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New results are given on the pole-shifting problem for commutative rings, and these are then 
applied to conclude that rings of continuous, smooth, or real-analytic functions on a manifold 
X are PA rings if and only if X is one-dimensional. 

1. Introduction 

This paper establishes new results regarding control problems for parametrized 
families of pairs ( 'systems') {(A(x), B(x)),xeX}, where A(x) is an n x n and B(x) is 
an n x m real matrix for each x (with n,m fixed integers), and the parameter x 
belongs to a manifold X. To be found is a new parametrized family {K(x),x~X} 
such that a given design criterion is satisfied by the closed-loop matrix 
A(x) +B(x)K(x) for all x, and the K(x) depend in a suitably 'nice' form on the 
parameter. The design criterion we shall be concerned with is that of  pole assign- 
ment, and consists of obtaining arbitrary characteristic polynomials for the closed 
loop matrix. (Pole assignment problems are a central issue in the more 'classical' 
case studied in control theory, that of  single systems; see e.g. [11].) 'Nice' will mean 
continuous, smooth (~**), or (real-)analytic. See [20] for an introduction to the 
topic of control of families of systems, including several motivating examples as well 
as a survey of other problems, different from pole-assignment, that are also of 
interest. 
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The results to be given, that  the pole-assignment problem is solvable in general 
if and only if X has dimension 1, will be obtained as consequences of new results 
on systems over rings, which extend those in [19], [16], [5], [4], [22], [23], [10], and 
other references. New necessary conditions are given, as well as sufficient conditions 
that apply for various classes of rings, including Dedekind domains. These results 
should be of independent interest. For an introduction to the general topic of 
systems over rings, see [19], [10], [12], [2], and the references there and in [20]. 

2. Preliminaries 

Let R be a reduced (no nilpotents) commutative ring. '(Sub)module' will always 
mean finitely generated (sub)module, unless otherwise stated, and 'projective' will 
always mean (finitely generated) projective of constant rank. All maps are R-linear, 
unless otherwise stated. When R is in particular an integral domain with quotient 
field F, the rank of the module M is the dimension of M®F, and if f :  M--)N, 
rank[f] is the rank of f®F:M®F--)N®F.  For any R and any matrix G over R, 
(equivalently, any map between free modules) rank[G] is the determinantal rank of 
G, the largest integer r such that there is a nonzero r-minor of G. For integral 
domains, this coincides with the above definition. 

Let Spec(R) denote the prime spectrum of R. I f p  ~ Spec(R) and h is in R, we write 
h(p) for the residue of h in R/p. Thus, h is in p iff h(p) = 0. This notation will also 
be used for R-modules and maps, so that M(p) denotes the R/p-module M® (R/p) 
and, if f :  M-*N, then f (p)  is the maPf®(R/p):M(p)-*N(p). If G is a vector or 
even a matrix over R, G(p) denotes the vector or matrix obtained by comp0nentwise 
reduction; this is consistent with the notations for abstract maps and modules just 
given, when applied to free modules. 

A nondegenerate (or basic) submodule <g of an R-module M will be one for which 
the following property holds: if t" ~ - ) M  is the inclusion map, and p is in Spec(R), 
then t(p) : <g(p)-*M(p) is a nonzero map. This is equivalent to the requirement that 
rank[(M/~)(p)] < rank[M(p)] for all p e Spec(R). If M is a direct summand of the 
module N, then <~ c_ M is nondegenerate as a submodule of M iff it is nondegenerate 
as a submodule of N. When M =  R" is free and G is an n x m matrix over R whose 
columns span ~, the nondegeneracy condition can be expressed simply as: c(G)= R, 
where c(G) is the content of the matrix G, the ideal generated by its entries. 

We shall be interested below in determining conditions under which a submodule 
of the projective module M contains a rank 1 (projective) summand of M. As 

before, if M is a summand of N, then <~ ~ M has such a summand with respect to 
M iff the same is true with respect to N. If M is free and G is a matrix as above, 
this is equivalent to the existence of a matrix V such that the columns of G V span 
a rank 1 summand of M. This latter condition is in turn equivalent to the require- 
ment that the rank of GV be constant, equal to 1, when reducing modulo all primes 
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in Spec(R) (by [1, 11.5, exercise 5], applied to coker(G V); recall the assumption that 

R is reduced). In other words, c(G V)= R and G V has rank _< (hence, =)  1. 
Let £2 = £2(R) c_ Spec(R) be the set of  maximal ideals of  R. A principal closed set 

(relative to the Zariski topology) of £2 is a set of the form 

V(h):={pe£2 s.t. h (p )=0} ,  

with h in R. The set of  p ~ £2 for which h(p):gO will be denoted supp(h), and we 
use the same notation for vectors and matrices. For any matrix G, c(G)=R is 
equivalent to supp(G) = £2. The constructible subsets of  £2 are those in the Boolean 
algebra generated by the sets of  the form V(h). A constructible C has codimension 
at least one if  C is contained in some V(h) with h ¢ 0. Consider the following two 

properties for rings R: 

(,) Every constructible of codimension at least one is a principal closed set. 

(t) If ~ is a nondegenerate (finitely generated) submodule of the projective R- 
module M, there is a rank 1 summand of M contained in ~. 

Lemma 1. Property (.) implies property ( t ). 

Proof. Embedding M as a summand of a free module, we can by the above remarks 
restrict attention to the case where M is free. Let G be an n x m matrix whose 
columns generate ~. Thus c(G)=R, (equivalently, s u p p ( G ) -  Q) and we seek a V 
such that c(G V) again equals R (i.e. supp(G V)= £2) but such that rank[G V ] -  1. If 
G has rank l, we can choose V= identity. So assume that G has a 2 × 2 minor A ¢ 0. 
Let gl, g2 be the columns of G involved in d .  We shall find a linear combination 
g=t~gl +fig2 with the property that supp(g)=supp(gl,g2); the result will then 
follow by induction on the number of columns m. Let 

Co:= { p e £ 2  s.t. a(p)¢:O},  

C 1 : =  {pe£2  s.t. A ( p ) = 0  and g l ( p ) ¢ 0 } ,  

C2 := {pe£2  s.t. A(p)=gl(P)=O and g2(P)¢0}.  

Thus, supp(&, g2) is the union of the disjoint sets CI, C2, and C 0. Further, the sets 
C~ and C 2 are constructibles of  codimension at least one. By property (,), 

C1 = V(fl) and (72 = V(a) for some a, fl in R. Let g : = otgl + fig2, and pick any p in 
D. If p is in Co, then a(p)and fl(p) are both nonzero, and A ¢ 0  implies that 
g(p)v:O. If p is in C 1, then g(p)= a(p)gl(P) is nonzero, since a(p) and gl(P) are 
both nonzero (here we use that C 1 and C2 are disjoint). Finally let p be in C2. Then 
g(P)=fl(P)g2(P) is again nonzero. It follows that supp(gi,gz)=supp(g), as 
desired. [] 
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An example of rings for which the above discussion applies is provided by the 
following remark. 

Corollary 2. Let R be a ring for  which V(h) is finite whenever h:gO, and for  which 
the following property holds: for  each p ~ [2 there is an h ~ R such that V(h) = { p}. 
Then R satisfies Cf ). 

Proof. Let C be a constructible of codimension at least one. Thus C is contained 
in a finite V(h) and is itself finite, say C= {Pl,--. ,Pr}. Now let {h l, . . .  ,hr} be such 
that V(hi) = {Pi}. Then C= V(h 1 ... hr), and Cf) holds. [] 

In particular, a Dedekind domain whose ideal class group is torsion satisfies (,), 
and hence also (t): in that case each V(h), h nonzero, is indeed finite. If the ideal 
class group is torsion, i.e. R is a 'QR' domain in the terminology in [9, Theorem 
40.3], then for any p~19 there is an integer k such that pk=hR=principal,  so 
V(h) = { p}. However, it is possible to prove property (t) directly for every Dedekind 
domain. We are grateful to Wolmer Vasconcelos for directing us to the invariant 
factor theorem for Dedekind domains: 

Lemma 3. A Dedekind domain satisfies property Cf ). 

Proof. Let M be a projective R-module, and ~ a nondegenerate submodule of M. 
Without loss; we again assume that M is free of rank n. By the invariant factor 
theorem for Dedekind domains, in the form given in [6, Exercise 22.6], we may take 
f~ to have the form El ~)--" t~Ek, with each Ei a submodule of the i-th factor of 

M = R ~ . . . O ) R ,  k < n .  Further, the invariant factors E i are ideals of R with 
Ei+l c_Ei, i= 1, . . . , k -  1. Thus, ~ is included in ElM. Since ~ is nondegenerate, 
E1 =R, and it follows that this is a r a n k l  summand of M included in ~. [] 

An algorithm for explicitely carrying out the computation of invariant factors will 
be all that is needed to make effective our theorem on pole shifting in the case of 
Dedekind domains. 

Note that it is sufficient that property (t) be satisfied for enough finitely generated 
subrings of R. More precisely, if G is a matrix as above, then there is a linear com- 
bination ~ rug U = 1, for suitable {ru}. It is enough that there be a subring S or R 
containing the {gu} and {ru} and for which the property is true. A V over S such 
that G V has rank 1 and has content S will be in particular a good V over R. In that 
sense, (t) behaves very similarly to the QR property (see [9, IV.27, Exercise 10]). 
Other classes of rings satisfying (.) have been pointed out to us by Wolmer 
Vasconcelos. These include for instance one-dimensional affine algebras over Z; see 
[24]. 
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3. Reachable systems 

Definition 4. A system is a pair (A, ~ )  where A : M ~ M i s  an endomorphism of a 
projective module M and ~ is a (finitely generated) submodule of M. The state- 
space of the system is M, and its rank is the rank of M. A free system is one for 

which M =Rn is free. 
Usually one specifies ~ in terms of generators, giving a linear B : R m ~ M  whose 

image is ~. We shall feel free to do so when convenient. Whenever referring to a 
specific system, n will denote its rank, and t : ~ --,M the natural inclusion map. A 
reachable (or 'controllable') system is one for which the submodule 

Reach(A, ~ )  := M + A ~  + -.. + A k ~  + -.- (1) 

(the smallest A-invariant submodule containing ~ )  equals M. If M has rank n then, 
by the Cayley-Hamilton Theorem, Reach(A, ~ )  is the sum of the z i ~  with i at 
most n -  1. From the definition it is clear that, for reachable systems, M =  ~ + AM; 

or equivalently: 

Lemma 5. f f  ( A , ~ )  /s reachable, then the map M O ~ - - * M : ( x , b ) ~ A x + b  is 

onto. [] 

Note that if (A, ~ )  is reachable, then (A + 2/, ~ )  is again reachable, for any 2 in 
R ( /=ident i ty  map). Thus the maps ( x , b ) ~ 2 x + A x - b  are all onto. These are all 
particular consequences of a general criterion for reachability, which is easier to 
state in terms of a presentation ~ = im(B), B : R m --~M. The criterion is: (A, ~ )  is 
reachable if and only if the R[z]-map M[Z]O)Rm[z]~M[z] with block form 
[z I -A ,B]  is onto; see [13] for details. 

If (A, ~ )  is a system and p is in Spec(R), we denote by (A, ~ ) ( p )  the system 
(A(p),l(p)M(p)) over the ring R/p,  with state space M(p).  Assume that 
B :R m ~ ~ is onto, so that t (p )~(p )  =im(B(p)).  Consider the map y : R nm ~ M ,  
Y(Uo,...,Un_l):=~AiBui . Then (A,B)  is reachable iff  y is onto. By the 
local-global criterion for surjectivity (see e.g. [1, 11.3, Proposition 11]), this is 
equivalent to ~,(p) being onto for each maximal ideal p, or equivalently for all p in 
Spec(R). This implies that (A,B) is reachable iff  all the residue systems (A, ~ ) ( p )  
are, in which case i (p )~(p)  cannot be zero. Thus: 

Lemma 6. I f  (A, ~ )  is reachable, then ~ is a nondegenerate submodule o f  M. [] 

The following observation will play a central role. 

Lemma 7. I f  (A,M) is reachable, then M / M = M / A - I ~ .  In particular, 
rank[(M/~)(p) l=rank[(M/A-l~)(p) l  for  all p in Spec(R), and A - I ~  is a non- 
degenerate submodule o f  M. 
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Proof .  Consider the following commutative diagram: 

K 

1 
M 

1' 
M/A-I~ 

) M  

o 
' M ~  ' M  

I 1 
) M  ) 0  

, 0  

, 0 

Here we took j(b) : = (0, b), tt(x, b) : = x, o(x; b) : = Ax + b, (K, u): = the kernel of 0 
with its natural  inclusion, ~ := natural quotient map, and 1 := identity on M. The 
map a is defined as the composition of u with it. By construction, the two middle 
rows are exact, since o is onto by Lemma 5. Note that since c =  0, the last column 
is exact, so that ker(c)= M, and similarly ker(lt)= ~ (up to a natural isomorphism). 
We claim that the first column is exact too, i.e. that im(a) = A - ~ .  But x is in im(a) 
i f f  it is in lt(ker(o)), i.e., there exists a b e ~ such that Ax + b = 0, which means that 
x is in A - l ~  as required. 

We are thus in the situation of  the usual 'snake lemma'  (notations of  maps are 
in fact almost as in the proof given in [1, 1.4, Proposition 2]). There exists then a 
map d :M-*M/A-I~ such that the sequence 

i d 
~¢ ' M ) M / A - I ~ " * O  (2) 

is exact, so M/~=M/A-1~, as desired. Since tensoring is right-exact, 
each p ~ Spec(R) it holds that 

rank[i(p)l  + rank[(M/A-l~)(p)] = n = rank[i(p)] + rank [(M/~)(p)] ,  

for 

and the rank condition is obtained. The last conclusion now follows from Lemma 
6. Note also that, by Schanuel's Lemma, aplied to the above sequence and to the 
natural sequence ~ ~ M ~ M / ~ ,  we know also that MO)~--M~A-I~ ,  but this 
does not seem to play any role in what follows. [] 

Remark. W. Vasconcelos and A. Roy have independently pointed out to us that the 
above proof can be simplified, and the result strengthened, by noticing that A itself 
induces an isomorphism M/~ =M/A-I~. 
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4. Pole assignment 

For projective modules there is a theory of determinants that generalizes the stan- 
dard one for free modules. See for instance [1, 11.5, Exercise 9], [21, p. 148], or 
[15, Chapter V]. Briefly, one considers for an A" M ~ M  the associated wedge map- 
ping det A := A" A" A n M--, A n M (n = rank M), and observes that End(A n M)  = R, 
so that det A is canonically identified to an element of R. If M is free, this is the 
usual determinant. Det A behaves well under tensoring, and this permits checking 
all the standard properties by reducing to the free case (localize at all primes). The 
characteristic polynomial )CA is defined as the determinant of z / - A ,  seen as an en- 
domorphism of  the projective M[z]. This is a monic polynomial in R[z] of degree 
n, and the Cayley-Hamilton Theorem is valid just as in the free case. 

The following situation will occur below. Assume that n" M ~ N  is onto and that 
(A, ~)[resp., (A; ~ ' ) ]  has state-space M [resp.,N]. Further, assume that 

rr(~) = g '  and A'  o n = zt o A. (3) 

Then, rt(Reach(A, ~ ) ) =  Reach(A, g ' ) ;  in particular, the second system is reachable 
if the first one is. Further, since N is a projective of well-defined rank, Q := ker(n) 
is aiso of this type (and is A-invariant). Since rt splits, it follows by a localization 
argument that XA is the product of the characteristic polynomials of A '  and of the 

restriction of A to Q. 

Definition 8. An F" M ~ M  is congruent to A (mod ~) ,  denoted F - A  (mod ~) ,  iff 
the image of F - A  is contained in ~ .  

If B : R m ~ M  has image ~,  and F is as above, there is by projectivity of M a 
linear 'feedback' map K:M--*R m such that F = A + B K ;  thus this definition is 
equivalent to the one usually given. Note that if (A, ~ )  is reachable and F - A  
(mod ~),  then (F, ~ )  is again reachable. 

Definition 9. X is a (characteristic) polynomial for  A (mod ~)  iff there exists an F 

with XF = X and F - A  (mod ~) .  

A splitting polynomial is a monic polynomial X in R[z] whose roots are in 

R :X=(Z-Oq). . .  ( z -an) ,  all criER.  

Definition 10. The system (A, ~ )  is pole-assignable iff every splitting polynomial of 
degree n is a polynomial for A (mod ~) .  The ring R is pole-assignable (PA) iff every 
reachable system over R is pole-assignable. A PAF ring is one for which every 
reachable free system is pole-assignable. 

As known for free systems, (and with the same proof) a pole-assignable system 
is necessarily reachable (see e.g. [4]); this motivates the definition of PA ring. 
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Previous work has always defined pole-assignability only with respect to free 
systems, i.e. what we called 'PAF'  rings above. However previous results dealt with 
projective-free rings, for which both notions coincide. In general, it is more natural 
to work with the definition of PA given here, because as we shall see the main indue. 
tion step needed to prove that some classes of rings are PAF rings is most naturally 
presented in terms of nonfree systems. In any case, the positive results to be 
presented in the next section will establish that certain rings are PA, so in particular 
are PAF rings, while the negative results will show that other rings are not even 
PAF. 

5. General pole-shifting results 

All counterexamples to the PA property studied in the past have been based on 
the observation that for pole assignable systems over projective-free rings, • (or its 
preimage A - ~ )  must contain an unimodular element of M. The next result shows 
that this type of property has more to do with reachability itself, (and a weak pro- 
pery of A) and is only a fortriori a consequence of pole assignability. The proof is 
conceptually quite different from that based on the stronger pole assignability 
assumption. 

Proposition 11. Let (A, ~ ) be reachable. Assume that there is a rank n - 1 summand 
o f  M which is A-invariant. Then ~ contains a rank I summand o f  M. In particular, 
this happens i f  ZA has the form (z-al)g2,  where ( (z -a l ) ,  g2) (ideal generated over 
R[z])=R[z]. 

Proof. Let M = P ~ Q ,  with P of rank 1 and A Q ~ Q ,  and let 1 t : M ~ P  be the 
canonical projection. We claim that lt l~  is onto. If this is established then, since 
P is projective, there will exist a linear j : P ~ M  with 7t o j =  1p and im(j)  ~ ~,  so 
that the in'age of j will be the desired summand. The last conclusion will then 
follow: since z - a l  and X2 are relatively prime over R[z], M as an R[z]-module 
(with zx: = Ax) splits into two submodules, one of which is Q: = ker(x2(A)) (a com- 
plement is im(x2(A)), and Q is A-invariant. Tensoring with all possible p ~ Spec(R) 
preserves the above characteristic polynomial, so Q indeed has rank n -  1. 

So we must prove that 7t o z : ~ - ~ P  is onto, where I is the inclusion map. 
Equivalently, since P has rank 1 we must establish that this composition remains 
nonzero when tensoring by all R/p,  p maximal. Pick any such p, and assume that 
the composition is zero, i.e. ~t(p) o l(p) = 0. Since Q induces a summand Q(p) which 
is A(p)-invariant, we are reduced to the case where R is a field and there is a proper 
A-invariant subspace Q of R n which contains ~.  This contradicts the fact that the 
system (A, ~ ) (p )  is reachable, and the proof is complete. [] 

Corollary 12. I f  the system (A, ~ )  is pole-assignable, ~ contains a rank 1 summand 
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of M. I f  R is a PA ring, all projective modules over R split into rank 1 summands. 

Proof. As remarked earlier, (A, ~ )  is reachable. By pole assignability, there is an 
F- ,4  (rood ~ )  such that Xe = z ( z -  1) n- 1, and (F, ~ )  is again reachable. Thus Pro- 
position 11 applies to this new system. If M is any given projective module and R 
is a PA ring, we may apply the argument to (0, M), which is a reachable system and 
hence is pole assignable. Thus M has a rank 1 summand and the last conclusion 
follows by induction on the rank of M. [] 

The following theorem generalizes the result in [4, Corollary 3.6]. The proof is 
the obvious generalization of the projective-free case treated there. 

Theorem A. R is a PA ring i f f  A - l ~  contains a rank 1 summand o f  M whenever 
(A, ~ ) is reachable. 

Proof. Assume that F - A  (mod ~ )  has characteristic polynomial z ( z -  1) n-t .  Since 
z and ( z -  1)n- ~ are relatively prime over R[z], M splits into two submodules one 
of which, P := ker(F), is of rank 1. Since F - A  (mod ~) ,  A P c  ~, as desired. Alter- 
natively, we may argue using the previous lemma: first find F - A  (mod ~ )  with 
characteristic polynomial (z+ 1)n; now F is invertible so F - I ~ - - ~  contains a 
summand, and the congruence implies that A - ~  = F - ~ .  

Conversely, assume that (A, ~ )  is reachable. If n = 1, then ~ = M, so A - F  for 
every F: M ~ M ,  and the result follows from the identification End(M) = R. Assume 
inductively that all systems of rank n - 1 are pole-assignable. Pick any t~l in R, and 
let J be the map A - a l l  Since (J, ~ )  is again reachable, by hypothesis there is a 
rank 1 summand Q of M contained in j - l ~ ,  i.e. ( A - a I I ) Q c ~ .  Writing 
M=Q@P, there exists a C : M - - , M  that satisfies Cq=alq for all qEQ and 
Cx = Ax for x e P. Thus C -  A (mod ~ )  and CQ c Q. 

Since Q is C-invariant, the latter induces an endomorphism D of N :--M/Q 
(=P).  Let ~ '  be the image of M on N. Then, (D, M') is again a reachable system, 
since this is the situation in equation (3). By induction, there is an E : N-- ,N such 
that D - E  (mod ~ ' )  and its characteristic polynomial is ~2 := (Z--~2)"'" (Z--t~n). 
Let L' := E -  D : N--,N. Since im(L') c ~ '  and N is projective, there is a lifting 
L": N--,M which satisfies im(L") c ~.  Let L : M-- ,Mbe  the composition of the quo- 
tient map M - ~ N  with L", so that im(L)c_ ~,  L(Q)=0 ,  and L induces L" on N. 
Define F : =  C+L,  so that F - A  (mod ~) .  By construction, F coincides with C on 
Q, and induces E on N, so XF = (Z--al)X2 as desired. [] 

Corollary 13. I f  property (t) holds, in particular i f  R is as in Corollary 2 or is a 
Dedekind domain, R is a PA ring. 

Proof. Follows from Theorem A and Lemma 7. [] 
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We now state some, mainly negative, consequences of Proposition 11. These ex. 
plain the various counterexamples in the literature regarding PAF rings (see [4], 
[22], [23], [18]). The constructions in the next two lemmas are minor modifications 
of those given independently by [3] and [18], where they are given (in slightly dif. 
ferent form) in the case when R is Noetherian (or a certain submodule is finitely 
generated). They are in turn the generalizations to n > 2 of those given in [22]. 

Lemma 14. Let I be an ideal o f  R, and let 7t : R ~ S ,  S :=R/I ,  be the canonical map. 
Assume that (F, ~) is a reachable free system over S. Then there is a reachable free 
system (A, ~ )  over R such that ~ ® S =  ~ and such that, i f  x = ( z - a 1 )  "" (Z-an) 
is a polynomial f o r  A ( m o d e ) ,  then 7t (X):=(z- l t (al ) ) . . . ( z -Tt(an))  is a 
polynomial for  F (mod ~). 

Proof. It is more convenient to work with matrices, so let F ~  S nxn  and G ~ S  mxn 

be so that (F, im(G)) is the given system when interpreted in the standard basis of 
S n. Let A ~R  nxn be any matrix liftingF, and let B ' E R  mxm lift G. Consider the 
matrix T:= (B', A B ' , . . . , A  n- lB ' ) .  Let T(I) be the reduction of T modulo /. 
Reachability of (F, im(G)) means that the columns of T(I) span S n. Consider the 
elements 7t(ei), i =  1, ... ,n, where ei is the i-th element of the standard basis of R n. 
Then it(e/) is in the column space of T(I), so there exists for each i an element vi in 
the column space of T such that l t(ei-  oi)=0, i.e. for some wi ~ I  n, ei = vi + wi. 
Now let B be the matrix obtained by adjoining to B'  the columns wi. By construc- 
tion, (A, ira(B)) is reachable. Further, since the last n columns of B reduce to zero 

X 

modulo I, i m ( B ) ® S = i m ( G ) ,  as wanted. Finally, if A + B K  has characteristic 
polynomial X then, reducing modulo I results in F+ GL having characteristic 
polynomial 7t(X), where L is obtained by dropping the last n rows of K and reducing 
the resulting matrix modulo L [] 

Corollary 15. I f  R is a P A F  ring, then R / I  is a P A F  ring for  each ideal I o f  R. [] 

Lemma 16. Assume that P is a projective such that p t  (direct sum with itself) is 
free for  some t. Then there is a reachable free system (A, ~ )  with ~ = P. 

Proof. Let ¢ : P ( ~ - - - ~ P ~ R  n be the isomorphism. Pick ~ := ¢ (first factor), and 
define A : R n --,R n as the conjugate under ¢ of the cyclic permutation of the P's. 
This is as desired. [] 

Corollary 17. Let R be a P A F  ring. I f  P is as in Lemma 16, then P has a rank 1 
summand. 

Proof. Clear from Lemma 16 and the first part of Corollary 12. [] 

Recall that a stably free module is one from which P ~ R  s is free for some k, and 



New results on pole-shifting 239 

that a Hermite ring is one for which all stably free modules are free. A theorem of 
Gabel and Lam [15, Theorem IV.44], which can be proved as a simple consequence 
of Bass' theorem [14, Theorem 7.3], shows that if  P is a stably free module then 

pk is free for some k. 

Theorem B. Let R be a PAF ring fo r  which rank 1 projectives are free. Let I be any 
ideal o f  R, and S := R / L  Then, i f  P is any projective S-module such that p t  is free 
for some t, then P is itself free. In particular, every quotient o f  R is a Hermite ring. 

Proof. Let P be of that form. We shall proceed by induction on the rank l of  P, 
the case l = 0 being trivial. By Lemma 16, there is a free reachable system (F, ~)  
with ~ = P .  By Lemma 14, there is then a free reachable system (A, ~ )  over R with 

® S= P. Since R is a PAF ring, ~ must by Corollary 12 contain a rank 1, hence 
flee, summand. Tensoring with S, we conclude that P has a free summand S. Write 
P=SO)Q. Then, Q t G S t  is free, so that Qt is stably free and so, by the remark 

before the theorem, itself satisfies the hypothesis on P. Since r ank(Q)=  l -  1, Q is 

by induction free, and hence so is P. [] 

For example, one may apply the theorem in order to conclude that, for many 

topological spaces X, the ring T°(X) cannot be a PAF ring: 

Corollary 18. I f  X is a normal topological space having a subspace W which is 
homeomorphic to a closed disk in ~2, then R = T°(X) is not a PAF  ring. 

Proof. Since W is compact, it is closed, so by the Tietze extension theorem every 
function on W extends to a function on X. Thus T°(W) is isomorphic to R/I ,  
where I is the ideal of  R consisting of those functions which vanish on W. It follows 
from Corollary 15 that, if R were a PAF ring, T°(W) would also be. So assume 
now that X =  a closed disk in R 2. Without loss, we may assume that X contains ~1, 
so V0(~l) is a quotient of T°(X). The module P of sections of the Moebius band, 
seen as a line bundle over ~1, satisfies P @ P =  free, but is not free. On the other 
hand, X being contractible implies that all projectives over R are free. The conclu- 

sion then follows from the theorem. [] 

The following positive result will not be used in the next section, but relates very 

naturally to the material presented here. 

Proposition 19. I f  (A, ~ )  is a free reachable system and ~ is a rank 1 summand, 
then every monic polynomial o f  degree n is a polynomial o f  A (mod ~) .  

Proof. In terms of matrices, we are assuming that ~ = im(B), where B is a nonzero 
m×n matrix of rank 1. We want to show that the mapping ¢~ :Rrnn- -*R n :K--* 
coefficients of the characteristic polynomial of  A + BK, is onto. We claim that this 
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map is affine (linear + translation), and tensoring modulo any maximal ideal p of 
R results in the analogous map for (A, ~ ) (p ) .  Since the corresponding result is true 
over fields (the classical pole-shifting theorem), the local-global principle will give 
the desired conclusion. 

We shall prove that d e t ( z / -  A - BK) = ;fA - t race{cof(z / -  A ) B K } ,  where 'cop 
denotes the transpose matrix of  cofactors. This will establish that ~ is indeed affine 
and behaves as claimed under tensoring. First note that, for any matrix G of deter. 
minantal rank _< 1, d e t ( / - G ) =  1 -  trace(G). This is because for any G the char- 
acteristic polynomial of G is of  the form z n -  t race(G)zn-l  + .. . ,  where the coef- 
ficients not displayed are all linear combinations of  r x r minors of G, with r > 2, 
and hence all vanish in this case. Substituting z = 1 gives d e t ( I -  G) = 1 - trace(G). 
Now apply this observation to the matrix G := ( z I - A ) - 1 B K ,  over the fraction ring 
T-IR[z], where T=se t  of monic polynomials. Then G has rank at most 1 
(Cauchy-Binet),  so d e t ( z / - A  - BK) =XA d e t ( / -  G) =ZA(1 - t race{ ( z I -A) - lBK})  

is as claimed. [] 

Since R is reduced, the proof  could have been simplified somewhat by arguing 
modulo all primes and hence basically dealing with the case of fields, but as given 
it applies to arbitrary commutative rings. Note that even if property (t)  holds, one 
may not reduce pole assignment to this case, since replacing ~ by a submodule of 
it will in general destroy reachability. In fact, it is known that the conclusion is in 
general false for reachable systems over most rings satisfying (t),  including principal 
ideal domains like Z and JR[z] (see the material on 'coefficient assignment' in [4]). 

Remark. We have recently noticed the reference [8], which provides an ingenious 
construction over principal ideal domains. As the author notes, some facts are valid 
over more general rings. It is clear that the construction in that paper could serve 
as the basis for an alternative version of Theorem A, stated in terms of ~ instead 
of  A - l ~ .  

6. Families of systems 

We now study ~he case of  rings of real-valued functions ~'k(x),  k = 0, oo or co, 
where X is a topological, smooth, or real-analytic manifold respectively. By 
'manifold '  we mean Hausdorff ,  second countable, connected. 'Diffeomorphism' 
means smooth or analytic, depending on the context. The ring structure is that of 
pointwise operations. Systems over this type of ring correspond to 'families of 
systems' (A(x~ B(x)) obtained by pointwise evaluations at the x in X. See [20] for 
an introduction to the topic of  control of families of  systems. Since an element of 
~'k(X) is a unit iff it is nowhere vanishing, reachability corresponds to the 
simultaneous reachability of all systems in the family. The result to be proved is as 
follows. 
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Theorem C. ~k(X)  is a PA ring i f f  X has dimension 1. 

The proof will actually show that in the case of dimension > 1, Tk(x )  is not 
evey a PAF ring. It is easy to prove that the manifold X has dimension 1 iff  X is 
homeomorphic (diffeomorphic for k=oo, og) to ~ or to $1; see for instance [7, 
3.16.2, problem 6] (which deals with the smooth case T~, but the same proof ap- 
plies in general). Thus, we need to prove the positive result for these two manifolds, 
and the negative result for manifolds of dimension d_> 2. 

6.1. Negative results 

Corollary 18 already shows that ~°(X) is not a PAF ring for X with d>__2. A 
similar proof could be used in the smooth case, but not in the analytic case. For 
those two cases, we may  argue however as follows. 

By Whitney's embedding theorem (see e.g. [17, p. 149]), we may, and shall, 
assume without loss that X is an embedded submanifold of  ~q, for some large 
enough q. Further, we may assume that 0 e X and that the tangent space to X at 
0 (as a subspace of the tangent space to IP q at 0, identified to ~q itself) is the 
subspace ~d defined by the equations Xd+I=... =Xq=0. Consider the orthogonal 
projection n : ~ q ~ R  a, and the composition 0 := rro i, where i : X-*~, q is the inclu- 
sion mapping. Thus the differential of  0 at 0 is the identity. By the inverse function 
theorem, there are open neighborhoods U of 0 in X and V of  0 in iRa which are dif- 
feomorphic under 0. Applying if  needed a linear transformation on ~q, we may 
assume that V is an open subset of  /R d containing the unit sphere of  IR d. Let 

: V ~  U be a diffeomorphism such that rt o a = 1 e. 
Assume that (F, ~) is a free reachable system over Tk(~q), G a matrix whose col- 

umns span ~, with the property that all entries of F and G are invariant under ~, 
i.e. that all fij(x) =f/j(rr(x)) and similarly for G. Restricting all entries of  F and G, 
(F, ~) induces a reachable system (A ,~ )  over Tk(x) ,  with B=restr ic t ion of G. 
Assume that (A, ~ ) would be a PAF  ring, and consider any splitting polynomial X 
over ~k(~q) which is also invariant as above. Its restriction to X is then a poly- 
nomial of A (mod ~) .  Thus there is a matrix K'  over ~ k ( x )  such that A + BK' has 
characteristic polynomial X. On V define K(x):=K'(tr(x)). It follows from n- 
invariance that the restriction of A + BK to V has characteristic polynomial X. If we 
given then an example of an (F, ~)  and X as above for which the restrictions to V 
are such that X is not a characteristic polynomial of  F (mod ~), we'll have a con- 
tradiction, and ~k(X) will not be a PAF ring. 

In [4] an instance is given of a system in ~2 with the property that its restriction 
to any open set containing the unit circle does not admit e.g. z 2 as a characteristic 
polynomial under feedback. Embedd ~2 in the first two coordinates of ~d (recall 
that we are dealing with the case d_>2), and let (F, ~)  be the same system seen as 
a family over IRq, that is, the system that extends the one in [4] and is invariant 
under the orthogonal projection on ~2. This provides the required example. 
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6.2. Analytic cases, dimension 1 

T h e  case ~ o ( ~ )  was already treated in [4]: R is an elementary divisor domain, so 
Corollary 13 applies. (Since elementary divisor rings are projective-free, there is no 
difference in that case between the PA and the PAF properties.) For ~o~(~l) that 
argument will not apply, since this ring is not (even) Bezout. However, we shall still 
use Corollary 13. In fact, most results in this paper were derived in the process of 
proving that ~ ° ( S l ) ,  and those in the next secion, are PA rings. 

Proposition 20. R = ~ ° ( $ 1 )  satisfies the hypothesis o f  Corollary 2. 

Proof.  Note first that the maximal ideals of R are precisely the ideals PC := { f v R  
s.t. f ( O  = 0}, for ~ e S 1. This is a standard compactness argument: if I is an ideal 
with no common zeroes then for each ~ there is an f ~ I  with f ( O  #:0 in a 
neighborhood of ~. Choosing a finite cover by such neighborhoods the sum of the 
squares of the corresponding f ' s  is an element o f / w h i c h  is nowhere zero and hence 
a unit. Thus every proper ideal is contained in some PC- If h~:0, it can have only 
finitely many zeroes in S l, by compactness and analiticity. Thus V(h) is indeed 
finite. Finally, each PC is of the form V(h~) for some h~: identifying ~co(~1) with 
the ring of real analytic functions of period it, pick h~(x):= s i n 2 ( x - O .  [] 

Actually, ~° '($1) is Dedekind, with torsion ideal class group: each PC is gener- 
ated by the element given above and an element that has a zero of  order 1 at ~ and 
another zero of  order 1 at a different point. The essential valuations of R are the 
v~(h) :=order  of  h at ~, and p~=(h~). 

6.2. Continuous and smooth cases, dimension 1 

We again use Corollary 13. As in the proof of Lemma 1, it will suffice to establish 
that,  for R = ~k(X),  k = 0, oo, X =  R, S 1, and for any n x m matrix G over R with 
c(G) = R, and rank > 1 there is a matrix V such that G V has rank = 1 at all x in X 
and c (GV)=R.  The condition c(G)=R is equivalent here to: G(x):/:O for all x in 
X. We'll prove somewhat  more than explicitely needed: for any such G, even just 
continuous, there is a smooth vector o(x) such that G(x)v(x) is nonzero for all x. 

\ 

Lemma 21. (a) Let G be an n x m matrix o f  real-valued continuous functions defined 
on the half-closed interval [0, 1), and assume that G(x):/: 0 for  all x in U. Suppose 
that G(O)vo#:O. Then there exists an m-vector o o f  real-valued functions, smooth 
on [0, 1), and an e > O, such that 

(i) o(x)= Vo (constant) for all O<_x<_e, and 
(ii) G(x)o(x)~O for  all 0_<x< 1. 

(b) Let G be an n x m matrix o f  real-valued continuous functions defined on the 
closed interval [0, 1], and assume that G(x)~O for  all x in U. Suppose that 
G(O)vo~O and G(1)vf:#O. I f  rank[G(1)] > 1, then there exists an m-vector o o f  real- 
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valued functions,  smooth on [0, 1 ], and an e > O, such that 
(i) o(x) = Vo (constant) f o r  all O < x < e ,  

(ii) o(x) = vf (constant) f o r  all 1 - e < x <  1, and 
(iii) G(x)o(x)#=O f o r  all O < x <  1. 

Proof .  (a) For each ~e  [0, 1) there is a v such that G(Ov~=0, and hence such that 
G(x)v =/= 0 for all x in an open interval (relative to [0, 1)) around ~. Obtain a locally 
finite countable subcover of [0, 1) consisting of such intervals. We may assume the 

subcovering to be a union of sets of  the form (ai, bi), i = 1, 2, ..., and [a0, bo), 
a0 = 0; further we may assume that a0 < al < b0 < a2 < bl < " - .  Associated to these 
are vectors oi with G(x)oi=/:O in the corresponding interval, and Oo = Vo. We shall 
say that oi and oi+1 are compatible at x iff G(x)Oi+l is not a negative multiple of 
G(x)oi. For i =0, 1, ..., we modify the intervals (ai, bi) and the oi as follows: If oi 
and oi+1 are incompatible for every x in (ai+l,bi), then we replace oi+1 by its 
negative, -oi+1. Otherwise, there is a subinterval (a, fl) of  (ai+ 1, bi) on which they 
are compatible for all x; in that case, we replace ai+ 1 by a and bi by ft. Thus we 
achieve that oi and Oi+l are compatible on each interval (ai+l,bi) , the overlap 
between successive intervals in the above cover. Next, choose To~ functions 

¢~i: [0, 1)~[0, 1], i=0,  ..., such that ¢~i vanishes for x<ai+ 1 and ~i(X) = 1 for X>-~b i. 

Finally, define o(.) on the first interval of the covering, and on successive intervals 
of the form [bi- 1, bi] as follows: 

t 
o(x) := Vo for ao<_x<al, 
O(X) : :  0 i for b i_ 1 <-x<-ai+ 1, 

, o (x)  :=(1 -qb i )o i+qbiOi+l  for ai+l <_X<_bi . 

This satisfies the requirements. 
(b) The construction of o(.) is similar to (a). The only difference is that we have 

here a f inite cover, and in the last interval, say (ar, br = 1], we choose Or = vy. In ad- 
dition, since G(1) has rank at least 2, we also have that G(x) has rank at least 2 for 
x in some interval (1 - e ,  1], e > 0 .  We choose x0 larger than 1 - e  and br - i  and u 
such that R(xo)U and R(xo)vy are independent. Let ar+ 1 be a point between b r_ 1 

and x0, and redefine br to be any point in the interval (x0, 1), such that G(x)u and 
G(x)vf are independent in that interval. Now let br+ 1 := 1, and redefine Or := u and 
Or+ 1 := Vf. NOW proceed as before; by construction, Or and Or+ 1 are compatible in 
some interval, so we do not need to replace vf. [] 

Corollary 22. Tk(R) satisfies property (~f) f o r  k = O, co. 

Proof .  Pick any v0 such that G(O)vo :~0. We apply part (a) of the lemma twice, 
identifying first [0, 1) with [0, + oo) and then with ( -  0% 0]. The functions in both in- 
tervals match well to give a smooth function, since they are constant in a neighbor- 
hood of zero. [] 
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Corollary 23. cgk(Sl) satisfies proper ty  (?) f o r  k = O, oo. 

Proof.  We represent S 1 as [0, 1] with endpoints identified, and assume without loss 
that G ( 0 ) = G ( I )  has rank.at  least 2. Choose v0 such that G(O)vo=G(1)v o is 
nonzero, and apply part (b) of  the lemma with v0 = vl. The function obtained has 
v(0) = v(1) and is constant in a neighborhood of  0, so defines a smooth function on 
S 1. [] 
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