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Abstract—This paper introduces and studies the notion of
output–input stability, which represents a variant of the min-
imum-phase property for general smooth nonlinear control
systems. The definition of output–input stability does not rely on
a particular choice of coordinates in which the system takes a
normal form or on the computation of zero dynamics. In the spirit
of the “input-to-state stability” (ISS) philosophy, it requires the
state and the input of the system to be bounded by a suitable func-
tion of the output and derivatives of the output, modulo a decaying
term depending on initial conditions. The class of output–input
stable systems thus defined includes all affine systems in global
normal form whose internal dynamics are input-to-state stable
and also all left-invertible linear systems whose transmission
zeros have negative real parts. As an application, we explain how
the new concept enables one to develop a natural extension to
nonlinear systems of a basic result from linear adaptive control.

Index Terms—Adaptive control, asymptotic stabilization,
detectability, input-to-state stability (ISS), minimum phase,
nonlinear system, relative degree.

I. INTRODUCTION

A CONTINUOUS-TIME linear single-input–single-output
(SISO) system is said to beminimum-phaseif the nu-

merator polynomial of its transfer function has all its zeros in
the open left half of the complex plane. This property can be
given a simple interpretation that involves therelative degree
of the system, which equals the difference between the degrees
of the denominator and the numerator of the transfer function.
Namely, if a linear system of relative degreeis minimum-
phase, then the “inverse” system, driven by theth derivative
of the output of the original system, is stable. For left-invert-
ible, multiple-input–multiple-output (MIMO) systems, in place
of the zeros of the numerator one appeals to the so-calledtrans-
mission zeros[10].

The notion of a minimum-phase system is of great signifi-
cance in many areas of linear system analysis and design. In
particular, it has played an important role in parameter adaptive
control. A basic example is provided by the “certainty equiva-
lence output stabilization theorem” [11], which says that when
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a certainty equivalence, output stabilizing adaptive controller
is applied to a minimum-phase linear system, the closed-loop
system is detectable through the tuning error. In essence, this
result serves as a justification for the certainty equivalence ap-
proach to adaptive control of minimum-phase linear systems.

For nonlinear systems that are affine in controls, a major
contribution of Byrnes and Isidori [3] was to define the min-
imum-phase property in terms of the new concept ofzero dy-
namics.The zero dynamics are the internal dynamics of the
system under the action of an input that holds the output con-
stantly at zero. The system is calledminimum-phaseif the zero
dynamics are (globally) asymptotically stable. In the SISO case,
a unique input capable of producing the zero output is guaran-
teed to exist if the system has a uniform relative degree, which
is now defined to be the number of times one has to differentiate
the output until the input appears. Extensions to MIMO systems
are discussed in [4] and [6].

In view of the need to work with the zero dynamics, the above
definition of a minimum-phase nonlinear system prompts one
to look for a change of coordinates that transforms the system
into a certain normal form. It has also been recognized that just
asymptotic stability of the zero dynamics is sometimes insuf-
ficient for control design purposes, so that additional require-
ments need to be placed on the internal dynamics of the system.
One such common requirement is that the internal dynamics be
input-to-state stablewith respect to the output and its derivatives
up to order , where is the relative degree (see, for instance,
[13]). These remarks suggest that while the current notion of
a minimum-phase nonlinear system is important and useful, it
is also of interest to develop alternative (and possibly stronger)
concepts which can be applied when asymptotic stability of zero
dynamics is difficult to verify or inadequate.

In this paper, we introduce the notion ofoutput–input sta-
bility, which does not rely on zero dynamics or normal forms
and is not restricted to affine systems. Loosely speaking, we will
call a system output–input stable if its state and input eventually
become small when the output and derivatives of the output are
small. Conceptually, the new notion relates to the existing con-
cept of a minimum-phase nonlinear system in much the same
way as input-to-state stability (ISS) relates to global asymptotic
stability under zero inputs (0-GAS), modulo the duality between
inputs and outputs. An important outcome of this parallelism is
that the tools that have been developed for studying ISS and re-
lated concepts can be employed to study output–input stability,
as will be discussed below.

It will follow from our definition that if a system has
a uniform relative degree (in an appropriate sense) and is
detectable through the output and its derivatives up to some
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order, uniformly over all inputs that produce a given output,
then it is output–input stable. For SISO systems that are real
analytic in controls, we will show that the converse is also
true, thus arriving at a useful equivalent characterization of
output–input stability (Theorem 1). We will prove that the
class of output–input stable systems as defined here includes
all left-invertible linear systems whose transmission zeros have
negative real parts (Theorem 2) and all affine systems in global
normal form with input-to-state stable internal dynamics.

Relying on a series of observations and auxiliary results
deduced from the new definition, we will establish a natural
nonlinear counterpart of the certainty equivalence output
stabilization theorem from linear adaptive control (Theorem 3).
This conceptually important and intuitively appealing result did
not seem to be attainable within the boundaries of the existing
theory of minimum-phase nonlinear systems. It serves to
illustrate that output–input stability is a reasonable and useful
extension of the notion of a minimum-phase linear system. In
view of the remarks made earlier, it is probable that the new
concept will find other applications in a variety of nonlinear
control contexts.

The proposed definition is precisely stated in the next section.
In Section III, we give a somewhat nonstandard definition of rel-
ative degree, which is especially suitable for subsequent devel-
opments. In Section IV, we review the notions of detectability
and ISS. In Section V, we study the output–input stability prop-
erty with the help of the concepts discussed in Sections III and
IV. In Section VI, we derive some useful results for cascade
systems. In Section VII, we present a nonlinear version of the
certainty equivalence output stabilization theorem. Section VIII
contains some remarks on output–input stability of input–output
operators. The contributions of the paper are briefly summarized
in Section IX. Examples are provided throughout the paper to
illustrate the ideas.

II. DEFINITION AND PRELIMINARY REMARKS

We consider nonlinear control systems of the general form

(1)

where the state takes values in , the input takes values
in , the output takes values in (for some positive inte-
gers , , and ), and the functions and are smooth ( ).
Admissible input (or “control”) signals are locally essentially
bounded, Lebesgue measurable functions .
For every initial condition and every input , there is a
maximally defined solution of the system (1), and the cor-
responding output . Note that whenever the input function

is times continuously differentiable, whereis a posi-
tive integer, the derivatives are well defined (this
issue will be addressed in more detail later).

Recall that a function is said to be of
class if it is continuous, strictly increasing, and .
If is unbounded, then it is said to be ofclass . A
function is said to be ofclass

if is of class for each fixed and
decreases to 0 as for each fixed .

We will let denote the essential supremum
norm of a signal restricted to an interval , i.e.,

, where
is the standard Euclidean norm. When some vectors

are given, we will often use
the simplified notation for the “stack” vector

. Given an -valued signal
and a nonnegative integer, we will denote by the

-valued signal

provided that the indicated derivatives exist.
We are now in position to introduce the main concept of this

paper.
Definition 1: We will call the system (1)output–input stable

if there exist a positive integer , a class function , and
a class function such that for every initial state and
every times continuously differentiable input the in-
equality

(2)

holds for all in the domain of the corresponding solution of
(1).

The inequality (2) can be interpreted in terms of two separate
properties of the system. The first one is that if the output and
its derivatives are small, then the input becomes small. Roughly
speaking, this means that the system has a stable left inverse
in the input–output sense. However, no explicit construction of
such a left inverse is necessary. The second property is that
if the output and its derivatives are small, then the state be-
comes small. This signifies that the system is (zero-state) de-
tectable through the output and its derivatives, uniformly with
respect to inputs1; we will call such systems “weakly uniformly
0-detectable” (see Section IV). Thus output–input stable sys-
tems form a subclass of weakly uniformly 0-detectable ones.
Detectability is a state-space concept, whose attractive feature
is that it can be characterized by Lyapunov-like dissipation in-
equalities.

In view of the bound on the magnitude of the state, a more
complete name for the property introduced here would perhaps
be “(differential) output-to-input-and-state stability” (DOSIS),
but we choose to call it output–input stability for simplicity. The
conditions imposed by Definition 1 capture intrinsic properties
of the system, which are independent of a particular coordinate
representation. They are consistent with the intuition provided
by the concept of a minimum-phase linear system. In fact, for
SISO linear systems the output–input stability property reduces
precisely to the classical minimum-phase property, as we now
show.

Example 1: Consider a stabilizable and detectable linear
SISO system

(3)

1In particular, this detectability property is preserved under state feedback; for
comparison, recall that every minimum-phase linear system is detectable under
all feedback laws.
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Let be its relative degree. This means that we have
but . From the

formula we immediately obtain

(4)

Moreover, it is well known that there exists a linear change of
coordinates , where , , and ,
which transforms the system (3) into the normal form

and (3) is minimum-phase (in the classical sense) if and only
if is a stable matrix. Stability of is equivalent to the exis-
tence of positive constantsand such that for all initial states
and all inputs we have (it is
also equivalent to detectability of the transformed system with
extended output ). Combining the last inequality with
(4), we arrive at

This yields (2) with . On the other hand, if (2) holds,
then we know that implies , and so (3) must
be minimum-phase. Thus we see that for stabilizable and de-
tectable linear SISO systems, output–input stability is equiv-
alent to the usual minimum-phase property. Incidentally, note
that when in (2), the smoothness of becomes super-
fluous, because is automatically times (almost everywhere)
differentiable for every admissible input.

The above remarks suggest that the concepts of relative de-
gree and detectability are related to the output–input stability
property. In the subsequent sections, we will develop some ma-
chinery which is needed to study this relationship, and explore
to what extent the situation described in Example 1 carries over
to (possibly MIMO) nonlinear systems.

We conclude this section with another motivating observa-
tion, important from the point of view of control design. It is
formally expressed by the following proposition.

Proposition 1: Assume that the system (1) is output–input
stable. Suppose that we are given a feedback law with
the following properties: there exists a system:

(5)

with a globally asymptotically stable equilibrium at the origin, a
smooth map with , and a class func-
tion such that for every initial condition for the system

(6)

there exists an initial condition for the system (5) with
for which we have

along the corresponding solutions. Then the origin is a globally
asymptotically stable equilibrium of the closed-loop system (6).

Proof: Global asymptotic stability of the system (5) is ex-
pressed by the inequality

(7)

for some . Under the action of the control law ,
the output of the system (1) satisfies (omitting time dependence)

, , and so on. Using the standing
assumptions on and , it is straightforward to verify that for
some class function we have , where

is the integer that appears in Definition 1. Combined with (7),
this gives

(8)

Using (2), global asymptotic stability of the closed-loop system
can now be established by standard arguments (see Section VI
for details).

As an example, consider an affine system given by

(9)

Suppose that this system has a uniform relative degree(in the
sense of [6]) and is output–input stable. It may or may not have
a global normal form (construction of a global normal form re-
quires additional properties besides relative degree [6]). How-
ever, relabeling as , we have

where and . We can then
apply a state feedback law which brings this to the form

, where the last system has a globally asymptotically stable
equilibrium at the origin. [One possible choice is a linearizing
feedback

where the numbers , are such that the poly-
nomial has all its roots in
the left half-plane.] In view of Proposition 1, the entire system
becomes globally asymptotically stable [it is easy to construct
a suitable function using the formulas ,

, and so on]. Note that this is true forevery
such feedback law, which for minimum-phase systems is gener-
ally not the case and special care needs to be taken in designing
a stabilizing feedback (see [6, Sec. 9.2]).
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III. RELATIVE DEGREE

A. SISO Systems

Let us first consider the case when the system (1) is SISO, i.e.,
when . To specify what will be meant by “relative
degree,” we need to introduce some notation. For
define, recursively, the functions by the
formulas and

(10)

where the arguments of are . As an illus-
tration, in the special case of the SISO affine system (9) we
have and

(omitting the argument
in the directional derivatives).
The significance of the functions lies in the fact that if

the input is in for some positive integer, then along
each solution of (1) the corresponding output has a contin-
uous th derivative satisfying

In particular, suppose that is independent of
for all less than some positive integer. Then depends
only on and , as given by

As an example, for the affine system (9) we have

(11)

In this case we see that for every initial condition and every
input, exists and is an absolutely continuous function of
time, and we have

for almost all in the domain of the corresponding solution. The
converse is also true, namely, if exists and is absolutely
continuous for all initial states and all inputs, then must be
independent of for all . Indeed, if were
a nonconstant function of for some , then it would take
different values at and for some
and . Choosing the initial state and
applying the input for and
for , where is small enough, would produce an output
with a discontinuous th derivative, contradicting the existence
and absolute continuity of .

Definition 2: We will say that a positive integeris the (uni-
form) relative degreeof the system (1) if the following two con-
ditions hold:

1) for each , the function is independent of
;

2) there exist two class functions and such that

(12)

for all and all .

If there exists such an integer, then it is unique. This can be
deduced from the following simple observation, which will also
be needed later.

Remark 1: If Properties 1 and 2 in Definition 2 hold for some
positive integer , then there does not exist an such that

for all , where is some constant. [Indeed,
otherwise we would have for all , a
contradiction.]

We conclude that if some satisfies Definition 2, then
cannot be independent of by virtue of Remark 1, hence prop-
erty 1 in Definition 2 cannot hold for any . In view of the
previous remarks, is the relative degree of (1) if and only if for
some functions , for every initial condition, and
every input, exists and is absolutely continuous [hence,

exists almost everywhere] and the inequality

(13)

holds for almost all [to see why (13) implies (12), simply apply
an arbitrary constant control ]. We next show that for
affine systems the above definition is consistent with the usual
one.

Proposition 2: Consider the affine system (9). A positive in-
teger is the relative degree of (9) in the sense of Definition 2 if
and only if for all and all integers ,

for all , and .
Proof: Suppose that is the relative degree of (9) in the

sense of Definition 2. Applying (11) repeatedly, we see that
Property 1 in Definition 2 implies for all .
Moreover, if there were some with
, then we would have which is in-

dependent of , contrary to Remark 1. Now, setting
, we have , and so (12)

implies that must be 0 hence .
Conversely, suppose thatsatisfies the properties in the state-

ment of the proposition. Then property 1 in Definition 2 is ver-
ified using (11). Moreover, takes the form

, where and .
Since for all and , we have

for some class functions and . If follows that:

from which property 2 in Definition 2 can be easily shown to
hold.

Proposition 2 implies, in particular, that for the SISO affine
system (9) with Definition 2 reduces to the standard
definition of uniform relative degree as given, e.g., in the book
by Isidori [6] [simply note that implies ].
Of course, the definition of relative degree proposed here is not
restricted to affine systems. As a simple example, the system

has relative degree 1 according to Definition 2. This
case is also covered by the definition of relative degree for not
necessarily affine systems given in [12, p. 417]. In general, how-
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ever, our definition is more restrictive; for example, the system
would have relative degree 1 in the context of

[12], but the bound (12) does not hold.
Remark 2: The relative degree cannot exceed the dimension

of the system, i.e., if exists, then we must have . For
the affine system (9), this is an immediate consequence of [6,
Lemma 4.1.1] or [16, Corollary 5.3.8], which imply that ifis
the relative degree, at least locally at some , then the
row vectors are linearly in-
dependent in a neighborhood of in [so the functions

qualify as a partial set of new
local coordinates]. For the general system (1), we can consider
the associated affine system

(14)

of dimension . If is the relative degree of (1), then there
exists a point at which (14) has relative degree

(in the sense of [6]). The results just mentioned then imply
that the functions can serve as in-
dependent coordinates in a neighborhood of in ,
hence .

To prove one of our main results (Theorem 1 in Section V)
we will need the following characterization of relative degree,
which also has intrinsic interest.

Proposition 3: A positive integer is the relative degree of
(1) if and only if the following three conditions are satisfied:

1) for each , the function is independent of
;

2) for each compact set and each positive constant
, there exists a number such that

whenever and ;
3) for all .
This in turn requires the following lemma, which is a simple

exercise on functions. Its proof is included for complete-
ness.

Lemma 1: If a continuous function , where
is a positive integer, is such that when
, and when , then there exists a class

function such that for all .
Proof of Lemma 1:Consider the function

given by . This function is well
defined (because is radially unbounded so the minimum is
taken over a compact set), continuous, positive definite, nonde-
creasing, and unbounded, and we have for all .
Then one can find a function such that (for arbi-
trary such that is increasing on and con-
stant on , let for ,
and on let be linear with ). We have

, hence with .
Proof of Proposition 3: Condition 1 in the statement of the

proposition exactly matches property 1 in Definition 2. If prop-
erty 2 in Definition 2 holds, then condition 2 of the proposition
is satisfied with . It is
clear that property 2 in Definition 2 implies condition 3 of the
proposition. It remains to show that conditions 2 and 3 of the

proposition imply property 2 in Definition 2. Let ,
and consider the function . We claim
that this function satisfies the hypotheses of Lemma 1. Indeed,
take an arbitrary . Condition 2 of the proposition im-
plies that there exists an such that when-
ever and . It follows that if

. Therefore, is radially unbounded. In view
of condition 3 of the proposition, clearly if .
Thus we can apply Lemma 1, which guarantees the existence of
a function such that

From this, (12) follows with .

B. MIMO Systems

The above concept extends in a straightforward fashion to the
case when the system (1) is MIMO, i.e., whenand are not
necessarily equal to 1. For each , let be the th
component of , and define the functions ,

recursively by the formula (10) with
instead of . We will say that a set of positive integers

is a (uniform)relative degreeof the system (1) if
the following two conditions hold:

1) for each and each , the function
is independent of ;

2) there exist two class functions and such that

for all and all .
Similarly to the SISO case, is the relative degree
of (1) if and only if for some functions , for every

, every initial condition, and every input,
exists and is absolutely continuous [hence exists almost
everywhere] and the inequality

holds for almost all. Using the same type of argument as in the
proof of Proposition 2, one can show that for the square ( )
affine system

with this reduces to the definition of uniform vector
relative degree given in [6], which says that we must have

for all and all integers ,
, , and that the matrix

defined by

must be nonsingular for all. More generally, for the
corresponding matrix must be left-invertible (i.e., of rank

) for all . Note that for MIMO systems the relative degree is
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not necessarily unique (example: , ;
is a relative degree for every ). Proposition 3 carries over
to the MIMO setting subject to an obvious change of notation,
but this will not be needed in the sequel.

IV. DETECTABILITY AND RELATED NOTIONS

Consider a general system of the form

We recall from [15] that this system is called input-to-state
stable if there exist some functions and
such that for every initial state and every input the
corresponding solution satisfies the inequality

for all . Intuitively, this means that the state eventually
becomes small when the input is small.

Given a system with both inputs and outputs

(15)

we will say that it is0-detectableif there exist some functions
and such for every and every the

corresponding solution satisfies the inequality

as long as it exists. In particular, a system without inputs given
by

will be called0-detectableif there exist some functions
and such that for every initial state the corre-
sponding solution satisfies the following inequality as long as it
exists:

(16)

These concepts were studied in [17] under the names of
input–output-to-state stabilityand output-to-state stability,
respectively. In this paper we use the term “0-detectability” as
a shorthand.

Let us call the system (15)uniformly 0-detectableif there
exist some functions and such that for
every initial state and every input the inequality (16)
holds along the corresponding solution. As the name sug-
gests, uniform 0-detectability amounts to 0-detectability that
is uniform with respect to inputs. This property was called
uniform output-to-state stabilityin [7] (see also [8]) andstrong
detectabilityin [5].

When working with output derivatives, it is helpful to intro-
duce an auxiliary system whose output contains derivatives of
the output of the original system (restricting admissible inputs if
necessary to ensure that these derivatives are well defined). We
first describe this construction for SISO systems. Consider the

system (1) with . Take a nonnegative integer. Re-
stricting the input to be in , we can consider the-output
extensionof (1):

(17)

where

is the new output map (here we are using the notation of Sec-
tion III). That is, we redefine the output of the system to be.
Of course, for we recover the original system. Note that
the differentiability assumption oncan be relaxed if the func-
tion is known to be independent of for all
between 0 and some positive integer (cf. Section III). We will
view (17) as a system whose input consists ofand all deriva-
tives of that appear as arguments in the output map. With
some abuse of terminology, we will apply to such systems the
definitions of 0-detectability and uniform 0-detectability given
earlier. Let us call the system (1)weakly 0-detectable of order

if its -output extension (17) is 0-detectable. Also, let us call
the system (1)weakly uniformly 0-detectable of orderif its

-output extension (17) is uniformly 0-detectable.
Now, consider the general MIMO case, i.e., take the system

(1) with and . For arbitrary nonnegative numbers
, we can redefine the output of the system to be

restricting the input to be sufficiently smooth so that the indi-
cated derivatives exist. This amounts to considering the system

(18)

where and

(in the notation of Section III). Similarly to the SISO case, we
will call this system the -output extensionof (1).
We will say that the system (1) isweakly 0-detectable of order

if its -output extension (18) is 0-de-
tectable. We will also say that the system (1) isweakly uniformly
0-detectable of order if its -output
extension (18) is uniformly 0-detectable.

Another definition, which will be needed in Section VII, is the
following one (introduced in [18]). The system (15) is said to be
input-to-output stableif there exist some functions and

such that for every and every the following
inequality holds along the corresponding solution:
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Finally, we remark that since all the systems under consid-
eration are time-invariant, the same properties would result if
we used an arbitrary initial time instead of 0 in the above in-
equalities (changing the second argument offrom to
accordingly). This fact will be used implicitly in the proofs in
Section VI.

V. OUTPUT–INPUT STABILITY

A. SISO Systems

We first study the SISO case, represented by the system (1)
with . Our main result in this section is the following
characterization of output–input stability for SISO systems.

Theorem 1:

1) Suppose that the system (1) has a relative degreein the
sense of Definition 2 and is weakly uniformly 0-detectable
of order , for some . Then (1) is output–input stable in the
sense of Definition 1, with .

2) Suppose that the system (1) is output–input stable in the
sense of Definition 1. Then it is weakly uniformly 0-de-
tectable of order .

3) Suppose that the system (1) is output–input stable in the
sense of Definition 1, that the function is real an-
alytic in for each fixed , and that and

. Then (1) has a relative degree in the sense
of Definition 2.

The theorem implies that for systems with relative degree,
output–input stability is equivalent to weak uniform 0-de-
tectability of order for some , and that for systems
satisfying the additional assumptions onand stated in
part 3, output–input stability is equivalent to the existence of
a relative degree plus weak uniform 0-detectability of
order for some .

Proof: Part 1. Since is the relative degree, the inequality
(13) holds with . Suppose that for some the
system (1) is weakly uniformly 0-detectable of order. This
can be expressed as

where and (see Section IV). Combining
this with (13) and using the simple fact that for every class
function and arbitrary numbers one has

, we arrive at the inequality (2) with
, , and

. Thus (1) is output–input stable as
needed.

Part 2. Follows immediately from the definitions.
Part 3. Since the system (1) is output–input stable, we know in

particular that for some positive integer and some functions
and the inequality

(19)

holds along solutions of (1) for all smooth inputs. The func-
tion cannot be independent of for all

. Otherwise, letting and applying an arbi-
trary constant input , we would deduce from (19) that

, a contradiction. Thus, the in-
teger

is independent of

(20)

is well defined. Condition 1 of Proposition 3 holds with this.
For every input we have

(21)

The following fact will be useful.
Lemma 2: If (19) holds and is defined by (20), then

there cannot exist a bounded sequence in , a se-
quence in with , and a positive
constant such that for all we have and

.
Proof: Suppose that there exist sequences and

and a positive constant with the properties indicated in the
statement of the lemma. Fix an arbitrary positive integer. Con-
sider the initial state , and pick a smooth (e.g., poly-
nomial) input function with whose derivatives
at are specified recursively by the equations

(22)

In view of (21), we will then have

Therefore, if such an input is applied and if is an arbitrary
fixed positive number, then there exists a sufficiently small time

such that for all the following inequalities hold:
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Repeating this construction for all, we obtain a sequence of
trajectories of (1) along which , are
uniformly bounded for small, whereas is unbounded
for small and large . We arrive at a contradiction with (19),
and the proof of the lemma is complete.

Let us denote by the set of all such that is a
constant function. The set is closed [because if for a sequence

converging to some we have
for all and all , then for all ].

Lemma 3: Suppose that is real analytic in for each
fixed , that (19) holds, and thatis defined by (20). If
is such that for some we have for all ,
then is in the interior of .

Proof: Take an arbitrary sequence in with
. By hypothesis, for all .

By continuity, for each there exist a neighborhood of
in and a positive number such that

for all and all . Moreover,
the neighborhoods , can be chosen to be
nested, i.e., whenever , and the sequence

can be chosen to be nonincreasing. Now, suppose thatis
not in the interior of . Fix an arbitrary . We have .
Take an arbitrary . Then
cannot be identically zero on the interval ,
by virtue of real analyticity of which follows from
that of . Thus, we can find a
such that . This construction can be
carried out for all . Since when , the
points , can be chosen in such a way that is
uniformly bounded for all . Moreover, we have

as . In view of Lemma 2, we
arrive at a contradiction with (19), which proves the lemma.

Corollary 1: Suppose that is real analytic in for
each fixed . If (19) holds and is defined by (20), then the set

is open.
Proof: By definition of , every satisfies the con-

dition in the statement of Lemma 3, hence it lies in the interior
of .

Corollary 2: Suppose that is real analytic in for
each fixed . If (19) holds and is defined by (20), then the set

is empty.
Proof: We know that is closed. We also know that

is open (Corollary 1). Moreover, by virtue of (20).
Being a closed and open proper subset of, the set must be
empty.

Our goal is to show that Conditions 2 and 3 of Proposition 3
hold, which would imply that is the relative degree of (1). We
break this into two separate statements.

Lemma 4: Suppose that is real analytic in for each
fixed . If (19) holds and is defined by (20), then for each
compact set and each positive constant there exists
a number such that whenever and

.
Proof: Suppose that, contrary to the statement of the

lemma, there exist a compact subset of , a positive
constant , a sequence in , and a sequence in

with such that for
all . By continuity, we can find a nonincreasing sequence of

positive numbers such that for all
and all . Fix an arbitrary . Since
is empty by Corollary 2 and is real analytic,

cannot vanish identically on the interval
. Thus, we can find a

such that . Repeat this construction
for all . Lemma 2 applies again, yielding a contradiction with
(19), and the proof of the lemma is complete.

Lemma 5: Suppose that is real analytic in for each
fixed and that we have and . If (19) holds
and is defined by (20), then for all .

Proof: Suppose that for some . We
know from Corollary 2 that the set is empty. Thus, by real ana-
lyticity cannot vanish identically on any open
neighborhood of . This implies that there exists a sequence

converging to such that [if
, simply let ]. Choose an ar-

bitrary . Take the initial state to be . Pick a smooth
(e.g., polynomial) input function such that
and (22) holds with 0 in place of . From (21), we immedi-
ately see that . Since ,
we have . We also know that , which
implies that . It follows that

. We conclude that if the input
is applied, then for every there exists a sufficiently

small time such that for all the following inequal-
ities hold:

Carrying out the above construction for all and noting
that , we see that

become arbitrarily small for small
as . On the other hand, , so
is bounded away from 0 for small and large . This is a
contradiction with (19), which proves the lemma.

We have shown that the integerdefined by (20) satisfies all
three conditions of Proposition 3, thusis the relative degree of
the system (1). This proves part 3, and the proof of Theorem 1
is complete.

As an illustration, consider the affine system (9) with
. Its right-hand side is obviously real analytic in. Recon-

structing the above proof for this case, we find thatis the
smallest integer for which is not identically zero
on , and . If the system is
output–input stable, then Corollary 2 implies thatmust be
empty, which means that is the relative degree (see Proposi-
tion 2). Since the hypothesis is only used in Lemma
5, it is not needed in this case.

We will be especially interested in systems that are covered
by Part 1 of Theorem 1 with . We give such systems
a separate name to emphasize the relationship with the existing
terminology (which will be explained in the next example). Note
that is a function of the state only: ; no
differentiability assumptions need to be placed on.
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Definition 3: Let us call the system (1)strongly minimum-
phaseif it has a relative degreeand is weakly uniformly 0-de-
tectable of order .

Example 2: Consider an affine system in global normal form

(23)

where , , and
(so that is the uniform relative degree by Proposition 2). This
system is usually called minimum-phase if thezero dynamics

have an asymptotically stable equilibrium at
(see [3]). Since , the above definition of the strong
minimum-phase property in this case demands that the equa-
tion for in (23), which represents the internal dynamics, be
ISS with respect to (more precisely, with respect to all pos-
sible signals that can be generated by the-subsystem). This
is, in general, a stronger condition than just asymptotic stability
of the zero dynamics; however, in the linear case the two prop-
erties are equivalent (and both amount to saying that all zeros of
the transfer function must have negative real parts). As we al-
ready mentioned, the ISS assumption has been imposed on the
internal dynamics of the system in various contexts associated
with control design (see, e.g., [13]).

Remark 3: The bound (13), which is a consequence of our
definition of relative degree, does not necessarily imply that one
can explicitly solve for in terms of and (“flatness”);
example: . However, this is possible for some systems,
in particular, it can always be done for the affine system (9). In
this case, we can expressas a function of and ,
where is an arbitrary stable polynomial of degreeand

. Substituting this expression for, we obtain an “inverse”
system, driven by . If the system (1) is strongly minimum-
phase, then it is not hard to show that this inverse system will
be ISS with respect to. For example, consider the system in
global normal form (23). Take a stable polynomial

, and rewrite the equation for as
. Then the -dimensional

subsystem that describes the evolution ofis easily seen to be a
stable linear system driven by, hence it is ISS with respect to
. If the system is ISS with respect to (recall that

this is a consequence of the strong minimum-phase property)
then the overall system is indeed ISS with respect to, because
a cascade of two ISS systems is ISS.

The results of [8] and [17] imply that the system (1) is weakly
uniformly 0-detectable of order if there exists a smooth,
positive—definite, radially unbounded function
that satisfies

(24)

for some functions . This Lyapunov-like dissipa-
tion inequality can be used to check the strong minimum-phase

property, once the relative degree of the system is known. We
summarize this observation in the following statement.

Proposition 4: Suppose that the system (1) has a relative de-
gree and that for some smooth, positive definite, radially un-
bounded function and class functions the
inequality (24) holds. Then (1) is strongly minimum-phase.

In fact, (24) provides a necessary and sufficient condition for
weak uniform 0-detectability of order if controls take
values in a compact set [8]. Unfortunately, this condition is only
sufficient and not necessary if the control set is unbounded. For
example, consider the integrator , . It is obvi-
ously uniformly 0-detectable (here ), but for every smooth
positive–definite and every in the nonempty set

the quantity can be made arbi-
trarily large by a suitable choice of.

Of course, the inequality (24) with instead of can
be applied to check weak uniform 0-detectability of order,
as long as is well defined. A similar recipe for finding the
relative degree with the help of Lyapunov-like functions does
not seem to exist. However, for many systems of interest it is
not difficult to verify the existence of relative degree directly by
using Definition 2 or Proposition 3.

Example 3: We now give an example of an output–input
stable system that is not strongly minimum-phase. Consider the
system

(25)

It has relative degree 1. From the equation ,
which is ISS with respect to, we see that the system (25) is
weakly uniformly 0-detectable of order 1. Therefore, (25) is
output–input stable (with ) by virtue of part 1 of The-
orem 1. Now let us show that this system is not strongly min-
imum-phase, i.e., it is not uniformly 0-detectable (with respect
to the original output ). It is enough to find a solution trajectory
along which converges to zero while does not converge to
zero. Take the initial state to be 0, and apply the following input:

for , for ,
for , for , for

, and so on. Then , whereas for we
have so .

The situation in the above example is dual to the one de-
scribed in [1], where it is shown that ISS with respect to inputs
and their derivatives is in general not equivalent to the usual ISS.

B. MIMO Systems

We now turn to the general case of (1) with and
. The next result is readily obtained by the same argu-

ments as those employed in the proof of Theorem 1. We will
see below that the nontrivial part of Theorem 1, which states
that under suitable assumptions output–input stability implies
the existence of a relative degree, does not hold for MIMO sys-
tems. We will also explain why this is an advantage, rather than
a drawback, of our definition.
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Proposition 5: Suppose that the system (1) has a relative de-
gree . Then it is output–input stable, with

, if and only if it is weakly uniformly 0-de-
tectable of order for some .

Of special interest are systems satisfying the condition of
Proposition 5 with , . Accordingly,
let us call the system (1)strongly minimum-phaseif it has a rel-
ative degree and is weakly uniformly 0-detectable
of order . Note that is a func-
tion of only, as given by ,
and no differentiability assumptions need to be placed on. We
thus obtain a generalization to MIMO systems of the strong min-
imum-phase property introduced in the previous subsection. It
has a similar interpretation in terms of input-to-state stability of
the internal dynamics for systems in global normal form, and
admits an analogous Lyapunov-like sufficient condition.

However, we remark that for MIMO systems the existence of
a relative degree is quite a restrictive assumption. For example,
linear systems with relative degree form a rather special subclass
of those linear systems for which the minimum-phase property
(in its classical sense) is well defined.2 Fortunately, Definition 1
does not have the shortcoming of applying only to systems with
relative degree, as illustrated by the following example.

Example 4: The system

does not have a relative degree. This system is output–input
stable, as can be seen from the formulas

, , and the fact that the equation
for is ISS with respect to .

The above example is to be contrasted with the next one.
Example 5: The system

does not have a relative degree. The zero dynamics of this
system are , and the input that produces them is
identically zero. However, it can be shown by the same kind
of argument as the one used in the proof of Theorem 1 that
arbitrarily large can lead to arbitrarily small , , and
derivatives of . Therefore, this system is not output–input
stable.

We will now establish an important feature of Definition 1,
namely, that for linear MIMO systems it reduces exactly to the
classical definition of the minimum-phase property. We will

2Basically, the reason for this is that the relative degree of a MIMO system can
be lost or gained as a result of a linear coordinate transformation in the output
space, while the minimum-phase property is invariant under such transforma-
tions.

make use of some concepts and results from the linear geometric
control theory (see [10] and [19]). Consider the linear system

(26)

with , , and . We assume that (26) is left
invertible. Recall that a subspaceof is called -in-
variantif there exists an matrix such that

. Denote by the family of all -invariant subspaces that
are contained in . Then has a unique largest member
(with respect to inclusion) which we denote by. The eigen-
values of the restriction of to are the same for all

such that . These eigenvalues are called the
transmission zerosof the system (26). Left-invertible linear sys-
tems are usually called minimum-phase if all their transmission
zeros have negative real parts. Our goal is to prove that this is
equivalent to the output–input stability property in the sense of
Definition 1.

As a direct consequence of Silverman’s “structure algorithm”
[14], there exists an -vector , whose components are linear
combinations of the components of and their derivatives,
which satisfies

where the matrix is nonsingular. From this, we immediately
obtain

An -vector of complementary coordinates can be
chosen whose dynamics are independent of, as given by

. Consider the feedback matrix . Then is
precisely the largest -invariant subspace in ,
and thus equals the unobservable subspace of ,
i.e., . It follows that there ex-
ists a linear change of coordinates such that

, and the components of are linear combi-
nations of the components ofand their derivatives. In these
coordinates, (26) takes the form

Its transmission zeros are the eigenvalues of. Reasoning ex-
actly as in Example 1, we see thatis a stable matrix if and
only if the system is output–input stable. We summarize this as
follows.

Theorem 2: A left-invertible linear system is output–input
stable if and only if all its transmission zeros have negative real
parts.

VI. CASCADE RESULTS

The purpose of this section is to investigate how the
output–input stability property behaves under series connec-
tions of several subsystems. We will prove two lemmas. The
first one says that the cascade of a 0-detectable system with
an output–input stable system is weakly 0-detectable (i.e.,
0-detectable through the output and its derivatives), which is
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a result of independent interest. The second lemma is a direct
generalization of the first one, and will be needed to prove
the adaptive control result of Section VII. To simplify the
presentation and to obtain the sharpest results possible, we
restrict our attention to SISO strongly minimum-phase systems
(see Definition 3). The same proof techniques apply readily to
SISO output–input stable systems, and in particular to systems
that have a relative degree and satisfy the hypotheses of part 1
of Theorem 1 with . However, for the conclusions
become weaker. Generalizations to MIMO systems are also
straightforward, subject to similar limitations.

Suppose that we are given two systems

(27)

and

(28)

Upon setting , we obtain a cascade system with input
and output , which we denote by (see Fig. 1).

Assume that has a relative degree. Consider the-output
extension of . As explained in Section III, the extended output
map has the form

which is independent of . In particular, no differentiability
assumptions on the inputs are needed. Thus, the-output exten-
sion of is a system with input and output . The fol-
lowing result says that this system is 0-detectable.

Lemma 6: If is 0-detectable and is strongly minimum-
phase, then the cascade systemis weakly 0-detectable of
order .

Proof: In the proofs of this lemma and the next one,with
various subscripts will be used to denote class functions,
and and with various subscripts will be used to denote class

functions. For , the 0-detectability of can be
expressed by the inequality

while the strong minimum-phase property of leads to the
inequalities

(29)

and

Since the system has a cascade structure, we employ the trick
of breaking a time interval under consideration into several parts

Fig. 1. The cascade system.

in order to derive the result (as done in [15]). Straightforward but
lengthy calculations yield

where

Combining this with (29), we arrive at the desired result.
Lemma 6 states that the cascade system is 0-detectable

through and derivatives of up to order , where is the
relative degree of . It is, in general, not true that the cascade
system is 0-detectable through the original outputonly. We
support this claim by constructing an example of a 0-detectable
system which, when followed by an integrator, fails to remain
0-detectable.

Example 6: Assume given a smooth function
with the following properties:

1) is in ;
2) for all (in particular, is not

in );
3) ;
4) , for .

[It is an elementary exercise to obtain such a. Start with a
piecewise constant function that takes the valueon an in-
terval of length 1/ around each positive integer, and is zero
elsewhere. Since , this function is in ; we
also have . Then approximate this
function by a smooth one and modify it in a neighborhood of
zero to achieve desired behavior there. Properties 2 and 4 are
not conflicting, because property 4 means that near
0, and . Property 4 is only needed to
ensure the smoothness of the systemto be constructed next.]

Consider the system given by (27), with ,
(no input ), for and

for . To verify that this system is 0-detectable,
take the function defined for by and for

by
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The function is radially unbounded and positive definite [be-
cause for we have using property 2 of ].
Its derivative equals for and
for . Thus we have for all

. In view of the results of [17], this implies that is 0-de-
tectable.

For , we take an integrator (which is strongly minimum-
phase), i.e., (28) with , , and

. Then, the cascade system has the form

With initial state 0 we have , which is
bounded in light of property 1 of , while .

Next, suppose that the system has another output
. Letting as before, and defining the output

, we obtain a cascade-feedforward system
with input and output , shown in Fig. 2.

Assume that the input is in , where is the relative
degree of as before. We can then consider the system

whose input is and whose output is . Indeed,
as explained in Section III, for each the th
derivative of exists and can be written as ,

, for a suitable function . Moreover,
since is times differentiable almost everywhere, we can
consider the -output extension of , whose input is
and whose output is . The next result says that this last
system is 0-detectable.

Lemma 7: Suppose that is 0-detectable (with respect to
its input and both its outputs, and ), is strongly min-
imum-phase, and the system with input and output
is input-to-output stable. Then the cascade-feedforward system

is weakly 0-detectable of order.
Proof: For , the hypotheses of the lemma lead

to the following inequalities:

We have

where

Fig. 2. The cascade-feedforward system.

Similarly

where, for example

Combining the two estimates, we obtain the desired result.

VII. A DAPTIVE CONTROL

In this section, we describe a framework for adaptive con-
trol of uncertain nonlinear systems, in which the concept of an
output–input stable system introduced in this paper turns out
to be useful (enabling one to achieve what did not seem pos-
sible with the existing definition of a minimum-phase nonlinear
system).

A. Set-Up and Motivation

Let be an unknown process, with dynamics of the form

where is the state, is the control input, and
is the measured output (we assume thatis SISO just to

simplify the notation; the generalization to the MIMO setting is
straightforward). Assume that is a member of some family of
systems , where is an index set. For each , the
subfamily can be viewed as consisting of anominal process
model together with a collection of its “perturbed” versions.
The present discussion is quite general and does not depend on
any special structure of .

Consider the following family of controllers, parameterized
by taking values in :

For every fixed , we denote the corresponding controller
by . One can think of as acandidate controller,which
would be used to control the processif this process were
known to be a member of .

We assume that on-line controller selection is carried out with
the help of some estimation procedure. This is facilitated by a
dynamical system called themultiestimator,which takes the
form
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The signals are used to define theestimation errors

One usually designs the multiestimator in such a way that
converges to zero in the case when the unknown process coin-
cides with the th nominal process model and there are no
disturbances or noise.

Most of the standard adaptive algorithms are based on varying
the index of the candidate controller in the feedback loop ac-
cording to a tuning/switching law , in such a way
that the corresponding estimation erroris maintained small
in some sense. The underlying principle behind such a strategy
is known ascertainty equivalence.Intuitively, the motivation
here is that the nominal process model with the smallest esti-
mation error “best” approximates the actual process, and thus,
the candidate controller associated with that model can be ex-
pected to do the best job of controlling the process. To justify
this paradigm, one must be able to ensure that the smallness
of the estimation error implies the smallness of the state of the
closed-loop system. Thus we see that a crucial desired property
of this system is 0-detectability through the estimation error.

To make this discussion more precise, take an arbitrary fixed
. The closed-loop system, which results when theth

candidate controller is placed in the feedback loop with the
process and the multiestimator , is described by the equa-
tions

(30)

We will take the output of this system to be the estimation error
. A glance at Fig. 3 might be helpful

at this point. The above remarks suggest that it is desirable to
design the system (30) so as to make it 0-detectable with respect
to .

Consider the following system, which we call theinjected
systemand denote by :

We view it as a system with input , state , and out-
puts and . It realizes the interconnection of the
th candidate controller with the multi-estimator . This is

the system enclosed in the dashed box in Fig. 3. Basically, the
choice of the candidate controllers is governed by the resulting
properties of this system. This makes sense becauseis imple-
mented by the control designer; the validity of such an approach
will become clear in view of the results that are discussed next.

It was shown in [5] that if the injected system is ISS
with respect to and the process is 0-detectable, then the
closed-loop system (30) is 0-detectable with respect to.
This provided a natural nonlinear extension of the Certainty
Equivalence Stabilization Theorem proved for linear systems
in [11]. Another relevant result from [11] is the so-called
Certainty EquivalenceOutput Stabilization Theorem, which
we mentioned in Section I. It suggests that the desired 0-de-
tectability of the system (30) through should be preserved if
one weakens the assumptions on the injected systemby
only requiring input-to-output stability from to instead

Fig. 3. The closed-loop system (30).

of input-to-state stability,3 but demands that the process be
output–input stable rather than 0-detectable. In what follows,
we demonstrate that a result along these lines indeed holds for
nonlinear systems.

B. Main Result and Discussion

Assume that has a known relative degree. Let us redefine
the input and the output of the system to be and ,
respectively. We denote the resulting system by ; its output
map is obtained as explained in the previous sections. We now
make the following assumptions:

1) the process is strongly minimum-phase;
2) the system is input-to-output stable;
3) the controller is 0-detectable;
4) the multiestimator is 0-detectable.

The result given below states that the-output extension of the
closed-loop system (30) is 0-detectable with respect to its output

(the derivatives of exist since we only consider smooth
systems; also note that there are no inputs). This result is a direct
consequence of Lemma 7: one needs to apply that lemma with

(which is easily seen to be a 0-detectable system)
and .

Theorem 3: Under assumptions 1–4, the closed-loop system
(30) is weakly 0-detectable of order.

The same techniques would apply readily if the process
is output–input stable but not necessarily strongly minimum-
phase. In particular, if satisfies the hypotheses of part 1 of
Theorem 1 with , we would conclude weak 0-detectability
of order for the closed-loop system. However, for this
is a weaker statement than that provided by Theorem 3.

Theorem 3 gives weak 0-detectability, i.e., 0-detectability
through the output and derivatives of the output up to order
. For linear systems the distinction between 0-detectability

and weak 0-detectability disappears; this is most easily seen
from the well-known Kalman observability decomposition.
It is possible to employ similar ideas to single out a class
of nonlinear systems for which weak 0-detectability implies
0-detectability. Namely, suppose that in some coordinates the
system under consideration takes the form

(31)

3A careful examination of the classical model reference adaptive control al-
gorithm for linear systems reveals that the control law only output stabilizes the
estimated model.
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with and , where the subsystem
, is 0-detectable. This can be compared with

the observability decompositions for nonlinear systems (see,
e.g., [2] or [12, Ch. 3]); we replace observability with 0-de-
tectability (neither property is weaker than the other) and re-
quire the decomposition to be global. Now, suppose that (31)
is weakly 0-detectable of order, where is some positive in-
teger. Since , where is a suitable class
function (cf. proof of Proposition 1), we must have

for some and .
Combining this with 0-detectability of the subsystem and
using the same arguments as the ones employed in Section VI
for dealing with cascade systems, we see that (31) is indeed
0-detectable (through the original output).

Therefore, if the closed-loop system (30) with outputad-
mits a decomposition of the kind described above, then under
the assumptions of Theorem 3 this system is 0-detectable. In this
case we arrive at a strengthened version of Theorem 3 which is
more suitable for adaptive control applications. Of course, the
existence of such a decomposition may be difficult to verify in
practice. We also point out that the need to maintain smallness
of the estimation error together with its first derivative is not un-
common in adaptive control (see, e.g., [9, Chs. 5 and 6]). Precise
implications of Theorem 3 for adaptive control of nonlinear sys-
tems remain to be investigated.

VIII. O UTPUT–INPUT STABILITY OF INPUT–OUTPUT

OPERATORS

It is possible to define the output–input stability property
for input–output operators, without relying on state-space
representations. It then turns out that output–input stability
of a system implies output–input stability of the associated
input–output operator, and under suitable reachability and
observability assumptions, a converse result also holds. Here
we make some brief preliminary remarks on this; details will
be pursued elsewhere.

Given a pair of integers and and a subinterval of
, we denote by the space of all times contin-

uously differentiable functions . By aninput–output
operator, we mean a causal mapping

(32)

where , , , and are positive integers. “Causal” means that
if , then does not depend on the values ,

. Let us call an input–output operator (32)output–input
stableif there exist a positive integer , a class
function , and a class function such that for every
input and every pair of times in
the domain of the corresponding output we have

(33)

We now take to be the input–output operator that describes
the input–output mapping of the system (1), with .
We want to understand the relationship between output–input
stability of the system and of the operator. What follows closely
parallels the developments of [15, Prop. 3.2 and 7.1].

Suppose that the system (1) is output–input stable. As the do-
main of , we can take , so that the corre-
sponding outputs are in . Here is the positive integer that
appears in (2). We could also work with in-
stead, if is the relative degree of (1). It is not difficult to prove
that is then output–input stable.

The converse is more interesting. Suppose that is
output–input stable. We assume that the domain of
is , where is the positive integer
that appears in (33). As before, we could work with

instead, if is the relative degree of
(1). We impose the following two assumptions on the system
(1).

Assumption 1 (Strong Finite-Time Observability With
Output Derivatives):There exist a number and two
class functions and such that for every , every
input , and every ,
where is the maximal interval of existence of the
corresponding solution of (1), we have

(34)

Assumption 2 (Reachability With Bounded Over-
shoot): There exists a class function such that
for each it is possible to find a time and a control
input which steers (1) from state 0
at time to state at time in such a way that the
corresponding output satisfies

(35)

Under appropriate conditions, this second property can be de-
rived from the strong reachability property considered in [15].
Under these assumptions, it is possible to prove that for every

and every input the solution of
(1) satisfies the inequalities

(36)

(37)

for all , where and . This is
very similar to output–input stability, except for the “noncausal”

in (37).

IX. CONCLUSION

We introduced a new concept of output–input stability, which
can be viewed as an ISS-like variant of the minimum-phase
property for general smooth nonlinear control systems and re-
duces to the classical minimum-phase property for linear sys-
tems. We provided characterizations of output–input stability in
terms of suitably defined notions of detectability and relative de-
gree, the latter of which was proposed here and is of independent
interest. Implications of the output–input stability property for
feedback stabilization, analysis of cascade systems, and adap-
tive control were investigated. Other applications are likely to be
found in various areas of nonlinear control theory in which the
concept of a minimum-phase nonlinear system has been useful.
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