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Output—Input Stability and Minimum-Phase
Nonlinear Systems

Daniel Liberzon Member, IEEEA. Stephen Morserellow, IEEE and Eduardo D. Sontagellow, IEEE

Abstract—This paper introduces and studies the notion of a certainty equivalence, output stabilizing adaptive controller
output-input stability, which represents a variant of the min- js applied to a minimum-phase linear system, the closed-loop
imum-phase property for general smooth nonlinear control - gystam js detectable through the tuning error. In essence, this

systems. The definition of output—input stability does not rely on L . .
a particular choice of coordinates in which the system takes a result serves as a justification for the certainty equivalence ap-

normal form or on the computation of zero dynamics. In the spirit  Proach to adaptive control of minimum-phase linear systems.
of the “input-to-state stability” (ISS) philosophy, it requires the For nonlinear systems that are affine in controls, a major
state and the input of the system to be bounded by a suitable func- ~qntribution of Byrnes and Isidori [3] was to define the min-

tion of the output and derivatives of the output, modulo a decaying . .
term depending on initial conditions. The class of output—input imum-phase property in terms of the new concepzeb dy-

stable systems thus defined includes all affine systems in globaln@mics.The zero dyn'amics are the internal dynamics of the
normal form whose internal dynamics are input-to-state stable System under the action of an input that holds the output con-

and also all left-invertible linear systems whose transmission stantly at zero. The system is callednimum-phasé the zero
D e S e oo s, Qynaimics e (gloaly) asymptoticallystable. Inhe SISO case,
nonlinear systems of a basic result from linear adaptive control. aunique Ippgt capable of producmg the ZerO,OUtpUt IS guaran-
Index Terms—Adaptive control, asymptotic _stabilization teed to exist if the system has a uniform relative degree, which
detectability, input-to-state stabilify (1SS), minimum phasé, is now deﬂneo! to bg the number of times one has to differentiate
nonlinear system, relative degree. the output until the input appears. Extensions to MIMO systems
are discussed in [4] and [6].

In view of the need to work with the zero dynamics, the above

definition of a minimum-phase nonlinear system prompts one

CONTINUOUS-TIME linear single-input—single-outputto look for a change of coordinates that transforms the system

(SISO) system is said to baminimum-phasef the nu- into a certain normal form. It has also been recognized that just
merator polynomial of its transfer function has all its zeros iasymptotic stability of the zero dynamics is sometimes insuf-
the open left half of the complex plane. This property can bieient for control design purposes, so that additional require-
given a simple interpretation that involves thedative degree ments need to be placed on the internal dynamics of the system.
of the system, which equals the difference between the degr&@ s such common requirement is that the internal dynamics be
of the denominator and the numerator of the transfer functidnput-to-state stablaith respect to the output and its derivatives
Namely, if a linear system of relative degreds minimum- upto order—1, wherer is the relative degree (see, for instance,
phase, then the “inverse” system, driven by thie derivative [13]). These remarks suggest that while the current notion of
of the output of the original system, is stable. For left-invera minimum-phase nonlinear system is important and useful, it
ible, multiple-input—multiple-output (MIMO) systems, in placeis also of interest to develop alternative (and possibly stronger)
of the zeros of the numerator one appeals to the so-ca#led- concepts which can be applied when asymptotic stability of zero
mission zero$10]. dynamics is difficult to verify or inadequate.

The notion of a minimum-phase system is of great signifi- In this paper, we introduce the notion ofitputinput sta-
cance in many areas of linear system analysis and designpllity, which does not rely on zero dynamics or normal forms
particular, it has played an important role in parameter adaptiygd is not restricted to affine systems. Loosely speaking, we will
control. A basic example is provided by the “certainty equivaall a system output—input stable if its state and input eventually
lence output stabilization theorem” [11], which says that wheiecome small when the output and derivatives of the output are

small. Conceptually, the new notion relates to the existing con-
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order, uniformly over all inputs that produce a given output, We will let || - |[.,5; denote the essential supremum
then it is output—input stable. For SISO systems that are remlrm of a signal restricted to an intervdh, 0], i.e.,
analytic in controls, we will show that the converse is alspz|[,,;) := esssup{|z(s)]: a < s < b}, where| - |
true, thus arriving at a useful equivalent characterization of the standard Euclidean norm. When some vectors
output—input stability (Theorem 1). We will prove that they, € R™, ..., v € R" are given, we will often use
class of output—input stable systems as defined here includes simplified notation(v;; ...; v) for the “stack” vector
all left-invertible linear systems whose transmission zeros hae! , ..., vi )T’ € R™**7  Given anR'-valued signal
negative real parts (Theorem 2) and all affine systems in glokaland a nonnegative integér, we will denote byz* the
normal form with input-to-state stable internal dynamics.  R“*+1-valued signal

Relying on a series of observations and auxiliary results ‘ . *) . *)
deduced from the new definition, we will establish a natural z = (Zl? BLi s B1 5 e B5 20 005 B )

nonlinear counterpart of the certainty equivalence outpyf,ided that the indicated derivatives exist

stabilization theorem from linear adaptive control (Theorem 3). We are now in position to introduce the main concept of this
This conceptually important and intuitively appealing result di

not seem to be attainable within the boundaries of the eXiStingDefinition 1: We will call the system (1putputinput stable

theory of minimum-phase nonlinear systems. It serves {0nqre exist a positive integel, a class.£ function 4, and
illustrate that output—input stability is a reasonable and usefé('l:lassicoo function~ such that for every initial state(0) and

extension of the notion of a minimum-phase linear system. g@/eryN _ 1 times continuously differentiable inputthe in-
view of the remarks made earlier, it is probable that the n%uality

concept will find other applications in a variety of nonlinear

control contexts. u(t) ) N
< B(|=(0)], t 2
The proposed definition is precisely stated in the next section. ‘ <a:(t) < A, &)+~ (Hy H [0 t]) 2)

In Section lll, we give a somewhat nonstandard definition of reﬂfolds for all# in the domain of the corresponding solution of
ative degree, which is especially suitable for subsequent devgly 0
opments. In Sec_t|0n IV, we review the notpns of det_e.ctab|l|ty The inequality (2) can be interpreted in terms of two separate
and ISS. In Section V, we study the output—input stability props; e ties of the system. The first one is that if the output and
erty with the help of the concepts discussed in Sections Il aiid jeriyatives are small, then the input becomes small. Roughly
IV. In Section VI, we derive some useful results for cascadgeaying, this means that the system has a stable left inverse
systems. In Section VII, we present a nonlinear version of the e innyt—output sense. However, no explicit construction of
certainty equivalence output stabilization theorem. Section VU|,ch a left inverse is necessary. The second property is that
contains some remarks on output-input stability of input-outplty,e oyt and its derivatives are small, then the state be-
pperatqrs.The contributions ofthe'paperare briefly summarizggas small. This signifies that the system is (zero-state) de-
in Section IX. Examples are provided throughout the paper fgap|e through the output and its derivatives, uniformly with

illustrate the ideas. respect to inputs we will call such systems “weakly uniformly
O-detectable” (see Section V). Thus output—input stable sys-
tems form a subclass of weakly uniformly O-detectable ones.
We consider nonlinear control systems of the general formDetectability is a state-space concept, whose attractive feature
is that it can be characterized by Lyapunov-like dissipation in-
&= f(z, v equalities.
y =h(z) (1) In view of the bound on the magnitude of the state, a more
complete name for the property introduced here would perhaps
where the state: takes values ifR”, the inputu takes values pe “(differential) output-to-input-and-state stability” (DOSIS),
in R™, the outputy takes values iR’ (for some positive inte- pytwe choose to call it output—input stability for simplicity. The
gersn, m, and!l), and the functiong andh are smooth@*").  conditions imposed by Definition 1 capture intrinsic properties
Admissible input (or “control”) signals are locally essentiallyf the system, which are independent of a particular coordinate
bounded, Lebesgue measurable functiang0, co) — R™.  representation. They are consistent with the intuition provided
For every initial condition:(0) and every inputy(-), there is a py the concept of a minimum-phase linear system. In fact, for
maximally defined solution:(-) of the system (1), and the cor-g|sQ Jinear systems the output—input stability property reduces

responding outpuy(-). Note that whenever the input functionprecisely to the classical minimum-phase property, as we now
u is k — 1 times continuously differentiable, whekds a posi- ghow.

Il. DEFINITION AND PRELIMINARY REMARKS

tive integer, the derivativess §, ..., 4 are well defined (this  Example 1: Consider a stabilizable and detectable linear
issue will be addressed in more detail later). SISO system
Recall that a functiorm: [0, co) — [0, oo) is said to be of )
classK if it is continuous, strictly increasing, an@(0) = 0. & =Azr + bu
If « € K is unbounded, then it is said to be dhssX.. A y=c'z. 3)

function 3: [0’ OO) x [0’ OO) - [O’ OO) Is said to be otlass 1in particular, this detectability property is preserved under state feedback; for
KL if (-, t) is of classk for eagh fixedt > 0 and (s, )  comparison, recall that every minimum-phase linear system is detectable under
decreases to 0 @s— oo for each fixeds > 0. all feedback laws.
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Let » be its relative degree. This means that we haVe = there exists an initial conditiogi(0) for the system (5) with
FAb=- =l A"2b=0butc" A" 1b := g # 0. Fromthe |£(0)] < x(|z(0)|) for which we haveh(z(t)) = H(&(t))
formulay™ (t) = ¢T A"z(t) + gu(t) we immediately obtain  along the corresponding solutions. Then the origin is a globally
asymptotically stable equilibrium of the closed-loop system (6).
(AN ¢e| [z(@®)] + |y @) @ Proof: Global asymptotic stability of the system (5) is ex-

u(t)] < |

gl pressed by the inequality
Moreover, it is well known that there exists a linear change of 1€ < BE0)], ) 7
coordinates: — (£, 1), wheref € R™,n € R* ", andé; =y,
which transforms the system (3) into the normal form for some3 € K£. Under the action of the control law= k(x),
. the output of the system (1) satisfies (omitting time dependence)
&1 =6 y = H(),y = (8H/9¢)F(£), and so on. Using the standing

& =6 assumptions o’ and H, it is straightforward to verify that for

B some clas¥., functionp we havely™ ()| < p(|¢()]), where
N isthe integer that appears in Definition 1. Combined with (7),
this gives

& =d"e+ [+ gu
=P+ Qn

o _ _ _ [y ()] < o (|BK((0)]), )]) - 8
and (3) is minimum-phase (in the classical sense) if and only
if @ is a stable matrix. Stability of) is equivalent to the exis- Using (2), global asymptotic stability of the closed-loop system
tence of positive constantsandy: such that for all initial states can now be established by standard arguments (see Section VI
and all inputsu we haveln(t)| < e=*[n(0)] + pl|é]lp,+4 (itis for detalils). |
also equivalent to detectability of the transformed system with As an example, consider an affine system given by
extended output = y"~!). Combining the last inequality with

(4), we arrive at &= f(z) + g(z)u
) < (A7) Te| e o) =h(z). 9)
U ——— |

- 9] Suppose that this system has a uniform relative deg(eethe

1. sense of [6]) and is output—input stable. It may or may not have
¥ llo.0- a global normal form (construction of a global normal form re-

quires additional properties besides relative degree [6]). How-

This yields (2) withN = r. On the other hand, if (2) holds, ever, relabeling; as¢;, we have

then we know thaty = 0 impliesz — 0, and so (3) must .

be minimum-phase. Thus we see that for stabilizable and de- &1 =&

tectable linear SISO systems, output—input stability is equiv- b =&

alent to the usual minimum-phase property. Incidentally, note o

that whenN = r in (2), the smoothness af becomes super- .

fluous, becausg is automatically- times (almost everywhere) & =b(x) + alz)u

differentiable for every admissible input O 1 -

The above remarks suggest that the concepts of relative \c/j/eh_erea(a:) = Lyl h(z) andb.(a:) = th(a_j)' We can Fhen
gree and detectability are related to the output—input stabilPP!y @ state feedback law which brings this to the farr:
property. In the subsequent sections, we will develop some nfal&), Where the last system has a globally asymptotically stable
chinery which is needed to study this relationship, and exp|ogegumbr|um at the origin. [One possible choice is a linearizing
to what extent the situation described in Example 1 carries oJgfdback

(AT e| (n+1) +
gl

+

to (possibly MIMO) nonlinear systems. 1
We conclude this section with another motivating observa- w= “a(2) (b(x) + pr—1&r + -+ + polt)
tion, important from the point of view of control design. It is et
formally expressed by the following proposition. - 1 <b($) + ZpiLi“h(x)>
Proposition 1: Assume that the system (1) is output—input a(x) —
stable. Suppose that we are given a feedbackdawk(x) with )
the following properties: there exists a system: where the numbers;, i = 0, ..., » — 1 are such that the poly-
nomial s™ + p,_1s""* + --- + p1s + py has all its roots in
£= F(¢), ¢ eR? (5) the left half-plane.] In view of Proposition 1, the entire system

becomes globally asymptotically stable [it is easy to construct
with a globally asymptotically stable equilibrium at the origin, @ suitable functiony using the formulast; = h(z), & =
smooth mag: R? — R! with H(0) = 0, and a clas&, func-  (9h/dx)(x)f(x), and so on]. Note that this is true fevery
tion x such that for every initial condition(0) for the system such feedback law, which for minimum-phase systems is gener-
ally not the case and special care needs to be taken in designing
z = f(z, k(x)) (6) a stabilizing feedback (see [6, Sec. 9.2]).
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lll. RELATIVE DEGREE If there exists such an integey then it is unique. This can be
A. SISO Systems deduced from the following simple observation, which will also
i . . “be needed later.
Letusfirstconsider the case when the system (1) is SISO, i..Remark 1: If Properties 1 and 2 in Definition 2 hold for some
whenm = I = 1. To specify what will be meant by *relative positive integerr, then there does not exist an such that

degree," we n(_aed to introduc_e some notatioQ.I«Fef 0,1, ... H,.(zo, ug) = C for all ug, whereC is some constant. [Indeed,
define, recursively, the functiond: R™ x R* — R by the gtherwise we would haview| < p1 (o) + p2(|C|) for all uo, @
formulasH, := h and contradiction.] O
k—1 We conclude that if some satisfies Definition 2, therd,
OH,, OH, ; :
Hypa(z, o, - ) i= - f(e, uo) + > 5. Ui+ cannotbe independentaf by virtue of Remark 1, hence prop-
* j=o 9% erty 1 in Definition 2 cannot hold for ary > r. In view of the

(10) previous remarks; is the relative degree of (1) if and only if for
some functiong;, p2 € K, for every initial condition, and

where the arguments di;, arex, ug, - .., ux—1. As an illus- . N . . .
- ; P B0 -y MR every inputy("—1) exists and is absolutely continuous [hence,
tration, in the special case of the SISO affine system (9) wi y INpUty y [

haveH, (z, uo) = L th+ Lyhuo andHa(x, uo, 1us) — Lfch+ Yy exists almost everywhere] and the inequality
(LgLgh+LyLgh)ug+L2hud+Lyhu, (omitting the argument lu(®)] < p1(|z()]) + p2 (‘y(r) (t)D (13)
z in the directional derivatives). R )

The significance of the function&,, lies in the fact that if Nnolds foraimostali [to see why (13) implies (12), simply apply
the inputu(-) is in C*~ for some positive integek, then along an'arbltrary constant contro(t) = uoj. We ngxt show that for
each solution:(-) of (1) the corresponding output has a contin@ffine systems the above definition is consistent with the usual

uouskth derivative satisfying one. - _ _ o
Proposition 2: Consider the affine system (9). A positive in-
y® (1) = Hy, (a:(t), u(t), ..., u(’“_l)(t)) . tegerr is the relative degree of (9) in the sense of Definition 2 if

and only ingLz‘;h(a:) = 0 for all z and all integerg < r — 1,
L, L' h(z) # 0 for all z, and L}h(0) = 0.

Proof: Suppose that is the relative degree of (9) in the
sense of Definition 2. Applying (11) repeatedly, we see that
Property 1 in Definition 2 impIiengL’;;h =0forallk < r—1.
Moreover, if there were somey, € R™ with LgL’J’Flh(xo) =

In particular, suppose thdi}. is independent ofig, . .., ux_1
for all &k less than some positive integer Then H,. depends
only onz anduyg, as given by

Hao(z, uo) = ag;—l (@), u0).

As an example, for the affine system (9) we have 0, then we would haved,.(zo, uo) = L%h(xo) Which is in-
. 1 dependent ofsg, contrary to Remark 1. Now, setting, :=
H(z, uo) = Lyh(z) + Ly L™ h(z)uo. 1) —Lh(0)/Ly L~ h(0), we haveH,.(0, o) = 0, and so (12)

In this case we see that for every initial condition and eve#jplies thatip must be 0 hencé’h(0) =0.
input, y™—1) exists and is an absolutely continuous function of Conversely, suppose thasatisfies the properties in the state-

time, and we have ment of the proposition. Then property 1 in Definition 2 is ver-
- ified using (11). MoreoverH,.(z, uo) takes the formb(z) +
v (t) = He(2(t), u(t)) a(x)uo, wherea(z) = LyL7"'h(z) andb(z) = Lih(x).
for almost allt in the domain of the corresponding solution, Th&iNcea(z) # 0 for all = andb(0) = 0, we have
converse is also true, namelygif—1 exists and is absolutely 1 _ 1 _
: < — <
continuous for all initial states and all inputs, th& must be la(x)| — Pullel) + |a(0)| b} = Po(l])
independent o, ..., ux—y forall k <. Indeed, it Were o some clas«... functionsp, ands,. If follows that:
a nonconstant function af, for somek < r, then it would take |
different values atzo, uo1) and(xo, ug2) for somezy € R” luo| < (|H,(, uo)| + |b(z)])
andug, up2 € R. Choosing the initial state(0) = z, and |a()|
applying the inputs(t) = ugy for ¢t € [0, ) andu(t) = woz < (4 1 H _
for ¢ > ¢, wheree is small enough, would produce an output < \PalleD+ |a(0)] (1Hr (@, uo)| +Pallel))

with a discontinuougth derivative, contradicting the existenc&,om which property 2 in Definition 2 can be easily shown to
and absolute continuity aft"~1). hold. O
Definition 2: We will say that a positive integeris the (uni-  proposition 2 implies, in particular, that for the SISO affine
fqr_m) relative degreef the system (1) if the following two con- system (9) withf(0) = 0 Definition 2 reduces to the standard
ditions hold: definition of uniform relative degree as given, e.g., in the book
1) for eachk < r, the functionH,. is independent of by Isidori [6] [simply note thatf (0) = 0 implies L’;2(0) = 0].
Uy + -y Uk—1, Of course, the definition of relative degree proposed here is not
2) there exist two clask., functionsp; andp, suchthat  restricted to affine systems. As a simple example, the system
7 = u? has relative degree 1 according to Definition 2. This
[uol < pr(lz) + pa(| i, wo)) (12) case is also covered by the definition of relative degree for not
forall z € R™ and allug € R. O necessarily affine systems givenin [12, p. 417]. In general, how-
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ever, our definition is more restrictive; for example, the systeproposition imply property 2 in Definition 2. Let := (z, uy),

7y = arctanu would have relative degree 1 in the context oand consider the functioH (z) := |z|+ |H,(z, uo)|- We claim

[12], but the bound (12) does not hold. that this function satisfies the hypotheses of Lemma 1. Indeed,
Remark 2: The relative degree cannot exceed the dimensitake an arbitraryi{’ > 0. Condition 2 of the proposition im-

of the system, i.e., i exists, then we must have < n. For plies that there exists alf such tha{H,.(z, uy)| > K when-

the affine system (9), this is an immediate consequence of ver|x| < K and|ug| > M. It follows that H(») > K if

Lemma 4.1.1] or [16, Corollary 5.3.8], which imply thatrifis |z| > K + M. Therefore,H is radially unbounded. In view

the relative degree, at least locally at somec R”, then ther  of condition 3 of the proposition, clearlif (z) > 0 if » # 0.

row vectorsdh(x), dLsh(x), ..., dL’J’Flh(a:) are linearly in- Thus we can apply Lemma 1, which guarantees the existence of

dependent in a neighborhood of in R™ [so the functions a functionp € K, such that

h(z), Lyh(x), ..., L}_lh(a:) qualify as a partial set of new | ,

local coordinates]. For the general system (1), we can consi+€r )

the associated affine system

< p(lel+He (2, uo)l) < p(2lz])+p(2|Hy (2, wo)))-

From this, (12) follows withp (s) = p2(s) := p(2s). O
i = f(x, 2)
53— B. MIMO Systems
y = h(z) (14) The above concept extends in a straightforward fashion to the
case when the system (1) is MIMO, i.e., whenand! are not
of dimensiom: + 1. If r is the relative degree of (1), then therenecessarily equal to 1. Foreach {1, ..., I}, let H} be theith

exists a poinfzo, zo) € R*** atwhich (14) has relative degreecomponent of,, and define the functiond;: R x (R™)* — R,
r+1 (inthe sense of [6]). The results just mentioned thenimply = 1, 2, ... recursively by the formula (10) witlt{}, H;_
that ther + 1 functionsHy(z), ..., H,.(x, z) can serve as in- instead ofH;,, Hy1. We will say that a set of positive integers
dependent coordinates in a neighborhoodsef, zo) in R**t,  {r ... ;}is a (uniform)relative degreeof the system (1) if
hencer < n. [0 the following two conditions hold:
To prove one of our main results (Theorem 1 in Section V) 1) for each € {1, ..., I} and eachk < r;, the functionH
we will need the following characterization of relative degree, is independent of, ..., ur_1;
which also has intrinsic interest. 2) there exist two clask., functionsp; andp, such that
Proposition 3: A positive integer- is the relative degree of
(2) if and only if the following three conditions are satisfied: luol < pu(lz]) + p2 (| (Hﬁl (z, uo); -3 Hil (=, uo)) |)
1) for eachk < r, the function H; is independent of for all z € R™ and allug € R™.
UQs -« -y Uk—1; Similarly to the SISO cas€;r, ..., 7} is the relative degree
2) for each compact sef C R™ and each positive constantof (1) if and only if for some functiong;, ps € Ko, for every
K, there exists a numbedl such thatH,.(x, uo)| > K j ¢ {1, ... I}, everyinitial condition, and every inpu" ~*
whenever: € A" andfuo| > M; exists and is absolutely continuous [hend&’ exists almost

3) H:(0, uo) # Oforall ug # 0. ~ everywhere] and the inequality
This in turn requires the following lemma, which is a simple a) -
T T

exercise on,, functions. Its proof is included for complete-  |u(t)| < p1(|z(t)]) + p2 (‘ (y1 ®); -5y (t)) D
ness.

Lemma 1: If a continuous functio{: R? — [0, o), where
p is a positive integer, is such thaf(z) — oo when|z| —
o0, andH(z) > 0 whenz # 0, then there exists a clags,

holds for almost alt. Using the same type of argument as in the
proof of Propaosition 2, one can show that for the square<(1)
affine system

function p such thatz| < p(H(z)) for all . ) ik

Proof of Lemma 1:Consider the functiony: [0, co) — &= fz)+ Zgi(w)“i
[0, 0o) given by«(s) := min|.|>, H(z). This function is well =1
defined (becausél is radially unbounded so the minimum is v = ha(2)
taken over a compact set), continuous, positive definite, nonde-
creasing, and unbounded, and we hafle|) < H(z) for all z. Ym = P ()

Then one can find a functiom € K, such thatx < ~ (for arbi-

trary so < s1 < s such thaty is increasing orfisg, s1] and con-

stant ons, so, leta(s) := (v(s) +(s0))/2 for s € [so, s1],

and on[sy, so] let « be linear witha(ss) = v(s2)). We have f )

oaf|2]) < H(2), hencelz| < p(H(z)) with p := o L. S < m, k < r; — 1, and that then x m matrix A(x)
Proof of Proposition 3: Condition 1 in the statement of the9€fined by

proposition exactly matches property 1 in Definition 2. If prop- Aij(z) = L, L'V hyi()

erty 2 in Definition 2 holds, then condition 2 of the proposition Y it

is satisfied withM (X, K) = pi(max,ecx |2]) + p2(K). Itis must be nonsingular for alt. More generally, forn < [ the

clear that property 2 in Definition 2 implies condition 3 of thecorresponding x m» matrix must be left-invertible (i.e., of rank

proposition. It remains to show that conditions 2 and 3 of the) for all z. Note that for MIMO systems the relative degree is

with f(0) = 0 this reduces to the definition of uniform vector
relative degree given in [6], which says that we must have
ngLz‘;hi(a:) = 0 for all z and all integersl < j < m,
1<
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not necessarily unique (examplg:= u? +u3, 2 = 42; {1, k}  system (1) withm = [ = 1. Take a nonnegative integkr Re-
is a relative degree for evefy> 0). Proposition 3 carries over stricting the input: to be inC*~1, we can consider thie-output
to the MIMO setting subject to an obvious change of notatioextensiorof (1):
but this will not be needed in the sequel.

IV. DETECTABILITY AND RELATED NOTIONS y" =hy (w, U u(k_l)) 17)
Consider a general system of the form where
&= f(z, u). hy, (a:, Uy ., u(k_l))
We recall from [15] that this system is called input-to-state = (Ho(a?); Hi(z, u); ...; Hy (337 u, ..., u(k—1)>)

stable if there exist some functiofis € KL andy € Koo _ _
such that for every initial state(0) and every input. the is the new output map (here we are using the notation of Sec-

Corresponding solution satisfies the inequa”ty tion |||) That is, we redefine the output of the system tcylﬁe
Of course, fork = 0 we recover the original system. Note that
lz(t)| < B(=(0)], t) + v (lullp, 4) the differentiability assumption omcan be relaxed if the func-

- ] tion Hy, is known to be independent af, ..., u;_; for all &
forall ¢ > 0. Intuitively, this means that the state eventuallyenyeen 0 and some positive integer (cf. Section 1I). We will
becomes small when the input is small. view (17) as a system whose input consists @ind all deriva-

Given a system with both inputs and outputs tives ofu that appear as arguments in the output thapWith
&= (o, u) some abuse of terminology, we will apply to such systems the

definitions of 0-detectability and uniform O-detectability given
earlier. Let us call the system (teakly 0-detectable of order
k if its k-output extension (17) is O-detectable. Also, let us call
the system (1veakly uniformly O-detectable of ordérif its
k-output extension (17) is uniformly 0-detectable.

Now, consider the general MIMO case, i.e., take the system

y=hiz, v) (15)

we will say that it isO-detectabléf there exist some functions
8 € KL andvyy, v2 € Ko such for everyz(0) and everyu the
corresponding solution satisfies the inequality

lz()] < B(|z(0)], t) + ™ (||u||[07 t]) + 9 (||y||[07ﬂ) (1) withw € R™ andy € R'. For arbitrary nonnegative numbers
k1, ..., ki, we can redefine the output of the system to be
as long as it exists. In particular, a system without inputs given . . ‘ (k) ‘ (ko)
by yt= (yl; Uis oo 3 Y1 5 Y G 5 Y )
i = flz) restricting the input: to be sufficiently smooth so that the indi-
y =h(z) cated derivatives exist. This amounts to considering the system
will be called0-detectabléf there exist some function$ € XL N kx =fl@ ) L
andy € K., such that for every initial state(0) the corre- yret =hey (37, w, o, ul )) (18)
sponding solution satisfies the following inequality as long as it
egists: 9 gineq y 9 wherej = max;<;<; k; and

G-

()] < B(lx(O)]. &)+ (lvllo, ) - (1) Do (1)
o (Hy(z), Hi(z, w), ..., Hy (=, u, ...,u(kl_l)))T
These concepts were studied in [17] under the names of !
input—output-to-state stabilityand output-to-state stability,
respectively. In this paper we use the term “O-detectability” as (H{(x), H{(z, u), ..., H}, (z,u, ..., u(kl—1>))T
a shorthand.

Let us call the system (15)niformly O-detectabléf there
exist some functiong € KL andy € K. such that for

(in the notation of Section Ill). Similarly to the SISO case, we
will call this system the{ky, ..., & }-output extensionf (1).
We will say that the system (1) iseakly O-detectable of order

every initial statex(0) and every inputy the inequality (16) ki, .... ki) ifits {k1. ..., ki }-output extension (18) is O-de-
holds alopg the correspolr!dmg solution. As the name s ctable. We will also say that the system (Ayesakly uniformly
gests, uniform O-detectability amounts to O-detectability that-detectable of ordefk; kb if its {ks % }-output

is uniform with respect to inputs. This property was calleg

xtension (18) is uniformly O-detectable.
uniform output-to-state stabilitin [7] (see also [8]) andtrong (18) 4

o Another definition, which will be needed in Section VI, is the
detectabilityin [5]. following one (introduced in [18]). The system (15) is said to be

When wor!qng with output derivatives, it is helpful t-o mtro-in ut-to-output stablé there exist some functions € K£ and
duce an auxiliary system whose output contains derivatives 0 K. such that for every:(0) and everyu the following

the output of the original system (re;trlqtlng admissible inputs; equality holds along the corresponding solution:
necessary to ensure that these derivatives are well defined). We

first describe this construction for SISO systems. Consider the ly()] < B(z(0)], t) + v (Julljo, ) -
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Finally, we remark that since all the systems under consid== ~v(|(Hq(0); ...; Hx(0))|), a contradiction. Thus, the in-
eration are time-invariant, the same properties would resulttéger
we used an arbitrary initial timg instead of 0 in the above in-
equalities (changing the second argumeng éfom ¢ to ¢ — ¢,
accordingly). This fact will be used implicitly in the proofs in (20)

Section VI. is well defined. Condition 1 of Proposition 3 holds with this
For every input;, we have

r := max{k < N: Hy isindependent ofg, ..., up_1} +1

V. OUTPUT=INPUT STABILITY

A. SISO Systems i =H(z)
We first study the SISO case, represented by the system (1) -
with m = I = 1. Our main result in this section is the following ytr b =H, 1(z)
characterization of output—input stability for SISO systems. - 9H,_,
Theorem 1: yr=— () f(z, v) = H(x, uw)
1) Suppose that the system (1) has a relative degiieethe 9H. 9H.
sense of Definition 2 and is weakly uniformly O-detectable yrth = 8—351 (z, w) fz, u) + 8u1 (z, w)u
of orderk, for somek. Then (1) is output—input stable in the 0
sense of Definition 1, withlV = max{r, k}. =Gy (z, u) + oM, (z, w)i
2) Suppose that the system (1) is output—input stable in the dug
sense of Definition 1. Then it is weakly uniformly 0-de- (r42) . H, B
tectable of orderV. Yy =:Ga(@, u, 0) + g (z, w)it

3) Suppose that the system (1) is output—input stable in the
sense of Definition 1, that the functiof(z, -) is real an-
alytic in « for each fixedz, and thatf(0, 0) = 0 and y M =GN, (x, U, ..., u(’\‘r_”_l))
1(0) = 0. Then (1) has a relative degree< N in the sense
of Definition 2. OH,
The theorem implies that for systems with relative degree, dug
output—input stability is equivalent to weak uniform 0-de- The following fact will be useful.
tectability of orderk for somek < N, and that for systems Lemma 2:1f (19) holds andr is defined by (20), then
satisfying the additional assumptions gnand / stated in there cannot exist a bounded sequerag} in R", a se-

(z, w)uN ", (21)

part 3, output-input stability is equivalent to the existence @tience{w;} in R with lim;_,, |w;| = oo, and a positive
a relative degree < N plus weak uniform O-detectability of constanti” such that for allj we have|H,.(x;, w;)| < K and
order/k for somek < N. (0H./Ouo)(z;, wy) # 0.

Proof: Part 1. Since: is the relative degree, the inequality ~ Proof: Suppose that there exist sequentes} and{w; }
(13) holds withpy, p» € Koo. Suppose that for somke the and a positive constart” with the properties indicated in the
system (1) is weakly uniformly 0-detectable of orderThis Statement of the lemma. Fix an arbitrary positive integé&on-

can be expressed as sider the initial state:(0) = x;, and pick a smooth (e.qg., poly-
nomial) input functions; (-) with +;(0) = w; whose derivatives
lz(®)| < B(Jz(0)|, t) +7 (Hy" I o, ﬂ) att = 0 are specified recursively by the equations
A s (i-1)
where3 € KL and¥ € K., (see Section 1V). Combining w90 :_G” (x]’ Ui (0), - (O))
this with (13) and using the simple fact that for every cl&ss J OH, (2, 15(0)) ’
function p and arbitrary numbers;, s; > 0 one hasp(s; + dug 7
s59) < p(2s1)+p(2s2), we arrive at the inequality (2) with := i=1...,N—-r (22)

max{r, k}, B(s, t) = p1(28(s, ) + B(s, t), andy(s) :=

p1(27(s)) + p2(s) + F(s). Thus (1) is output—input stable asln view of (21), we will then have

needed. §(0) =Hi(x;), ..., 4"V (0) = Hoa(2;)
Part 2. Follows immediately from the definitions. ly(0)| = |H, (2, w;)| < K,
Part 3. Since the system (1) is output—input stable, we know in (,,+1)(0) L y(N)(O) —0
particular that for some positive integadt and some functions )
£ € KL andy € K, the inequality Therefore, if such an input; is applied and it is an arbitrary
fixed positive number, then there exists a sufficiently small time
lu(t)] < B(|z(0)], t) +~ (HYNH[o,t]) (19) 7; such that for alt € [0, 7] the following inequalities hold:

holds along solutions of (1) for all smooth inputs. The func- |2(®)] <lzjl+e g < [Hilz;)] +e, ...
tion H;, cannot be independent af), ..., us_; for all & = y(”_l)(t)‘ <|He_1(z))| +e W@ < K+e
0, ..., N. Otherwise, letting:(0) = 0 and applying an arbi- ]

trary constant inpuio, we would deduce from (19) thato| < @) <e, . ‘y(m(t)‘ <e.
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Repeating this construction for all we obtain a sequence ofpositive numbers{é;} such that|H,.(z;, uo)| < K for all
trajectories of (1) along whichs(¢)[, [#(t)], ..., [y™¥)(¢)| are j and allug € (v; — §;, v; + &;). Fix an arbitrary;. Since
uniformly bounded for smalt, whereag;(¢)| is unbounded © is empty by Corollary 2 andd,.(z,, -) is real analytic,
for small¢ and largej. We arrive at a contradiction with (19), (8 H,./8uo)(x;, -) cannot vanish identically on the interval
and the proof of the lemma is complete. O (v; —6;,v;+6;). Thus, we canfind a; € (v, — 6;, v; + ;)
Letus denote b$ the setofall: € R™ suchthatd,.(x, -)isa such that(0H,./0ug)(z;, w;) # 0. Repeat this construction
constant function. The sétis closed [because if for a sequencéor all j. Lemma 2 applies again, yielding a contradiction with
{z;} converging to some we have(0H, /duo)(x;, uo) = 0 (19), and the proof of the lemma is complete. O
for all uo and allj, then(aH,. /0uo)(z, uo) = 0 for all ug). Lemma 5: Suppose thaf(z, -) is real analytic in for each
Lemma 3: Suppose thaf(z, -) is real analytic in: for each fixed z and that we havé¢(0, 0) = 0andh(0) = 0. If (19) holds
fixed z, that (19) holds, and thatis defined by (20). Ift € R* andr is defined by (20), the#,.(0, «o) # 0 for all o # 0.
is such that for som& > 0 we havelH,.(Z, v)| < K for all u, Proof: Suppose that,.(0, y) = 0 for someug # 0. We
thenZz is in the interior of®©. know from Corollary 2 that the s€t is empty. Thus, by real ana-
Proof: Take an arbitrary sequencéu;} in R with lyticity (0H, /duo)(0, -) cannot vanish identically on any open
lim;_,, |v;| = o0. By hypothesis|H,.(Z, v;)| < K forall . neighborhood ofi,. This implies that there exists a sequence
By continuity, for eachy there exist a neighborhoal; () of {v,} converging tai such thal{dH,. /duo)(0, v;) # 0V j [if
7 in R™ and a positive numbe¥; such thatH,.(z, ug)| < K (0H,/0u)(0, Ty) # 0, simply letv; = up]. Choose an ar-
forall x € B;(%) and allug € (v; — 65, v; + 6;). Moreover, Dbitrary j. Take the initial state to be(0) = 0. Pick a smooth
the neighborhood®;(7), j = 1, 2, --- can be chosen to be(e.g., polynomial) input functiom;(-) such thatu,;(0) = v;
nested, i.e.B;(Z) C B;(Z) whenever > j, and the sequenceand (22) holds with 0 in place af;. From (21), we immedi-

{6;} can be chosen to be nonincreasing. Now, supposetisat ately see thay"++(0) = - - - = 4(M)(0) = 0. Sinceh(0) = 0,
not in the interior of®. Fix an arbitraryj. We haveB;(z) ¢ ©. we havey(0) = 0. We also know thatf(0, 0) = 0, which
Take an arbitrary:; € B;(T) \ ©. Then(9H,/duo)(x;, -) implies thatH.(0) = --- = H,_1(0) = 0. It follows that
cannot be identically zero on the intenv@al; — &;, v; + 6;), 9(0) = - = y""(0) = 0. We conclude that if the input

by virtue of real analyticity ofH,.(z;, -) which follows from w; is applied, then for every > 0 there exists a sufficiently
that of f(z;, -). Thus, we can find a; € (v; — 6;, v; +6;) smalltimeZ; such that for alt € [0, 7;] the following inequal-
such that(0H,./dug)(x;, w;) # 0. This construction can be ities hold:

carried out for allj. SinceB;(Z) C B;(Z) wheni > j, the . (1)
pointsz;, 5 = 1, 2, - -- can be chosen in such a way thay] is )] <e O] <e ..., |y (t)‘ <e
uniformly bounded for aIJj.'Moreover, we havéw;| > |v;|— ‘y(r)(t)‘ <|H, (0, v;)| +¢

16;] = |vj| = |61] — oo @sj — oo. In view of Lemma 2, we

arrive at a contradiction with (19), which proves the lemria. ‘y(”’l)(t)‘ <e, ..., ‘y(f\’) (t)‘ <e.

Corollary 1: Suppose thaf(x, -) is real analytic im: for
each fixedz. If (19) holds and- is defined by (20), then the setCarrying out the above construction for ajl and noting

© is open. that lim; .., H,-(0, v;) = H,(0,%) = 0, we see that
Proof: By definition of ©, everyz € © satisfies the con- ¥(t), (), - .., y")(t) become arbitrarily small for smaft
dition in the statement of Lemma 3, hence it lies in the interi@sj — oc. On the other handy;(0) — wo # 0, SOu;(t)
of ©. O is bounded away from O for smatl and large;. This is a
Corollary 2: Suppose thaf(z, -) is real analytic im: for ~contradiction with (19), which proves the lemma. O
each fixedz. If (19) holds and- is defined by (20), then the set We have shown that the integedefined by (20) satisfies all
O is empty. three conditions of Proposition 3, thuss the relative degree of
Proof: We know that® is closed. We also know th& the system (1). This proves part 3, and the proof of Theorem 1
is open (Corollary 1). Moreove® # R™ by virtue of (20). is complete. O
Being a closed and open proper subsdt®fthe se®® mustbe  As anillustration, consider the affine system (9) witt®) =
empty. O 0. Its right-hand side is obviously real analytic in Recon-

Our goal is to show that Conditions 2 and 3 of Propositiongructing the above proof for this case, we find that the
hold, which would imply that is the relative degree of (1). We smallest integer for WhiCthL}’lh(a:) is not identically zero
break this into two separate statements. onR", and® = {z: L,L}" h(z) = 0}. If the system is

Lemma 4: Suppose thaf(«, -) is real analytic in: for each output—input stable, then Corollary 2 implies tlatmust be
fixed z. If (19) holds andr is defined by (20), then for eachempty, which means thatis the relative degree (see Proposi-
compact sef’ C R™ and each positive constaft there exists tion 2). Since the hypothesig0) = 0 is only used in Lemma
a numberM such tha{H,.(z, uo)| > K wheneverz € X and 5, itis not needed in this case.
luo| > M. We will be especially interested in systems that are covered

Proof: Suppose that, contrary to the statement of th®y Part 1 of Theorem 1 with = » — 1. We give such systems
lemma, there exist a compact subsEtof R™, a positive a separate name to emphasize the relationship with the existing
constantX, a sequencgz;} in X, and a sequencgy;} in  terminology (which will be explained in the next example). Note
R with lim;_,.. |[v;| = oo such that|H.(z;, v;)] < K for thaty”~!is afunction of the state only: y"~! = h,._;(z); no
all j. By continuity, we can find a nonincreasing sequence dffferentiability assumptions need to be placeduon
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Definition 3: Let us call the system (19trongly minimum- property, once the relative degree of the system is known. We
phaséf it has a relative degreeand is weakly uniformly 0-de- summarize this observation in the following statement.
tectable of order — 1. O Proposition 4: Suppose that the system (1) has a relative de-

Example 2: Consider an affine system in global normal forrgreer and that for some smooth, positive definite, radially un-

) bounded functioV: R — R and classC., functionscw, x the
§&1=6 inequality (24) holds. Then (1) is strongly minimum-phase.
52 =& In fact, (24) provides a necessary and sufficient condition for
weak uniform O-detectability of order — 1 if controls take
é = bE, ) + alé, n)u values in a compact set [8]. Unfortunately, this condition is only
T ’ ’ sufficient and not necessary if the control set is unbounded. For
n=q(& n) example, consider the integrator = «, y = x. It is obvi-
y=£& (23) ously uniformly 0-detectable (here= 1), but for every smooth
positive—definitel’: R — R and everyx in the nonempty set
where¢ := (£15...5 &), 6(0,0) = 0,anda(&, ) #0VE n  {z € R: V/(z) # 0} the quantityV’(x)u can be made arbi-
(so thatr is the uniform relative degree by Proposition 2). Thigarily large by a suitable choice of
system is usually called minimum-phase if thero dynamics  Of course, the inequality (24) with instead ofr — 1 can
n = q(0, n) have an asymptotically stable equilibriunvat 0 pe applied to check weak uniform 0-detectability of order
(see [3]). Sincey"~* = ¢, the above definition of the strongas long ag/(™) is well defined. A similar recipe for finding the
minimum-phase property in this case demands that the equdative degree with the help of Lyapunov-like functions does
tion for  in (23), which represents the internal dynamics, bgot seem to exist. However, for many systems of interest it is

ISS with respect tg (more precisely, with respect to all pos gjfficult to verify the existence of relative degree directly by
sible signal< that can be generated by thesubsystem). This using Definition 2 or Proposition 3.

is, in general, a stronger condition than just asymptotic stabilityEX(,jm]me 3:We now give an example of an output—input

of the zero dynamics; however, in the linear case the two progaje system that is not strongly minimum-phase. Consider the
erties are equivalent (and both amount to saying that all zerogy Etem

the transfer function must have negative real parts). As we al-
ready mentioned, the ISS assumption has been imposed on the

internal dynamics of the system in various contexts associated afl - )
with control design (see, e.g., [13]). O Iy = —T2+u
Remark 3: The bound (13), which is a consequence of our Yy =x1. (25)

definition of relative degree, does not necessarily imply that one

can explicitly solve foru in terms ofz andy(™ (“flatness”); It has relative degree 1. From the equation = —z» + 42,
example:y = u?. However, this is possible for some systemswhich is ISS with respect tg, we see that the system (25) is
in particular, it can always be done for the affine system (9). Weakly uniformly O-detectable of order 1. Therefore, (25) is
this case, we can expressas a function ofr andy := p(D)y, output-input stable (witiV = 1) by virtue of part 1 of The-
wherep is an arbitrary stable polynomial of degreandD :=  orem 1. Now let us show that this system is not strongly min-
d/dt. Substituting this expression far we obtain an “inverse” jmum-phase, i.e., it is not uniformly O-detectable (with respect
system, driven by. If the system (1) is strongly minimum- to the original outpuy). It is enough to find a solution trajectory
phase, then it is not hard to show that this inverse system V\gubng whichz; converges to zero while, does not converge to
be ISS with respect tg. For example, consider the system igro Take the initial state to be 0, and apply the following input:
global normal form (23). Take a stable polynomigd) = s+ (1) = 1for0 <t < 1, u(t) = —1forl < t < 2, u(t) = 1
pr—15""" + -+ 4 pus + po, and rewrite the equation far. as for's < ¢ < 5/2, u(t) = —1for 5/2 < t < 3, u(t) = 1 for

& = —pr1& —---—p1&2—po&1 + 7. Thenthe-dimensional 5  ; 13/4, and so on. Them; — 0, whereas foe:, we
subsystem that describes the evolutiog &f easily seen to be a haveis = —25 + 1 S0zo — 1. 0

stable linear system driven lgy hence it is ISS with respect to The situation in the above example is dual to the one de-

y._lf Fhe system) = g(¢, 1) is 1SS with re_spect tg (recall that scribed in [1], where it is shown that ISS with respect to inputs
this is a consequence of the strong minimum-phase proper&Q

then the overall system is indeed ISS with respeg, loecause d their derivatives is in general not equivalent to the usual ISS.
a cascade of two ISS systems is ISS. O
The results of [8] and [17] imply that the system (1) is Weaklg' MIMO Systems

uniformly O-detectable of order — 1 if there exists a smooth, We now turn to the general case of (1) withe R™ and

positive—definite, radially unbounded functidi: R* — R v € RY The next result is readily obtained by the same argu-

that satisfies ments as those employed in the proof of Theorem 1. We will
see below that the nontrivial part of Theorem 1, which states

VV(z)f(z, w) < —al|z]) + x(ly" ) Vo, u (24) that under suitable assumptions output—input stability implies

the existence of a relative degree, does not hold for MIMO sys-

for some functionsy, x € K. This Lyapunov-like dissipa- tems. We will also explain why this is an advantage, rather than

tion inequality can be used to check the strong minimum-phas@rawback, of our definition.
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Proposition 5: Suppose that the system (1) has a relative deake use of some concepts and results from the linear geometric

gree{ry, ..., ;. Then it is output—input stable, withh > control theory (see [10] and [19]). Consider the linear system
max{ry, ..., ri}, if and only if it is weakly uniformly O-de- .
tectable of ordefky, ..., k;} for somek,, ..., k < N. & =Az+ Bu

Of special interest are systems satisfying the condition of y=Cx (26)

Proposition 5 withk; = », — 1,¢ = 1, ..., l. Accordingly,
let us call the system (Btrongly minimum-phaséit has a rel-
ative degredry, ..., r;} and is weakly uniformly O-detectable
oforder{r; —1, ..., r;—1}. Note thaty™* .~ "~ is a func-
tion of z only, as given byy™ =+ -"=t =h, ; ., _1(z),

with z € R*, « € R™, andy € R’. We assume that (26) is left
invertible. Recall that a subspateof R™ is called(A, B)-in-
variantif there exists am: x n matrix F' such that A+ BF)V C
V. Denote byZ the family of all( A, B)-invariant subspaces that

d no diff fiabilit " d 1o be biaced At are contained irker C. ThenZ has a unique largest member
and no dimerentiabiiity assumptions need to be pacead.oe i, respect to inclusion) which we denote By The eigen-

thus obtain a generalization to MIMO systems of the strong mi Alues of the restriction oft + BF to S are the same for all

imum-phase property introduced in the previous subsection. tsuch tha{ A + BF)S C S. These eigenvalues are called the
has a similar interpretation in terms of input-to-state stability ?}‘

the int ld ics f ¢ in alobal Lt nsmission zerosf the system (26). Left-invertible linear sys-
€ internal dynamics Tor systems In giobal normal 1orm, anf,q 5e usually called minimum-phase if all their transmission
admits an analogous Lyapunov-like sufficient condition.

H K that for MIMO svst th ist zFros have negative real parts. Our goal is to prove that this is
owever, we remark that for MIME systems the existence guivalent to the output—input stability property in the sense of
a relative degree is quite a restrictive assumption. For exam

i . ; . finition 1.
linear systems withrelative degree form a rather special subclas;\s a direct consequence of Silverman’s “structure algorithm”
of those linear systems for which the minimum-phase prope

I : .
L ) . ) . 4], there exists am-vectory, whose components are linear
(inits classical sense) is well definédrortunately, Definition 1 [EY ] Y b

. : combinations of the components gfand their derivatives,
does not have the shortcoming of applying only to systems WU\I‘hiCh satisfies

relative degree, as illustrated by the following example.

Example 4: The system y=Lz+ Mu
T = where the matrix/ is nonsingular. From this, we immediately
fy =x3 + u? obtain
T3 =u _ 1
S 5 Jul < [MTL|x| + | M-
T4 =—2T4 + 7
y = (x1; ) An (n — m)-vector z of complementary coordinates can be
?

chosen whose dynamics are independent, @fs given by: —
does not have a relative degree. This system is output—inpiit. Consider the feedback matriX := —M~1L. ThenS is
stable, as can be seen from the formylas = [j» — 27191| <  precisely the largestA + BF)-invariant subspace iker C,
li2| + 43 + 41, |zs| < |i=] + 973, and the fact that the equationand thus equals the unobservable subspad€ofd + BF),

for z4 is ISS with respect ta; . O ie.,S = N, kerC(A + BF)"L. It follows that there ex-
The above example is to be contrasted with the next one. ists a linear change of coordinates— (¢, ) such thatS =
Example 5: The system {(& n): € = 0}, and the components @fare linear combi-

nations of the components gfand their derivatives. In these
coordinates, (26) takes the form

§=R¢E+ G+ Gu

jﬁl =Uu

Ty = T3+ Tau2

T3 =uz
fy=—x4 + T3 n=P{+Qn.
y =(z1; T2) Its transmission zeros are the eigenvalue§oReasoning ex-

actly as in Example 1, we see thatis a stable matrix if and

does not hgve a relative degre_e. The zero dynamics of _tBirsﬂy if the system is output—input stable. We summarize this as
system arers = —xz4, and the input that produces them igg)iows.

identically zero. However, it can be shown by the same kind Thggrem 2: A left-invertible linear system is output—input

of argument as the one used in the proof of Theorem 1 thabpe if and only if all its transmission zeros have negative real
arbitrarily large u, can lead to arbitrarily smalk, y, and 5s.
derivatives ofy. Therefore, this system is not output—inpuP
stable. O

We will now establish an important feature of Definition 1, ) o ) )
namely, that for linear MIMO systems it reduces exactly to the The purpose of this section is to investigate how the

classical definition of the minimum-phase property. We wilPutput—input stability property behaves under series connec-
tions of several subsystems. We will prove two lemmas. The

2Basically, the reason for this is that the relative degree of a MIMO system Cifst one says that the cascade of a 0-detectable system with
be lost or gained as a result of a linear coordinate transformation in the output

space, while the minimum-phase property is invariant under such transforrfia- output—input stable system is erakly _O'dfateCtable_ (i'e_"
tions. O-detectable through the output and its derivatives), which is

VI. CASCADE RESULTS
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a result of independent interest. The second lemma is a direct ug
generalization of the first one, and will be needed to prove
the adaptive control result of Section VII. To simplify the
presentation and to obtain the sharpest results possible, m¢e1. The cascade system.

restrict our attention to SISO strongly minimum-phase systems

(see Definition 3). The same proof techniques apply readily forder to derive the result (as done in [15]). Straightforward but
SISO output-input stable systems, and in particular to systefaggthy calculations yield

that have a relative degree and satisfy the hypotheses of part 1

N 4 v, ¥ .

of Theorem 1 withk > 7. prgver, fork > r the conclusions 21 ()] < A1z (/2] £/2) + 70 (w2, 1)
become weaker. Generalizations to MIMO systems are also
straightforward, subject to similar limitations. T (ol ﬂl
Suppose that we are given two systems < Bz (0)], £) + Ba(lz2(0)], £) + 7o (lualfo, )
+71 (Il¥2ll0, )
Yoo @1 = fi(wr, u)
y1 =hi(x1) (27) where
and Cr e B ) ?1(37 t) = 1(361(s, t/2), t/2)
v = h(2). 28) Bas, t) :=P1(9m(3p1(202(s, 0))), ¢/2)

+11(3p1(262(s, t/2)))

Upon settingus = %1, we obtain a cascade system with input ZO(S) =70(8) + A(570(s), 0)
u; and outputy,, which we denote by, (see Fig. 1). T1(5) = BL(971(B3p1(272(5))), 0) + (9N (3p2(5)), 0)
Assume thak, has a relative degree Consider the-output +71(3p1(272(5))) + 11(3p2(5))-
extension ok... As explained in Section I, the extended output
map has the form Combining this with (29), we arrive at the desired result..]
Lemma 6 states that the cascade system is O-detectable
throughy, and derivatives ofj» up to orderr, wherer is the
h(a:l, 372) . .
relative degree oE,. It is, in general, not true that the cascade
= (ha(w2), Hi(w2), ..., Hroi(w2), He(wz, ha(21))) system is 0-detectable through the original outpubnly. We
support this claim by constructing an example of a 0-detectable
which is independent ofi;. In particular, no differentiability system which, when followed by an integrator, fails to remain
assumptions on the inputs are needed. Thus;-theput exten- 0-detectable.

sion of 3. is a system with input;; and outputy’. The fol- Example 6: Assume given a smooth functign [0, co) —
lowing result says that this system is 0-detectable. [0, o0) with the following properties:
Lemma6: If X, is O-detectable ant, is strongly minimum- 1) ¢ isin L!;
phase, then the cascade systEmis weakly O-detectable of 2y [ ¢%(s)ds > a®/4 for all a > 0 (in particular,p is not
orderr. in L2);
Proof: Inthe proofs of this lemma and the next ofayith 3) ¢(0) = 0;
various subscripts will be used to denote cl&S5 functions, 4) ©'(0%) =1, oD (0F) = 0fori > 1.

and~y and_p with various subscripts will be us_e_d to denote clas[ﬁ is an elementary exercise to obtain suckyaStart with a
Koo functions. Fort > ¢ > 0, the 0-detectability ok, canbe 0 ayise constant function that takes the vatdieon an in-
expressed by the inequality terval of length 17 around each positive integér and is zero
elsewhere. Sinc® ;- k°k~" < oo, this function is inL*; we
lz1(#)] < Br(lzito)l, t—to)+0 (Iluallfro, 1) +71 (lwillpe, )  also havey | k0% ~7 = 1+ --.+ ;3. Then approximate this
function by a smooth one and modify it in a neighborhood of
while the strong minimum-phase property 5§ leads to the 2Z€ro to achieve desired behavior there. Properties 2 and 4 are
inequalities not conflicting, because property 4 means thé) ~ s near
0, and ;' s?ds = a®/3 > a*/4. Property 4 is only needed to
1 ensure the smoothness of the systejmo be constructed next.]
226 < Ba(lza(to)l t = t0) + 72 (185 NIk, 1)) (29 considerthe systein, given by (27), withe; € R, f1(z1) =
1 (no inputul), hl(azl) = —I for 1 < 0 andhl(azl) =
and @(z1) for z; > 0. To verify that this system is 0-detectable,
] take the functioV defined forz; < 0 by V(z;) := 7 and for
()] < prllaa()) + 2 (|87 1)) £ > 0by

Since the system, has a cascade structure, we employ the trick v ™ 92 2y 4
of breaking a time interval under consideration into several parts (1) = A (2¢°(s) — 57) ds.
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The functionV is radially unbounded and positive definite [be- w Yo —_  Ya

)
cause forr; > 0we haveV (x1) > 2 /6 using property 2 of]. — I , i
Its derivativeV’(z ) equalz; for z; < 0 and—z7 +2¢*(z1) vs

for z; > 0. Thus we havé”’(z) fi(z1) < —z? + 22 for all
z1. In view of the results of [17], this implies that; is 0-de- Fig. 2. The cascade-feedforward system.
tectable.

For X», we take an integrator (which is strongly minimumSimiIarIy
phase), i.e., (28) with, € R, fo(x2, u2) = ua, andha(z2) =

x2. Then, the cascade systéin has the form lz1 (8)] < Br(jx1(0)], £) + Ba(|a2(0)], 1)
+30 (i Mo, ) + 74 (I¥%ll10, 1)

;=1
o =hy(z1) where, for example
v (s, 1) = P1(1271(3p1(202(s, 0))), £/2)
With initial state O we havey(t) = [5 ¢(s)ds, which is +71(4p1(4B2(282(s. t/4), t/4))).

bounded in light of property 1 af, while 1 (t) — cc. O
Next, suppose that the systéy has another outpufz =
hs(xz1). Lettingus = y; as before, and defining the output
Y4 1= Y3 — Y2, We obtain a cascade-feedforward systEm
with inputw; and outputy, shown in Fig. 2. In this section, we describe a framework for adaptive con-
Assume that the input; is in C"~!, wherer is the relative trol of uncertain nonlinear systems, in which the concept of an
degree ofX, as before. We can then consider the systesutput—input stable system introduced in this paper turns out
1 whose input isu{~' and whose output ig%. Indeed, to be useful (enabling one to achieve what did not seem pos-

Combining the two estimates, we obtain the desired resait.

VII. ADAPTIVE CONTROL

as explained in Section Ill, for eache {1, ..., r} theith sible with the existing definition of a minimum-phase nonlinear
derivative ofyz exists and can be written 88’ (t) = Hi(x(t), system).
ui(t), ..., ui71(t)) for a suitable functionH;. Moreover,

sincey, is r times differentiable almost everywhere, we caA. Set-Up and Motivation
consider ther-output extension ok.;, whose input st~
and whose output ig’;. The next result says that this last
system is O-detectable. ip = fr(zp, )
Lemma 7: Suppose thakt; is 0-detectable (with respect to
its inputu; and both its outputgy andys), 2 is strongly min-
imum-phase, and the systém with inputu] ™' and outputy; wherezp € R" is the statex € R is the control input, and
is input-to-output stable. Then the cascade-feedforward systgra R is the measured output (we assume tha SISO just to

Let P be an unknown process, with dynamics of the form

y =hp(zp)

Y.y is weakly O-detectable of order simplify the notation; the generalization to the MIMO setting is
Proof: Fort > ¢o > 0, the hypotheses of the lemma leagtraightforward). Assume th&tis a member of some family of
to the following inequalities: systemg ), Fp,, WhereP is an index set. For eaghe P, the
subfamily 7, can be viewed as consisting ohaminal process
21 (8)] <Az (to)l, t = t0) + 7o (llualliey, ) modelM,, together with a collection of its “perturbed” versions.
+ 71 (lwllee, 51) + 73 (w3, 6) The present discussion is quite general and does not depend on
22 (8)] < Bal|aa(to)], £ — to) + 72 (||Y§_1||[to,t]) any spe_C|aI structure de _ _
" Consider the following family of controllers, parameterized
[y ()] < pr(lz2(B)]) + p2(ly " (D)) by p taking values inP:

s < Bs(ler(to)l, = to)

+ s (||u§71||[t0,t})~ LC :fC(xC7 Y, p)

Up :hC(‘TC7 p)

We have ' .
For every fixedp € P, we denote the corresponding controller

lz2(£)] < Bi(|x1(0)], ) + Ba(|w2(0)], £) by C,. One can think ofC, as acandidate controllerwhich
N 1 N ” would be used to control the proceBsif this process were
0 (™ o) + 35 (1¥4ll0.2) known to be a member oF,.
We assume that on-line controller selection is carried out with

here
W the help of some estimation procedure. This is facilitated by a
Bi(s, t) == Ba(6v2(483(s, 0)), £/2) + v2(455(s, t/2)) dynamical systeni called themultiestimatorwhich takes the
5 f
Ba(s, t) = Ba(3Ba(s, £/2), £/2) orm
Jo(s) = B2(672(474(s)), 0) + v2(4v4(s)) ie = fe(zE, ¥, w)
Fa(s) :=72(2s) + B2(3v2(2s), 0). yp = hp(zE), peP.
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The signalgy,,, p € P are used to define thestimation errors

ep == Yp — U, peP.

One usually designs the multiestimator in such a way that
converges to zero in the case when the unknown process co
cides with thepth nominal process mod#fl, and there are no
disturbances or noise.

Most of the standard adaptive algorithms are based on varyir
the index of the candidate controller in the feedback loop ac
cording to a tuning/switching law: [0, oc) — P, insuchaway
that the corresponding estimation eregris maintained small
in some sense. The underlying principle behind such a stratédfyy 3- The closed-loop system (30).

is known ascertainty equivalencentuitively, the motivation ) .
here is that the nominal process model with the smallest etf-input-to-state stability, but demands that the process be

mation error “best” approximates the actual process, and th@ytput—input stable rather than O-detectable. In what follows,
the candidate controller associated with that model can be &€ demonstrate that a result along these lines indeed holds for
pected to do the best job of controlling the process. To justifjnlinear systems.
this paradigm, one must be able to ensure that the smallngs
of the estimation error implies the smallness of the state of the
closed-loop system. Thus we see that a crucial desired propertsssume thal® has a known relative degreeLet us redefine
of this system is 0-detectability through the estimation error. the input and the output of the systé#, to bee; * andy?,

To make this discussion more precise, take an arbitrary fixegkpectively. We denote the resulting systenETEyI; its output
q € P. The closed-loop system, which results when ¢tie  map is obtained as explained in the previous sections. We now
candidate controllet, is placed in the feedback loop with themake the following assumptions:
tprocessﬁF’ and the multiestimatdE, is described by the equa- 1) the proces® is strongly minimum-phase:
ions o

Yq

S . .
Main Result and Discussion

2) the systenEC, is input-to-output stable;

ip = fp(zp, helze, q)) 3) the controlleiC, is O-detectable;
e = fe(ze, he(zp), he(ze, @) 4) the mgltlestlmatoE is 0-detectable. .

. The result given below states that theutput extension of the

rc = fe(ze, he(zp), 9)- (30) closed-loop system (30) is O-detectable with respect to its output
We will take the output of this system to be the estimation erref, (the derivatives ok, exist since we only consider smooth
e, = hy(ze) — he(zp). A glance at Fig. 3 might be helpful systems; also note that there are no inputs). This resultis a direct
at this point. The above remarks suggest that it is desirableconsequence of Lemma 7: one needs to apply that lemma with
design the system (30) so as to make it O-detectable with resgect= EC, (which is easily seen to be a 0-detectable system)

to ¢g. andX, = P.
Consider the following system, which we call thgected Theorem 3: Under assumptions 1-4, the closed-loop system
systerrand denote b¥C,: (30) is weakly 0-detectable of order

The same techniques would apply readily if the prodéss

. is output—input stable but not necessarily strongly minimum-
¢ = fe(ze, hqlze) —eg, @) phase. In particular, iP satisfies the hypotheses of part 1 of

We view it as a system with input,, state(zg, z¢), and out- Theorem 1 withk > 7, we would conclude weak 0-detectability

putsu andy, = h,(ze). It realizes the interconnection of theof orderk for the closed-loop system. However, for> r this

gth candidate controlle€, with the multi-estimatoi. This is is a weaker statement than that provided by Theorem 3.

the system enclosed in the dashed box in Fig. 3. Basically, theTheorem 3 gives weak 0-detectability, i.e., O-detectability

choice of the candidate controllers is governed by the resultittgough the output and derivatives of the output up to order

properties of this system. This makes sense bedaisanple- . For linear systems the distinction between 0-detectability

mented by the control designer; the validity of such an approaahd weak 0-detectability disappears; this is most easily seen

will become clear in view of the results that are discussed nekibm the well-known Kalman observability decomposition.

It was shown in [5] that if the injected systeBC, is ISS It is possible to employ similar ideas to single out a class
with respect toe, and the procesP is 0-detectable, then theof nonlinear systems for which weak 0-detectability implies
closed-loop system (30) is O-detectable with respectto O0-detectability. Namely, suppose that in some coordinates the
This provided a natural nonlinear extension of the Certaingystem under consideration takes the form

-i'IE :fIE(-TEv hq(-TE) — €4, hC(‘TC7 (.I))

Equivalence Stabilization Theorem proved for linear systems 1 = filz1)

in [11]. Another relevant result from [11] is the so-called .

Certainty Equivalencéutput Stabilization Theorem, which a2 = fa(wr, x2)

we mentioned in Section I. It suggests that the desired 0-de- y =h(z1) (31)

tectability of the system (30) throu% should be preserved if 3A careful examination of the classical model reference adaptive control al-

one Weak_e_ns t_he assumptions On_t_he injected Syﬁ_@mby gorithm for linear systems reveals that the control law only output stabilizes the
only requiring input-to-output stability from, to y, instead estimated model.
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with f1(0) = 0 andh(0) = 0, where the subsystermy = Suppose that the system (1) is output—input stable. As the do-
fi(x1), v = h(x1) is O-detectable. This can be compared witmain of 7, we can takec™> ([0, o), R™), so that the corre-
the observability decompositions for nonlinear systems (seponding outputs are ii”¥. HereN is the positive integer that
e.g., [2] or [12, Ch. 3]); we replace observability with 0-deappears in (2). We could also work with™ —"([0, oc), R™) in-
tectability (neither property is weaker than the other) and retead, ifr is the relative degree of (1). It is not difficult to prove
quire the decomposition to be global. Now, suppose that (3that £ is then output—input stable.
is weakly O-detectable of ordér, wherek is some positive in-  The converse is more interesting. Suppose thatis
teger. Sincdy®| < p(|x1]), wherep is a suitable clas&., output-input stable. We assume that the domain Fof
function (cf. proof of Proposition 1), we must haje(t)| < is CN¥-1([0, ), R™), where N is the positive integer
B(|x2(0)], t) +y(||z1ll[o, ) for somes € KL andy € Koo, that appears in (33). As before, we could work with
Combining this with 0-detectability of the; , ¥ subsystem and CN="([0, o), R™) instead, if» is the relative degree of
using the same arguments as the ones employed in Section}! We impose the following two assumptions on the system
for dealing with cascade systems, we see that (31) is inde(qgll
O-detectable (through the original outpyt Assumption 1 (Strong Finite-Time Observability With
Therefore, if the closed-loop system (30) with outpyiad-  Qutput Derivatives): There exist a number > 0 and two

mits a decomposition of the kind described above, then unqgissi_ functionsa; anda, such that for every:(0), every
the assumptions of Theorem 3 this system is O-detectable. '”‘iWﬁutu € ON-1([0, o), R™), and everyt € [0, Thax — ),

case we_arrive ata strer_lgthened versio_n 01_‘ Theorem 3 whichyjgere [0, Tinax) is the maximal interval of existence of the
more suitable for adaptive control applications. Of course, t'&%rresponding solution of (1), we have
existence of such a decomposition may be difficult to verify in N
practice. We also point out that the need to maintain smallness ()] < o (lulle,e2) + o2 (¥ e e4e) - (34)
of the estimation error together with its first derivative is not un- Assumption 2 (Reachability With Bounded Over-
common in adaptive control (see, e.g., [9, Chs. 5and 6]). Precigmot): There exists a clas¥., function a3 such that
implications of Theorem 3 for adaptive control of nonlinear sysor each¢ ¢ R™ it is possible to find a tim@ > 0 and a control

tems remain to be investigated. inputw € CN=1([0, T), R™) which steers (1) from state O
at time¢ = 0 to statef at time¢ = 7" in such a way that the
VIIl. OUTPUT-INPUT STABILITY OF INPUT-OUTPUT corresponding outpuj satisfies
OPERATORS 1yl 71 < s (1€])- (35)

It is possible to define the output-input stability property under appropriate conditions, this second property can be de-
for input-output operators, without relying on state-spagged from the strong reachability property considered in [15].
representations. It then turns out that output-input stabilitynder these assumptions, it is possible to prove that for every

of a system implies output—input stability of the associatqgto) and every inpui. € CN~1([0, oo), R™) the solution of
input—output operator, and under suitable reachability apg) satisfies the inequalities

observability assumptions, a converse result also holds. Here N
we make some brief preliminary remarks on this; details will [u@®l < B(1=(0)], 1)+~ (IIyN 0.11) (36)
be pursued elsewhere. l=(®)] < B(=0)], 1)+~ (Iy™ o, 1+]) (37)

Given a pair of integers > 0O and! > 0and asubinterval of  for all ¢ € [0, T},..x — €), where € KL andy € K. This is

[0, o0), we denote by>*(J, RY) the space of alt times contin-  very similar to output—input stability, except for the “noncausal”
uously differentiable functions: J — R!. By aninput—output ¢ in (37).

operator, we mean a causal mapping

IX. CONCLUSION
F: C¥[0, ), R™) — | C*([0,T),R?)  (32)

=0 We introduced a new concept of output—input stability, which

can be viewed as an ISS-like variant of the minimum-phase
wherek, m, r, andp are positive integers. “Causal” means thasroperty for general smooth nonlinear control systems and re-
if y = F(u), theny(t) does not depend on the value§r), duces to the classical minimum-phase property for linear sys-
7 > t. Let us call an input—output operator (3)tputinput  tems. We provided characterizations of output—input stability in
stableif there exist a positive integeV < & + 7, a classL  terms of suitably defined notions of detectability and relative de-
function 8, and a classC. function, such that for every gree, the latter of which was proposed here and is of independent
inputu € C*([0, o), R™) and every pair of time$ > T'in  interest. Implications of the output—input stability property for
the domain of the corresponding output (1) we have feedback stabilization, analysis of cascade systems, and adap-
N N tive control were investigated. Other applications are likely to be
[u(®)] < Pu (”y [o,7], t — T) Y (”y i, ﬂ) N CS) found in various areas of nonlinear control theory in which the
We now takeF” to be the input—output operator that describegoncept of a minimum-phase nonlinear system has been useful.
the input—output mapping of the system (1), witf0) = 0.

We want to understand the relationship between output—input
stability of the system and of the operator. What follows closely Helpful discussions with J. Hespanha, A. lichmann, B. In-
parallels the developments of [15, Prop. 3.2 and 7.1]. galls, A. Isidori, and M. Krichman are gratefully acknowledged.
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