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Two classes of rings which occur in linear system theory are introduced and com-
pared. Characterizations of one of them are given in terms of integral extensions and a
Cayley-- Hamilton type matrix condition.

Introduction

Two classes of rings (not necessarily commutative) which appear naturally in gen-
eralizing the theory of linear dynamical systems are studied in this paper. For motiva-
tion the reader is referred to Sontag [4]. The exposition is mathematically self-con-
tained.

From a system-theoretic standpoint the interesting questions concern algebraic
properties of the first family (“FA” rings, for which all the usual properties of the
commutative case extend), and especially. its relation with the second family (“FO”
rings) and the left -right analog of the latter (related to questions of duality).

The problems mentioned above are approached by first characterizing FA rings
by a Cayley—Hamilton type condition and by conditions involving integral exten-
sions. A comparison is made in the case of no zero-divisors with Ore domains. The
relation between both classes is given by Theorem 3.2 and the counterexample in
section 4. The treatment is elementary throughout; in particular, in section 3 a
matrix-theoretical approach is used where more general functors Homyp(., M) than
M= R would perhaps be also suitable.

1. Finitely accessible rings

All rings will be associative with identity, homomorphisms preserving the latter.
Unless otherwise stated, “module” will stand for (unitary) left module, and in gen-
eral all one-sided notions will be left-notions, the right analogues having the corre-
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98 E.D. Sontag | On finitely accessible and finitely observable rings

sponding prefix. Maps are written on the right for (left) modules and on the left for
right modules.

The following notations are used:

"R, free (left) module on # generators (row vectors);

R, right module of column vectors;

R,,, n X n matrix ring.

No distinction is made between End ("R) and R, expressing maps in the standard
basis {e;}. If R is a subring of the ring S, then S is finite over R when it is finitely
generated as an R-module.

We single out two definitions of integral extensions of the many possible generali-
zations of the commutative case; many others are known.

1.1. Definition. Let § be a ring and R a subring of S. An element y of S is called (left)
integral over R provided it satisfies an equation y” +an_1y”—1 + ... tay = 0 with
ay, ..., @, 1 in R. If every element of § is integral over R, we say that S is (left) in-
tegral over K.

1.2. Definition. Let R, S be as above. An element y of S is called (left) A-integral
provided that there exist ¢y, ..., ¢,,, where each ¢; commutes with all elements of R,
such that M = Re| + ... + Rc,, contains an element which is not a zero divisor and
satisfies My C M. § is A-integral over R if every element of § is.

An even more restrictive definition is sometimes necessary [1], where also 1 €M
is required; this could be substituted for Definition 1.2 in what follows without
changing any statements.

1.3. Theorem. Let R be a ring. The following are equivalent:
(a) Every finite extension of R is integral.
(b) For every nand any T in R,, there exist an integer k and a, ..., a;_, in R
with
k-1
T =23 a7l
i=0
(c) Forany n, let M="R and g = . Then, for all F in End (M), there exist an
integer k and ay, ..., a5, in R such that

k-1
ng = EO al.gFi .
i=

(d) The same conclusion as in (c) holds for any finitely generated R-module M
and every gin M.

(e) Let M be a finitely generated R-module and &1s --r &y €lements of M. For any
Fin En'd (M) there exist an integer k and ay, ..., @y in R such that ngk = EKkaig]-Fi
forallj=1,.., m
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() For every pair of finitely generated projective modules M, N, for all F in
End (M) and all G in Hom (N, M) there exists an integer k with

k k+1
Z) Im GF = Zg Im GF' .
]

(g) Every A-integral extension of R is integral over R.

Proof. We shall prove (a) = (b) = (c) = (d) = (a), (d) = (e) = (g) = (b), and (e) = (f)
= (c).
(2) = (b). Immediate from the fact that R, is a finite extension of R, when every
r in R is identified with the corresponding diagonal matrix.
(b) = (c). Obvious because e; commutes with every element of R.
(c) = (d). Assume that M is finitely generated. Then, for some n, there exists a
surjective R- module homomorphism y: "R - M such that e; ¢ = g. Define
£ "R - "R such that oF = Fy. An equation for (F, ey ) is mapped by ¢ into the cor-
responding equation for (£, g).
(d) = (a). Assume that S is a finite extension of R. For y in S, consider the R-
endomorphism £ of S given by s sy, and apply (d) with g =1.
(d) = (e). Consider R" as a bimodule. Then M: = R"®g M is a finitely generated
R-module. Define

n
g:=Eei®gi
i=1

in M, and F := 1pm® Fin End (M). An equation for (F, g) gives a common equa-
tion for all (F, g;).

(e) = (g). Assume that R, S, M and y are as in (1.2), and m = Zi, /:¢j is not a zero
divisor, with all l in R. Consider the endomorphlsm z b zy of M. lt foliows from (e)
that there exist aO, oy @y = 1in R with Z;a; c]y =0 for all . By hypothesis, a;¢; = ¢4
for all i, j. Denote by ¢ the element Ea,y’ Then,

k n k n
mt=(2 l.c.)(E aiyi) =27 L(E a,c;y')=0.
=t 17 =1 v =

Since m is not a zero divisor, it follows that ¢ = 0. Hence y is integral.

(g) = (b). Define M := R,. Observe that M = Z; ;RE;; where Ej; is the matrix having
as its only non-zero entry the identity in the (i, ])th posmon It follows that R,, is an
A-integral extension of R, so by (g) it is integral.

(e) = (). Assume that g, ..., g,,, generate the image of G. It follows that there
exists a k such that the finite set of all g; F* with i <k generates Z;5,o ImGF".

(f) = (c). Trivial. O

1.4. Definition. A ring satisfying the conditions in Theorem 1.3.is called a finitely
accessible ring, or simply an FA ring.
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The terminology is motivated from condition (f), which appears naturally in sys-
tem theory. It is clear from (f) that the concept is Morita invariant, i.e. it holds
simultaneously for rings with equivalent categories of (left) modules. It is also ob-
vious that all left Noetherian and all commutative rings are FA rings. Using methods
of automata theory, this class of rings can be also characterized as those whose
polynomial rings admit a localization by their respective multiplicative subsets of
monic polynomials [4, Theorem 3.6].

We recall [2, p. 6] that a ring R is weakly n-finite iff "R is not isomorphic to a
proper direct summand of itself or, equivalently, iff every surjective endomorphism
of "R is an automorphism, or iff for 4, B in R,, the relation AB = I implies B4 = 1.
R is weaklv finite iff it is weakly n-finite for every n. It is not difficult to prove,
using condition (f), that every FA ring is weakly finite. This necessary condition is
not very sharp, but is enough to provide many counterexamples.

2. A comparison with the Ore condition

Recall that a (left) Ore domain is an integral domain in which any two non-zero
elements g, b satisfy Re N Rb # 0.

The statement (1.3a) provides an interesting connection with Ore domains. We
first prove:

2.1. Proposition. Assume R has no zero divisors. Then R is a (left) Ore domain iff
for each integer n, cach T in R n» and g in "R, there exist an integer m and agy o,y
inR, a,, #0,with Za;,gT"=0.

Proof. Suppose 4, b are nonzero elements of R. If the property is true forn = 1,
g=a, T=0b, then there are a), ..., a,, with Ta;ab’ = 0. If a; # 0, k < m smallest
such, cancelling bk the relation becomes

m -1

(f ,;2 2, ab';k)b =a,a,

so Ra MRb # 0.

Conversely, if K is the field of left fractions of R, "K has finite length as a K-
module. Given g and T, over K we have a relation gT" =X, ., kigTi, where each
ki=h; lal. with a;, b; in R. We may assume all b; are equal [2, Exercise 0.5.2], say
to b, so

bgT" = Zal.gTi ,

and there is a dependence in R, in fact with m =n. O

By a proof similar to that of Theorem 1.3 and defining (left) algebraic extensions
in the corresponding way, one has:
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2.2. Proposition. Suppose R has no zero divisors. Then R is an Ore domain iff every
finite extension of R is algebraic. O

Given a ring R and & a ring endomorphism of R, denote by R[z; o] the skew
polvnomial ring consisting of all finite sums £ g;z! with a; in R, coefficientwise addi-
tion and equality, and product given by the distributive extension of z - a := (ao)z.
The right skew polynomial ring is defined similarly. If & is an automorphism both
concepts coincide. If R is an integral domain and « is injective, the degree satisfies
all usual properties and R [z; &] is also a domain; if, further, R is a (left) Ore domain,
R{z:a] is also an Ore ring [2, p. 36].

Consider now an arbitrary commutative integral domain D and 4 :=D[{x;, i € Z}].
Let a be the ring automorphism of 4 which sends x; to x;,; for all i. Then
R :=A[z; ] is both a left and right Ore domain. We claim that it is not FA. Assume
on the contrary that there are y, ..., Yy q in R withx,z" = Zyl-x(,zi. Each y;is a
pulynomial y; = ... +;2"~! + ... with g; in A for all i, and the dots standing for the
terms in zK, k #n - i. So we have

n—1 n 1
x,2" = 27 (.+az" "+ ...),vcoz"= oy a.(x()a’""i)z” +...
i=0 ! i=0

Equating coefficients in z” we have

n—1 n-1
= —iy =
Xy = Z% ax,a"') = 2 ax, ;.

i=0 !

We get a contradiction, proving the claim. We have then proved somewhat more than:

2.3. Proposition. The class of FA rings with no zero divisors is properly included in
the class of (Ieft) Ore domains.

Since every Ore domain is weakly finite, the same example also proves that not
every weakly finite ring is an FA ring.
3. Finitely observable rings and relations between both classes

The following notion is in a sense dual to that of FA rings, when the latter are
characterized using (1.3f).

3.1. Definition. R is a finitely observable ring, or simply an FO ring, provided that
for any pair of finitely generated projective modules M, N and for all F & End (M),
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H € Hom (M, N), there exists an integer k with
k k-1

N yer Fi=0 yer Fil.
=0 =0

The terminology is again motivated by system theory, where the notion of ob-
servability is dual to that of accessibility. It is then of interest to investigate whether
any of the properties implies the other, either for the same ring or for its opposite.
The positive implications are given by the following result.

3.2. Theorem. Let R be an FA ring. Then R°P is an FO ring. If, moreover, R has no
zero divisors, then R is an FO ring.

Proof, We first remark that it is enough to check definition 3.1 for a free module of
finite rank M and N = R; the equivalence with 3.1 follows easily once that NV is em-
bedded in some "R and a free presentation is chosen for M.
Assume given T'in R, and % in R. Since R is an FA ring, it follows from (1.3d)
(with the transposed matrices g :=A', F := T") that there exist an integer £ and
agp, ..., dg_y in R such that
k-1
W(T'Y = Zg ah (T

i=

[t follows that

k-1 k

N ker T =N ker T'h
=0 i=0

where the powers of T and the products are now taken over the opposite ring. Hence
R°P is an FO ring, by the above remarks.

If R is also an integral domain, it follows from Proposition 2.3 that it is a (left)
Ore ring. Therefore it is embeddable in a division ring, and the latter is obviously an
FO ring. Hence the last part of the theorem will be proved once that the FO property
is shown to be hereditary. Indeed, assume that R is a subring of the ring S, Tisin R,
and 71 is in R. The same matrices induce morphisms Tg, hg of the S-modules ", S.
For all i, ker Th = (ker T’ hg) N "R, Using again the remark at the beginning of the
proof, R is an ¥O ring whenever Sis. O

It is again not difficult to prove that all FO rings are weakly finite, hence counter-
examples are easily available. However, the class is still very broad, due to the fact
that it is hereditary. For instance, the free associative ring on two generators,

R :=Z({xy, xy, is not an Ore domain, hence by Proposition 2.3 it cannot be an FA
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ring. But being embeddable in a division ring, both R and R°P are FO rings. There-
fore, the statements

R is FO implies R is FA
R is FO implies R°P is FA

are both false, even in the case of rings with no zero divisors.

4. A counterexample

We have proved in Theorem 3.2 that for domains the FA condition is weaker than
the FO condition. We now produce a counterexample to the corresponding state-
ment for arbitrary rings. The same construction serves to give negative answers to
many other questions.

Let S be an arbitrary but fixed (left) Noetherian domain. Consider the ring C of
all infinite matrices (a,-j) with rows and columns indexed by N and such that each
column has only a finite number of nonzero entries. Denote by A4 the subset of ma-
trices with finitely many nonzero entries. For each n, let 4, & A4 consist of those
matrices satisfying also a;; = 0 for j >n. Denote by b the matrix given by a;;= 1 iff
i =7+ 1 and O otherwise. Denote by f the matrix whose only nonzero entry is ay;= 1.

Identify s € § with s - I, thereby including S in C. Denote by D the smallest sub-
ring of C containing S and b. All elements of S commute with b. Therefore D >~ S[X]
and D is Noetherian, In particular, D is an FA ring; being embeddable in a field, D
is also an FO ring. Let B, be A,, + D (the set of all sums),and B :=4 +D=(UA4,)+D
=U(4, +D)=UB,.

Observe now that A,, is a left ideal in Cand that 4,6 € 4, | & 4,,.S04,D < A4,.
Hence ifa; +d; €B,, i =1, 2, witha; € 4,, d; € D, their product (a,a, +d|a, +a,d>)
+dd, € B,,. Each B, is then a subring of C. The union being directed, B is also a
subring. Since b's; is the matrix whose only nonzero entry is 1 in the (i +1,/)th
position, it follows that A, is the D-submodule of C generated by sy, ..., s5,. So B, is
generated as a D-module by 7, 51, ..., s,,. It is easy to check that these generators are
in fact left linearly independent. So B,, is a finite extension of D, freely generated
as a D-module.

The class of FA rings is easily shown to be closed under finite extensions. The
class of FO rings, on the other hand, is closed under extensions R C § where the
overring S is free as an R-module. We conclude that each 8, is both an FA and an
FO ring.

The class of FA rings is also closed under direct limits (this can be proved easily
from (1.3b)). Since B = lim B,,, it follows that B is an FA ring.

Now consider B as a left B-module and b, s; as endomorphisms (by right transla-
tion). Observe that s, b =s,_;if 0 </ <n and 0 otherwise. Observe that s% =59,
s;sy = 0 forj # 1. We have then s,b's; =s ifi=n— 1 and O otherwise. Define
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F:=bh H:= 5] Then 5, is in ker F'H fori= 0, ...,n — 2 but not in ker F-14,
Hence B is not an FO ring. Therefore the two classes are not comparable.

Along with Theorem 3.2, this proves that neither the FA nor the FO conditions
are left—right symmetric. In the case of FA rings, a much stronger statement holds:
there exists a ring R which is a right Euclidean ring and which is not an FA ring. In-
deed, define R :=§[z; o], where S is k(x), k a commutative field, and a: x ~ x2.

Both classes are closed under finite products, but R := Bw, g := (51, 59 53, ..2)
and T :=(d, b, b, ...) show that the class of FA rings is not closed under countable
products. A similar counterexample holds for FO rings, when R := 1 {B;, i € N},

T as before and h :=(sy, 54, 51, ...).

Now let D be an arbitrary nonprincipal ultrafilter over N, R the corresponding
ultrapower of B and R, the ultraproduct of the B;,i=1,2,...Areasoning as above
shows that R is not an FA ring and R is not an FO ring. This proves that neither
of both classes defined in this paper is axiomatic [3, p. 256}, i.e. they cannot be de-
fined in first order logic.
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