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Balancing at the border of instability
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Some biological systems operate at the critical point between stability and instability, and this requires a fine
tuning of parameters. We bring together two examples from the literature that illustrate this: neural integration
in the nervous system and hair cell oscillations in the auditory system. In both examples the question arises as
to how the required fine tuning may be achieved and maintained in a robust and reliable way. We study this
question using tools from nonlinear and adaptive control theory. We illustrate our approach on a simple model
which captures some of the essential features of neural integration. As a result, we propose a large class of
feedback adaptation rules that may be responsible for the experimentally observed robustness of neural inte-
gration. We mention extensions of our approach to the case of hair cell oscillations in the ear.
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Persistent neural activity is prevalent throughout the n
vous system. Numerous experiments have demonstrated
persistent neural activity is correlated with short-te
memory. A prominent example concerns the oculomo
system—see Refs.@1,2# for a review and experimental facts
The brain moves the eyes with quick saccadic moveme
Between saccades, it keeps the eyes still by generatin
continuous and constant contraction of the eye muscles;
requiring a constant level of neural activity in the mot
neurons controlling the eye muscles. This constant ne
activity level serves as a short-term memory for the des
eye position. During a saccade, a brief burst of neural ac
ity in premotor command neurons induces a persis
change in the neural activity of the motor neurons, via
mechanism equivalent to integration in the sense of calcu
Neural activity of an individual neuron, however, has a na
ral tendency to decay with a relaxation time of the order
milliseconds. Therefore the question arises as to how a t
sient stimulus can cause persistent changes in neural act
According to a long-standing hypothesis, persistent ne
activity is maintained by synaptic feedback loops. Posit
feedback can oppose the tendency of a pattern of neura
tivity to decay. If the feedback is weak, then the natu
tendency to decay dominates and neural activity decays
the feedback strength is increased, the neural dynamics
dergo a bifurcation and become unstable. When the feedb
is tuned to exactly balance the decay, then neural acti
neither increases nor decreases but persists without cha
This, however, requires a fine tuning of the synaptic fe
back strength, and the question arises as to how a biolog
system can achieve and maintain this fine tuning@3–6#.
Some gradient descent and function approximation a
rithms performing this fine tuning have been proposed@3,5#
and a feedback learning mechanism based on differe
anti-Hebbian synaptic plasticity has been studied in Ref.@7#.
Nevertheless, it is still unclear how the required fine tuning
physiologically feasible. For this reason, a different mo
for neural integration based upon bistability has recen
been proposed in Ref.@8#. In the present paper, we do n
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follow the line of research based upon bistability. Instead,
pursue the hypothesis of precisely tuned synaptic feedb
The present paper proposes an adaptation mechanism
may be responsible for the fine tuning of neural integrat
and that may explain the experimentally observed robustn
of neural integrators with respect to perturbations. Before
present this adaptation mechanism in detail, we first disc
a similar phenomenon in the auditory system.

In order to detect the sounds of the outside world, h
cells in the cochlea operate as nanosensors which trans
acoustic stimuli into electric signals. In Refs.@9–12# these
hair cells are described as active systems capable of ge
ating spontaneous oscillations. Ions such as Ca21 are be-
lieved to contribute to the hair cell’s tendency to se
oscillate. For low concentrations of the ions, damping forc
dominate and the hair cell oscillations are damped. As
concentration increases, the system undergoes a Hopf b
cation, the dynamics become unstable, and the hair cells
hibit spontaneous oscillations. In Refs.@9–12# the hair cells
are postulated to operate near the critical point, where
activity of the ions exactly compensates for the damp
effects. As before, this requires a fine tuning of parame
~the ion concentrations!, and again the question arises as
how this fine tuning can be achieved and maintained.
Refs. @9,11#, a feedback mechanism has been propos
which could be responsible for maintaining this fine tunin

It thus seems that operating in the vicinity of a bifurcati
is a recurrent theme in biology. And the question as to h
proximity to the bifurcation point may be achieved an
maintained in a noisy environment may be of considera
general interest. We view the two presented examples as
cial instances of the following general problem. Conside
forced dynamical system, described by a differential eq
tion ẋ5 f m„x,u(t)…. The right-hand side of this equation de
pends on a parameterm, and the unforced dynamicsẋ
5 f m(x,0) are assumed to exhibit a bifurcation whenm
equals a critical valuem0. The problem consists of finding
feedback adaptation rule for the parameterm, which guaran-
©2003 The American Physical Society01-1
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tees proximity to the bifurcation point; that is, which steersm
toward its critical valuem0. This adaptation law may depen
on m and x but should be independent ofm0, since this
critical value is not known precisely. This abstract formu
tion captures common features of both biological examp
and suggests some unexpected links with the literat
Questions very similar to the present one have been stu
extensively in the literature on adaptive control@13# and sta-
bilization @14#; and the general problem is closely related
extremum seeking@16# and to instability detection@15#,
where an operating parameter is adapted on line in orde
experimentally locate bifurcations.

Although the above general formulation is convenie
there is little hope that a complete and satisfactory theory
be developed, which applies to all possible instances of
problem. Introducing simplifying assumptions makes it mo
tractable. In this paper, we study in detail what is proba
the most simple but nontrivial instance of the general pr
lem. We consider the one-dimensional system

ẋ52m0x1mx1u~ t ! ~ ẋ5dx/dt!, ~1!

which captures some of the essential features of neural
gration and is, in fact, closely related to the autapse mo
from Ref. @6#. With this interpretation,x is a strictly positive
variable representing neural activity in the integrator netw
and u(t) represents the signal generated by the prem
command neurons. The term2m0x corresponds to the natu
ral decay of neural activity andmx represents a positive
synaptic feedback loop. Of course, when studying neural
tegration, questions can be investigated at varying level
detail. It is clear that a simple model such as that descri
by Eq. ~1! has several limitations. Because of its on
dimensional nature, the present model is, for example,
able of reproducing the distributed nature of persistent ac
ity patterns observed in the brain. Nevertheless, Eq.~1!
captures a key feature of neural integration: when the fe
back is tuned to exactly balance the decay, Eq.~1! behaves as
an integrator and produces persistent neural activity. Eq
tion ~1! is therefore a valuable model when studying fi
tuning of neural integrator networks@1,17#.

We are interested in the fine tuning of Eq.~1! and study
this question using tools from nonlinear and adaptive con
theory. First, we ignore the presence of the inputu(t) and
consider the simpler equation

ẋ52m0x1mx. ~2!

We present a large class of feedback adaptation laws for
~2!, which steerm to its critical valuem0; thus enabling the
automatic self-tuning of parameters and the spontane
generation of persistent neural activity. We consider ada
tion laws @21# of the form

ṁ5 f ~x!2g~m!. ~3!

We show that, under three very mild conditions, this adap
tion rule guarantees convergence to the bifurcation point
Eq. ~2!. The first condition requires thatg is a strictly in-
creasing function. This means that the term2g(m) in Eq.
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~3! acts as a negative feedback. As a consequence, if
neural activityx were constant in Eq.~3!, then the synaptic
feedback gainm would naturally relax to a rest value de
pending onx via the equationf (x)5g(m). The second con-
dition states that there existsx* such thatf (x* )5g(m0).
This condition implies that, if the neural activity would b
constant and equal tox* in Eq. ~3!, then the synaptic feed
back gainm would naturally relax to its critical, desired
value m0. Of course there is no guarantee that the neu
activity would be equal to, or even converge to, this spec
valuex* . Instead, the level of neural activity is governed
Eq. ~2!. Therefore, in order for the adaptation law~3! to
work, we need to impose a last condition thatf is a decreas-
ing function. This means that the level of neural activ
negatively regulates the synaptic feedback strength.

We now show that, under these three conditions, the fe
back adaptation law~3! indeed tunes the synaptic feedba
gain m to exactly balance the natural decay ratem0. We
begin with noticing that the combined system of equatio
~2! and~3! has a unique rest point. This equilibrium is dete
mined by setting the right-hand sides of Eqs.~2! and ~3!
equal to zero, yieldingx5x* andm5m0. Although the pre-
cise value ofm0 is unknown, if we are able to prove that a
trajectories of Eqs.~2! and ~3! converge to this~unknown!
fixed point, then it follows thatm indeed converges to its
desired critical valuem0. In order to prove this, we introduc
a coordinate transformationq5 ln(x)2ln(x* ) and p5m

2m0. This transforms Eqs.~2! and ~3! into q̇5p and ṗ
5 f „exp(q)x* …2g(p1m0). In these new coordinates, the d
namics take the form of a nonlinear mass-spring-damper
tem @with unit mass, nonlinear spring characteris
f „exp(•)x* …, and nonlinear damping functiong(•1m0)]. It
follows from physical energy considerations that this syst
exhibits damped oscillations@20#. This shows that all trajec-
tories of Eqs.~2! and~3! indeed converge to the unique fixe
point, wherem5m0.

The above coordinate transformation reveals a subtle
lationship between self-tuning of bifurcations and the int
nal model principle~IMP! from robust control theory~see
Refs. @18,19# for a discussion of the IMP from a system
biology perspective!. This relation is made explicit by the
equation q̇5p, which represents an integrator and corr
sponds to integral action studied in robust control theo
One regards the constantm0 as an unknown perturbatio
acting on the system. The IMP implies that, in order to tra
this constant perturbation, the system dynamics should c
tain integral action. The integral action is generated by
biological system itself, and not by the feedback adaptat
law.

We have so far ignored the presence of the signalu(t).
We showed that the adaptation law~3! tunes the synaptic
feedback gain to exactly compensate for the natural de
rate, resulting in the spontaneous generation of persis
neural activity. At these equilibrium conditions, the actio
potential firing rate equalsx* , which is related tom0 by
f (x* )5g(m0). In the next paragraphs, we take into accou
the effect of the inputu(t). In this case, the valuex* will
1-2
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FIG. 1. Tuning of a neural integrator. Simula

tion of Eq. ~1! with ṁ5«(2ax2bm1c) and
u(t)5( t i

d(t2t i)$xdesired(t i1)2x(t i2)%, where
d(•) represents the Dirac impulse and where t
sum goes over all saccade timest i . The constants
are m05200 s21, a51 s21, b50.01 s21, c
542 s22, and«50.01. The adaptation law satis
fies the compatibility conditiona(20160 Hz)/2
1bm05c.
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play the role of a parameter that influences the accuracy
which the feedback adaptation law guarantees proximity
the bifurcation point.

The signalu(t) will in general result in a time-varying
action potential firing ratex(t). The mechanism with which
this happens is determined by the neural integrator equa
~1! and the adaptation law~3!. For the purpose of analysis
we make two simplifying assumptions, both of which see
to be natural and physically relevant for neural integrati
First, we assume that, over any sufficiently large time int
val @ t0 , t01T#, the time spent byx(t) in any interval
@x1 , x2# is approximately independent oft0. In more math-
ematical terms, we assume the existence of a functionP(x)
such that for every test functiona(x), the time average
(1/T)* t0

t01Ta@x(t)#dt converges to*0
`P(x)a(x)dx as T

→`, uniformly with respect tot0. Second, we assume th
the adaptation law acts on a much slower time scale than
time variations inx(t). Under these assumptions, the effe
of the action potential firing ratex(t) on the adaptation law
~3! may be approximated by the average effectṁ
5*0

`P(x) f (x)dx2g(m). It is now clear when the adapta
tion law guarantees proximity to the bifurcation point: if th
compatibility condition*0

`P(x) f (x)dx5 f (x* ) is satisfied,
then time scale separation arguments suggest thatm will con-
verge approximately tom0 and the neural integrator will ap
proximately behave as a perfect integrator. The compatib
condition may by interpreted as follows@20#. When the pre-
motor command signalu(t) has zero time average and th
adaptation law acts on a slow time scale, then Eq.~1! be-
haves as a good integrator and the firing ratex(t) equals the
time integral ofu(t) plus an integration constant. The com
patibility condition ensures that this integration constant
compatible with the desired range for the firing ratex(t).
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We illustrate this result on a particular example repres
tative for saccadic eye movements. We consider the cas
periodic saccadic eye movements asking for an action po
tial firing rate in the motor neurons alternating betwe
20 Hz and 60 Hz every second. At each saccade, a b
burst of neural activity in premotor command neuro
changes the actual firing rate. We assume that this chan
such that immediately after each saccade, the actual fi
rate equals the desired firing rate. Between saccades, w
sume that no input is applied@22#. If the neural integrator is
perfectly tuned, then the actual firing rate will remain co
stant between saccades and equal to the desired firing
~eyes are fixed!. If the neural integrator is not perfectl
tuned, then the actual firing rate will deviate from the desir
firing rate ~eyes drift! until a new saccade occurs, whic
brings the actual firing rate to its new desired value. Figur
shows the results of a simulation where the adaptation
satisfies the compatibility condition of the previous pa
graph. In the beginning of the simulation, we have mistun
the neural integrator. Clearly, after a short transient, the
aptation law achieves excellent tuning and the drift betwe
two successive saccades becomes negligible.

We have thus shown that an adaptation law can tun
neural integrator with great accuracy to its bifurcation poi
In order to achieve perfect tuning, however, the adapta
law itself needs to satisfy a compatibility condition. It seem
that we have merely moved the problem of fine tuning fro
the neural integrator to the adaptation law. The crucial ob
vation and one of the main contributions of the present pa
however, is that this results in a significant decrease in s
sitivity. The adaptation law is robust with respect to pertu
bations in its parameters.

In order to illustrate this significant increase in robustne
let us first summarize the well-known@5# sensitivity proper-
e

FIG. 2. Robustness of tuning with respect to parameter perturbations in the adaptation law. Simulation results for Eq.~1! with ṁ

50.001(2ax2bm1c) and u(t) as in Fig. 1. The plots show the average value ofm2m0 in periodic regime for different values of th
parametersa, b, c, andm0. The nominal values of the parameters satisfy the compatibility conditiona(20160 Hz)/21bm05c, and are
given bya51 s21, b50.01 s21, c540.1 s22, 1/m05100 ms~left! anda51 s21, b50.01 s21, c542 s22, 1/m055 ms ~right!.
1-3
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FIG. 3. Tuning of a nonlinear oscillator

Simulation of equations ẍ1(m02m) ẋ1l ẋ3

1v2x50 and ṁ5 f (r )2g(m) with m051, l
51, v51 and f (r )2g(m)51/(11r 2)2m
11/2. The variabler is determined byr 25x2

1( ẋ/v)2.
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ties of neural integration. Experiments suggest that the ac
time constant obtained in a tuned neural integrator circu
typically greater than 10 s; that is,um2m0u<0.1 s21. This
requires for the fine tuning ofm a relative precisionDm/m
ranging from 1/100 to 1/2000, depending on whether
intrinsic time constant 1/m0 equals 100 ms or 5 ms~typical
values suggested in the literature!. The required precision fo
m should be contrasted with the required precision for
parameters of the adaptation law proposed in the presen
per. The simulations of Fig. 2 show that, in order to ha
um2m0u<0.1 s21 as observed in experiments, the para
eters of the adaptation law need to be tuned with a preci
of 1/20, independently of the intrinsic time constant 1/m0.
Comparing this with the originally required precision for th
synaptic feedback strengthm, we conclude thatthe proposed
adaptation mechanism could improve the robustness of n
ral integration with a factor ranging from 5 to 100.

We have studied a simple model for neural integration a
proposed a class of feedback adaptation rules that could
plain the experimentally observed robustness of neural i
gration with respect to perturbations. The analysis tools
we have introduced extend to the study of fine tuning
volved in other systems such as hair cell oscillations in
.W
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g-

i.

02090
al
is

e

e
a-

e
-
n

u-

d
x-

e-
at
-
e

ear @20#. Consider the nonlinear oscillator equationẍ1(m0

2m) ẋ1l ẋ31v2x5u(t) which captures some of the esse
tial features of hair cell oscillations@11#. Inspired by our
previous analysis, we consider a feedback adaptation law
the parameterm of the formṁ5 f (r )2g(m), with r a posi-
tive variable characterizing the magnitude of oscillations a
related tox andẋ via the expressionr 25x21( ẋ/v)2. Figure
3 shows that, in the absence of the stimulusu(t), this type of
adaptation law is indeed able to bring and keep the bifur
tion parameter close to its critical value, resulting in t
spontaneous generation of oscillations.
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