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Abstract Monotone subsystems have appealing proper-

ties as components of larger networks, since they exhibit

robust dynamical stability and predictability of responses

to perturbations. This suggests that natural biological sys-

tems may have evolved to be, if not monotone, at least

close to monotone in the sense of being decomposable into

a ‘‘small’’ number of monotone components, In addition,

recent research has shown that much insight can be attained

from decomposing networks into monotone subsystems

and the analysis of the resulting interconnections using

tools from control theory. This paper provides an exposi-

tory introduction to monotone systems and their intercon-

nections, describing the basic concepts and some of the

main mathematical results in a largely informal fashion.
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Introduction

The field of systems molecular biology is largely con-

cerned with the study of biochemical networks consisting

of proteins, RNA, DNA, metabolites, and other molecules.

These networks participate in control and signaling in

development, regulation, and metabolism, by processing

environmental signals, sequencing internal events such as

gene expression, and producing appropriate cellular re-

sponses. It is of great interest to be able to infer dynamical

properties of a biochemical network through the analysis of

well-characterized subsystems and their interconnections.

This paper discusses recent work which makes use of both

topology (graph structure) and sign information in order to

deduce such properties.

It is broadly appreciated that behavior is critically

dependent on network topology as well as on the signs

(activating or inhibiting) of the underlying feedforward and

feedback interconnections (Novic and Weiner 1957; Monod

and Jacob 1961; Lewis et al. 1977; Segel 1984; DeAngelis

et al. 1986; Thomas and D’ari 1990; Goldbeter 1996;

Keener and Sneyd 1998; Murray 2002; Milo et al. 2002;

Edelstein-Keshet 2005). For example, Fig. 1a–c shows the

three possible types of feedback loops that involve two

interacting chemicals. A mutual activation configuration is

shown in Fig. 1a: a positive change in A results in a positive

change in B, and vice-versa. Configurations like these are

associated to signal amplification and production of switch-

like biochemical responses. A mutual inhibition configu-

ration is shown in Fig. 1b: a positive change in A results in

repression of B, and repression of B in turn enhances A.

Such configurations allow systems to exhibit multiple dis-

crete, alternative stable steady-states, thus providing a

mechanism for memory. Both (a) and (b) are examples of

positive-feedback systems (Ptashne 1992; Plahte et al.

1995; Cinquin and Demongeot 2002; Gouze 1998; Thomas

and Kaufman 2001; Remy et al. 2003; Angeli and Sontag

2004a; Angeli et al. 2004a). On the other hand, activation-

inhibition configurations like in Fig. 1c are necessary for

the generation of periodic behaviors such as circadian

rhythms or cell cycle oscillations, by themselves or in

combination with multi-stable positive-feedback subsys-

tems, as well as for adaptation, disturbance rejection, and

tight regulation (homeostasis) of physiological variables
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(Goldbeter 1996; Murray 2002; Edelstein-Keshet 2005;

Rapp 1975; Hastings et al. 1977; Tyson and Othmer 1978;

Thomas 1981; Sontag 1998; Kholodenko 2000; Sha et al.

2003; Pomerening et al. 2003; Angeli and Sontag 2004b).

Compared to positive-feedback systems, negative-feedback

systems are not ‘‘consistent,’’ in a sense to be made precise

below but roughly meaning that different paths between any

two nodes should reinforce, rather than contradict, each

other. For (c), a positive change in A will be resisted by the

system through the feedback loop. Consistency, or lack

thereof, also plays a role in the behavior of graphs without

feedback; for example Milo et al. (2002), Mangan and Alon

(2003), Mangan et al. (2003) deal with the different signal

processing capabilities of consistent (‘‘coherent’’) com-

pared to inconsistent feedforward motifs.

A key role in the work to be discussed here will be

played by consistent systems and subsystems. We will

discuss the following points:

• Interesting and nontrivial conclusions can be drawn

from (signed) network structure alone. This structure is

associated to purely stoichiometric information about

the system and ignores fluxes. Consistency, or close to

consistency, is an important property in this regard.

• Interpreted as dynamical systems, consistent networks

define monotone systems, which have highly predict-

able and ordered behavior.

• It is often useful to analyze larger systems by viewing

them as interconnections of a small number of mono-

tone subsystems. This allows one to obtain precise

bifurcation diagrams without appeal to explicit knowl-

edge of fluxes or of kinetic constants and other

parameters, using merely ‘‘input/output characteristics’’

(steady-state responses or DC gains). The procedure

may be viewed as a ‘‘model reduction’’ approach in

which monotone subsystems are viewed as essentially

one-dimensional objects.

• The possibility of performing a decomposition into a small

number of monotone components is closely tied to the

question of how ‘‘near’’ a system is to being monotone.

• We argue that systems that are ‘‘near monotone’’ are

biologically more desirable than systems that are far

from being monotone.

• There are indications that biological networks may be

much closer to being monotone than random networks

that have the same numbers of vertices and of positive

and negative edges.

The need for robust structures and robust analysis tools

In contrast to many areas of applied mathematics and

engineering, the study of dynamics in cell biology should

take into account the often huge degree of uncertainty

inherent in models of cellular biochemical networks, which

arises from environmental fluctuations or from variability

among cells of the same type. From a mathematical anal-

ysis perspective, this uncertainty translates into the diffi-

culty of measuring the relevant model parameters such as

kinetic constants or cooperativity indices, and hence the

impossibility of obtaining a precise model.

This means that it is important to develop tools that are

‘‘robust’’ in the sense of being able to lead to useful con-

clusions from information regarding the qualitative fea-

tures of the network, and, if possible, not upon the precise

values of parameters or even the forms of reactions. This

goal is hard to attain, since dynamical behavior may be

subject to phase transitions (bifurcations) which critically

depend on parameter values. Nevertheless, and perhaps

surprisingly, there have been many successes in finding

rich classes of chemical network structures for which such

robust analysis is indeed possible. One approach is that of

graph-theoretic ideas associated to complex balancing and

deficiency theory, pioneered by Clarke (1980), Horn and

Jackson (1972, 1974), Feinberg and Horn (1974), and

Feinberg (1987, 1995). Another approach, pioneered by

Hirsch and Smith, see Smith (1995), Hirsch and Smith

(2005), relies upon the theory of monotone systems, and has

a similar goal of drawing conclusions about dynamical

behavior based only upon structure. This direction has been

enriched substantially by the introduction of monotone

systems with inputs and outputs: as standard in control

theory (Sontag 1998), one extends the notion of monotone

system so as to incorporate input and output channels

(Angeli and Sontag 2003). Once inputs and outputs are

introduced, one can study interconnections of systems

(Fig. 2), and ask what special properties hold if the sub-

systems are monotone (Angeli et al. 2004a; Angeli and

Sontag 2003; de Leenheer et al. 2007).

Fig. 2 A system composed of four subsystems

Fig. 1 (a) Mutual activation. (b) Mutual inhibition. (c) Activation-

inhibition
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Consistent graphs, monotone systems, and

near-monotonicity

We now introduce the basic notions of monotonicity and

consistency. The present section deals exclusively with

graph-theoretic information, which is derived from stoi-

chiometric constraints. Complementary to this analysis,

bifurcation phenomena can be sometimes analyzed using a

combination of these graphical techniques together with

information on steady-state gains; that subject is discussed

in section ‘‘I/O monotone systems.’’ In order to preserve

readability, the discussion in this section is informal, and

not all mathematical technicalities are explained; refer-

ences are given that will allow the reader to fill-in the

missing details, and also section ‘‘I/O monotone systems’’

has more rigorous mathematical statements, presented in

the more general context of systems with external inputs

and outputs.

The systems considered here are described by the evo-

lution of states, which are time-dependent vectors

xðtÞ ¼ ðx1ðtÞ; . . . ; xnðtÞÞ whose components xi represent

concentrations of chemical species such as proteins,

mRNA, or metabolites. In autonomous differential equa-

tion (‘‘continuous-time’’) models, one specifies the rate of

change of each variable, at any given time, as a function of

the concentrations of all the variables at that time:

dx1

dt ðtÞ ¼ f1ðx1ðtÞ; x2ðtÞ; . . . ; xnðtÞÞ
dx2

dt ðtÞ ¼ f2ðx1ðtÞ; x2ðtÞ; . . . ; xnðtÞÞ
..
.

dxn

dt ðtÞ ¼ fnðx1ðtÞ; x2ðtÞ; . . . ; xnðtÞÞ;

or just dx=dt ¼ f ðxÞ; where f is the vector function with

components fi. We assume that the coordinates xi of the

state of the system can be arbitrary non-negative numbers.

(Constraints among variables can be imposed as well, but

several aspects of the theory are more subtle in that case.)

Often, one starts from a differential equation system

written in the following form:

dx

dt
ðtÞ ¼ CRðxÞ;

where R(x) is a q-dimensional vector of reactions and G is

an n · q matrix, called the stoichiometry matrix, and either

one studies this system directly, or one studies a smaller set

of differential equations dx=dt ¼ f ðxÞ obtained by elimi-

nating variables through the use of conserved stoichiome-

tric quantities.

We will mostly discuss differential equation models, but

will also make remarks concerning difference equation

(‘‘discrete time’’) models. The dynamics of these are de-

scribed by rules that specify the state at some future time

t ¼ tkþ1 as a function of the state of the system at the

present time tk. Thus, the ith coordinate evolves according

to an update rule:

xiðtkþ1Þ ¼ fiðx1ðtkÞ; x2ðtkÞ; . . . ; xnðtkÞÞ

instead of being described by a differential equation.

Usually, tk ¼ kD where D is a uniform inter-sample time.

One may associate a difference equation to any given

differential equation, through the rule that the vector x(tk+1)

should equal the solution of the differential equation when

starting at state x(tk). However, not every difference

equation arises from a differential equation in this manner.

Difference equations may be more natural when studying

processes in which measurements are made at discrete

times, or they might provide a macroscopic model of an

underlying stochastic process taking place at a faster time

scale.

One may also study more complicated descriptions of

dynamics that those given by ordinary differential and

difference equations; many of the results that we discuss

here have close analogs that apply to more general classes

of (deterministic) dynamical systems, including reaction–

diffusion partial differential equations, which are used for

space-dependent problems with slow diffusion and no

mixing, delay-differential systems, which help model de-

lays due to transport and other cellular phenomena in

which concentrations of one species only affect others after

a time interval, and integro-differential equations (Smith

1995; Hirsch and Smith 2005; Sontag 2004; Enciso et al.

2006). In a different direction, one may consider systems

with external inputs and outputs (Angeli and Sontag 2003).

The graph associated to a system

There are at least two types of graphs that can be naturally

associated to a given biochemical network. One type,

sometimes called the species-reaction graph, is a bipartite

graph with nodes for reactions (fluxes) and species, which

leads to useful analysis techniques based on Petri net the-

ory and graph theory (Feinberg 1991; Reddy et al. 1993;

Zevedei-Oancea and Schuster 2003; Craciun and Feinberg

2005; Craciun and Feinberg 2006; Angeli and Sontag 2007;

Angeli et al. 2006, 2007). We will not discuss species-

reaction graphs here. A second type of graph, which we

will discuss, is the species graph G. It has n nodes (or

‘‘vertices’’), which we denote by v1; . . . ; vn; one node for

each species. No edge is drawn from node vj to node vi if

the partial derivative ofi=oxjðxÞ vanishes identically,

meaning that there is no direct effect of the jth species upon

the ith species. If this derivative is not identically zero, then

there are three possibilities: (1) it is ‡0 for all x, (2) it is £0

for all x, or (3) it changes sign depending on the particular
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entries of the concentration vector x. In the first case

(activation), we draw an edge labeled +, +1, or just an

arrow fi . In the second case (repression or inhibition), we

draw an edge labeled –, –1, or use the symbol a : In the

third case, when the sign is ambiguous, we draw both an

activating and an inhibiting edge from node vj to node vi.

The graph G is an example of a signed graph (Zaslavsky

1998), meaning that its edges are labeled by signs.

For continuous-time systems, no self-edges (edges from

a node vi to itself) are included in the graph G, whatever the

sign of the diagonal entry ofi=oxi of the Jacobian. For

discrete-time systems, on the other hand, self-edges are

included (we later discuss the reason for these different

definitions for differential and difference equations).

When working with graphs, it is more convenient

(though not strictly necessary) to consider only graphs G

that have no multiple edges from one node to another (third

case above). One may always assume that G has this

property, by means of the following trick: whenever there

are two edges, we replace one of them by an indirect link

involving a new node; see Fig. 3. Introducing such addi-

tional nodes if required, we will suppose from now on that

no multiple edges exist.

Although adding new edges as explained above is a

purely formal construction with graphs, it may be ex-

plained biologically as follows. Often, ambiguous signs in

Jacobians reflect heterogeneous mechanisms. For example,

take the case where protein A enhances the transcription

rate of gene B if present at high concentrations, but re-

presses B if its concentration is lower than some threshold.

Further study of the chemical mechanism might well reveal

the existence of, for example, a homodimer that is

responsible for this ambiguous effect. Mathematically, the

rate of transcription of B might be given algebraically by

the formula k2a2 � k1a; where a denotes the concentration

of A. Introducing a new species C to represent the ho-

modimer, we may rewrite this rate as k2c� k1a; where c is

the concentration of C, plus an new equation like

dc=dt ¼ k3a2 � k4c representing the formation of the dimer

and its degradation. This is exactly the situation in Fig. 3.

Spin assignments and consistency

A spin assignment R for the graph G is an assignment, to

each node vi, of a number ri equal to ‘‘+’’ or ‘‘–1’’ (a

‘‘spin,’’ to borrow from statistical mechanics terminology).

In graphical depictions, we draw up-arrows or down-ar-

rows to indicate spins. If there is an edge from node vj to

node vi, with label Jij 2 f�1g; we say that this edge is

consistent with the spin assignment R provided that:

Jijrirj ¼ 1

which is the same as saying that Jij ¼ rirj; or that

ri ¼ Jijrj: An equivalent formalism is that in which edges

are labeled by ‘‘0’’ or ‘‘1,’’ instead of 1 and –1, respec-

tively, and edge labels Jij belong to the set {0,1}, in which

case consistency is the property that Jij � ri � rj ¼ 0 (sum

modulo two).

We will say that R is a consistent spin assignment for

the graph G (or simply that G is consistent) if every edge of

G is consistent with R. In other words, for any pair of

vertices vi and vj, if there is a positive edge from node vj to

node vi, then vj and vi must have the same spin, and if there

is a negative edge connecting vj to vi, then vj and vi must

have opposite spins. (If there is no edge from vj to vi, this

requirement imposes no restriction on their spins.)

In order to decide whether a graph admits any consistent

spin assignment, it is not necessary to actually test all the

possible 2n spin assignments. It is very easy to prove that

there is a consistent assignment if and only if every undi-

rected loop in the graph G has a net positive sign, that is to

say, an even number, possibly zero, of negative arrows.

Equivalently, any two (undirected) paths between two nodes

must have the same net sign. By undirected loops or paths,

we mean that one is allowed to transverse an edge either

forward or backward. Graphs that satisfy this positive-loop

property have been called balanced by Harary (1953). A

proof that consistency and balancing are equivalent was

given in Theorem 3 in Harary (1953); it is very simple and

proceeds as follows. If a consistent assignment exists, then,

for any undirected loop vi1 ; . . . ; vik ¼ vi1 starting from and

ending at the node vi1 ; inductively one has that:

ri1 ¼ Qi1;ik�1
Qik�1;ik�2

. . . ;Qi2;i1ri1

where Qij ¼ Jij if we are transversing the edge from vj to vi,

or Qij ¼ Jji if we are transversing backward the edge from

vj to vi. This implies (divide by ri1 ) that the product of the

edge signs is positive. Conversely, if any two paths be-

tween nodes have the same parity, and the graph is con-

nected, pick node v1 and label it ‘‘+’’ and then assign to

every other node vi the parity of a path connecting v1 and

vi. (If the graph is not connected, do this construction on

each component separately.)

The balancing property, in turn, can be checked with a

fast dynamic programming-like algorithm. For connected

graphs, there can be at most two consistent assignments,

each of which is the reverse (flip every spin) of the other.Fig. 3 Replacing direct inconsistent effects by adding a node

62 E.D. Sontag

123



Monotone systems

A dynamical system is said to be monotone if there exists at

least one consistent spin assignment for its associated

graph G. Monotone systems (Smith 1995; Hirsch 1983,

1985) were introduced by Hirsch, and constitute a class of

dynamical systems for which a rich theory exists. (To be

precise, we have only defined the subclass of systems that

are monotone with respect to some orthant order. The

notion of monotonicity can be defined with respect to more

general orders.)

Consistent response to perturbations

Monotonicity reflects the fact that a system responds con-

sistently to perturbations on its components. Let us now

discuss this property in informal terms. We view the nodes

of the graph shown in Fig. 4a as corresponding to variables

in the system, which quantify the concentrations of

chemical species such as activated receptors, proteins,

transcription factors, and so forth. Suppose that a pertur-

bation, for example due to the external activation of a

receptor represented by node 1, instantaneously increases

the value of the concentration of this species. We represent

this increase by an up-arrow inserted into that node, as in

Fig. 4b. The effect on the other nodes is then completely

predictable from the graph. The species associated to node

2 will decrease, because of the inhibiting character of the

connection from 1 to 2, and the species associated to node

3 will increase (activating effect). Where monotonicity

plays a role is in insuring that the concentration of the

species corresponding to node 4 will also increase. It in-

creases both because it is activated by 3, which has in-

creased, and because it is inhibited by 2, so that less of 2

implies a smaller inhibition effect. Algebraically, the fol-

lowing expression involving partial derivatives:

of4
ox3

of3

ox1

þ of4

ox2

of2
ox1

(where fi gives the rate of change of the ith species, in the

differential equation model) is guaranteed to be positive,

since it is a sum of positive terms: (+ )(+ ) + (–)(–).

Intuitively, the expression measures the sensitivity of the

rate of change dx4/dt of the concentration of 4 with respect

to perturbations in 1, with the two terms giving the con-

tributions for each of the two alternative paths from node 1

to node 4. This unambiguous global effect holds true

regardless of the actual values of parameters such as ki-

netic constants, and even the algebraic forms of reactions,

and depends only on the signs of the entries of the Jacobian

of f. Observe that the arrows shown in Fig. 4b provide a

consistent spin-assignment for the graph, so the system is

monotone.

In contrast, consider next the graph in Fig. 4c, where the

edge from 1 to 2 is now positive. There are two paths from

node 1 to node 4, one of which (through 3) is positive and

the other of which (through 2) is negative. Equivalently,

the undirected loop 1,3,4,2,1 (‘‘undirected’’ because the

last two edges are transversed backward) has a net negative

parity. Therefore, the loop test for consistency fails, so that

there is no possible consistent spin-assignment for this

graph, and therefore the corresponding dynamical system is

not monotone. Reflecting this fact, the net effect of an

increase in node 1 is ambiguous. It is impossible to con-

clude from the graphical information alone whether node 4

will be repressed (because of the path through 2) or acti-

vated (because of the path through 3). There is no way to

resolve this ambiguity unless equations and precise

parameter values are assigned to the arrows.

To take a concrete example, suppose that the equations

for the system are as follows:

dx1

dt
¼ 0

dx2

dt
¼ x1

dx3

dt
¼ x1

dx4

dt
¼ x4ðk3x3 � k2x2Þ;

where the reaction constants k2 and k3 are two positive

numbers. The initial conditions are taken to be

x1ð0Þ ¼ x4ð0Þ ¼ 1; and x2ð0Þ ¼ x3ð0Þ ¼ 0; and we ask how

the solution x4(t) will change when the initial value x1(0) is

perturbed. With x1(0) = 1, the solution is x4ðtÞ ¼ exp at2=2;

where a ¼ k3 � k2: On the other hand, if x1(0) is perturbed

to a larger value, let us say x1(0) = 2, then x4ðtÞ ¼ exp at2:

This new value of x4(t) is larger than the original unper-

turbed value exp at2=2 provided that a > 0, but it is smaller

than it if, instead, a < 0. In other words, the sign of the

sensitivity of x4 to a perturbation on x1 cannot be predicted

from knowledge of the graph alone, but it depends on

Fig. 4 (a) and (b) graph and

consistent assignment, (c) and

(d) no possible consistent

assignments
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whether k2\k3 or k2 > k3: Compare this with the monotone

case, as in Fig. 4a. A concrete example is obtained if we

modify the x2 equation to dx2=dt ¼ 1=ð1þ x1Þ: Now the

solutions are x4ðtÞ ¼ exp b1t2 and x4ðtÞ ¼ exp b2t2;

respectively, with b1 ¼ k3=2� k2=4 and b2 ¼ k3 � k2=6;

so we are guaranteed that x4 is larger in the perturbed case, a

conclusion that holds true no matter what are the numerical

values of the (positive) constants ki.

The uncertainty associated to a graph like the one in

Fig. 4c might be undesirable in natural systems. Cells of

the same type differ in concentrations of ATP, enzymes,

and other chemicals, and this affects the values of model

parameters, so two cells of the same type may well react

differently to the same ‘‘stimulus’’ (increase in concentra-

tion of chemical 1). While such epigenetic diversity is

sometimes desirable, it makes behavior less predictable and

robust. From an evolutionary viewpoint, a ‘‘change in

wiring’’ such as replacing the negative edge from 1 to 2 by

a positive one (or, instead, perhaps introducing an addi-

tional inconsistent edge) could lead to unpredictable ef-

fects, and so the fitness of such a mutation may be harder to

evaluate. In a monotone system, in contrast, a stimulus

applied to a component is propagated in an unambiguous

manner throughout the circuit, promoting a predictably

consistent increase or consistent decrease in the concen-

trations of all other components.

Similarly, consistency also applies to feedback loops.

For example, consider the graph shown in Fig. 4d. The

negative feedback given by the inconsistent path 1,3,4,2,1

means that the instantaneous effect of an up-perturbation of

node 1 feeds back into a negative effect on node 1, while a

down-perturbation feeds back as a positive effect. In other

words, the feedback loop acts against the perturbation.

Of course, negative feedback as well as inconsistent

feedforward circuits are important components of biomo-

lecular networks, playing a major role in homeostasis and

in signal detection. The point being made here is that

inconsistent networks may require a more delicate tuning

in order to perform their functions.

In rigorous mathematical terms, this predictability

property can be formulated as Kamke’s Theorem. Suppose

that R ¼ fri; i ¼ 1; . . . ; ng is a consistent spin assignment

for the system graph G. Let x(t) be any solution of

dx=dt ¼ f ðxÞ: We wish to study how the solution z(t)

arising from a perturbed initial condition zð0Þ ¼ xð0Þ þ D
compares to the solution x(t). Specifically, suppose that a

positive perturbation is performed at time t = 0 on the ith

coordinate, for some index i 2 f1; . . . ; ng: zið0Þ> xið0Þ and

zjð0Þ ¼ xjð0Þ for all j 6¼ i: For concreteness, let us assume

that the perturbed node i has been labeled by ri ¼ þ1:

Then, Kamke’s Theorem says the following: for each node

that has the same parity (i.e., each index j such that

rj ¼ þ1), and for every future time t, zjðtÞ� xjðtÞ: Simi-

larly, for each node with opposite parity (rj ¼ �1), and for

every time t, zjðtÞ� xjðtÞ: (Moreover, one or more of these

inequalities must be strict.) This is the precise sense in

which an up-perturbation of the species represented by

node vi unambiguously propagates into up- or down-

behavior of all the other species. See Smith (1995) for a

proof, and see Angeli and Sontag (2003) for generaliza-

tions to systems with external input and output channels.

For difference equations (discrete time systems), once

that self-loops have been included in the graph G and the

definition of consistency, Kamke’s theorem also holds; in

this case the proof is easy, by induction on time steps.

Consistent graphs can be embedded into larger consis-

tent ones, but inconsistent ones cannot. For example,

consider the graph shown in Fig. 5a. This graph admits no

consistent spin assignment since the undirected loop

1,3,4,2,1 has a net negative parity. Thus, there cannot be

any consistent graph that includes this graph as a subgraph.

Compare this with the graph shown in Fig. 5b. Consistency

of this graph may well represent consistency of a larger

graph which involves a yet-undiscovered species, such as

node 5 in Fig. 5c. Alternatively, and from an ‘‘incremental

design’’ viewpoint, this graph being consistent makes it

possible to consistently add node 5 in the future.

Removing the smallest number of edges so as to

achieve consistency

Let us call the consistency deficit (CD) of a graph G the

smallest possible number of edges that should be removed

from G in order that there remains a consistent graph, and,

correspondingly, a monotone system.

Fig. 5 (a) inconsistent, (b)

consistent, (c) adding node to

consistent network
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As an example, take the graph shown in Fig. 6a. For this

graph, it suffices to remove just one edge, the diagonal

positive one, so the CD is 1. (In this example, the solution

is unique, in that no other single other edge would suffice,

but for other graphs there are typically several alternative

ways to achieve consistency with a minimal number of

deletions.)

After deleting the diagonal, a consistent spin assignment

R is: r1 ¼ r3 ¼ 1 and r2 ¼ r4 ¼ �1; see Fig. 6b. (An-

other assignment is the one with all spins reversed:

r1 ¼ r2 ¼ �1 and r3 ¼ r4 ¼ 1.) If we now bring back the

deleted edge, we see that in the original graph only the one

edge from node 1 to node 4 is inconsistent for the spin

assignment R (Fig. 6c).

This example illustrates a general fact: minimizing the

number of edges that must be removed so that there re-

mains a consistent graph is equivalent to finding a spin

assignment R for which the number of inconsistent edges

(those for which Jijrirj ¼ �1) is minimized.

Yet another rephrasing is as follows. For any spin

assignment R, let A1 be the subset of nodes labeled + 1, and

let A–1 be the subset of nodes labeled –1. The set of all

nodes is partitioned into A1 and A–1. (In Fig. 6b, we have

A1 ¼ f1; 3g and A�1 ¼ f2; 4g.) Conversely, any partition

of the set of nodes into two subsets can be thought of as a

spin assignment. With this interpretation, a consistent spin

assignment is the same as a partition of the node set into

two subsets A1 and A–1 in such a manner that all edges

between elements of A1 are positive, all edges between

elements of A–1 are positive, and all edges between a node

in A1 and a node in A–1 are negative, see Fig. 7. (A

sociological interpretation of these partitions motivated the

original paper (Harary 1953): vertices represent people,

edges their likes and dislikes of each other, and consistency

or balancing means that one may partition the people

(nodes) into two cohesive groups that dislike each other.)

More generally, computing the CD amounts to finding a

partition so that n1 þ n�1 þ p is minimized, where n1 is the

number of negative edges between nodes in A1, n–1 is the

number of negative edges between nodes in A–1, and p is

the number of positive edges between nodes in A1 and A–1.

A very special case is when the graph has all of its edges

labeled negative, that is, Jij ¼ �1 for all i,j. Stated in the

language of partitions, the CD problem amounts to

searching for a partition such that n1 þ n�1 is minimized

(as there are no positive edges, p = 0). Moreover, since

there are no positive edges, n1 þ n�1 is actually the total

number of edges between any two nodes in A1 or in A–1.

Thus, N � ðn1 þ n�1Þ is the number of remaining edges,

that is, the number of edges between nodes in A1 and A–1.

Therefore, minimizing n1 þ n�1 is the same as maximizing

N � ðn1 þ n�1Þ: This is precisely the standard ‘‘MAX-

CUT’’ problem in computer science.

As a matter of fact, not only is MAX-CUT a particular

case, but, conversely, it is possible to reduce the CD

problem to MAX-CUT by means of the following trick.

For each edge labeled + 1, say from vi to vj, delete the edge

but insert a new node wij, and two negative edges, one from

vi to wij and one from wij to vj:

vi ! vj  vi a wij a vj:

The enlarged graph has only negative edges, and it is

easy to see that the minimal number of edges that have to

be removed in order to achieve consistency is the same as

the number of edges that would have had to be removed in

the original graph. Unfortunately, the MAX-CUT problem

is NP-hard. However, the paper (DasGupta et al. 2007)

gave an approximation polynomial-time algorithm for the

CD problem, guaranteed to solve the problem to within

87.9% of the optimum value, as an adaptation of the semi-

definite programming relaxation approach to MAX-CUT

based on Goemans and Williamson’s work (1995). (Is not

enough to simply apply the MAX-CUT algorithm to the

enlarged graph obtained by the above trick, because the

approximation bound is degraded by the additional edges,

so the construction takes some care.) The recent paper

(Hüffner et al. 2007) substantially improved upon the ap-

proach in DasGupta et al. (2007), resulting in a very effi-

cient algorithm.

Relation to Ising spin-glass models

Another interpretation of CD uses the language of statis-

tical mechanics. An Ising spin-glass model is defined by a

graph G together with an ‘‘interaction energy’’ Jij

Fig. 6 (a) inconsistent graph, (b) consistent subgraph, (c) one

inconsistent edge
Fig. 7 (a) Consistent graph; (b) partition into A1 and A–1
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associated to each edge (in our conventions, Jij is associ-

ated to the edge from vj to vi). In binary models,

Jij 2 f1;�1g; as we have here. A spin-assignment R is also

called a (magnetic) ‘‘spin configuration.’’ A ‘‘non-frus-

trated’’ spin-glass model is one for which there is a spin

configuration for which every edge is consistent (Barahona

1982; De Simone et al. 1995; Istrail 2000). This is the same

as a consistent assignment for the graph G in our termi-

nology. Moreover, a spin configuration that maximizes the

number of consistent edges is one for which the ‘‘free

energy’’ (with no exterior magnetic field):

HðRÞ ¼ �
X

ij

Jijrirj

is minimized. This is because, if R results in C(R) con-

sistent edges, then HðRÞ ¼ �CðRÞ þ IðRÞ ¼ T � 2CðRÞ;
where I(R) is the number of non-consistent edges for the

assignment R and T ¼ C þ I is the total number of edges;

thus, minimizing H(R) is the same as maximizing C(R). A

minimizing R is called a ‘‘ground state.’’ (A special case

is that in which Jij ¼ �1 for all edges, the ‘‘anti-ferro-

magnetic case.’’ This is the same as the MAX-CUT

problem.)

Near-monotone systems may be ‘‘practically’’

monotone

Obviously, there is no reason for large biochemical

networks to be consistent, and they are not. However,

when the number of inconsistencies in a biological

interaction graph is small, it may well be the case that

the network is in fact consistent in a practical sense. For

example, a gene regulatory network represents all po-

tential effects among genes. These effects are often

mediated by proteins which themselves need to be

activated in order to perform their function, and this

activation will, in turn, be contingent on the ‘‘environ-

mental’’ context: extracellular ligands, additional genes

being expressed which may depend on cell type or

developmental stage, and so forth. Thus, depending on

the context, different subgraphs of the original graph

describe the system, and these graphs may be individu-

ally consistent even if the entire graph, the union of all

these subgraphs, is not. As an illustration, take the sys-

tem in Fig. 4c. Suppose that under environmental con-

ditions A, the edge from 1 to 2 is not present, and under

non-overlapping conditions B, the edge from 1 to 3 is

not be present. Then, under either conditions, A or B,

the graph is consistent, even though, formally speaking,

the entire network is not consistent.

The closer to consistent, the more likely that this phe-

nomenon may occur.

Some evidence suggesting near-monotonicity of natural

networks

Since consistency in biological networks may be desirable,

one might conjecture that natural biological networks tend

to be consistent. As a way to test this hypothesis, the CD

algorithm from DasGupta et al. (2007) was run on the

yeast Saccharomyces cerevisiae gene regulatory network

from Milo et al. (2002), downloaded from http://www.

weizmann.ac.il/mcb/UriAlon/Papers/networkMotifs/yeast-

Data.mat (Milo et al. (2002) used the YPD database

(Costanzo et al. 2001). Nodes represent genes, and edges

are directed from transcription factors, or protein com-

plexes of transcription factors, into the genes regulated by

them.) This network has 690 nodes and 1,082 edges, of

which 221 are negative and 861 are positive (we labeled

the one ‘‘neutral’’ edge as positive; the conclusions do not

change substantially if we label it negative instead, or if we

delete this one edge). The approximation algorithm from

DasGupta et al. (2007) estimated the CD at 43, and the

exact algorithm from Hüffner et al. (2007) later improved

this estimate to a precise value CD = 41. In other words,

deleting a mere 4% of edges makes the network consistent.

Also remarkable is the following fact. The original graph

has 11 components: a large one of size 664, one of size 5,

three of size 3, and six of size 2. All of these components

remain connected after edge deletion. The deleted edges

are all from the largest component, and they are incident on

a total of 65 nodes in this component.

To better appreciate if a small CD might happen by

chance, the algorithm was also run on random graphs

having 690 nodes and 1082 edges (chosen uniformly), of

which 221 edges (chosen uniformly) are negative. It was

found that, for such random graphs, about 12.6% (136.6 ±

5) of edges have to be removed in order to achieve con-

sistency. (To analyze the scaling of this estimate, we

generated random graphs with N nodes and 1.57N edges of

which 0.32N are negative. We found that for N > 10,

approximately N/5 nodes must be removed, thus confirm-

ing the result for N = 690.) Thus, the CD of the biological

network is roughly 15 standard deviations away from the

mean for random graphs. Both topology (i.e., the under-

lying graph) and actual signs of edges contribute to this

near-consistency of the yeast network. To justify this

assertion, the following numerical experiment was per-

formed. We randomly changed the signs of 50 positive and

50 negative edges, thus obtaining a network that has the

same number of positive and negative edges, and the same

underlying graph, as the original yeast network, but with

100 edges, picked randomly, having different signs. Now,

one needs 8.2% (88.3 ± 7.1) deletions, an amount in-be-

tween that obtained for the original yeast network and the

one obtained for random graphs. Changing more signs, 100
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positives and 100 negatives, leads to a less consistent net-

work, with 115.4 ± 4.0 required deletions, or about 10.7%

of the original edges, although still not as many as for a

random network.

Decomposing systems into monotone components

Another motivation for the study of near-monotone sys-

tems is from decomposition-based methods for the analysis

of systems that are interconnections of monotone subsys-

tems. One may ‘‘pull out’’ inconsistent connections among

monotone components, in such a manner that the original

system can then be viewed as a ‘‘negative feedback’’ loop

around an otherwise consistent system (Fig. 8). In this

interpretation, the number of interconnections among

monotone components corresponds to the number of vari-

ables being fed-back.

For example, let us take the graph shown in Fig. 6a. The

procedure of dropping the diagonal edge and seeing it in-

stead as an external feedback loop can be modeled as

follows. The original differential equation dx1=dt ¼ f1ðx1;

x2; x3; x4Þ is replaced by the equation dx1=dt ¼ f1ðx1; x2;

x3; uÞ; where the symbol u, which represents an external

input signal, is inserted instead of the state variable x4. The

consistent system in Fig. 8 includes the remaining four

edges, and the ‘‘negative’’ feedback (negative in the sense

that it is inconsistent with the rest of the system) is the

connection from x4, seen as an ‘‘output’’ variable, back into

the input channel represented by u. The closed-loop system

obtained by using this feedback is the original system, now

viewed as a negative feedback around the consistent sys-

tem in Fig. 6b.

Generally speaking, the decomposition techniques in

Angeli and Sontag (2003, 2004a), Angeli et al. (2004a, b),

Sontag (2004, 2005), Enciso et al. (2006), de Leenheer

et al. (2005), Enciso and Sontag (2005b, 2006), De

Leenheer and Malisoff (2006), Gedeon and Sontag (2007)

are most useful if the feedback loop involves few variables.

This is equivalent to asking that the graph G associated to

the system be close to consistent, in the sense of the CD of

G being small. This view of systems as monotone sys-

tems—which have strong stability properties, as discussed

next, with negative-feedback regulatory loops around them

is very appealing from a control engineering perspective as

well.

Dynamical behavior of monotone systems

Continuous-time monotone systems have convergent

behavior. For example, they cannot admit any possible

stable oscillations (Hirsch and Smith 2005; Hadeler

and Glas 1983; Hirsch 1984). When there is only one

steady-state, a theorem of Dancer (1998) shows—under

mild assumptions regarding possible constraints on the

values of the variables, which are often satisfied, and

boundedness of solutions, which usually follows from

conservation laws—that every solution converges to this

unique steady-state (monostability). When, instead, there

are multiple steady-states, the Hirsch Generic Convergence

Theorem (Smith 1995; Hirsch and Smith 2005; Hirsch

1983, 1985) is the fundamental result. A strongly monotone

system is one for which the an initial perturbation

zið0Þ> xið0Þ on the concentration of any species propagates

as a strict up or down perturbation: zjðtÞ> xjðtÞ for all t > 0

and all indices j for which rj ¼ ri; and zjðtÞ\xjðtÞ for all

t > 0 and all j for which rj ¼ �ri: Observe that this

requirement is stronger (hence the terminology) than

merely weak inequalities: zjðtÞ� xjðtÞ or zjðtÞ� xjðtÞ,
respectively as in Kamke’s Theorem. A sufficient condition

for strong monotonicity is that the Jacobian matrices must

be irreducible for all x, which basically amounts to asking

that the graph G must be strongly connected and that every

non-identically zero Jacobian entry be everywhere non-

zero. Even though they may have arbitrarily large dimen-

sionality, monotone systems behave in many ways like

one-dimensional systems: Hirsch’s Theorem asserts that

generic bounded solutions of strongly monotone differen-

tial equation systems must converge to the set of steady-

states. (‘‘Generic’’ means ‘‘every solution except for a

measure-zero set of initial conditions.’’) In particular, no

‘‘chaotic’’ or other ‘‘strange’’ dynamics can occur. For

discrete-time strongly monotone systems, generically also

stable oscillations are allowed besides convergence to

equilibria, but no more complicated behavior.

The ordered behavior of monotone systems is robust

with respect to spatial localization effects as well as sig-

naling delays (such as those arising from transport, tran-

scription, or translation). Moreover, their stability character

does not change much if some inconsistent connections are

inserted, but only provided that these added connections

are weak (‘‘small gain theorem’’) or that they operate at a

comparatively fast time scale (Wang and Sontag 2006a).

The intuition behind the convergence results is easy to

explain in the very special case of just two interacting

species, described by a two-dimensional system with

variables x(t) and y(t):

Fig. 8 Pulling-out inconsistent connections
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dx

dt
¼f ðx; yÞ

dy

dt
¼gðx; yÞ:

A system like this is monotone if either (a) the species

are mutually activating (or, as is said in mathematical

biology, ‘‘cooperative’’), (b) they are mutually inhibiting

(‘‘competitive’’), or (c) either x does not affect y, y does not

affect x, or neither affects the other. Let us discuss the

mutually activating case (a). (Case (b) is similar, and case

(c) is easy, since the systems are partially or totally de-

coupled.) We want to argue that there cannot be any

periodic orbit. Suppose that there would be a periodic orbit

in which the motion is counterclockwise, as shown in

Fig. 9a. We then pick two points in this orbit with identical

x coordinates, as indicated by (x,y) and ðx; y0Þ in Fig. 9a.

These points correspond to the concentrations at two times

t0, t1, with xðt0Þ ¼ xðt1Þ and yðt0Þ\yðt1Þ: Since yðt1Þ is

larger than yðt0Þ; x is at the same concentration, and the

species are mutually activating, it follows that the rate of

change in the concentration x should be comparatively

larger at time t1 than at time t0, that is, f ðx; y0Þ � f ðx; yÞ:
However, this contradicts the fact that x(t) is increasing at

time t0 (f ðx; yÞ� 0) but is decreasing at time t1
(f ðx; y0Þ � 0). The contradiction means that there cannot be

any counterclockwise-oriented curve. To show that there

cannot be any clockwise-oriented curve, one may proceed

by an entirely analogous argument, using two points (x,y)

and ðx0; yÞ as in Fig. 9b. Of course, the power of monotone

systems theory arises in the analysis of systems of higher

dimension, since two-dimensional systems are easy to

study by elementary phase plane methods.

For general, non-monotone systems, on the other hand,

no dynamical behavior, including chaos, can be mathe-

matically ruled out. This is in spite of the fact that some

features of non-monotone systems are commonly regarded

as having a stabilizing effect. For example, negative

feedback loops confer robustness with regard to certain

types of structural as well as external perturbations (Doyle

et al. 1990; Sepulchre et al. 1997; Sontag 1999; Khalil

2002). However, and perhaps paradoxically, the behavior

of non-monotone systems may also be very fragile: for

instance, they can be destabilized by delays in negative

feedback paths. Nonetheless, we conjecture that systems

that are close to monotone must be better-behaved,

generically, than those that are far from monotone. Pre-

liminary evidence (unpublished) for this has been obtained

from the analysis of random Boolean networks, at least for

discrete analogs of the continuous system, but the work is

not yet definitive.

Directed cycles

Intuition suggests that somewhat less than monotonicity

should suffice for guaranteeing that no chaotic behavior

may arise, or even that no stable limit cycles exist.

Indeed, monotonicity amounts to requiring that no undi-

rected negative-parity cycles be present in the graph, but

a weaker condition, that no directed negative parity

cycles exist, should be sufficient to insure these proper-

ties. For a strongly connected graph, the property that no

directed negative cycles exist is equivalent to the prop-

erty that no undirected negative cycles exist, because the

same proof as given earlier, but applied to directed paths,

insures that a consistent spin assignment exists (and

hence there cannot be any undirected negative cycles).

However, for non-strongly connected graphs, the prop-

erties are not the same. On the other hand, every graph

can be decomposed as a cascade of graphs that are

strongly connected. This means (aside from some tech-

nicalities having to do with Jacobian entries being not

identically zero but vanishing on large sets) that systems

having no directed negative cycles can be written as a

cascade of strongly monotone systems. Therefore, it is

natural to conjecture that such cascades have nice

dynamical properties. Indeed, under appropriate technical

conditions for the systems in the cascade, one may

recursively prove convergence to equilibria in each

component, appealing to the theory of asymptotically

autonomous systems (Thieme 1992) and thus one may

conclude global convergence of the entire system (Hirsch

1989; Smith 1991). For example, a cascade of the form

dx=dt ¼ f ðxÞ; dy=dt ¼ gðx; yÞ where the x system is

monotone and where the system dy=dt ¼ gðx0; yÞ is

monotone for each fixed x0, cannot have any attractive

periodic orbits (except equilibria). This is because the

projection of such an orbit on the first system must be a

point x0, and hence the orbit must have the form

ðx0; yðtÞÞ: Therefore, it is an attractive periodic orbit of

dy=dt ¼ gðx0; yÞ; and by monotonicity of this latter sys-

tem we conclude that yðtÞ � a constant as well. The

argument generalizes to any cascade, by an inductive
Fig. 9 Impossible (a) counterclockwise and (b) clockwise periodic

orbits in planar cooperative system, each drawn in the (x,y)-plane
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argument. Also, chaotic attractors cannot exist (D. Angeli

et al. in preparation).

The condition of having no directed negative cycles is

the weakest one that can be given strictly on the basis of

the graph G, because for any graph G with a negative

feedback loop there is a system with graph G which admits

stable periodic orbits. (First find a limit cycle for the loop,

and then use a small perturbation to define a system with

nonzero entries as needed, which will still have a limit

cycle.)

Positive feedback and stability

The strong global convergence properties of monotone

systems mentioned above would seemingly contradict the

fact that positive feedback, which tends to increase the

direction of perturbations, is allowed in monotone systems,

but negative feedback, which tends to stabilize systems, is

not. One explanation for this apparent paradox is that the

main theorems in monotone systems theory only guarantee

that bounded solutions converge, but they do not make any

assertions about unbounded solutions. For example, the

system dx=dt ¼ �xþ x2 has the property that every solu-

tion starting at an x(0) > 1 is unbounded, diverging to + ¥,

a fact which does not contradict its monotonicity (every

one-dimensional system is monotone). This is not as

important a restriction as it may seem, because for bio-

chemical systems it is often the case that all trajectories

must remain bounded, due to conservation of mass and

other constraints. A second explanation is that negative

self-loops are not ruled out in monotone systems, and such

loops, which represent degradation or decay diagonal

terms, help insure stability.

Intuition on why negative self-loops do not affect

monotonicity

In the definition of the graph associated to a continuous-

time system, self-loops (diagonal terms in the Jacobian of

the vector field f) were ignored. The theory (Kamke’s

condition) does not require self-loop information in order

to guarantee monotonicity. Intuitively, the reason for this is

that a larger initial value for a variable xi implies a larger

value for this variable, at least for short enough time

periods, independently of the sign of the partial derivative

dfi=dxi (continuity of flow with respect to initial condi-

tions). For example, consider a degradation equation

dp=dt ¼ �p; for the concentration p(t) of a protein P. At

any time t, we have that pðtÞ ¼ e�tpð0Þ; where p(0) is the

initial concentration. The concentration p(t) is positively

proportional to p(0), even though the partial derivative

oð�pÞ=op ¼ �1 is negative. Note that, in contrast, for a

difference equation, a jump may occur: for instance the

iteration pðt þ 1Þ ¼ �pðtÞ has the property that the order of

two elements is reversed at each time step. Thus, for dif-

ference equations, diagonal terms matter.

Multiple time scale analysis may make systems

monotone

A system may fail to be monotone due to the effect of

negative regulatory loops that operate at a faster time

scale than monotone subsystems. In such a case, some-

times an approximate but monotone model may be ob-

tained, by collapsing negative loops into self-loops.

Mathematically: a non-monotone system might be a sin-

gular perturbation of a monotone system. A trivial linear

example that illustrates this point is dx=dt ¼ �x� y;

edy=dt ¼ �yþ x; with e > 0: This system is not monotone

(with respect to any orthant cone). On the other hand, for

e� 1; the fast variable y tracks x, so the slow dynamics

is well-approximated by dx=dt ¼ �2x (monotone, since

every scalar system is). More generally, one may consider

dx=dt ¼ f ðx; yÞ; edy=dt ¼ gðx; yÞ such that the fast system

dy=dt ¼ gðx; yÞ has a unique globally asymptotically

stable steady-state y = h(x) for each x (and possibly a

mild input to state stability requirement, as with the

special case edy=dt ¼ �yþ hðxÞ), and the slow system

dx=dt ¼ f ðx; hðxÞÞ is (strongly) monotone. Then one may

expect that the original system inherits global conver-

gence properties, at least for all e > 0 small enough. The

paper (Wang and Sontag 2006b) employs tools from

geometric invariant manifold theory (Fenichel 1979; Jones

1994), taking advantage of the existence of a manifold Me

invariant for the dynamics, which attracts all near-enough

solutions, and with an asymptotic phase property. The

system restricted to the invariant manifold Me is a regular

perturbation of the fast (e ¼ 0) system, and hence inherits

strong monotonicity properties. So, solutions in the man-

ifold will be generally well-behaved, and asymptotic

phase implies that solutions track solutions in Me; and

hence also converge to equilibria if solutions on Me do.

However, the technical details are delicate, because strong

monotonicity only guarantees generic convergence, and

one must show that the generic tracking solutions start

from the ‘‘good’’ set of initial conditions, for generic

solutions of the large system.

Discrete-time systems

As discussed, for autonomous differential equations

monotonicity implies that stable periodic behaviors will not

be observed, and moreover, under certain technical

assumptions, all trajectories must converge to steady-

states. This is not exactly true for difference equation

models, but a variant does hold: for discrete-time monotone
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systems, trajectories must converge to either steady-states

or periodic orbits. In general, even the simplest difference

equations may exhibit arbitrarily complicated (chaotic)

behavior, as shown by the logistic iteration in one dimen-

sion xðt þ 1Þ ¼ kxðtÞð1� xðtÞÞ for appropriate values of

the parameter k (Devaney 1989). However, for monotone

difference equations, a close analog of Hirsch’s Generic

Convergence Theorem is known. Specifically, suppose that

the equations are point-dissipative, meaning that all solu-

tions converge to a bounded set (Hale 1988), and that the

system is strongly monotone, in the sense that the Jacobian

matrix ðofi=oxjÞ is irreducible at all states. Then, a result of

Tereščák and coworkers (Poláčik and Tereščák 1992;

Poláčik and Tereščák 1993; Hess and Poláčik 1993; Ter-

eščák 1996) shows that there is a positive integer m such

that generic solutions (in an appropriate sense of generic-

ity) converge to periodic orbits with period at most m.

Results also exist under less than strong monotonicity, just

as in the continuous case, for example when steady-states

are unique (Dancer 1998).

Difference equations allow one to study wider classes of

systems. As a simple example, consider the nondimen-

sionalized harmonic oscillator (idealized mass-spring sys-

tem with no damping), which has equations

dx

dt
¼y

dy

dt
¼� x:

(For this example, we allow variables to be negative;

these variables might indicate deviations of concentrations

from some reference value.) This system is not monotone,

since v1 ! v2 is negative and v1 ! v2 is positive, so that its

graph has a negative loop. On the other hand, suppose that

one looks at this system every Dt seconds, where Dt ¼ p:
The discrete-time system that results (using a superscript +

to indicate time-stepping) is now:

xþ ¼ �y
yþ ¼ �x

(this is obtained by solving the differential equation on an

interval of length p). This system is monotone (both

v1 ! v2 and v1 ! v2 are negative). Every trajectory of this

discrete system is, in fact, of period two:

ðx0; y0Þ ! ð�y0;�x0Þ ! ðx0; y0Þ ! . . . : This periodic

property for the difference equation corresponds to the

period-2p behavior of the original differential equation.

Oscillatory behaviors

Stable periodic behaviors are ruled-out in autonomous

monotone continuous-time systems. However, stable

periodic orbits may arise through various external mech-

anisms. Three examples are (1) inhibitory negative feed-

back from some species into others in a monotone

monostable system, (2) the generation of relaxation

oscillations from a hysteresis parametric behavior by

negative feedback on parameters by species in a mono-

tone system, and (3) entrainment of external periodic

signals. These general mechanisms are classical and well-

understood for simple, one or two-dimensional, dynamics,

and they may be generalized to the case where the

underlying system is higher-dimensional but monotone.

Embeddings in monotone systems

As observed by Gouzé (1988), Gouze and Hadeler (1994),

any n-dimensional system can be viewed as a subsystem of

a 2n-dimensional monotone system. The mathematical

trick is to first duplicate every variable (species), intro-

ducing a ‘‘dual’’ species, and then to replace every incon-

sistent edge by an edge connecting the source species and

the ‘‘dual’’ of its target (and vice-versa). The construction

is illustrated in Fig. 10. At first, this embedding result may

seem paradoxical, since all monotone (or strongly mono-

tone) systems have especially nice dynamical behaviors,

such as not having any attractive periodic orbits or chaotic

attractors, and of course non-monotone systems may admit

such behaviors. However, there is no contradiction. A non-

monotone subsystem of a monotone system may well have,

say, a chaotic attractor or a stable periodic orbit: it is just

that this attractor or orbit will be unstable when seen as a

subset of the extended (2n-dimensional) state space. Not

only there is no contradiction, but a classical construction

of Smale (1976) shows that indeed any possible dynamics

can be embedded in a larger monotone system. More

generally, the Hirsch Generic Convergence Theorem

guarantees convergence to equilibria from almost every

initial condition; applied to the above construction, in

general the exceptional set of initial conditions would in-

clude the ‘‘thin’’ set corresponding to the embedded sub-

system. Yet, one may ask what happens for example if the

larger 2n-system has a unique equilibrium. In that case, it is

known (Dancer 1998) that every trajectory converges (not

Fig. 10 (a) Duplicated inconsistent graph, (b) replacing arrows and

consistent assignment
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merely generic ones), so, in particular, the embedded

subsystem must also be ‘‘well-behaved.’’ Thus, systems

that may be embedded by the above trick into monotone

systems with unique equilibria will have global conver-

gence to equilibria. This property amounts to the ‘‘small

gain theorem’’ shown in Angeli and Sontag (2003), see

Enciso et al. (2006) for a discussion and further results

using this embedding idea.

Discrete systems

We remark that one may also study difference equations

for which the state components are only allowed to take

values out of a finite set. For example, in Boolean models

of biological networks, each variable xi(t) can only attain

two values (0/1 or ‘‘on/off’’). These values represent

whether the ith gene is being expressed, or the concentra-

tion of the ith protein is above certain threshold, at time t.

When detailed information on kinetic rates of protein–

DNA or protein–protein interactions is lacking, and espe-

cially if regulatory relationships are strongly sigmoidal,

such models are useful in theoretical analysis, because they

serve to focus attention on the basic dynamical character-

istics while ignoring specifics of reaction mechanisms

(Kauffman 1969a, b; Kauffman and Glass 1973; Albert and

Othmer 2003; Chaves et al. 2005).

For difference equations over finite sets, such as Bool-

ean systems, it is quite clear that all trajectories must either

settle into equilibria or to periodic orbits, whether the

system is monotone or not. However, cycles in discrete

systems may be arbitrarily long and these might be seen as

‘‘chaotic’’ motions. Monotone systems, while also settling

into steady-states or periodic orbits, have generally shorter

cycles. This is because periodic orbits must be anti-chains,

i.e.no two different states can be compared; see Smith

(1995) and Gilbert (1954). For example, consider a

discrete-time system in which species concentrations are

quantized to the k values f0; . . . ; k � 1g; we interpret

monotonicity with respect to the partial order:

ða1; . . . ; anÞ� ðb1; . . . ; bnÞ if every coordinate ai� bi: For

non-monotone systems, orbits can have as many as kn

states. On the other hand, monotone systems cannot have

orbits of size more than the width (size of largest anti-

chains) of P ¼ f0; . . . ; k � 1gn; which can be interpreted as

the set of multisubsets of an n-element set, or equivalently

as the set of divisors of a number of the form

ðp1p2 . . . pnÞk�1
where the pi’s are distinct primes. The

width of P is the number of possible vectors ði1; . . . ; inÞ
such that

P
ij ¼ bkn=2c and each ij 2 f0; . . . ; k � 1g: This

is a generalization of Sperner’s Theorem; see Anderson

(2002). For example, for n = 2, periodic orbits in a

monotone system evolving on f0; . . . ; k � 1g2
cannot have

length larger than k, while non-monotone systems on

f0; . . . ; k � 1g2
can have a periodic orbit of period k2. As

another example, arbitrary Boolean systems (i.e., the state

space is f0; 1gn
) can have orbits of period up to 2n, but

monotone systems cannot have orbits of size larger than
n
bn=2c

� �
	 2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðnpÞ

p
: These are all classical facts in

Boolean circuit design (Gilbert 1954). It is worth pointing

out that any anti-chain P0 can be seen as a periodic orbit of

a monotone system. This is proved as follows: we enu-

merate the elements of P0 as x1; . . . ; x‘; and define

f ðxiÞ ¼ xi�1 for all i modulo ‘. Then, f can be extended to

all elements of the state space by defining f ðxÞ ¼ ð0; . . . ; 0Þ
for every x which has the property that x\xi for some

xi 2 P0 and f ðxÞ ¼ ðk � 1; . . . ; k � 1Þ for every x which is

not � xi for any xi 2 P0: It is easy to see that this is a

monotone map (Gilbert 1954; Aracena et al. 2004).

While on the subject of discrete and in particular

Boolean systems, we mention a puzzling fact: any Boolean

function may be implemented by using just two inverters,

with all other gates being monotone. In other words, a

circuit computing any Boolean rule whatsoever may be

built so that its ‘‘consistency deficit’’ is just two. This is a

well-known fact in circuit design (Gilbert 1954; Minsky

1967). Here is one solution, from Clive (2006). One first

shows how to implement the Boolean function that takes as

inputs three bits A,B,C and outputs the vector of three

complements ðnotA; notB; notCÞ; by using this sequence of

operations:

2or3ones ¼ ðA ^ BÞ _ ðA ^ CÞ _ ðB ^ CÞ
0or1ones ¼ notð2or3onesÞ
1one ¼ 0or1ones ^ ðA _ B _ CÞ
1or3ones ¼ 1one _ ðA ^ B ^ CÞ
0or2ones ¼ notð1or3onesÞ
0ones ¼ 0or2ones ^ 0or1ones
2ones ¼ 0or2ones ^ 2or3ones
notA ¼ 0ones _ ð1one ^ ðB _ CÞÞ _ ð2ones ^ ðB ^ CÞÞ
notB ¼ 0ones _ ð1one ^ ðA _ CÞÞ _ ð2ones ^ ðA ^ CÞÞ
notC ¼ 0ones _ ð1one ^ ðA _ BÞÞ _ ð2ones ^ ðA ^ BÞÞ

(the node labeled ‘‘2or3ones’’ computes the Boolean

function ‘‘the input has exactly 2 or 3 ones’’ and so

forth). Note that only two inverters have been used. If we

now want to invert four bits A, B, C, D, we build the

above circuit, but we implement the inversion of the

three bits (2or3ones,1or3ones,D) by a subcircuit with

only two inverters. With a similar recursive construction,

one may invert an arbitrary number of bits, using just

two inverters.

I/O monotone systems

We next describe recent work on monotone input/output

systems (‘‘MIOS’’ from now on). Monotone i/o systems
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originated in the analysis of mitogen-activated protein ki-

nase cascades and other cell signaling networks, but later

proved useful in the study of a broad variety of other

biological models. Their surprising breath of applicability

notwithstanding, of course MIOS constitute a restricted

class of models, especially when seen in the context of

large biochemical networks. Indeed, the original motiva-

tion for introducing MIOS, in the 2003 paper (Angeli and

Sontag 2003), was to study an existing non-monotone

model of negative feedback in MAPK cascades. The key

breakthrough was the realization that this example, and, as

it turned out, many others, can be profitably studied by

decompositions into MIOS. In other words, a non-mono-

tone system is viewed as an interconnection of monotone

subsystems. Based on the architecture of the interconnec-

tions between the subsystems (‘‘network structure’’), one

deduces properties of the original, non-monotone, system.

(Later work, starting with Angeli and Sontag (2004a),

showed that even monotone systems can be usefully

studied through this decomposition-based approach.)

We review the basic notion from Angeli and Sontag

(2003). (For concreteness, we make definitions for systems

of ordinary differential equations, but similar definitions

can be given for abstract dynamical systems, including in

particular reaction–diffusion partial differential equations

and delay-differential systems, see e.g. Enciso and Sontag

2006) The basic setup is that of an input/output system in

the sense of mathematical systems and control theory

(Sontag 1998), that is, sets of equations

dx

dt
¼ f ðx; uÞ; y ¼ hðxÞ; ð1Þ

in which states x(t) evolve on some subset X 
 R
n; and

input and output values u(t) and y(t) belong to subsets

U 
 R
m and Y 
 R

p; respectively. The coordinates

x1; . . . ; xn of states typically represent concentrations of

chemical species, such as proteins, mRNA, or metabolites.

The input variables, which can be seen as controls, forcing

functions, or external signals, act as stimuli. Output vari-

ables can be thought of as describing responses, such as

movement, or as measurements provided by biological

reporter devices like GFP that allow a partial read-out of

the system state vector ðx1; . . . ; xnÞ: The maps

f : X � U ! R
n and h : X ! Y are taken to be continu-

ously differentiable. (Much less can be assumed for many

results, so long as local existence and uniqueness of solu-

tions is guaranteed.) An input is a signal u : ½0;1Þ ! U

which is locally essentially compact (meaning that images

of restrictions to finite intervals are compact), and we write

uðt; x0; uÞ for the solution of the initial value problem

dx=dtðtÞ ¼ f ðxðtÞ; uðtÞÞ with xð0Þ ¼ x0; or just x(t) if x0 and

u are clear from the context, and yðtÞ ¼ hðxðtÞÞ: See Sontag

(1998) for more on i/o systems. For simplicity of exposi-

tion, we make the blanket assumption that solutions do not

blow-up on finite time, so x(t) (and y(t)) are defined for all

t ‡ 0. (In biological problems, almost always conservation

laws and/or boundedness of vector fields insure this prop-

erty. In any event, extensions to local semiflows are pos-

sible as well.)

Given three partial orders on X,U,Y (we use the same

symbol � for all three orders), a monotone I/O system

(MIOS), with respect to these partial orders, is a system

(1000) such that h is a monotone map (it preserves order)

and: for all initial states x1; x2 for all inputs u1; u2; the

following property holds: if x1 
 x2 and u1 
 u2 (meaning

that u1ðtÞ 
 u2ðtÞ for all t ‡ 0), then

uðt; x1; uÞ 
 uðt; x2; u2Þ for all t > 0. Here we consider

partial orders induced by closed proper cones K 
 R
‘; in

the sense that x 
 y iff y� x 2 K: The cones K are as-

sumed to have a nonempty interior and are pointed, i.e.

K
T
�K ¼ f0g: A strongly monotone system is one which

satisfies the following stronger property: if x1 
 x2;

x1 6¼ x2; and u1 
 u2; then the strict inequality

uðt; x1; uÞ �� uðt; x2; u2Þ holds for all t > 0, where x �� y

means that y–x is in the interior of the cone K.

The most interesting particular case is that in which K is

an orthant cone in R
n; i.e. a set Se of the form

fx 2 R
njeixi� 0g; where ei ¼ �1 for each i.

When there are no inputs nor outputs, the definition of

monotone systems reduces to the classical one of monotone

dynamical systems studied by Hirsch, Smith, and Others

(1995). This is what we discussed earlier, for the case of

orthant cones. When there are no inputs, strongly mono-

tone classical systems have especially nice dynamics. Not

only is chaotic or other irregular behavior ruled out, but, in

fact, almost all bounded trajectories converge to the set of

steady states (Hirsch’s generic convergence theorem (see

Hirsch (1983, 1985)).

A useful test for monotonicity with respect to orthant

cones, which generalizes Kamke’s condition to the i/o case,

is as follows. Let us assume that all the partial derivatives
ofi
oxj
ðx; uÞ for i 6¼ j; ofi

ouj
ðx; uÞ for all i,j, and ohi

oxj
ðxÞ for all i,j

(subscripts indicate components) do not change sign, i.e.,

they are either always ‡0 or always £0. We also assume

that X is convex (much less is needed.) We then associate a

directed graph G to the given MIOS, with n + m + p

nodes, and edges labeled ‘‘+’’ or ‘‘–’’ (or ±1), whose labels

are determined by the signs of the appropriate partial

derivatives (ignoring diagonal elements of of=ox). One

may define in an obvious manner undirected loops in G,

and the parity of a loop is defined by multiplication of signs

along the loop. (See e.g. Angeli and Sontag 2004a, b for

more details.) Then, it is easy to show that a system is

monotone with respect to some orthant cones in X,U,Y if

and only if there are no negative loops in G. A sufficient
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condition for strong monotonicity is that, in addition to

monotonicity, the partial Jacobians of f with respect to x

should be everywhere irreducible. (‘‘Almost-everywhere’’

often suffices; see Smith (1995), Hirsch and Smith 2005).

See these references also for extensions to non-orthant

cones in the case of no inputs and outputs, based on work

of Schneider and Vidyasagar, Volkmann, and others

(Schneider and Vidyasagar 1970; Volkmann 1972; Wal-

cher 2001; Walter 1970).

In inhibitory feedback, a chemical species xj typically

affects the rate of formation of another species xi through a

term like hðxjÞ ¼ V=ðK þ xjÞ: The decreasing function

h(xj) can be seen as the output of an anti-monotone system,

i.e. a system which satisfies the conditions for monoto-

nicity, except that the output map reverses order:

x1 
 x2 ) hðx2Þ 
 hðx1Þ:
An interconnection of monotone subsystems, that is to

say, an entire system made up of monotone components,

may or may not be monotone: ‘‘positive feedback’’ (in a

sense that can be made precise) preserves monotonicity,

while ‘‘negative feedback’’ destroys it. Thus, oscillators

such as circadian rhythm generators require negative

feedback loops in order for periodic orbits to arise, and

hence are not themselves monotone systems, although they

can be decomposed into monotone subsystems (cf. Angeli

and Sontag 2004c). A rich theory is beginning to arise,

characterizing the behavior of non-monotone interconnec-

tions. For example, Angeli and Sontag (2003) shows how

to preserve convergence to equilibria; see also the follow-

up papers (Enciso et al. 2006; Angeli et al. 2004b; de

Leenheer et al. 2005; Enciso and Sontag 2006; Gedeon and

Sontag 2007). Even for monotone interconnections, the

decomposition approach is very useful, as it permits

locating and characterizing the stability of steady-states

based upon input/output behaviors of components, as de-

scribed in Angeli and Sontag (2004a); see also the follow-

up papers Angeli et al. (2004a), Enciso and Sontag

(2005b), De Leenheer and Malisoff (2006).

Moreover, a key point brought up in Angeli and Sontag

(2003, 2004a), Sontag (2004, 2005) is that new techniques

for monotone systems in many situations allow one to

characterize the behavior of an entire system, based upon

the ‘‘qualitative’’ knowledge represented by general net-

work topology and the inhibitory or activating character of

interconnections, combined with only a relatively small

amount of quantitative data. The latter data may consist of

steady-state responses of components (dose-response

curves and so forth), and there is no need to know the

precise form of dynamics or parameters such as kinetic

constants in order to obtain global stability conclusions and

study global bifurcation behavior. We now discuss these

issues, first for positive and then for negative feedback

loops.

Positive feedback and possible multistability

We first discuss how multistability in cell signaling net-

works may arise from positive feedback loops. The general

framework is that in which two input/output systems, each

of which is monostable in isolation, can combine to pro-

duce a multi-stable closed-loop behavior when intercon-

nected in closed-loop. Schematically, we consider two

systems, one of which processes an input signal u and

produces an output y, and a second one which processes the

signal y to produce u.

The interconnection of these two systems is defined by

feeding the output of each of the systems as an input to the

other, Fig. 11. Steady-states of the closed-loop system

correspond to those constant signals u and y that are ob-

tained by intersecting the step-input steady-state responses

(‘‘characteristics’’ or ‘‘nonlinear DC gains,’’ defined below)

of the individual systems. Such positive feedback systems

may easily be multi-stable, even if the constituent pieces

are monostable (Cinquin and Demongeot 2002; Thomas

1981; Snoussi 1998; Tyson et al. 2003). We next formally

define characteristics, for any given system dx=dt ¼ f ðx; uÞ
with output y = h(x).

Step-input steady-state responses (characteristics) of open-

loop systems

For each constant input uðtÞ � u0; t� 0; we study the open-

loop dynamical system dx=dt ¼ f ðx; u0Þ obtained by feed-

ing this input. We will assume that all solutions approach

steady-states, and we denote with K(u0) the set of possible

steady-states, that is, the solutions x of the algebraic

equation f ðx; u0Þ ¼ 0: To each state x in this set K(u0),

there is a corresponding output or measured quantity h(x0);

we denote by k(u0) the set of all output values that arise in

this manner. The graph of the set-valued mapping

u0 7!ðu0Þ is a subset of the cross product space R
m � R

p;

which may be though of as a curve when m = p = 1, and

which describes the possible steady-state output values for

any given constant input. Although not strictly required, for

simplicity we will assume from now on that these map-

pings are single-valued, not set-valued; in other words, that

the open-loop system dx=dt ¼ f ðx; u0Þ is monostable, for

any given constant level u0 of the input. More precisely, we

assume that a (single-valued) characteristic exists for the

Fig. 11 Feedback interconnection of two systems
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system: for each u0 there is a unique steady-state for the

dynamical system dx=dt ¼ f ðx; u0Þ; denoted by K(u0),

which is a globally asymptotically stable (‘‘GAS’’) steady-

state. The (output) characteristic k : U ! Y is then defined

as the composition hs K. All solutions of dx=dt ¼ f ðx; u0Þ
converge to K(u0), and the output y(t) converges to k(u0),

cf. Fig. 12. Another name for k is the step-input steady-

state response or (nonlinear) DC gain of the system. In

biological problems, a constant input may represent, for

example, the concentration of a certain extracellular ligand

in a signaling system, or the level of expression of a con-

stitutively expressed gene.

Characteristics (dose–response curves, activity plots,

steady-state expression of a gene in response to an external

ligand, etc.) are frequently available from experimental

data, especially in molecular biology and pharmacology,

for instance in the modeling of receptor–ligand interactions

(Chaves et al. 2004).

The results to be described are also valid under weaker

definitions of characteristics, such as not requiring GAS

properties, or allowing set-valued characteristics (Angeli

and Sontag 2003; Angeli et al. 2004b; de Leenheer et al.

2005; De Leenheer and Malisoff 2006; Enciso and Sontag

2005a, 2006; G.A. Enciso and E.D. Sontag, in preparation).

It is worth pointing out that, if a system is monotone,

then the stability property in the definition of characteristic

is often automatically satisfied, provided that uniqueness of

steady-states holds. More precisely, if one knows that (a)

trajectories are bounded, and (b) the state space X has the

property that least upper bounds and greatest lower bounds

exist for any two elements of X (for example, if the state

space is a ‘‘cube’’ with respect to the order cone K), then

just knowing that K(u0) has only one point is enough to

conclude that K(u0) is in fact a GAS state for

dx=dt ¼ f ðx; u0Þ (Dancer 1998; Jiang 1994).

Hyperbolic and sigmoidal characteristics

Before reviewing theorems about feedback interconnec-

tions of MIOS systems, we discusse a very simple example

which does not require any theory. Often, models of sys-

tems representing signaling and other molecular biology

networks have a hyperbolic or a sigmoidal steady-state

response.

To illustrate the first of these types of responses, we

consider a protein P whose time-varying concentration p(t)

is subject to a Michaelis–Menten rate of production (ini-

tially linearly proportional to substrate concentration, but

saturating at a maximal rate when a certain substrate U is in

abundance), balanced by a linear rate of degradation/dilu-

tion. A simple model is as follows:

dp

dt
¼ Vmaxu

ðkm þ uÞ � kp;

where u = u(t) represents the concentration of the substrate

U that is used in P’s formation. We view P itself as the

output, that is y(t) = p(t). The steady-state, when the input

uðtÞ � u0 is constant, can be solved for by setting

dp=dt ¼ 0; from which we obtain:

p0 ¼ kðu0Þ ¼
ðVmax=kÞu0

km þ u0

:

This is a hyperbolic response, Fig. 13a. The response is

graded (‘‘light-dimmer’’): it is proportional to the param-

eter u0 over a large range of values, until it saturates at a

maximal level.

The second type, sigmoidal responses, arise from high-

order phenomena, typically involving cooperativity. Sup-

pose that r > 1 molecules of the substrate U are needed in

order to produce a molecule of P. One usually models this

situation by using a Hill rather than a Michaelis–Menten

production rate:

dp

dt
¼ Vmaxur

kr
m þ ur

� kp

where r > 1 is a ‘‘Hill coefficient’’ or cooperativity index.

(For r = 1, we have a Michaelis–Menten rate.) A sigmoidal

(‘‘doorbell’’) steady-state response

p0 ¼ kðu0Þ ¼
ðVmax=kÞur

0

kr
m þ ur

0

results, see Fig. 13b. There is an inflection point of the

graph at the value u0 ¼ km; and the plot becomes more

steep and closer to a step function (with a switch at km) for

larger r. Roughly speaking, values of the input u0\km will

u

t

ux

x = f(x,u), y = h(x)

y

t
k(u)

(a) (b) (c)Fig. 12 Characteristics:

(a) constant input,

(b) convergence of internal

states, (c) convergence of output

to value k(u)
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not result in an appreciable activity of P (p0 	 0 in steady-

state) and values u0 > km result in a maximal value

(p0 	 Vmax=k in steady-state).

It is believed that sigmoidal responses in signaling

pathways are used in those situations in which binary

decisions must be taken, such as when a cell must

‘‘decide’’ whether a gene should be transcribed or not,

depending on the value of an extracellular signal (Novic

and Weiner 1957; Ptashne 1992; Thomas and Kaufman

2001; Sha et al. 2003; Pomerening et al. 2003; Ferrell

and Xiong 2001; Lisman 1985; Laurent and Kellershohn

1999; Gardner et al. 2000; Ferrell and Machleder 1998;

Bagowski and Ferrell Jr. 2001; Bhalla et al. 2002; Cross

et al. 2002; Becskei et al. 2001; Bagowski et al. 2003).

Sigmoidal responses with large r > 1 (‘‘ultrasensitive

responses’’) can be obtained by cascading simple enzy-

matic reactions provided that each reaction in the cas-

cade has a Hill coefficient r > 1 (Ferrell Jr. 1996).

(Basically, this statement amounts to the chain rule for

derivatives.)

Creating bistability from sigmoidal responses

The simplest way to create bistability from a sigmoidal

response is through positive feedback. We illustrate this

procedure using the example just discussed. Schematically,

we start with the ‘‘open loop’’ system that produces the

protein P, with its concentration y(t) = p(t) considered as

an output and the concentation u(t) of U seen as an input.

We then ‘‘close the loop’’ by introducing a second system,

one that simply produces U from P in such a manner that

the concentration of U is proportional to that of P, as in

Fig. 11. We ignore, for the purpose of this expository

example, the details of the mechanism that implements the

autocatalytic process in which U is produced from P. The

mechanism might involve several intermediate proteins as

well as time delays. For simplicity, we assume that there

results an instantaneous change in the concentration of U

proportional to the concentration of P. (One of the tools to

be discussed, the theory of monotone input/output systems,

provides conditions that explain when this simplification is

justified.)

Mathematically, we simply replace the term u in the

equation for dp/dt by kp, where the constant k may be

thought of as a feedback gain. Absorbing the factor k into

Vmax and km, we have the following equation:

dp

dt
¼ ðVmaxprÞ=ðkr

m þ prÞ � kp:

We plot in Fig. 14 both the formation rate

ðVmaxprÞ=ðkr
m þ prÞ together with the degradation/dilution

rate kp, in cases where r = 1 (left) or r > 1 (right). We

assume, in the sigmoidal case, that the slope of the deg-

radation curve is so that three intersections result, as shown

in the plots. (For different k’s, the line will have different

slopes, and anywhere from one to three intersections are

possible.)

The behavior of solutions is clear from these graphs. In

the case of hyperbolic responses, corresponding to r = 1,

we see that for small p the formation rate is larger than the

degradation rate, but for large p the opposite holds.

Therefore, the concentration p(t) converges to a unique

intermediate value. A monostable closed-loop system re-

sults. In the sigmoidal case r > 1 (assuming three inter-

sections), on the other hand, for p small the degradation

rate is larger than the formation rate, so that p(t) converges

to a low value; on the other hand, for large p the formation

rate is larger than degradation, and thus p(t) converges to a

high value instead. Thus, two stable states are created, one

low and one high, by this interaction of formation and

degradation. (There is also an intermediate, unstable state.)

The reasoning followed above is totally elementary, but it

serves to provide an intuition for the monotone approach

(Angeli and Sontag 2004a), which may be seen as a far-

reaching generalization of this reasoning. (Previous, more

restricted, generalizations, were obtained in Rapp (1975),

Hastings et al. (1977), Tyson and Othmer (1978), Smith

(1987, 1995), Allwright (1977), Othmer (1976), Thron

(1991), Mallet-Paret and Smith (1990) and Gedeon

(1998)).

Positive feedback and multistability in monotone I/O

systems

The elementary and intuitive proof of bistability for the

simple production/degradation system with sigmoidal

characteristics just discussed can be generalized to a

Fig. 13 (a) Hyperbolic

response (b) sigmoidal response
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feedback interconnections of individually monostable sys-

tems, applying even if the u 7! and y 7!�systems in Fig. 11

are far more complicated than the one-dimensional system

dy=dt ¼ Vmaxur

kr
mþur � kp and the memoryless system u = ky,

respectively.

The basic theorem for positive feedback analyzes an

interconnection of two systems

dx1

dt
¼ f1ðx1; u1Þ; y1 ¼ h1ðx1Þ ð2Þ

dx2

dt
¼ f2ðx2; u2Þ; y2 ¼ h2ðx2Þ ð3Þ

which have increasing characteristics, denoted by ‘‘k’’ and

by ‘‘g’’ respectively. (A special case is that in one of the

systems is memoryless, for example if there are no state

variables x1 and y1 is simply a static function

y1ðtÞ ¼ kðu1ðtÞÞ.)
For expository reasons (see Enciso and Sontag (2005b)

for a generalization to high-dimensional inputs and out-

puts), we assume as in Angeli and Sontag (2004a) that the

inputs and outputs of both systems are scalar:

m1 ¼ m2 ¼ p1 ¼ p2 ¼ 1:

The ‘‘positive feedback interconnection’’ of the systems

(2) and (3) is formally defined by letting the output of

each of them serve as the input of the other (u2 ¼ y1 ¼
‘‘y’’ and u1 ¼ y2 ¼ ‘‘u’’), as depicted in Fig. 15a. Let us

now consider Fig. 15b, where we have plotted together k

and the inverse of g. It is quite obvious that there is a

bijective correspondence between the steady states of the

feedback system and the intersection points of the two

graphs. Moreover, let us attach labels to the intersection

points between the two graphs as follows: a label ‘‘S’’ is

placed at those points at which the slope of k is smaller

than the slope of g–1, and a label ‘‘U’’ if the slope of k is

larger than the slope of g–1. Note that in any interval

between any consecutive two intersection points labeled S

and U, the graph of g–1 is over the graph of k, and

otherwise the graph of g–1 is under the graph of k. (We

assume that the graphs don’t intersect tangentially.) By

analogy with the previously considered simple example,

one would expect that the points labeled S should corre-

spond to stable states of the closed-loop system, while

points labeled U should correspond to unstable states of

the closed-loop system.

Indeed, let us consider the system du=dt ¼ y� g�1ðuÞ;
which has characteristic u = g(y) when u is considered as

an ouput and y as an input, connected in feedback with the

system y = k(u), seen as a memoryless system with u as

input and y as ouput. The closed-loop system is:

du

dt
¼ kðuÞ � g�1ðuÞ

and therefore du/dt < 0 in the intervals where the graph of

g–1 is over the graph of k, which means that u(t) will

converge to a point labeled S when in an interval of the

type ‘‘(S,U).’’ Conversely du=dt > 0 in the intervals where

the graph of g–1 is under the graph of k, which means that

u(t) will also converge to a point labeled S when in an

interval of the type ‘‘(U,S).’’ In summary, solutions move

away from values of u corresponding to intersections la-

beled U and toward those corresponding to intersections

labeled S. Similarly, yðtÞ ¼ kðuðtÞÞ converges to the points

y associated to S’s.

Of course, the systems may be more complicated than

du=dt ¼ y� g�1ðuÞ and y = k(u), so that the above para-

graph does not constitute a proof. Nonetheless, a theorem

to be explained below provides conditions insuring the

validity of this argument. Before explaining the general-

ization, however, we provide a cautionary note, with the

purpose of showing that intuition may sometimes fail.

A cautionary counterexample

We consider the following two-dimensional system

(Angeli et al. 2004a):

Fig. 14 Intersections of hyperbolic and sigmoidal response with

degradation

Fig. 15 (a) Positive feedback (b) characteristics
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_x ¼ xð�xþ yÞ
_y ¼ 3y �xþ cþ by4

kþy4

� �

evolving on the first orthant x > 0, y > 0 (from now on, we

use ‘‘ _x’’ to denote time derivative), which provides a

simplified model of the rate of change of the concentration

of a protein x which may be degraded when in dimeric

form (x2 term) and whose formation is promoted by

another protein having concentration y. In turn, the second

protein is degraded by the first (term xy in second

equation), and cooperative autocatalysis drives synthesis

(last term in second equation). This is an activator/inhibitor

or predator-prey system. We view this system as the

unitary feedback system that results from setting

u = g(y) = y in the following open-loop system with

input u and output y:

_x ¼ xð�xþ yÞ
_y ¼ 3y �xþ cþ bu4

kþu4

� �
:

It is easy to verify that this open-loop system has the

following characteristic:

kðuÞ ¼ cþ bu4

k þ u4
:

Figure 16 shows the plot of y = k(u) (sigmoidal curve)

together with the plot of y ¼ g�1ðuÞ ¼ u: The above dis-

cussion would then suggest that the points labeled I and III

should correspond to stable states, and the point labeled II

to an unstable state, with most trajectories converging to

one of the two stable states. However, the phase plane of

the closed loop system, as shown in Fig. 17, contains two

unstable spiral points, in heteroclinic connections with a

saddle, as well as a limit cycle. Thus, the conclusions fail.

A general theorem

The above counterexample shows that the general inter-

connection theorem is not generally true. However, under

the assumption that each open-loop system is monotone,

together with reasonably mild technical conditions of

transversality and ‘‘controllability’’ and ‘‘observability,’’

(the recent papers (Enciso and Sontag 2005a; G.A. Enciso

and E.D. Sontag, in preparation) show that even these mild

conditions can be largely dispensed with), the intuitive one-

dimensional picture does generalize correctly. Suppose that

we attached labels ‘‘S’’ and ‘‘U’’ as discussed earlier. Then,

one can conclude that ‘‘almost all’’ (in a measure-theoretic

sense or in a Baire-category sense) bounded solutions of

the feedback system must converge to one of the steady-

states corresponding to intersection points labeled with an

S (Angeli and Sontag 2004a). The proof reduces ultimately

to an application of Hisrch’s generic convergence theorem

to the closed-loop system (the technical conditions insure

strong monotonicity). However, the value-added is in the

fact that stable states can be identified merely from the one-

dimensional plot shown in Fig. 15b. (If each subsystem

would have dimension just one, one can also interpret the

result in terms of a simple nullcline analysis; see the

Supplementary Section of Angeli et al. (2004a.)) Of

course, the system in the counterexample is not monotone;

note the negative cycle in its influence graph Fig. 18.

We remark that the theorems remain true even if arbi-

trary delays are allowed in the feedback loop and/or if

space-dependent models are considered and diffusion is

allowed (see Sontag (2005) for a discussion). A new ap-

proach (Angeli 2006), based not on monotone theory but

on a notion of ‘‘counterclockwise dynamics,’’ extends in a

different direction the range of applicability of this meth-

odology.

We wish to emphasize the potential practical relevance

of this result (and others such as Angeli (2006)). The

equations describing each of the systems are often poorly,Fig. 16 Characteristics for counterexample

Fig. 17 Phase plane for counterexample
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or not at all, known. But, as long as we can assume that each

subsystem is monotone and monostable, we can use the

information from the planar plots in Fig. 15b to understand

the global dynamics of the closed-loop system, no matter

how large the number of state variables. It is often said that

the field of molecular systems biology is characterized by a

data-rich/data-poor paradox: while on the one hand a huge

amount of qualitative network (schematic modeling)

knowledge is available for signaling, metabolic, and gene

regulatory networks, on the other hand little of this

knowledge is quantitative, at least at the level of precision

demanded by most mathematical tools of analysis. On the

other hand, input/output steady-state data (from a signal

such as a ligand, to a reporter variable such as the expres-

sion of a gene monitored by GFP, or the activity of a protein

measured by a Western blot) is frequently available. The

problem of exploiting qualitative knowledge, and effec-

tively integrating relatively sparse quantitative data, is

among the most challenging issues confronting systems

biology. The MIOS approach provides one way to combine

these two types of data, hence addressing the ‘‘data-rich/

data-poor’’ issue (Sontag 2004, 2005). When applicable,

MIOS analysis allows one to combine the numerical

information provided by the shape of the graphs of char-

acteristics with the qualitative information given by

(signed) network topology in order to predict global bifur-

cation behavior. This information is often easier to obtain

from experimental data, at least in interpolated form, than

kinetic constants (of which there may be a very large

number). An analysis based on characteristics, when it can

be done, is ‘‘robust’’ with respect to uncertainty in internal

parameters of the system, and serves as a ‘‘qualitative-

quantitative approach’’ to systems biology (Sontag 2005).

In addition, characteristics are also a very powerful tool for

the purely mathematical analysis of existing models.

Monotone systems with well-defined characteristics con-

stitute a very well-behaved set of building blocks for arbi-

trary systems, as illustrated by the fact that cascades of such

systems inherit the same properties (monotone, monostable

response) and by the feedback theorems reviewed here,

originally presented in the works (Angeli and Sontag 2004a;

Angeli and Sontag 2003).

More discussion through an example: MAPK cascades

Mitogen-Activated Protein Kinase (MAPK) cascades are a

ubiquitous ‘‘signaling module’’ in eukaryotes, involved in

proliferation, differentiation, development, movement,

apoptosis, and other processes (Huang and Ferrell Jr. 1996;

Asthagiri and Lauffenburger 2001; Widmann et al. 1999).

There are several such cascades, sharing the property of

being composed of a cascade of three kinases. The basic

rule is that two proteins, called generically MAPK and

MAPKK (the last K is for ‘‘kinase of MAPK,’’ which is

itself a kinase), are active when doubly phosphorylated,

and MAPKK phosphorylates MAPK when active. Simi-

larly, a kinase of MAPKK, MAPKKK, is active when

phosphorylated. A phosphatase, which acts constitutively

(that is, by default it is always active) reverses the phos-

phorylation. The biological model from Angeli et al.

(2004a) and Huang and Ferrell (1996) is in Fig. 19b, were

we wrote ziðtÞ; i ¼ 1; 2; 3 for MAPK, MAPK-P, and

MAPK-PP concentrations and similarly for the other

variables. The input represents an external signal to this

subsystem (typically, the concentration of a kinase driving

forward the reaction).

We make here the simplest assumptions about the

dynamics, amounting basically to a quasi-steady-state

approximation of enzyme kinetics. (For related results

using more realistic, mass-action, models, see Angeli and

Sontag (2007) and Angeli et al. (2006, 2007).) For exam-

ple, take the reaction shown in the square in Fig. 19a. As y3

(MAPKK-PP) facilitates the conversion of z1 into z2

(MAPK to MAPK-P), the rate of change dz2/dt should in-

clude a term aðz1; y3Þ (and dz1=dt has a term �aðz1; y3Þ) for

some (otherwise unknown) function a such that

að0; y3Þ ¼ 0 and oa
oz1

> 0; oa
oy3

> 0 when z1 > 0: (Nothing

x y

input

output

Fig. 18 Influence graph for counterexample

Fig. 19 (a) MAPK

cascades, (b) graph, (c)

characteristic
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happens if there is no substrate, but more enzyme or more

substrate results in a faster reaction.) There will also be a

term þbðz2Þ to reflect the phosphatase action. Similarly for

the other species. The system as given would be repre-

sented by a set of seven ordinary differential equations (or

reaction–diffusion PDE’s, if spatial localization is of

interest, or delay-differential equations, if appropriate).

This system is not monotone (at least with respect to any

orthant cone), as is easy to verify graphically. However, as

with many other examples of biochemical networks, the

system is ‘‘monotone in disguise’’, so to speak, in the sense

that a judicious change of variables allows one to apply

MIOS tools. (Far more subtle forms of this argument are key

to applications to signaling cascades. A substantial research

effort, not reviewed here because of lack of space, addresses

the search for graph-theoretic conditions that allow one to

find such ‘‘monotone systems in disguise’’; see Sontag (2004,

2005) and Angeli et al. (2006) for references).

In this example, which in fact was the one whose study

initially led to the definition of MIOS, the following con-

servation laws: y1ðtÞ þ y2ðtÞ þ y3ðtÞ � ytot (total MAPKK)

and z1ðtÞ þ z2ðtÞ þ z3ðtÞ � ztot (total MAPK) hold true,

assuming no protein turn-over. This assumption is standard

in most of the literature, because transcription and degra-

dation occur at time scales much slower than signaling.

(There is very recent experimental data that suggests that

turn-over might be fast for some yeast MAPK species.

Adding turn-over would lead to a different mathematical

model.) These conservation laws allow us to eliminate

variables. The right trick is to eliminate y2 and z2. Once

we do this, and write y2 ¼ ytot � y1 � y3 and

z2 ¼ ztot � z1 � z3; we are left with the variables

x; y1; y3; z1; z3: For instance, the equations for z1; z3 look

like:

dz1

dt
¼ �aðz1; y3Þ þ bðztot � z1 � z3Þ

dz3

dt
¼ cðztot � z1 � z3; y3Þ � dðz3Þ

for appropriate increasing functions a;b; c; d: The equa-

tions for the remaining variables are similar. The graph,

ignoring, as usual, self-loops (diagonal of Jacobian), is

shown in Fig. 19b. This graph has no negative undirected

loops, showing that the (reduced) system is monotone. A

consistent spin assignment (including the top input node

and the bottom output node) is shown in Fig. 20. It is also

true that this system has a well-defined monostable state

space response (characteristic); there is no space to discuss

the proof here, so we refer the reader to the original papers

(Angeli and Sontag 2003, 2004b).

Positive and negative feedback loops around MAPK

cascades have been a topic of interest in the biological

literature. For example, see Ferrell and Machleder (1998)

and Bhalla et al. (2002) for positive feedback and Kholo-

denko (2000) and Shvartsman et al. (2000) for negative

feedback. Since we know that the system is monotone and

has a characteristic, MIOS theory as described here can

indeed be applied to the example. We study next the effect

of a positive feedback u = g y obtained by ‘‘feeding back’’

into the input a scalar multiple g of the output. (This is a

somewhat unrealistic model of feedback, since feedbacks

act for example by enhancing the activity of a kinase. We

pick it merely for illustration of the techniques.)

The theorem does not require actual equations for its

applicability. All that is needed is the knowledge that we

have a MIOS, and a plot of its characteristic (which, in

practice, would be obtained from interpolated experimental

data). In order to illustrate the conclusions, on the other

hand, it is worth discussing a particular set of equations.

We take equations and parameters from Angeli et al.

(2004a), Sontag (2004, 2005):

dx

dt
¼� v2 x

k2 þ x
þ v0 uþ v1

dy1

dt
¼ v6 ðY � y1 � y3Þ

k6 þ ðY � y1 � y3Þ
� k3 x y1

k3 þ y1

dy3

dt
¼k4 x ðYtot � y1 � y3Þ

k4 þ ðY � y1 � y3Þ
� v5 y3

k5 þ y3

dz1

dt
¼ v10 ðztot � z1 � z3Þ

k10 þ ðz � z1 � z3Þ
� k7 y3 z1

k7 þ z1

dz3

dt
¼v8 y3 ðztot � z1 � z3Þ

k8 þ ðz � z1 � z3Þ
� v9 z3

k9 þ z3

with output z3. Specifically, we will use the following

parameters: v0 = 0.0015, v1 = 0.09, v2 = 1.2, v3 = 0.064,

v4 = 0.064, v5 = 5, v6 = 5, v7 = 0.06, v8 = 0.06, v9 = 5,

v10 = 5, ytot = 1,200, ztot = 300, k2 = 200, k3 = 1,200,

k4 = 1,200, k5 = 1,200, k6 = 1,200, k7 = 300, k8 = 300,

k9 = 300, k10 = 300. (The units are: totals in nM (mol/

cm3), v’s in nM s–1 and s–1, and k’s in nM.)

Fig. 20 Consistent assignment for simple MAPK cascade model
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With these choices, the steady-state step response is the

sigmoidal curve shown in Fig. 19c, where y is the output

z3. We plotted in the same figure the inverse g–1 of the

characteristic of the feedback system, in this case just the

linear mapping y = (1/g)u, for three typical ‘‘feedback

gains’’ (g = 1/0.98,1/2.1,1/6).

For g = 1/0.98 (line of slope 0.98 when plotting y against

u), there should be a unique stable state, with a high value of

the output y = z3, and trajectories should generically con-

verge to it. Similarly, for g = 1/2.1 (line of slope 2.1) there

should be two stable states, one with high and one with low

y = z3, with trajectories generically converging to one of

these two, because the line intersects at three points, cor-

responding to two stable and one unstable state (exactly as

in the discussion concerning the simple protein formation/

degradation sigmoidal example in Fig. 13). Finally, for

g = 1/6 (line of slope 6), only the low-y stable state should

persist. Fig. 21a–c shows plots of the hidden variable y3(t)

(MAPKK-PP) for several initial states, confirming the

predictions. The same convergence results are predicted if

there are delays in the feedback loop, or if concentrations

depend on location in a convex spatial domain. Results for

reaction–diffusion PDE’s and delay-differential systems are

discussed in Sontag (2005), and simulation results for this

example are also provided there.

We may plot the steady-state value of y, under the

feedback u = gy, as the gain g is varied, Fig. 22a.

This resulting complete bifurcation diagram showing

points of saddle-node bifurcation can be also completely

determined just from the characteristic, with no need to

know the equations of the system. Relaxation oscillations

may be expected under such circumstances if a second,

slower, feedback loop is used to negatively adapt the gain

as a function of the output. Reasons of space preclude

describing a very general theorem, which shows that in-

deed, relaxation oscillations can be guaranteed in this

fashion: see Gedeon and Sontag (2007) for technical de-

tails, and Sontag (2005) for a more informal discussion.

Fig. 22b shows a simulation confirming the theoretical

prediction (details in Sontag (2005) and Gedeon and Son-

tag (2007)).

Negative feedback and possible oscillations

A different set of results apply to inhibitory or negative

feedback interconnections of two MIOS systems (2)–(3). A

convenient mathematical way to define ‘‘negative feed-

back’’ in the context of monotone systems is to say that the

orders on inputs and outputs are inverted (example: an

inhibition term of the form V
Kþy as usual in biochemistry).

Equivalently, we may incorporate the inhibition into the

output of the second system (3), which is then seen as an

anti-monotone I/O system, and this is how we proceed

from now on. See Fig. 23a. We emphasize that the closed-

Fig. 21 (a),(b),(c) y3, g = 1/0.98,1/2.1,1/6

Fig. 22 (a) Bifurcation

diagram and relaxation (b)

oscillation (y3)
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loop systems that result are not monotone, at least with

respect to any known order.

The original theorem, from Angeli and Sontag (2003), is

as follows. We assume once more that inputs and outputs are

scalar (m = p = 1; see Enciso and Sontag (2006) for gen-

eralizations). We once again plot together k and g–1, as

shown in Fig. 23b. Consider the following discrete iteration:

uiþ1 ¼ ðg � kÞðuiÞ:

Then, if solutions of the closed-loop system are bounded

and if this iteration has a globally attractive fixed point �u;

as shown in Fig. 23b, then the feedback system has a

globally attracting steady-state. (An equivalent condition,

see Enciso and Sontag (2006), is that the iteration have no

nontrivial period-two orbits.) We call this result a small

gain theorem (‘‘SGT’’), because of its analogy to concepts

in control theory.

It is easy to see that arbitrary delays may be allowed in

the feedback loop. In other words, the feedback could be of

the form uðtÞ ¼ yðt � hÞ; and such delays (even with

h = h(t) time varying or even state-dependent, as long as

t � hðtÞ ! 1 as t!1) do not destroy global stability of

the closed loop. In Enciso et al. (2006), we have now

shown also that diffusion does not destroy global stability

either. In other words, a reaction–diffusion system (Neu-

mann boundary conditions) whose reaction can be modeled

in the shown feedback configuration, has the property that

all solutions converge to a (unique) uniform in space

solution. This is not immediately obvious, since standard

parabolic comparison theorems do not immediately apply

to the feedback system, which is not monotone.

Example: MAPK cascade with negative feedback

As with the positive feedback theorem, an important fea-

ture is applicability to highly uncertain systems. As long as

the component systems are known to be MIOS, the

knowledge of I/O response curves and a planar analysis are

sufficient to conclude GAS of the entire system, which may

have an arbitrarily high dimension. For example, suppose

we take a feedback like u ¼ aþ b=ðcþ z3Þ; with a graph

as shown in Fig. 24a, which also shows the characteristic

and a convergent discrete 1-d iteration (Sontag 2005).

Then, we are guaranteed that all solutions of the closed-

loop system converge to a unique steady-state, as con-

firmed by the simulations in Fig. 24b, which shows the

concentrations of the active forms of the kinases.

Example: testosterone model

This example is intended to show that even for a classical

mathematical biology model, a very simple application of

the result in Angeli and Sontag (2003) gives an interesting

conclusion. The concentration of testosterone in the blood

of a healthy human male is known to oscillate periodically

with a period of a few hours, in response to similar oscil-

lations in the concentrations of the luteinising hormone

(LH) secreted by the pituitary gland, and the luteinising

hormone releasing hormone (LHRH), normally secreted by

the hypothalamus (see Cartwright and Husain 1986). The

well-known textbook (Murray 2002) (and its previous

editions) presents this process as an example of a biological

oscillator, and proposes a model to describe it, introducing

Fig. 23 (a) Negative feedback

and (b) characteristics

Fig. 24 Inhibition: (a) spiderweb and (b) simulation
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delays in order to obtain oscillations. (Since the textbook

was written, the physiological mechanism has been much

further elucidated, and this simple model is now known not

to be correct. However, we want merely to illustrate a point

about mathematical analysis.) The equations are:

_R ¼ A

K þ T
� b1R

_L ¼ g1R� b2L

_T ¼ g2Lðt � sÞ � b3T

(R,L,T = concentrations of hormones luteinising hormone

releasing, luteinising, and testosterone, s = delay). The

system may be seen as the feedback connection of the

MIOS system

_R ¼ u� b1R

_L ¼ g1R� b2L

_T ¼ g2L� b3T

with the inhibitory feedback uðtÞ ¼ gðT � sÞ ¼ A=

ðK þ Tðt � sÞÞ after moving the delay to the loop (without

loss of generality). The characteristic is linear,

T ¼ kðuÞ ¼ g1g2

b1b2b3
u; so g s k is a fractional transformation

SðuÞ ¼ p
qþu : Since such a transformation has no period-two

cycles, global stability follows. (For arbitrary, even time-

varying, delays.) This contradicts the existence of oscilla-

tions claimed in Murray (2002) for large enough delays.

(See Enciso and Sontag (2004), which also explains the

error in Murray (2002).)

Example: Lac operon

The study of E. Coli lactose metabolism has been a topic of

research in mathematical biology since Jacob and Monod’s

classical work which led to their 1995 Nobel Prize. For this

example, we look at the subsystem modeled in Mahaffy

and Savev (1999). The lac operon induces production of

permease and b-gal, permease makes the cell membrane

more permeable to lactose, and genes are activated if lac-

tose present; lactose is digested by the enzyme b-gal, and

the other species are degraded at fixed rates. (In this model

from Mahaffy and Savev (1999), lactose and isolactose are

identified, and catabolic repression by glucose via cAMP is

ignored.) Delays arise from translation of permease and b-

gal. The equations are:

_x1ðtÞ ¼ gðx4ðt � sÞÞ � b1x1ðtÞ lac operon mRNA

_x2ðtÞ ¼ x1ðtÞ � b2x2ðtÞ b-galactoside permease

_x3ðtÞ ¼ rx1ðtÞ � b3x3ðtÞ b-galactosidase

_x4ðtÞ ¼ Sx2ðtÞ � x3ðtÞx4ðtÞ lactose

with gðxÞ :¼ ð1þ KxqÞ=ð1þ xqÞ; K > 1, and the Hill

exponent q representing a cooperativity effect. (All

delays have been lumped into one.) We view this system

as a negative feedback loop, where u = x1, v = x4, of a

MIOS system (details in Enciso and Sontag (2006)). Since

there are two inputs and outputs, now we must study the

two-dimensional iteration

ðu; vÞ 7! ðg � kÞðu; vÞ ¼ gðvÞ
b
;

Sb1b3u

rb2gðvÞ

� �
:

Based on results on rational difference equations from

Kulenovic and Ladas (2002), one concludes that there are

no nontrivial 2-periodic orbits, provided that

q\ð
ffiffiffiffi
K
p
þ 1Þ=ðK � 1Þ; for arbitrary b1; b2; b3; r; S: Hence,

by the theorem, there is a unique steady-state of the ori-

ginal system, which is GAS, even when arbitrary delays are

present.

These and other conditions are analyzed in Enciso and

Sontag (2006), where it is also shown that the results

from Mahaffy and Savev (1999) are recovered as a spe-

cial case. Among other advantages of this approach, be-

sides generalizing the result and giving a conceptually

simple proof, we have (because of Enciso et al. (2006))

the additional conclusion that also for the corresponding

reaction–diffusion system, in which localization is taken

account of, the same globally stable behavior can be

guaranteed.

Example: Circadian oscillator

As a final example of the negative feedback theorem, we

pick Goldbeter’s (1995, 1996) original model of the

molecular mechanism underlying circadian rhythms in

Drosophila. (In this oversimplified model, only per protein

is considered; other players such as tim are ignored.) PER

protein is synthesized at a rate proportional to its mRNA

concentration. Two phosphorylation sites are available, and

constitutive phosphorylation and dephosphorylation occur

with saturation dynamics, at maximum rate vi’s and with

Michaelis constants Ki. Doubly phosphorylated PER is

degraded, also satisfying saturation dynamics (with

parameters vd; kd), and it is translocated to the nucleus with

rate constant k1. Nuclear PER inhibits transcription of the

per gene, with a Hill-type reaction of cooperativity degree

n and threshold constant KI, and mRNA is produced. and

translocated to the cytoplasm, at a rate determined by a

constant vs. Additionally, there is saturated degradation of

mRNA (constants vm and km). The model is (Pi = per

phosphorylated at i sites, PN = nuclear per, M = per

mRNA):
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_M ¼ vs
KI

KI þ Pn
N

� vm
M

km þM

_P0 ¼ ksM � V1

P0

K1 þ P0

þ V2

P1

K2 þ P1

_P1 ¼ V1

P0

K1 þ P0

� V2

P1

K2 þ P1

� V3

P1

K3 þ P1

þ V4

P2

K4 þ P2

_P2 ¼ V3

P1

K3 þ P1

� V4

P2

K4 þ P2

� k1P2 þ k2PN � vd
P2

kd þ P2

_PN ¼ k1P2 � k2PN :

Parameters are chosen exactly as in Goldbeter’s original

paper, except that the rate vs of mRNA translocation to the

cytoplasm is taken as a bifurcation parameter. The value

vs = 0.76 from Goldbeter (1995) gives oscillatory behavior.

On the other hand, we may break up the system into the M and

Pi;PN subsystems. Each of these can be shown to be MIOS

and have a characteristic. (The existence of a characteristic

for the P-subsystem is nontrivial, and involves the application

of Smillie’s Theorem (Smillie 1984) for strongly monotone

tridiagonal systems, and more precisely, repeated application

of a proof technique in Smillie (1984) involving ‘‘eventually

monotonicity’’ of state variables.) When vs = 0.4, the discrete

iteration is graphically seen to be convergent (see Fig. 25a),

so the theorem guarantees global asymptotic stability even

when arbitrary delays are introduced in the feedback. Bifur-

cation analysis on delay length and vs indicates that local

stability will fail for somewhat larger values. Using again the

graphical test, we observe that for vs = 0.5 there appears limit

cycle for the discrete iteration on characteristics, see

Fig. 25b. This suggests that oscillations may exist in the full

nonlinear differential equation, at least for appropriate delays

lengths. Indeed, the simulation in Fig. 25c displays such

oscillations (Angeli and Sontag 2004b, c), and a Hopf

bifurcation can be shown to exist (Angeli and Sontag 2007).

A counterexample

We now provide a (non-monotone) system as well as a

feedback law u = g(y) so that: the system has a well-

defined and increasing characteristic k, and the discrete

iteration u+ = g(k(u)) converges globally, and solutions of

the closed-loop system are bounded, yet a stable limit-

cycle oscillation exists in the closed-loop system. This

establishes, by means of a simple counterexample, that

monotonicity of the open-loop system is an essential

assumption in the MIOS negative feedback theorem.

Thus, robustness of the conclusion of syability is only

guaranteed with respect to uncertainty that preserves

monotonicity of the system. Using language from control

theory, the idea underlying the construction is very sim-

ple. The open-loop system is linear, and has the following

transfer function:

WðsÞ ¼ �sþ 1

s2 þ ð0:25Þsþ 1
:

Since the DC gain of this system is W(0) = 1, and the

system is stable, there is a well-defined and increasing

characteristic k(u) = u. However, a negative feedback gain

of 1/2 destabilizes the system, even though the discrete

iteration uþ ¼ ð�1=2Þu is globally convergent. (The H¥

gain of the system is, of course, larger than 1, and therefore

the standard small-gain theorem does not apply.) In state-

space terms, we use this system:

_x1 ¼ ð�1=4Þx1 � x2 þ 2u

_x2 ¼ x1

y ¼ ð1=2Þðx2 � x1Þ:

Note that, for each constant input u � u0; the solution of

the system converges to (0, u0/2), and therefore the output

converges to u0, so indeed the characteristic k is the

identity. We only need to modify the feedback law in order

to make solutions of the closed-loop globally bounded. For

the feedback law we pick gðxÞ ¼ �0:5satðyÞ; where

satð�Þ :¼ signð�Þminf1; j � jg is a saturation function. The

only equilibrium of the closed-loop system is at (0,0).

The discrete iteration is

uþ ¼ �ð1=2ÞsatðuÞ:

Fig. 25 (a) Convergent iteration, (b) divergent iteration, (c) oscillations
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With an arbitrary initial condition u0, we have that

u1 ¼ �ð1=2Þsatðu0Þ; so that ju1j � 1=2: Thus

uk ¼ ð�1=2Þuk�1 for all k ‡ 2, and indeed uk ! 0 so glo-

bal convergence of the iteration holds.

However, global convergence to equilibrium fails for

the closed-loop system, and in fact there is a periodic

solution. Indeed, note that trajectories of the closed loop

system are bounded, because they can be viewed as solu-

tions of a stable linear system forced by a bounded input.

Moreover, since the equilibrium is a repelling point, it

follows by the Poincaré-Bendixson Theorem that a peri-

odic orbit exists. Fig. 26 is a simulation showing a limit

cycle.

Conclusions

There is a clear need in systems biology to study robust

structures and to develop robust analysis tools. The theory

of monotone systems provides one such tool. Interesting

and nontrivial conclusions can be drawn from (signed)

network structure alone, which is associated to purely

stoichiometric information about the system, and ignores

fluxes.

Associating a graph to a given system, we may define

spin assignments and consistency, a notion that may be

interpreted also as non-frustration of Ising spin-glass

models. Every species in a monotone system (one whose

graph is consistent) responds with a consistent sign to

perturbations at every other species. This property would

appear to be desirable in biological networks, and, indeed,

there is some evidence suggesting the near-monotonicity of

some natural networks. Moreover, ‘‘near’’-monotone sys-

tems might be ‘‘practically’’ monotone, in the sense of

being monotone under disjoint environmental conditions.

Dynamical behavior of monotone systems is ordered

and ‘‘non-chaotic.’’ Systems close to monotone may be

decomposed into a small number of monotone subsystems,

and such decompositions may be usefully employed to

study non-monotone dynamics as well as to help detect

bifurcations even in monotone systems, based only upon

sparsenumerical data, resulting in a sometimes useful

model-reduction approach.
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Poláčik P, Tereščák I (1992) Convergence to cycles as a typical

asymptotic behavior in smooth strongly monotone discrete-time

dynamical systems. Arch Rational Mech Anal 116:339–360
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