasing
character of the functions of x and y). An analysis of nullclines reveals that there is only one case in
which solutions may become unbounded, see Figure SI-1.1, and our examples never treat that case.

Figure SI-1.1: Possible phase planes. The blue curve represents the x-nullcline, that is, the locus of σxu0
θy+y = µxx

Mx+x , and
the brown curve represents the y-nullcline, that is, the locus of µyy

My+y = σyx
θx+x . Arrows indicate directions of movement.

In cases B-E, solutions remain bounded. In case A, solutions may diverge. Case A occurs when both of the following
conditions hold: (i) µy > σy and (ii) σyMy/(µy − σy) < (σxu0/µx)− θy. (These conditions characterize that case when
both nullclines have have a positive limit as x → ∞, and they do not cross.) Note that we picked up the parameter
values so that (i) fails: µy = 10, σy = 104 (or both equal to 1 in the “unity” model).

Once that boundedness if the solutions is established, the Poincaré-Bendixson Theorem [1] insures that
every solution converges to the unique equilibrium, unless there are periodic solutions or heteroclinic
(including homoclinic) connections. However, periodic solutions and connections are ruled out by the
Bendixson criterion [1], as follows. Consider the vector field V (x, y) = (F (x, y), G(x, y)), corresponding
to the model in equations (SI-1.1). The Bendixson’s criterion states that if divV (x, y) 6= 0 for all
(x, y) ∈ D, then the vector field V (x, y) does not have a closed orbit or heteroclinic connections in D,
where D is any simply connected region of R2, D ⊆ R2, and

div (V (x, y)) = ∂F (x, y)
∂x

+ ∂G(x, y)
∂y

. (SI-1.2)

To show that divV (x, y) 6= 0, ∀ (x, y) ∈ D = R2, we simply compute:

div (V (x, y)) = −
(

µxMx

(Mx + x)2 + µyMy

(My + y)2

)
< 0, ∀ (x, y) ∈ R2. (SI-1.3)
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SI-2 Numerical evaluation of largest Lyapunov exponents

Figure SI-2.1: Largest Lyapunov exponents λmax depending on external period T . Panel (a) corresponds to
panels (a) and (b) from Fig. 2 in the main text; panel (b) corresponds to panels (c) and (d) from Fig. 2; and panel (c)
corresponds to panels (e) and (f) from Fig. 2. Positive values λmax > 0 characterize chaotic solutions, while zero values,
λmax = 0, are associated with periodic solutions of the corresponding models with the parameter values given in Sect. 3
of the main text.
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SI-3 Examples of chaotic solutions

Figure SI-3.1: Chaotic solutions. Panels (a) and (b) correspond to model (1) with T = 1.0 and λmax ≈ 1.97; panels
(c) and (d) correspond to the unity model with T = 40 and λmax ≈ 0.86; and panels (e) and (f) correspond to model (2)
with T = 5 and λmax ≈ 0.82. All other fixed parameter values are given in Sect. 3. In panel (a), x(t) decays extremely
fast, hence the “spike” look of the plot.
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SI-4 Scatter plots and marginal distributions

Figure SI-4.1: Scatter plot and marginal distributions for the model (1) with period T = 1.
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Figure SI-4.2: Scatter plot and marginal distributions for the unity model (1) with period T = 40.
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Figure SI-4.3: Scatter plot and marginal distributions for the FCD model (2) with period T = 5.
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SI-5 Bifurcation diagrams with respect to the input signal
support ∆

Figure SI-5.1: Bifurcation diagrams with respect to the input signal support ∆. Panels (a) and (b) correspond
to model (1) with T = 1; panels (c) and (d) correspond to the unity model (1) with T = 100; and panels (e) and (f)
correspond to model (2) with T = 5.
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SI-6 Experimental results

In [2], experiments were performed on intact C. elegans worms in microfluidic chambers, measuring the
response of odor-sensing AWA neurons (quantified by intracellular Ca2+ activity as measured by an
AWA-specific GCaMP sensor) to periodic on-off pulses of diacetyl. Shown in Fig. SI-6.1 is a harmonic
response in one experiment to a pulse with period T = 39, as well as, for another experiment, what
looks like sub-harmonic responses when the period of pulses is shorter, T = 15. (Not shown are
preparatory odor pulses, used in order to calibrate the recordings across experiments by waiting for
stabilized responses.) The experiments used the technology developed in [2].

Figure SI-6.1: Two selected responses to longer and shorter periods, from the work [2]. The x-axis represents time
in units of 0.1 seconds, and the y-axis is intracellular Ca2+ activity in arbitrary units. Top: A trace showing an
approximately harmonic (entrained) response to a pulse train with period T = 39s. Bottom: A trace showing a non-
entrained response, with an apparent lower-frequency component, to a pulse train with period T = 15s. Pulse duration
∆ = 10s in both cases. See [2] for details.
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SI-7 Verification of smoothness of Φ(z, α)

We wish to prove that Φ(z, α) is smooth, for our models with the piecewise defined input (3). The
result follows from a general theorem on the smooth dependence of the solutions of the given ODE on
initial conditions and parameters, see e.g. [3]. Indeed, let us first represent Φ(z, α) in the following
superposition form,

Φ(z, α) = ϕT −t2 ◦ ϕt2−t1 ◦ ϕt1(z, α). (SI-7.1)

Let z1(z, α) = ϕt1(z, α), z2(z1, α) = ϕt2−t1(z1, α), and z3(z2, α) = ϕT −t2(z2, α).

Since z1(z, α) smoothly depends on z, z2(z1) smoothly depends on z1 (viewed as an independent initial
condition), and, analogously, z3(z2, α) smoothly depends on z2, it follows from the differentiation chain
rule applied to the superposition (SI-7.1) that Φ(z, α) smoothly depends on the state variable z [3].

Similarly, because each of the shift maps, ϕT −t2(z2, α), ϕt2−t1(z1, α), and ϕt1(z, α), smoothly depends
on the parameter α, we can conclude that Φ(z, α) as well smoothly depends on the parameter α [3].

Moreover, it can be proved that Φ(z, α) is a diffeomorphism [3].
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SI-8 Tuning parameters of MatcontM

To clarify our computational approach, we have to note that the default setup of MatcontM implicitly
requires that the map Φ (z, α) is given by explicit analytic expressions (formulas), since it uses algo-
rithmic differentiation to compute Poincaré normal form coefficients [4]. Because our map Φ (z, α) is
defined implicitly through a number of numerical integration steps, we disabled the algorithmic (also
called automatic or symbolic) differentiation (adtayl) feature by setting ‘AutDerivative’ = 0.

To ensure robustness of all numerical computations, we used the MATLAB© ode45, ode15s, and ode23s
solvers with tight values of ‘RelTol’ = 10−8 and ‘AbsTol’ = 10−10, and, additionally, with ‘RelTol’
= 10−10 and ‘AbsTol’ = 10−12. To obtain all bifurcation values of both Tk and mk with at least five
significant digits, we computed the corresponding values two times by setting (i) ‘FunTolerance’ =
10−6 and 10−8, (ii) ‘VarTolerance’ = 10−6 and 10−8, and (iii) ‘TestTolerance’ = 10−5 and 10−7

inside MatcontM.
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