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Balancing at the border of instability
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Some bhiological systems operate at the critical point between stability and instability, and this requires a fine
tuning of parameters. We bring together two examples from the literature that illustrate this: neural integration
in the nervous system and hair cell oscillations in the auditory system. In both examples the question arises as
to how the required fine tuning may be achieved and maintained in a robust and reliable way. We study this
question using tools from nonlinear and adaptive control theory. We illustrate our approach on a simple model
which captures some of the essential features of neural integration. As a result, we propose a large class of
feedback adaptation rules that may be responsible for the experimentally observed robustness of neural inte-
gration. We mention extensions of our approach to the case of hair cell oscillations in the ear.
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Persistent neural activity is prevalent throughout the nerfollow the line of research based upon bistability. Instead, we
vous system. Numerous experiments have demonstrated thatrsue the hypothesis of precisely tuned synaptic feedback.
persistent neural activity is correlated with short-termThe present paper proposes an adaptation mechanism that
memory. A prominent example concerns the oculomotomay be responsible for the fine tuning of neural integrators
system—see Ref§1,2] for a review and experimental facts. and that may explain the experimentally observed robustness
The brain moves the eyes with quick saccadic movementsf neural integrators with respect to perturbations. Before we
Between saccades, it keeps the eyes still by generating @esent this adaptation mechanism in detail, we first discuss
continuous and constant contraction of the eye muscles; thus similar phenomenon in the auditory system.
requiring a constant level of neural activity in the motor In order to detect the sounds of the outside world, hair
neurons controlling the eye muscles. This constant neurdells in the cochlea operate as nanosensors which transform
activity level serves as a short-term memory for the desire@coustic stimuli into electric signals. In Ref@-17 these
eye position. During a saccade, a brief burst of neural activhajr cells are described as active systems capable of gener-
ity in premotor command neurons induces a persistenjiing spontaneous oscillations. lons such ag*Care be-
change in the neural activity of the motor neurons, via &jeved to contribute to the hair cells tendency to self-

mechanism equivalent to integration in the sense of calculugygijate. For low concentrations of the ions, damping forces

Neural activity of an individual neuron, however, has a natu-y,minate and the hair cell oscillations are damped. As the

ra_I Fendency to decay with a relaxatlon_ time of the order 0fconcentration increases, the system undergoes a Hopf bifur-
milliseconds. Therefore the question arises as to how a tran-_.. . .
cation, the dynamics become unstable, and the hair cells ex-

sient stimulus can cause persistent changes in neural aCtiVitP{ibit spontaneous oscillations. In Ref8—12] the hair cells

According t long-standing hypothesi rsistent neural i, .
ccording to a long-standing hypothesis, persiste eu aare postulated to operate near the critical point, where the

activity is maintained by synaptic feedback loops. Positive ctivity of the ions exactly compensates for the dampin
feedback can oppose the tendency of a pattern of neural a ﬁ ty As before. this r y ir pﬁn tuning of par mpt ?
tivity to decay. If the feedback is weak, then the naturalehec.s' S DEIOre, this requires a fine tuning of parameters
tendency to decay dominates and neural activity decays. € 1on cqncentra_mor)sand agan _the question arises as to
the feedback strength is increased, the neural dynamics u ow this fine tuning can be achl_eved and maintained. In
dergo a bifurcation and become unstable. When the feedba efsh [9’1I1]d’ ba feedbac!:)lm]?chanl_sm . has l;)]ge? propqsed,
is tuned to exactly balance the decay, then neural activit)yv IIC hcou N rehspon3| € or.ma;:nta.m.m.gt :cs It?(fa tunmg.
neither increases nor decreases but persists without chanqe. tthus seetn:ﬁt at Qp%ra}|ng |r'16\t éat\acmlty ot.a ! ur;:atrl]on
This, however, requires a fine tuning of the synaptic feeg.> @ recurrent theme in biology. And the question as to how

back strength, and the question arises as to how a biologic%;);gg:ayeéointgeng'ifsum;:'\zponpr:g:t rrr;iy gg ;sz:sﬁgegﬁe
system can achieve and maintain this fine tunjBg-6]. y y

Some gradient descent and function approximation algogeneral interest. We view the two presented examples as spe-

: ; e : ial instances of the following general problem. Consider a
rithms performing this fine tuning have been propog&d| cla . ; ; :
and a feedback learning mechanism based on differentia(?rcef'd dynamical system, described by a differential equa-

anti-Hebbian synaptic plasticity has been studied in Rgf.  tion x=f,(x,u(t)). The right-hand side of this equation de-
Nevertheless, it is still unclear how the required fine tuning ispends on a parametew, and the unforced dynamics
physiologically feasible. For this reason, a different model=f,(x,0) are assumed to exhibit a bifurcation when
for neural integration based upon bistability has recentlyequals a critical valug,y. The problem consists of finding a
been proposed in Ref8]. In the present paper, we do not feedback adaptation rule for the parameiemnwhich guaran-
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tees proximity to the bifurcation point; that is, which steers (3) acts as a negative feedback. As a consequence, if the
toward its critical valueuy. This adaptation law may depend neural activityx were constant in Eq.3), then the synaptic

on u and x but should be independent @f,, since this feedback gainu would naturally relax to a rest value de-
critical value is not known precisely. This abstract formula-pending orx via the equatiorf(x) =g(u). The second con-
tion captures common features of both biological examplegjition states that there exist& such thatf(x*)=g(uo).

and suggests some unexpected links with the literaturerhjs condition implies that, if the neural activity would be
Questions very similar to the present one have been studiggnstant and equal t* in Eq. (3), then the synaptic feed-
extensively in the literature on adaptive contid8] and sta- 40k gain would naturally relax to its critical, desired
bilization [14]; and the general problem is closely related toyalue wo. Of course there is no guarantee that the neural

extremum seekind16] and to instability detectior{15], activity would be equal to, or even converge to, this special

where_ an operating parameter is adapted on line in order t\(/)aluex*. Instead, the level of neural activity is governed by
experimentally locate bifurcations.

Although the above general formulation is convenient,Eq' (2). Therefore, in order for the adaptation 248) to

there is little hope that a complete and satisfactory theory caWork’ We.need tg impose a last condition thas a decrea.s-'

be developed, which applies to all possible instances of th19 function. This means that the level of neural activity
problem. Introducing simplifying assumptions makes it moreNegatively regulates the synaptic feedback strength.
tractable. In this paper, we study in detail what is probably Ve now show that, under these three conditions, the feed-
the most simple but nontrivial instance of the general propback adaptation lawd) indeed tunes the synaptic feedback

lem. We consider the one-dimensional system gain u to exactly balance the natural decay ratg. We
_ _ begin with noticing that the combined system of equations
X=—poX+ux+u(t) (x=dx/dt), (1) (2 and(3) has a unique rest point. This equilibrium is deter-

. . ~ mined by setting the right-hand sides of E¢8) and (3)
which captures some of the essential features of neural intgsgual to zero, yielding=x* andu= u,. Although the pre-
gration and is, in fact, closely related to the autapse mod€lise value ofiug is unknown, if we are able to prove that all

from Ref.[6]. With this interpretationx is a strictly positive trajectories of Eqs(2) and (3) converge to thigunknown
variable representing neural activity in the integrator networkﬁxed point, then it follows thafu indeed converges to its
and u(t) represents the signal generated by the premotoy, '

desired critical valugwg. In order to prove this, we introduce
command neurons. The termugx corresponds to the natu- : o * -
e o a coordinate transformatiorg=In(x)—In(x*) and p=pu
ral decay of neural activity angx represents a positive, ) . . .
synaptic feedback loop. Of course, when studying neural in=" #o- This transforms Eqs(2) and (3) into g=p and p
tegration, questions can be investigated at varying levels of f(exp@x*)—g(p+ o). In these new coordinates, the dy-
detail. It is clear that a simple model such as that describefamics take the form of a nonlinear mass-spring-damper sys-
by Eq. (1) has several limitations. Because of its one-tem [with unit mass, nonlinear spring characteristic
dimensional nature, the present model is, for example, unt(exp()x*), and nonlinear damping functiogy - + uo)]. It
able of reproducing the distributed nature of persistent activfollows from physical energy considerations that this system
ity patterns observed in the brain. Nevertheless, Hg. exhibits damped oscillatior{20]. This shows that all trajec-
captures a key feature of neural integration: when the feedwories of Eqs(2) and(3) indeed converge to the unique fixed
back is tuned to exactly balance the decay, @fbehaves as point, whereu = .
an integrator and produces persistent neural activity. Equa- The above coordinate transformation reveals a subtle re-
tion (1) is therefore a valuable model when studying finejationship between self-tuning of bifurcations and the inter-
tuning of neural integrator networks,17]. nal model principle(IMP) from robust control theorysee
We are interested in the fine tuning of Ed) and study Refs.[18,19 for a discussion of the IMP from a systems
this question using tools from nonlinear and adaptive controhjglogy perspective This relation is made explicit by the

theory. First, we ignore the presence of the inp(f) and equationq=p, which represents an integrator and corre-

consider the simpler equation sponds to integral action studied in robust control theory.
One regards the constapt, as an unknown perturbation
acting on the system. The IMP implies that, in order to track
We present a large class of feedback adaptation laws for E4{iS constant perturbation, the system dynamics should con-
(2), which steeru to its critical valueu,; thus enabling the fain integral action. The integral action is generated by the
automatic self-tuning of parameters and the spontaneodclogical system itself, and not by the feedback adaptation
generation of persistent neural activity. We consider adaptdaw-

X=— moX+ uX. (2

tion laws[21] of the form We have so far ignored the presence of the sigr{a).
We showed that the adaptation a&) tunes the synaptic
u=Ff(x)—g(w). (3) feedback gain to exactly compensate for the natural decay

rate, resulting in the spontaneous generation of persistent
We show that, under three very mild conditions, this adaptaneural activity. At these equilibrium conditions, the action
tion rule guarantees convergence to the bifurcation point fopotential firing rate equalg*, which is related tou, by
Eq. (2). The first condition requires that is a strictly in-  f(x*)=g(ug). In the next paragraphs, we take into account
creasing function. This means that the terng(u«) in Eq.  the effect of the inpuu(t). In this case, the valug* will
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FIG. 1. Tuning of a neural integrator. Simula-
tion of Eq. (1) with u=&(—ax—bu+c) and
u(t) ==y 8(t—t;){Xgesired ti +) —x(ti =)}, where
&(-) represents the Dirac impulse and where the
sum goes over all saccade tintes The constants
are up=200s?!, a=1s?! b=001s? ¢
=42 52, ande=0.01. The adaptation law satis-
fies the compatibility conditiora(20+60 Hz)/2

0 2 4 6 8 10 12 14 16 18 20 Thun=
time 1t (s) Mo=C.

play the role of a parameter that influences the accuracy with We illustrate this result on a particular example represen-
which the feedback adaptation law guarantees proximity tdative for saccadic eye movements. We consider the case of
the bifurcation point. periodic saccadic eye movements asking for an action poten-

The signalu(t) will in general result in a time-varying tial firing rate in the motor neurons alternating between
action potential firing rat&(t). The mechanism with which 20 Hz and 60 Hz every second. At each saccade, a brief
this happens is determined by the neural integrator equatiolburst of neural activity in premotor command neurons
(1) and the adaptation lawB). For the purpose of analysis, changes the actual firing rate. We assume that this change is
we make two simplifying assumptions, both of which seemsuch that immediately after each saccade, the actual firing
to be natural and physically relevant for neural integrationrate equals the desired firing rate. Between saccades, we as-
First, we assume that, over any sufficiently large time intersume that no input is applid@2]. If the neural integrator is
val [ty,to+T], the time spent byx(t) in any interval perfectly tuned, then the actual firing rate will remain con-
[X1, X,] is approximately independent &f. In more math-  stant between saccades and equal to the desired firing rate
ematical terms, we assume the existence of a fund?ipn (eyes are fixed If the neural integrator is not perfectly
such that for every test functior(x), the time average tuned, then the actual firing rate will deviate from the desired
(1/T)fI0+Ta[x(t)]dt converges tofjP(x)a(x)dx as T  firing rate (eyes d_r?f) until a new saccade occurs, which

0 brings the actual firing rate to its new desired value. Figure 1

=% unlformly with respect td,. Second, We assume that shows the results of a simulation where the adaptation law
the adaptation law acts on a much slower time scale than théa

i i inx(1). Under th i the effect atisfies the compatibility condition of the previous para-
IMme variations inx( .)' Jhder these assumplions, the efiec graph. In the beginning of the simulation, we have mistuned
of the action potential firing rate(t) on the adaptation law

the neural integrator. Clearly, after a short transient, the ad-
(3) may be approximated by the average effeat aptation law achieves excellent tuning and the drift between
=[oP(x)f(x)dx—g(u). It is now clear when the adapta- two successive saccades becomes negligible.

tion law guarantees proximity to the bifurcation point: if the  We have thus shown that an adaptation law can tune a
compatibility condition [JP(x)f(x)dx=f(x*) is satisfied, neural integrator with great accuracy to its bifurcation point.
then time scale separation arguments suggesjiht! con- In order to achieve perfect tuning, however, the adaptation
verge approximately tay and the neural integrator will ap- law itself needs to satisfy a compatibility condition. It seems
proximately behave as a perfect integrator. The compatibilitythat we have merely moved the problem of fine tuning from
condition may by interpreted as folloW20]. When the pre- the neural integrator to the adaptation law. The crucial obser-
motor command signal(t) has zero time average and the vation and one of the main contributions of the present paper,
adaptation law acts on a slow time scale, then @g.be- however, is that this results in a significant decrease in sen-
haves as a good integrator and the firing rete equals the sitivity. The adaptation law is robust with respect to pertur-
time integral ofu(t) plus an integration constant. The com- bations in its parameters.

patibility condition ensures that this integration constant is In order to illustrate this significant increase in robustness,

compatible with the desired range for the firing rafe). let us first summarize the well-knows] sensitivity proper-
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FIG. 2. Robustness of tuning with respect to parameter perturbations in the adaptation law. Simulation results(TpmiEhy. 1
=0.001(—ax—bu+c) andu(t) as in Fig. 1. The plots show the average valueuof uq in periodic regime for different values of the
parameters, b, ¢, and ug. The nominal values of the parameters satisfy the compatibility condit{@@+ 60 Hz)/2+buy=c, and are
given bya=1 s %, b=0.01 s, ¢c=40.1 $2, 1/ug=100 ms(left) anda=1 s, b=0.01 5%, c=42 72, 1/ug=5 ms(right).
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FIG. 3. Tuning of a nonlinear oscillator.
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ties of neural integration. Experiments suggest that the actu@lar[20]. Consider the nonlinear oscillator equatiof (o

time constant obtained in a tuned neural integrator circuit is

typically greater than 10 s; that iw— uo|<0.1 1. This
requires for the fine tuning of a relative precision\ w/u
ranging from 1/100 to 1/2000, depending on whether th
intrinsic time constant 1/, equals 100 ms or 5 m@ypical
values suggested in the literatur&he required precision for
w should be contrasted with the required precision for th
parameters of the adaptation law proposed in the present
per. The simulations of Fig. 2 show that, in order to hav
|n—po|<0.18*

w)X+Ax3+ w?x=u(t) which captures some of the essen-
tial features of hair cell oscillationgll]. Inspired by our
previous analysis, we consider a feedback adaptation law for

&he parameter, of the formu=f(r)—g(u), with r a posi-

tive variable characterizing the magnitude of oscillations and
related tox andx via the expression?=x?+ (x/ w)?. Figure

;3 shows that, in the absence of the stimuwl(®), this type of

gaaptation law is indeed able to bring and keep the bifurca-

b qi X h €tion parameter close to its critical value, resulting in the
as observed In experiments, the param-spontaneous generation of oscillations.

eters of the adaptation law need to be tuned with a precision

of 1/20, independently of the intrinsic time constant.d./
Comparing this with the originally required precision for the
synaptic feedback strengih, we conclude thathe proposed
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