
Chapter 9
Modularity, Retroactivity, and Structural
Identification

Eduardo D. Sontag

Abstract Many reverse-engineering techniques in systems biology rely upon data
on steady-state (or dynamic) perturbations – obtained from siRNA, gene knock-
down or overexpression, kinase and phosphatase inhibitors, or other interventions –
in order to understand the interactions between different ‘modules’ in a network.
This paper first reviews one popular such technique, introduced by the author and
collaborators, and also discusses why conclusions drawn from its (mis-)use may be
misleading due to ‘retroactivity’ (impedance or load) effects. A theoretical result
characterizing stoichiometric-induced steady-state retroactivity effects is given for
a class of biochemical networks.
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Introduction

The ‘reverse engineering problem’ in systems biology concerns itself with the
discovery of the networks of interactions among the components of biomolecular
networks, including signaling, gene regulatory, and metabolic control networks. The
objective is to map out the direct or ‘local’ interactions among components, which
capture the topology of the functional network, with the ultimate goal of elucidating
the mechanisms underlying observed behavior (phenotype).

Typically, the analysis is based upon data gathered from steady-state perturba-
tion experiments. Perturbations are done to particular gene or signaling components
by means of traditional genetic experiments, RNA interference, hormones, growth
factors, or pharmacological interventions. Observed are steady-state changes in
concentrations of active proteins, mRNA levels, transcription rates, and so forth.
A graph is used to summarize the deduced interactions. For example, if there are
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Fig. 9.1 Cascade and
feedforward architectures x y
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two components, labeled A and B , one may perform an up-perturbation in A. If
this leads to an increased value of B , a directed edge A ! B labeled ‘activation’
is introduced. If it leads to a decreased level of B , an edge labeled ‘repression’ is
drawn. If there is no effect on B , no edge is put in. A major difficulty with such
steady-state (or even time-resolved) experiments is that perturbations propagate,
sometimes rapidly, throughout the network, thus causing ‘global’ changes which
cannot be easily distinguished from direct effects. To illustrate this difficulty, con-
sider the two graphs shown in Fig. 9.1 (arrows are supposed to be activating). In
both instances, up-perturbations of the external signal u or of the block labeled x
results in up-perturbations of the block y, but there is no obvious way to distinguish
the two architectures. A major goal in reverse engineering is to unravel the local
interactions among individual nodes from these observed global responses.

The ‘unraveling’, or ‘Modular Response Analysis’ (MRA) method proposed in
[7] and further elaborated upon in [1–3, 12], (see [4, 13] for reviews) provides one
approach to solving this global-to-local problem. The MRA experimental design
compares those steady states which result after performing independent perturba-
tions to each ‘modular component’ of a network. These perturbations might be
genetic or biochemical. For example, in eukaryotes they might be achieved through
the down-regulation of mRNA, and therefore protein, levels by means of RNAi, as
done in [10]. That work employed MRA in order to quantify positive and negative
feedback effects in the Raf/Mek/Erk MAPK network in rat adrenal pheochromo-
cytoma (PC-12) cells; using the algorithms from [12] and [1], the authors of [10]
uncovered connectivity differences depending on whether the cells are stimulated
with epidermal growth factor (EGF) or instead with neuronal growth factor (NGF).

Let us illustrate the underlying idea with the simplest non-trivial example. Sup-
pose that we are faced with the problem of distinguishing between the two possible
architectures schematically shown in Fig. 9.1. In general, components may be de-
scribed by single variables or by many variables. For instance, a gene expression
component might be described at various levels of resolution: by just one vari-
able (resulting protein levels), or by a far more complicated mechanism (including
binding and unbinding of transcription factors, transcription initiation and mRNA
polymerase dynamics, ribosome binding and translation dynamics, etc.). For sim-
plicity, let us discuss a simple model in which each component is described by a
scalar linear system. Thus both possible architectures are special cases of:

Px D �axC bu

Py D cx � dyC pu

where all parameters are positive but otherwise unknown (a; d > 0, so the model
is stable), and the question that we are interested in is that of deciding whether
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p D 0 or p 6D 0. (Obviously, it would be difficult to distinguish a small p 6D 0

from p D 0, if measurements are noisy. We assume for this introductory dis-
cussion that measurements are exact.) The available data are the steady states for
both x and y, for a constant (but unknown) input u, under these three scenar-
ios: (1) a D a0, u D u0; (2) a D a0, u D u1; (3) a D a1, u D u0. Once
again, we emphasize that u and a are not known. All we know is that they have
changed, one at a time, in experiments (2) and (3), which represent a change in
the concentration of u and a change in the degradation rate of x (e.g., due to a
protease concentration being changed) respectively. In general, the steady state, ob-
tained by setting Px D Py D 0, is (for constant u) given by x.1/ D .b=a/u and
y.1/ D .cb=a C p/u=d . Let us write x�u D .b=a0/u1 � .b=a0/u0 D .b=a0/�u,
the difference between the measured steady state of x for experiments (2) and (1),
and the corresponding quantity y�u D .cb=a C p/�u=d for y. Similarly, sub-
tracting the data from experiments (3) and (1) provides the measured quantities
x�a D .1=a1 � 1=a0/bu0 and y�a D .1=a1 � 1=a0/cbu0=d . Thus, we can com-
pute from the data: y�u=x�u � y�a=x�a D a0p=.bd/. If this last number is zero,
then p D 0 (cascade architecture), and if it is nonzero, then p 6D 0 (feedforward
architecture). Our objective of distinguishing between the two structures has been
achieved. (Moreover, we can even recover the numerical value y�a=x�a D c=d .
And, if u0 or u1 were also known, then we would be able to compute b=a0 from
the steady state value of x, and hence we would also obtain the value of p=d , as
.b=a0/ �.a0p=.bd//. Therefore, the relative strengths of all the terms in the equation
for Py have been computed. Note that this is the best that one can do: the actual values
of all three constants can never be obtained from purely steady-state data, because
multiplying all constants by the same number doesn’t affect the steady states.)

The MRA method generalizes the procedure shown for the above example, and
is reviewed in section “Modular Response Analysis” together with an application
and an extension to quasi-steady state data.

The name ‘modular’ arises from the fact that, in MRA, only communicating
intermediaries in-between ‘modules’ are measured. When applying MRA in a mod-
ular fashion, only perturbation data on these communicating signals are collected.
The connectivity strength among a pair of such intermediary signals (such as levels
of activated signaling proteins) is estimated, even if this apparent connectivity is
not due to a ‘directed’ biochemical interaction. In principle, an obvious advantage
of the modular approach is that it can be applied regardless the degree of internal
complexity of the nodes, since ‘hidden’ variables (such as non-activated forms of a
signaling protein) only affect connectivity in an indirect fashion, Thus, functional
interactions among communicating variables can be deduced without requiring de-
tailed knowledge of all the components involved.

Unfortunately, this analysis may be misleading, due to ‘impedance’ or ‘load’
effects. Following work by Saez-Rodriguez and others [9], we generically called
such effects retroactivity in [5]. In this paper, we wish to discuss how stoichiometric
constraints (conservation laws) might lead to erroneous conclusions when using the
MRA methodology. Let us illustrate this phenomenon with one of the simplest pos-
sible examples. Suppose that we want to study a system in which we postulate that
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there are two ‘modules’ involving enzymes X and Y , the ‘active forms’ of which
are the ‘communicating variables’. The active form X is reversibly produced from
an inactive form X0. We assume that Y is formed when X reversibly binds to a
substrate S producing a complex C , which may dissociate into X and S or into X
and Y (this is a standard Michaelis-Menten type of reaction). We also assume that
Y can revert to S in one step; a more complicated model could be used as well,
by modeling the phosphotase action in a Michaelis-Menten form, or by modeling
mechanistically its binding and unbinding to Y, but the principle is the same.

The network of reactions is as follows:

X0
1�*)�
1

X ; X C S
1=2��*)��
1

C
1=2��! X C Y ; Y

˛=2��! S

and we consider experiments in which X0.0/ D 3;X.0/ D 0;C.0/ D Y.0/ D 0, and
S.0/ D ˇ, and either ˛ or ˇ is to be perturbed experimentally. We think of X0 and X
as constituting the first ‘module’ and S;C;Y as the second one. The two parameters
˛; ˇ are usually viewed as affecting only the second module. The unique positive
steady state .X; S;C;Y/ is then obtained by solving:

2X C C D 3; C D XS; C D ˛Y; SC CC Y D ˇ

(and X0 D X).
We will consider perturbations around ˛D 1 and ˇD 3. For these nominal pa-

rameter values, .X; S;C;Y/ D .1; 1; 1; 1/. Taking implicit derivatives with respect
to ˛, evaluating at X D S D C D Y D 1, ˛ D 1, ˇ D 3, and denoting x D @X=@˛,
u D @S=@˛, v D @C=@˛, y D @Y=@˛, we have that:

2x C v D 0; v D x C u; v D 1C y; uC vC y D 0

which solves to:

x D �1=7; u D �3x; v D �2x; y D 5x

and thus ‘dX=dY’ computed as @X=@˛
@Y=@˛ equals 1=5 > 0.

The MRA method, or any other sensitivity-based approach, applied to the phe-
nomenological model in which only active X and Y are viewed as ‘communicating
intermediaries’ will lead us to include an edge Y ! X labeled ‘activating’. But such
an edge does not represent a true feedback effect: for example, it is not possible to
delete this edge with a ‘mutation’ in the system that does not affect the forward
edge. The edge merely reflects a ‘loading’ or impedance effect. In fact, the situation
is even more confusing. Taking implicit derivatives with respect to ˇ, evaluating at
X D S D C D Y D 1, ˛ D 1, ˇ D 3, and denoting x D @X=@̌ , u D @S=@̌ ,
v D @C=@̌ , y D @Y=@̌ , we now have that:

2x C v D 0; v D x C u; v D y; uC vC y D 1
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which solves to:

x D �1=7; u D �3x; v D �2x; y D �2x

and thus ‘dX=dY’ computed as @X=@ˇ
@Y=@ˇ now equals �1=2 < 0. Now the (false) effect

is inhibition. (The intuition is that when we increase ˛, the substrate for X increases,
sequestering more of X, and also Y is smaller. If instead we over-express S, then
both X is sequestered more and Y is larger. But intuition is not enough: for some
parameters, dX=dY < 0 for both experiments.)

Experimentally, it is often the case that one measures X C C and Y, instead of X
and Y, so that one would be interested in the relative variations of Ox D xC v and y.
Since 2xC v D 0, it follows that Ox D �x. Thus, d.XCC/=dY D �dX=dY, so the
signs are reversed, but are, again, ambiguous.

Of course, there is a simple explanation for the problem: the parameter ˛ affects
the differential equation forX , and the variables S and C in fact enter that differential
equation. Thus, the conditions for applicability of MRA have been violated. The
point, however, is that a naive application of sensitivity analysis (as usually done
in practice) that does not account for these subtle dependencies is wrong. One way
to avoid this potential pitfall is to insure that the postulated mechanism (without
additional feedback loops) does not exhibit such ‘load’ effects. We will present an
algorithm to detect such effects (at steady state).

Modular Response Analysis

Precise Problem Formulation

We consider systems

Px D f .x; p/
where x D .x1; : : : ; xn/ is the state and p D .p1; : : : ; pm/ is a vector of parameters.
Parameters can be manipulated, but, once changed, they remain constant for the
duration of the experiment. We will assume that m � n. In biological applications,
the variables xi might correspond to the levels of protein products corresponding to
n genes in a network, and the parameters to translation rates, controlled by RNAi.
Another example would be that in which the parameters represent total levels of
proteins, whose half-lives are long compared to the time scale of the processes (such
as phosphorylation modifications of these proteins in a signaling pathway) described
by the variables xi . Yet another example would be one in which the parameters
represent concentrations of enzymes that control the reactions, and whose turnover
is slow. The goal is to obtain, for each pair of variables xi and xj , the relative signs
and magnitudes of the partial derivatives @fi

@xj
; which quantify the direct effects of

each variable xj upon each variable xi . The entries of @fi=@xj of the Jacobian F
of f with respect to x are functions of x and p. The steady-state version of MRA
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attempts to estimate this Jacobian when x D Nx is an ‘unperturbed’ steady state
attained when the vector of parameters has an ‘unperturbed’ value p D Np. The
steady-state condition means that f . Nx; Np/ D 0. Ideally, one would want to find the
matrix F , since this matrix completely describes the influence of each variable xj
upon the rate of change of each other variable xi . Unfortunately, such an objective is
impossible to achieve from only steady-state data, because, for any parameter vector
p and associated steady-state x, f .x; p/ D 0 implies that ƒf.x; p/ D 0, for any
diagonal matrixƒD diag .�1; : : : ; �n/. In other words, the best that one could hope
for is for steady state data to uniquely determine each of the rows

Fi D .Fi1; : : : ; Fin/ ; i D 1; : : : ; n

of F only up to a scalar multiple. For example, if we impose the realistic condition
that Fi i 6D 0 for every i (these diagonal Jacobian terms typically represent degrada-
tion and/or dilution effects, and are in fact negative), one could hope to have enough
data to estimate the ratios aij =ai i for each i 6D j . Note that Fi is the same as the
gradient rfi of the i th coordinate fi of f , evaluated at steady states.

The critical assumption for MRA, and indeed the main point of [7,8,12], is that,
while one may not know the detailed form of the vector field f , often one does
know which parameters pj directly affect which variables xi . For example, xi may
be the level of activity of a particular protein, and pi might be the total amount
(active plus inactive) of that particular protein; in that case, we might postulate that
pi only directly affects xi , and only indirectly affects the remaining variables.

Under the above assumptions, the steady-state MRA experimental design con-
sists of the following steps:

1. Measure a steady state Nx corresponding to the unperturbed vector of parame-
ters Np;

2. Separately perform a perturbation to each entry of Np, and measure a new steady
state.

The ‘perturbations’ are assumed to be small, in the sense that the theoretical analysis
will be based on the computation of derivatives. Under mild technical conditions,
this means that a perturbed steady state can be found near Nx. Note that there are
mC 1 experiments, and n numbers (coordinates of the corresponding steady state)
are measured in each. In practice, of course, this protocol is repeated several times,
so as to average out noise and obtain error estimates, as we discuss later. For our
theoretical analysis, however, we assume ideal, noise-free measurements, and so we
may assume that each perturbation is done only once.

Using these data (and assuming that a certain independence condition, which
we review later, is satisfied), it is possible to calculate, at least in the ideal noise-
free case, the Jacobian of f , evaluated at . Nx; Np/, except for the unavoidable scalar
multiplicative factor uncertainty on each row.

The obtained results typically look as shown in Fig. 9.2, which is reproduced
from [10]. The authors of that paper used MRA on their experimental data in order
to infer positive and negative feedback effects in the Raf/Mek/Erk MAPK network
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Fig. 9.2 Three reconstructed local interaction maps, in MRA experiments from [10]. Topologies
derived from data obtained after stimulation by EGF (left panel, 50) or NGF (middle panel, 50, and
right panel, 150)

in PC-12 cells, employing perturbations in which total mRNA, and thus protein,
levels are down-regulated by means of RNAi. The numbers in the arrows in Fig. 9.2
have been normalized to �1’s in the diagonal of the Jacobian.

Mathematical Details

We assume given a parameter vector Np and state Nx such that f . Nx; Np/ D 0 and so
that the following generic condition holds for the Jacobian of f : detF. Nx; Np/ D
det @f

@x
. Nx; Np/ 6D 0. Therefore, we may apply the implicit function theorem and

conclude the existence of a mapping ', defined on a neighborhood of Np, with the
property that, for each row i ,

fi .'.p/; p/ D 0 for all p � Np; (9.1)

and '. Np/ D Nx (and, in fact, x D '.p/ is the unique state x near Nx such that
f .x; p/ D 0).

We next discuss how one reconstructs the gradient rfi . Nx; Np/, up to a constant
multiple. (The index i is fixed from now on, and the procedure must be repeated
for each row fi .) We do this under the assumption that it is possible to apply n � 1
independent parameter perturbations. Mathematically, the assumption is that there
are n � 1 indices j1; j2; : : : ; jn�1 with the following two properties:

(a) fi does not depend directly on anypj : @fi=@pj � 0, for j 2 fj1; j2; : : : ; jn�1g,
and

(b) the vectors vj D .@'=@pj /. Np/, for these j ’s, are linearly independent.

Assumption (a) is structural, and is key to the method and nontrivial, but assump-
tion (b) is a weaker genericity assumption.

We then have, taking total derivatives in (9.1):

rfi . Nx; Np/ vj D 0; j 2 fj1; j2; : : : ; jn�1g:
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Thus, the vector rfi . Nx; Np/ which we wish to estimate, and which we will denote
simply as Fi , is known to be orthogonal to the n� 1 dimensional subspace spanned
by fv1; : : : ; vn�1g. Therefore, it is uniquely determined, up to multiplication by a
positive scalar. The row vector Fi satisfies

Fi † D 0 (9.2)

where† is defined as the n
.n�1/ matrix whose columns are the vi ’s. Generically,
we assume that there is no degeneracy, and the rank of † is n � 1. Thus, Fi can be
computed by using Gaussian elimination, as any vector which is orthogonal to the
span of the columns of†. Another way to phrase this is to say that Fi is in the (one-
dimensional) left nullspace of the matrix †. Of course, the sensitivities represented
by the vectors vi (entries of the matrix†, or†# in the noisy case) cannot be directly
obtained from typical experimental data. However, approximating the vectors vj
by finite differences, one has that rfi . Nx; Np/ is approximately orthogonal to these
differences as well.

Handling Noise We next briefly discuss how to modify the algorithm to account for
repeated but noisy measurements. In principle, such noise may be due to combina-
tions of internal sources, such as stochasticity in gene expression, external sources
affecting the process being studied, or measurement errors. Our discussion is tai-
lored to measurement noise, although in an approximate way may apply to internal
noise; however, the effect of internal noise on MRA has not been studied in any
detail.

In practice, one would estimate not merely the results of just n � 1 perturba-
tion experiments, but many repetitions, collecting the data into a matrix †# whose
columns are derived from the different experiments. We will think of each column
of†# as having the form vCe, where v is a vector .@'=@pj /. Np/, for some parameter
pj for which fi does not depend directly on pj , and where e is an ‘error’ vector. In
matrix notation, †# D †C E , where E denotes an error matrix. Note that Eq. 9.2
implies that† has rank n�1. On the other hand, because of noise in measurements,
†# will have full rank n, which means that there is no possible nonzero solution Fi
to Eq. 9.2 with the data matrix†# used in place of the (unknown)†. So, we proceed
as follows. Assuming that the signal to noise ratio is not too large, the experimental
matrix†# should be close to the ideal (noise-free) matrix,†. The best least-squares
estimate of †, in the sense of minimization of the norm of E , is obtained by a
singular value decomposition†# D UMV T : the matrix † of rank n � 1 for which
kEk is minimized is † D UMn�1V T , where Mn�1 is the matrix obtained from
M by setting the smallest singular value �n to zero. We now replace Eq. 9.2 by
Fi†

# D 0, which, because V is nonsingular, is the same as FiUMn�1 D 0. Under
the generic assumption that �1; : : : ; �n�1 are nonzero, this means that FiU D ˛eTn ,
where ˛ is a scalar and eTn D .0; 0; : : : ; 0; 1/. We then conclude that, up to a con-
stant multiple, F Ti D Uen is the right singular vector corresponding to the smallest
singular value �n.
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This procedure can also be interpreted as follows (see [1] for details). If we
normalizeFi to have its i th entry as ‘�1’ (in other words, we normalize the diagonal
of the Jacobian to�1’s), then the equationFi†# D 0 can also be written as ‘Az D b’
where z represents the unknown n � 1 remaining entries of Fi , b is the i th column
of †#, and A is the matrix in which this column has been removed from †#. The
estimation method outlined above is the ‘total least squares’ or ‘errors in variables’
procedure. Statistically, the method is justified if the elements of the noise matrix
E are independent and identically distributed normal (Gaussian) random variables.
If these entries are normal and independent but have different variances, then one
must modify the above procedure to add an appropriate weighting, but in the general
non-Gaussian case nonlinear SVD techniques are required.

Modular Approach Let us suppose that the entire network consists of an inter-
connection of n subsystems or ‘modules’, each of which is described by a set of
differential equations such as:

Pxj D gj .yj ; x1; : : : ; xn; p1; : : : ; pm/; j D 1; : : : ; n
Pyj D Gj .yj ; x1; : : : ; xn; p1; : : : ; pm/; j D 1; : : : ; n;

where the variables xj represent ‘communicating’ or ‘connecting’ intermediaries of
module j that transmit information to other modules, whereas the vector variables
yj represent chemical species that interact within module j . Each vector yj has
dimension `j . The integers `j , j D 1; : : : ; n are in general different for each of
the n modules, and they represent one less than the number of chemical species
in the j th module respectively. Observe that, for each j , the rate of change of the
communicating variable depends only on the remaining communicating variables
xi , i 6D j , and on the variables yj in its own block, but does not directly depend on
the internal variables of other blocks. In that sense, we think of the variables yj as
‘hidden’ (except from the communicating variable in the same block).

We will assume, for each fixed module, that the Jacobian of Gj with respect to
the vector variable yj , evaluated at the steady state corresponding to Np (assumed to
exist, as before) is nonsingular. The Implicit Mapping Theorem then implies that
one may, in a neighborhood of this steady state, solve Gj .yj ; x; p/ D 0 (x denotes
the vector x1; : : : ; xn, and similarly for p) for the vector variable yj , as a function
of x; p, the solution being given locally by a function yj DMj .x; p/: Those steady
states that are obtained by small perturbations of Np are the same as the steady states
of the ‘virtual’ system Pxj D hj .x1; : : : ; xn; p1; : : : ; pm/ D gj .Mj .x; p/; x; p/,
j D 1; : : : ; n. From here on, the analysis then proceeds as before, using the hj ’s
instead of the fj ’s. A generalization to the case of more than one communicating
intermediate in a module, namely a vector .xj;1; : : : ; xj;kj

/, is easy.

Using Quasi-Steady State Data An example of the experimental data used to de-
rive the diagrams in Fig. 9.2 is provided by Fig. 9.3, which shows the level of active
(doubly phosphorylated) Erk1/2 when PC-12 cells have been stimulated by EGF and
NGF. (The Figure shows only responses in the unperturbed case. Similar plots, not
shown, can be derived from the data for the perturbation experiments given in [10].)
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Fig. 9.3 Active form of Erk1/2, in MRA experiments from [10]. Data shown only for unperturbed
case

The response to NGF stimulation allows the application of the steady-state MRA
method, and leads to the results shown in the right-most panel in Fig. 9.2.

However, the plots in Fig. 9.3 indicate that, in certain problems, steady-state data
cannot be expected to provide enough information, even for only finding the Ja-
cobian rows up to multiplicative factors. Such a situation occurs when the system
adapts to perturbations. In Fig. 9.3, notice that the steady state response to EGF
stimulation is (near) zero (this holds for perturbed parameters as well, not shown).
Thus, measuring steady-state level of activity of Erk1/2 after parameter perturba-
tions, in the EGF-stimulated cells, will not provide nontrivial information. One
needs more than steady-state data.

A variant of MRA, which allows for the use of general non-steady-state, time-
series data was developed in [12]. However, that method requires one to compute
second-order time derivatives, and hence is especially hard to apply when time mea-
surements are spaced far apart and/or are noisy. In addition, as shown for 50 and
150 NGF stimulation by the middle and rightmost panels in Fig. 9.2, the relative
strengths of functional interactions may change over time, so that a time-varying
Jacobian may not be very informative from a biological standpoint. An appealing
intermediate possibility is to use quasi-steady state data, meaning that one employs
data collected at those times at which a variable has been observed to attain a lo-
cal maximum (peak of activity) or a local minimum. Indeed, this is the approach
taken in [10], which, for EGF stimulation, measured network responses at the time
of peak Erk activity (approximately 5 min), and not at steady state. The left-most
and middle panels in Fig. 9.2 represent, respectively, the networks reconstructed
in [10] when using quasi steady-state data (at approximately 5 min) for EGF and
NGF stimulation.

We next describe the extension to quasi-steady state MRA. We consider the fol-
lowing scenario. For any fixed variable, let us say the i th component xi of x, we
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consider some time instant Nti at which Pxi .t/ is zero. Under the same independence
hypothesis as in the steady-state case, plus the non-degeneracy assumption that the
second time derivative Rxi .Nti / is not zero (so that we have a true local minimum or
local maximum, but not an inflection point), we show here that the MRA approach
applies in exactly the same manner as in the steady-state case. Specifically, the i th
row of the Jacobian of f , evaluated at the vector . Nx; Np/, is recovered up to a constant
multiple, where Nx D x.Nti / is the full state x at time Nti . The main difference with the
steady-state case is that different rows of f are estimated at different pairs . Nx; Np/,
since the considered times Nti at which each individual Pxi .t/ vanishes are in general
different for different indices i , and so the state Nx is different for different i ’s.

We fix an index i 2 f1; : : : ; ng, and an initial condition x.0/, and assume that
the solution x.t/ with this initial condition and a given parameter vector Np has the
property that, for some time Nt D Nti , we have that both Pxi .Nt/ D 0 and Rxi .Nt/ 6D 0. At
the instant t D Nt , xi achieves a local minimum or a local maximum as a function
of t . We describe the reconstruction of the i th row of the Jacobian of f , which that
is, the gradient rfi , where fi is the i th coordinate of f , evaluated at x D Nx and
p D Np, where Nx D x.Nt /.

To emphasize the dependence of the solution on the parameters (the initial condi-
tion x.0/ will remain fixed), we will denote the solution of the differential equation
Px D f .x; p/ by x.t; p/. The function x.t; p/ is jointly continuously differentiable
in x and p, if the vector field f is continuously differentiable. Note that, with this
notation, the left-hand side of the differential equation can also be written as @x=@t ,
and that x.Nt ; Np/ D Nx.

Consider ˛.t; p/ D @xi

@t
.t; p/ D fi .x.t; p/; p/: Thus,

@˛

@t
.t; p/ D @2xi

@t2
.t; p/ D rfi .x.t; p/; p/ f .x.t; p/; p/

and ˛.Nt ; Np/ D 0. The assumption that Rxi .Nt / 6D 0 when p D Np means that
@˛
@t
.Nt ; Np/ 6D 0. Therefore, we may apply the implicit function theorem and conclude

the existence of a mapping 
 , defined on a neighborhood of Np, with the property
that ˛.
.p/; p/ D 0 for p � Np and 
. Np/ D Nt (and, in fact, t D 
.p/ is the unique
value of t near Nt such that .@xi=@t/.t; p/ D ˛.t; p/ D 0). Finally, we define, also
in a neighborhood of Np, the differentiable function '.p/ D x.
.p/; p/ and note
that '. Np/ D Nx. Observe that, from the definition of ˛, we have that Eq. 9.1 holds,
exactly as in the steady-state case. From here, the reconstruction of rfi . Nx; Np/ up
to a constant multiple proceeds as in the steady-state case, again under the assump-
tion that it is possible to apply n � 1 independent parameter perturbations. A noise
analysis similar to that in the steady state case can be done here. However, there are
now many more potential sources of numerical and experimental error, since mea-
surements at different times are involved. In addition, internal (thermal) noise may
introduce additional error, since, in the quasi-steady state case, the state probabil-
ity distributions (solutions of the Chemical Master Equation) have not converged to
steady state.
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Retroactivity at Steady States

In this section, we analyze the retroactivity phenomenon of interconnections at
steady states. As discussed in the introduction, such an analysis is required in order
to understand the possible pitfalls of MRA. We will not define the term ‘retroac-
tivity’ as such, but instead use it only informally; the results to be given provide
a precise content to the term under slightly different contexts. The main question
is, in any event, to understand what is the relation between the steady states of in-
dividual systems (described by chemical reactions) and the steady states of their
interconnection.

Intuitively, one expects that retroactivity at steady state arises only when there
are more conservation laws imposed by an interconnection, in addition to those
that hold for each of the interconnected systems separately. Making this intuition
precise is not completely trivial. In fact, unless certain properties are imposed on
interconnections, the intuition is not even correct.

Our main results, Theorems 9.5 and 9.7, give sufficient conditions for retroac-
tivity to exist or not, respectively. Neither is necessary. However, we will define
a ‘consistency’ property for interconnections, under which Theorems 9.5 and 9.7
constitute a dichotomy.

See the Appendix for basic notations from chemical network theory. From now
on, we will assume that the vector S of species hasN D nCm components, which
we partition into two vectors x 2 Rn and z 2 Rm: S D .x0; z0/0 (we use primes
to indicate transpose). Corresponding to these coordinates, the reaction vector is
partitioned into two vectors R1.x/ and R2.x; z/ of dimensions r1 and r2 D r � r1
respectively: R.x; z/ D .R1.x/

0; R2.x; z/0/0. We also assume that, in terms of this
partition, the stoichiometry matrix looks as follows:

	 D
�
P

Q

�
D

�
A B

0 C

�

where P 2 Rn�r , Q 2 Rm�r , A 2 Rn�r1 , B 2 Rn�r2 , C 2 Rm�r2 . (In some
contexts, it will be convenient to use the ‘.P;Q/’ form, while for other contexts
the ‘.A;B; C /’ form will be more useful.) The equations for the system take the
following partitioned form:

Px D AR1.x/ C BR2.x; z/

Pz D CR2.x; z/

When there are no reactions involving x alone, we write AD 0, thought of as an
n
 1 matrix. Observe that, of course, the actual reactions entering x and z need not
be the same, since B and C may multiply different elements of the vector R2.x; z/
by zero coefficients.

We think of the overall system as an interconnection of the ‘upstream’ subsystem
described by the x-variables, that feeds a signal to the ‘downstream’ subsystem
described by the z variables. The ‘x’ appearing in CR2.x; z/ is seen, in that sense,
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as an input signal to the second system. The role of BR2.x; z/ is different. This
term represents the ‘retroactivity to the output’, denoted by the letter ‘r’ in [5],
and is interpreted as a ‘load’ effect that arises due to the physical interconnection.
Of course, these interpretations are subjective, and partitioning a system into an
interconnection can be done in non-unique ways. However, the questions to be posed
depend on one such partition.

In this context, we call the system Px D AR1.x/ the isolated system, and the full
system PS D	R.S/ the interconnected system. We use the notation �1.x/ for the
stoichiometry class of a state x of the isolated system:

�1.x/ D .x C�1/
\

Rn�0 ;

where�1 is the span of the columns of A.

Example 9.1. Our first example is this network:

X0
k1�*)�
k2

X ; X C S
k3�*)�
k4

C
k5�! X C Y ; Y

k6�! S

which represents the interaction of five species: an kinase which exists in inactive
(X0) or active (X, typically phosphorylated) form, a substrate S for the active kinase,
a complex C that is a dimmer of X and S, and a ‘product’ Y of the enzymatic reaction.
(For simplicity, we assume that the reverse transformation of Y back to S happens at
a constant rate; more complicated models can be studied in exactly the same way.)

We wish to think of this system of chemical reactions as consisting of the up-
stream system described by the vector x D .X0;X/0 which drives the downstream
system described by the vector z D .S;C;Y/0. Thus, with n D 2, m D 3, r1 D 2,
and r2 D 3, we take, using mass-action kinetics, R1.x/ D .k1X0; k2X/0 and
R2.x; z/ D .k3XS; k4C; k5C; k6Y/. Note that

A D
� �1 1

1 �1
�
; B D

�
0 0 0 0

�1 1 1 0

�

C D
0
@
�1 1 0 1

1 �1 �1 0

0 0 1 1

1
A :

There are conservation laws in this system which tie together the isolated (x) system
to the downstream (z) system, and one may expect that retroactivity effects appear.
Indeed, this system will satisfy the sufficient condition for retroactivity given in
Theorem 9.5 below. �

Example 9.2. Consider these reactions:

1
u�! X ; X

ı�! 0 ; X C P k1�*)�
k2

C:
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Then, with x D X and z D .P; C /0, and listing reactions in the obvious order:

A D 
 1 �1 � ; B D 
 �1 1
�
; C D

� �1 1

1 �1
�
:

Because of the production and/or decay of X , there are no conservation laws tying
together theX and the P;C systems, and there is no retroactivity effect. Indeed this
system will satisfy the sufficient condition in Theorem 9.7 for non-retroactivity. �

Example 9.3. Consider the following reaction:

X
k1�! Z ; Z

k2�! 0

with x D X and z D Z. Here B D .�1 0/ and C D .1 � 1/, and A D 0. This
example is one in which there are no conservation laws whatsoever, yet retroactivity
holds. Neither Theorem 9.5 nor Theorem 9.7 applies to this example, showing the
gap between the conditions. However, this example is somewhat pathological, as it
represents an ‘inconsistent’ interconnection in the sense defined below. �

Main Results Consider the following property:

rank

�
P

Q

�
D rankP C rankQ .	/

Remark 1. Since the weak inequality ‘�’ is always true, the negation of (*) is equiv-
alent to:

rank

�
P

Q

�
< rankP C rankQ . 6 	/

or, equivalently, the requirement that the row spaces of P and Q have a nonzero
intersection. �

If property . 6 	/ holds, then there is retroactivity at steady state. The precise state-
ment is as follows:

Lemma 9.4. Suppose that Property .	/ does not hold. Then, for each positive state
NS D . Nx0; Nz0/0 of the interconnected system, there exists a state S0 D .x0

0; z
0
0/

0 such
that

�.S0/ D �. NS/ but �1.x0/ 6D �1. Nx/ :
Moreover, S0 can be picked arbitrarily close to NS .

Proof. Suppose that . 6 	/ holds, and pick any positive state NS . By . 6 	/, there is some
nonzero row vector � which is in the row spaces of P andQ, that is to say, there are
two row vectors �0 and �0 such that � D �0P D �0Q 6D 0. Replacing �0 by ��0,
we will assume that �0P D ��0Q 6D 0. Let r be any vector such that �0P r 6D 0

(for example, one may pick r D P 0�0
0), and let u WD Pr and v WD Qr. Let, as earlier,

… WD �?. Note that, for each � D .�; �/ 2 …, �P C �Q D 0, by definition of…,
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and therefore also �uC�v D .�PC�Q/r D 0. In particular, .�0; �0/ 2 … satisfies
that �0u D �0Pr 6D 0 and also �0v D �0Qr D ��0Pr 6D 0. Since P D .A B/ and
Q D .0 C /, every element .�; �/ 2 … has the property that, in particular, �A D 0.

Notice that one could pick u and v as close to zero as wanted (multiplying, if
necessary, u and v by a common small positive factor). So, without loss of generality,
we assume that both x0 WD Nx C u and z0 WD Nz C v are non-negative, and write
S0 WD .x0

0; z
0
0/. We claim that S0 and NS are in the same stoichiometry class. Indeed,

for any .�; �/ 2 …: � NxC �Nz D � NxC �NzC 0 D � NxC �NzC�uC �v D �. NxC u/C
�.NzC v/ D �x0 C �z0 :

Finally, we claim that x0 and Nx are not in the same stoichiometry class for the
isolated system. Since�0A D 0,�0 is a conservation law for the isolated system. So
it will be enough to show that�0 Nx 6D �0
. Indeed,�0 Nx D �0.x0�u/ D �0
��0u,
and �0u 6D 0. �

Lemma 9.4 implies a steady-state retroactivity effect, in the following sense. Sup-
pose that NS is an attractor for points near it and in �. NS/. If x0 is taken as the initial
state of a trajectory x.t/ for the isolated system, then every limit point 
 of this tra-
jectory is in�1.x0/. On the other hand, if the composite system is initialized at this
same state x0 for the x-subsystem, and at z0 for the z-subsystem, then the ensuing
trajectory converges to the steady state NS , with x-component Nx. But 
 6D Nx, because
Nx 62 �1.x0/. The following result formalizes this fact.

Theorem 9.5. Suppose that there is some positive steady state NS D . Nx0; Nz0/0 of the
interconnected system which is a local attractor relative to its stoichiometry class. If
Property .	/ is false, then there exist x0 and z0 such that, with the initial condition
S0 D .x0

0; z
0
0/

0:

1. '.t; S0/! NS as t !C1, but
2. for the solution x.t/ of the isolated system Px D AR1.x/ with x.0/ D x0, Nx 62

clos fx.t/; t � 0g.
Proof. We use Lemma 9.4. Let S0 be as there. Since S0 can be picked arbitrarily
close to NS and in �.S/, we may assume that S0 belongs to the domain of attraction
of the steady state NS . Property (1) in the Theorem statement is therefore satisfied.
Finally, we consider the solution x.t/ of the isolated system Px D AR1.x/ with
initial condition x.0/ D x0, and pick any state 
 2 clos fx.t/; t � 0g. As �0.
/ D
�0.x0/ 6D �0. Nx/, it follows that 
 6D Nx. �

Next, consider the following property:

rank.A B/ D rankA .		/
i.e., the column space of B is included in that of A. Note that if this condition holds,
then .	/ holds too.

Lemma 9.6. Suppose that .		/ holds. Pick any two states NS D . Nx0; Nz0/0 and S0 D
.x0
0; z

0
0/

0 of the interconnected system. Then

�. NS/ D �.S0/ ) �1. Nx/ D �1.x0/ : (9.3)
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Proof. As NS � S0 belongs to the column space � of 	 , in particular, Nx � x0 is in
the column space of .A B/. Since the latter equals the column space of A, it follows
that Nx � x0 is in the column space of A, which means that x0 and Nx are in the same
stoichiometry class in the isolated system. �

Lemma 9.4 implies a steady-state retroactivity effect, in the following sense. Sup-
pose that there is a unique steady state in each stoichiometry class in the isolated
system, and that this steady state is a global attractor relative to its class. Then, ev-
ery omega-limit point of the composite system has the property that its x-component
equals this same steady state of the isolated system. The following result formalizes
this discussion.

Theorem 9.7. Suppose that .		/ holds. For any initial condition S0 D .x0
0; z

0
0/

0,
if a state NS D . Nx0; Nz0/0 of the interconnected system is in the omega-limit set of S0,
then x0 and Nx are in the same stoichiometry class relative to the isolated system.

Proof. If NS D . Nx0; Nz0/0 is in the omega-limit set of S0 then �.S0/ D �. NS/. The
conclusion thus follows from Lemma 9.6. �

There is a gap between the negation of Property .	/ in Theorem 9.5 and Property
.		/ in Theorem 9.7. In order to bridge this gap, we introduce the following
property:

kerC � kerB .C/

which we call consistency.
An interpretation of property .C/ is as follows. Suppose that S D . Nx0; Nz0/0 is a

steady state of the interconnected system. That is to say, AR1. Nx/C BR2. Nx; Nz/ D 0
and CR2. Nx; Nz/ D 0. Since then R2. Nx; Nz/ 2 kerC � kerB , this means that also
BR2. Nx; Nz/ D 0, and therefore we can conclude that AR1. Nx/ D 0. In summary,
under consistency, the x-component of every steady state of the interconnected
system is a steady state of the isolated system. Moreover, the ‘retroactivity’ signal
BR2.x; z/ also vanishes at steady state. This property is satisfied in most interesting
interconnections.

Property .C/ is equivalent to the requirement that the row space of B be a sub-
space of the row space of C . Under this property, rank	 D rankA C rankC , and
therefore Property .	/, i.e. rank	 D rank .A B/ C rankC is equivalent to Prop-
erty .		/. In other words, for consistent interconnections, the two Theorems provide
a dichotomy. Summarizing this discussion and consequences of the two technical
lemmas:

Corollary 9.8. Suppose that Property .C/ holds. Then, the following statements are
equivalent:

(a) Property .	/ holds.
(b) Property .		/ holds.
(c) Property (9.3) holds for any two states.
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Example 9.1 fails Property .	/: the ranks of P and Q are 2 and 3 respectively,
but the composite matrix has rank 4<5. Thus this example exhibits retroactivity, by
Theorem 9.5. Note that this example is consistent.

Example 9.2 does not exhibit any retroactivity effects, as is easy to see directly,
or appealing to Theorem 9.7, since Property .		/ is satisfied. Note that this example
is consistent.

Example 9.3 satisfies Property .	/, but nonetheless exhibits a retroactivity effect,
in the sense that every state of the isolated system is a steady state, but for the in-
terconnected system Px D �x, Py D x � y every solution converges to x D y D 0.
However, Property .		/ cannot be used to show retroactivity, since this property
also fails. Intuitively, this is a system that has no conservation laws, yet retroactiv-
ity fails. However, this system is ‘inconsistent’ in the sense that property .C/ does
not hold.

Appendix: Chemical Reaction Network Formalism

The differential equations for the evolution of the concentrations of the reactants in
a chemical reaction system are written in the following standard ‘chemical reaction
network’ formalism. Suppose that there are N species S1; : : : ; SN taking part in a
reaction system, where each Si D Si .t/ is a non-negative function of time that lists
the concentration of species i at time t � 0. (We use the same letter for a chemi-
cal species and for its concentration.) Collecting all entries into an N -dimensional
column vector S , one writes the evolution equations as follows: PS D 	R.S/. The
matrix 	 2 RN�r is the stoichiometry matrix, and R.S/ 2 Rr is the vector of
reactions: R.S.t// indicates the values of the reaction rates when the species con-
centrations are S.t/. A technical assumption is that solutions that start non-negative
remain so. This property is automatically satisfied for all the usual chemical reaction
rate forms, including mass-action kinetics. Mathematically, what is required is that,
for each i 2 f1; : : : ; N g, the i th entry of 	R.S/ is non-negative whenever Si D 0.
We will also assume that, for each initial condition S0 2 RN�0, the solution '.t; S0/

of PS D 	R.S/ with S.0/ D S0 is defined for all times t � 0.
For any chemical reaction system PS D 	R.S/, and any state S0, the stoichiom-

etry equivalence class of S0, denoted here as�.S0/, is the intersection of the affine
manifold S0 C � with RN�0, where � is the span of the columns of 	 . Thus, two
states S0 and S1 are in the same stoichiometry class if and only if S0 � S1 2 �,
or equivalently if �.S0/ D �.S1/. Observe that '.t; S0/ 2 �.S0/ for all t � 0.
Moreover, since �.S0/ is a closed set, any S in the closure of the forward orbit
OC.S0/ D f'.t; S0/; t � 0g is also in �.S0/.

We also introduce the vector space of ‘conservation laws’. This is the set of all
vectors perpendicular to the stoichiometry space, written as rows: … WD �? D
f� 2 R1�N j�	 D 0g Observe that a state S1 is in the stoichiometry class of a state
S0 (that is, S1 � S0 2 �) iff �.S1 � S0/ D 0 for all � 2 ….
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For any chemical reaction system PS D 	R.S/, and any steady state NS (that is,
	R. NS/ D 0) we say that NS is a local attractor relative to its stoichiometry class
if there is some neighborhood U of NS in RN�0 such that, for each S0 2 U

T
�. NS/,

'.t; S0/ ! NS . A positive state S is one for which all components are strictly pos-
itive, that is, S 2 RN>0. Under certain hypotheses on the structure of the chemical
reaction network, one may insure that in each stoichiometry class there is at least
one positive steady state that is a local attractor relative to the class. Moreover, this
steady state is often unique, and is a global attractor relative to the class; see for
example [6, 11].
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