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AN APPROACH TO DETECTABILITY AND OBSERVERS
M. L. J. Hautus* and tduardo D. Sontag**

ABSTRACT. This paper proposes an approach to
the problem of establishing the existence of
observers for deterministic dynamical systems.
This approach differs from the standard one
based on Luenberger observers in that the obser-
vation error is not required to be Markovian
given the past input and output data. A gen-
eral abstract result is given, which special-
izes to new results for parametrized families
of linear systems, delay systems and other
classes of systems. Related problems of feed-
back control and regulation are also studied.

1. INTRODUCTION., An observer for a given dynamical system
L s, roughly, a system T which accepts as input the inputs
u(+) and outputs y(+) of I, and whose output x(t) at
time t asymptotically approaches the internal state x(t) of
the original system, whatever x(0) was. The definition may
require that this convergence occur for any initial state z(0)
of I, or just for a fixed state, say z(0) = 0. A reasonable
design requirement is that § be somehow stable itself, For a
linear observer & this will imply that £ will remain an
observer for any initial state z(0). The definitions of
"asymptotically," "stable," etc. will, of course, have to be
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made precise in the different contexts, A stronger design
objective usually adds that observers be obtained with given
rates of convergence of x(t) - x(t) to zero; more generally,
one may ask for specific dynamics for the observation error
e(t) = x(t) - x(t). When £ and & are linear systems, the
error convergence rates are independent of u{+); in a nonlin-
ear context the situation is more delicate, and when rates are
independent of the particular input in a fixed set, one speaks
of "uniform” observers with respect to that set. It is also of
interest to determine when an observer £ exists which is of
the same "type" as £; for example, if I dis a delay-differ-
ential system with all delays multiples of, say, TyseessT

r!

one would like to study the existence of observers £ which are

also delay-differential with all delays multiples of the Ty
One may also consider observers for a parametrized family of

Indeed, assume that each L

systems = is a system of a

given kindxand that the L, are finite]yxparametrized by a
(vector) parameter XA; for example the coefficients defining
ZA may be polynomial in X or rational functions (with no
poles), It is natural then to ask for a corresponding family
of observers EA’ with the %A also finitely parametrized and
if possible using the same kind of functions (polynomials,
rational functions). This situation appears when a design is
desired previous to the identification of certain parameters,
or when these parameters are subject to change.

The standard (textbook) approach to observer design for lin-
ear systems is based on the "Luenberger observer" or "determinis-
tic Kalman filter"; in this case one searches for observers in
which the error e(t) given the past input/output data is
Markovian. In other words, attention is restricted to observers
T whose measurement function is the identity: x(t) = z(t).
Because of the success of this approach, the study of more gen-
eral linear situations (delay and other distributed Tinear sys-
tems, family of systems, and multidimensional filters), as well

as the study of nonlinear observers, has been directed towards



DETECTABILITY AND OBSERVERS 101

such Luenberger-like observers. This has run into a number of
highly technical difficulties, for example, those dealing with
the extensions of the pole-shifting theorem to systems over
rings, as well as necessitating strong algebraic notions of ob-
servability. Recent counter-examples [Bumby et al., 1979] show
that this approach may in general fail to work.

This paper de-emphasizes "Luenberger" observers through a
direct construction methodology for more general observers, It
appears that the approach presented here is new even in the
"classical" linear finite dimensional case. The central fact
is that while the standard observer construction ig an inher-
ently nonlinear problem, the construction of more general ob-
servers can be posed in many cases as a linear problem once "lin-
earity’” 1S properly interpreted. We shall present a series of
abstract results which characterize the existence of observers,
(with arbitrary or with fixed rates of convergence), in the con-
text of linear systems over rings. Necessary and sufficient
conditions are given in terms of corresponding notions of detect-
ability. These results will be then specialized to delay sys-
tems and to families of systems. In the first case we shall
obtain observers that have a delay structure similar to that of
the original system and, it appears from examples, a simpler
structure than that obtained when other methods in the litera-
ture are applicable. In the case of families of systems, the
results will be basically that a polynomial or rational family,
when each system is observable, admits a similarly parametrized
family of observers. Although the results are in principle lin-
ear, we shall point out potential applications to bilinear and
other state-affine systems.

Some of the above results admit dualizations into statements
about (dynamic) state-feedback controllers. We shall present a
result along these lines, as well as a partial result on the
solution of the reguiator problem. Applied for examples to
delay-differential systems, the latter permits the input/output
regulation of a wide class of transfer functions, using delay
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systems of the same type, under conditions very much weaker than
those obtained previously ("split realization" construction),

The next section will present the basic definitions and some
preliminary results, while section 3 describes and proves the
main ("detectability is equivalent to existence of observers")
result, After that, we specialize to families of systems and
delay systems, and briefly treat the regulator problem. Various
open problems are posed through the paper.

2. DEFINITIONS AND PRELIMINARIES. Our approach in this
paper will rely heavily upon the theory of Tinear systems over
rings, as developed for example in Rouchaleau [1972], Rouchaleau
et al. [1974], Kamen [1975], Sontag [1976], Kamen [1978], Rouch-
aleau and Sontag [1979], and others. Since we want our results
to apply in general, including to both discrete- and continuous-
time systems, we shall work formally with transfer functions
being rational in a symbol "s", which will correspond to
either the Laplace or the z-transform variable, depending on the
applications, Similarly, systems will be just formal objects
identified with their defining matrices. The various manipula-
tions with transfer matrices can be made rigorous with respect
to the different applications, in terms of Laplace or z-trans-
forms, or in terms of operators in function spaces.

Unless otherwise stated, R will denote an arbitrary but
fixed integral domain with an identity element; R[s] will be
the ring of polynomials in the indeterminate s+A (causal)
transfer function w(s) 1is just a rational function p(s)q(s)']
with p,qg in R[s], q monic in s, and deg q 2 deg p;

w(s) is called strictly causal when the latter inequality is
1j) is a
matrix for which each entry is a [strictly] causal transfer func-

strict. A [strictly] causal transfer matrix W = (w

tion. A system (over R, of dimension n, with m inputs

and p outputs) is a quadruple I = (F,G,H,J), where F is

an nxn, G an nxm, H a pxn, and 3 a pxm matrix,
The intuitive interpretation of a system is given by the
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equations
sx = Fx + Gu
(2.1)
y = Hx + Ju
where the x's play the role of "state variables," u of
inputs and y of outputs. Sometimes we refer to the equations
(2.1) rather than to the quadruple (F,G,H,J) as the system =I.
When G, H, or J are irrelevant we shall refer to the "sys-
tem" (F,H), or (F,G), etc., the meaning being clear from the
context. A system is called strictly causal if J = 0,
It is well known from the theory of linear systems over
rings (see e.g., Eilenberg [1974, Chapter XVI]) that a causal
W admits a realization, i.e., a system I = (F,G,H,J) such
that W = H{sl -F)-]G +J. (A11 operations are performed for
matrices over the ring of rational functions R(s)). In fact,
and this will be of importance later, if q 1is a common denomi-
nator for the entries of W, then a realization can be obtained
for which the characteristic polynomial of F 1is a power of q.
(Thus in applications, g having "no unstable zeroes" will
insure a suitable "internal stability" for at least one realiza-
tion.) Of course, many realizations are possible for a given
W, but this need not concern us here,
Intuitively, if a system I given by (2.1) realizes W,
then elimination of x in (2.1) yields y = Wu, i.e., W is
the transfer matrix from u to y of £, and hence character-
izes the input/output behavior of £. Conversely, given a =
as in (2.1), there is a well-defined causal transfer matrix
wz : = H(sI -f)']G + J, Strict causality of (2.1) corresponds
to NE being strictly causal.
Recall that a linear finite-dimensional continuous-time sys-
tem (F,G,H) 1is detectable when all its unstable modes are
observable or (see Hautus [1969, 1970]) equivalently when

sI - F
rank ( ] =n (2.2)
H
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for all complex s with Re s = 0, For discrete-time systems
this is replaced by (2.2) for |s| =z 1. It is well known that
for such systems (2.2) is equivalent to the existence of ob-
servers, More generally, one may call (F,G,H) Q-detectable,
where Q 1is a subset of &, 1if the span of the generalized s-
eigenvectors, for s in Q, contains no state indistinguishable
from zero, or equivalently if (2.2) holds for all s in ¢Q.

When Q is the set of s with Re s > -a (|s| > a for dis-
crete time), Q-detectability is equivalent to the existence of
observers with convergence rates better than a (as e'bt in
continuous time, or bt in discrete time, for any b > a).
Observability 1s equivalent to detectability with arbitrary
rates, i.e., (2.2) for all s € C.

We now want to generalize the above concepts. Although a
definition of detectability is possible for arbitrary commuta-
tive rings R, we shall state it only for rings R which are
rings of rational functions over a field k. This restriction
will simplify matters considerably and will suffice for the
applications to follow, Assume then that R 1dis a subring of

k(c],...,or), with k a field and the o algebraically

independent over k. Let K be an algebraically closed exten-
sion field of k. Let @ be a subset of Kr+1. We shall say
that a system I = (F,G,H,J) over R, or just the pair (F,H),
is Q-detectable if and only if
s - F(o)
rank =n (2.3)
H(o)

for all (5,3) € Q, where & = (01""’0r)' The definition
implicitly assumes that Q is admissible, i.e., that these
evaluations are always defined on R, (Note that we use bars

to denote particular elements (5,0), not complex conjugation.)
For the more standard finite-dimensional linear system case, k
above is either R or T, r=0 and K=10, so that 2 is

a subset of @ itself, In most examples of interest it will
turn out that we may choose K = kc’ the algebraic closure of k.
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We shall say that I 1is (strongly or algebraically) observ-
able if

P = [HLFHY, P T

has a right inverse over R. (Prime indicates transpose.)} This
concept of observability is not to be confused with the much
weaker condition of observability that appears in realization
theory over rings, namely that P' have rank n over the quo-
tient field of R. Rather, this condition of (strong) observ-
ability is equivalent to (F',H') being (ring-)reachable,

Observability and detectability are related according to the
following:

(2.4) PROPOSITION. (i) If I <is observable then L is
Q-detectable for all admissible Q (and all K), (ii) If K
18 a universal field over k (Z.e., an algebraically closed
infinite transcendental extension of k), and ¥ 18 Q-detectable
for all admissible Q, then I is observable.

Proof. (i) Let (5,0) be in some Q. Then P'(c) is
right invertible over the field K and hence (see Hautus [1969])
(2.3) is true for all s € K,

(ii) If £ 1is not observable then there is a maximal ideal
M such that P' reduced mod M is not right invertible over
R/M., But R being a k-algebra implies that R/M is a (finitely
generated) field extension of k and hence that it can be
embedded in K. Reducing mod M becomes then evaluation at
some point of K'. Thus for some & in K", P'(5) is not
right invertible, and, again by the results over fields, there
is an § such that (2.3) fails. So, (F,H) s not {(5,0)}-
detectable, contrary to the assumption. i}

Turning now towards the definition of observer, we first
need to define a property corresponding to convergence, or equi-
valently for our purposes, to stability. We do this by choosing
a family of "stable polynomials.," A stability set S will be
any multiplicative subset of R[s] which consists entirely of
monic polynomials, contains at least one Tinear monomial s + a,
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a in R, and which is saturated, i.e. such that pg € S
and p and q monic implies that both p and q are in s.
[An example to keep in mind is S = set of monic polynomials
over R, or over [, with no roots with real part greater than
-a, for some fixed real number a.] With respect to such a
fixed S, a sfable transfer function is one that admits a
representation pq'] with q in S; a stable transfer matrix
has each entry stable. Thus W 1is stable if and only if it
admits some realization (F,G,H,J) which is stable, i.e., such
that the characteristic polynomial of F dis in S.

Ltet z = (F,G,H,J) be an n-dimensional system with m 1inputs
and p outputs. An observer ¢ = (A,(B],Bz), c, (D],Dz)) for
Z (relative to a given stability set S) will be a stable sys-
tem (over the same ring R) with m + p inputs and n outputs
such that, solving formally the equations

sx = Fx + Gu + v
y = Hx + Ju
(2.5)
sz = Az + B]u + Bzy
x =Cz + D]u + D2y
leads to an eguation
¥ -x=M(s)v, (2.6)

for some stable transfer matrix M, (The phrase "solving for-
mally" may be rigorously interpreted by assuming that x,u,v,
etc., are vectors of independent variables over R[s], and
operating in a suitable extension of this ring; we shall be
doing this implicitly.)

Several comments are in order. The definition of observer
sketched in the introduction involved initial states and conver-
gence of e = % - x to zero. It is not reasonable, however,
to introduce initial states in our context, since our setup will
specialize into areas where values of x do not correspond to
true states, in that knowledge of such values at a given time
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does not determine a unique solution of the equation for future
times. (For example, in the case of delay systems the natural
"initial states" are in appropriate function spaces; more gen-
erally, when R is a ring of operators states may belong to
sets quite unrelated to R itself.) "Solving formally" trans-
lates in such applications into assuming that all variables are
zero for sufficiently negative times, The concept of initial
state can be replaced by the addition of a "disturbance input"
v whose effect on I s what the observer tries to determine.
{An independent "disturbance input" w could be added to the
observer (z) equation in (2.5) to take into account the effect
of initial states of £, but stability of § insures that the
effect of w on e will be only through a stable transfer
matrix, and hence will not effect observer performance.)
Finally, we shall restrict attention to strictly causal I
(J = 0) and observers with D] = 0: if I observes (F,G,H,0)
then adding a "+Ju" term to X gives an observer for
(F,G,H,d).

We shall be interested also in questions of feedback control.
A reachable system has the matrix [G,FG,...,Fn—]G] right
invertible over R. This is again equivaient to a dual condi-
tion to (2.3), since reachability corresponds to observability
of (F',6'). Again with reference to a stability set S, a
feedback controller for a system I will be a system 21 =
(A,B,C,D) with n dnputs and m outputs such that solving
formally the equations

sX = Fx + Gu + v

sz = Az + Bx

(2.7)

y = Cz + Dx

u-=-y

results in x = W(s)v and z = (sI- A)']Bw(s)v, where W(s)

and (sl -A)']Bw(s) are both stable transfer matrices. Thus a
feedback controller Z] will, in applications, when started



108 M. L. J. HAUTUS and EDUARDO D. SONTAG

with z = 0, force the state of I to zero while keeping its
own state-variable "small." The problem of finding feedback
controllers will be dual to that of finding observers with a
special structure.

Finally, we define what we mean by a regulator (with respect
to a given S) for a transfer matrix W, or for a realization
T of W: this is a stable z, which accepts inputs and
outputs of L as inputs, and such that, as in (2.7) the state
of I becomes for the closed-loop system, a stable function of
disturbances. A regulator for W is by definition a regulator
for some realization of W.

3. GENERAL RESULTS. We shall first investigate the struc-
ture of the ring Tr(S) of transfer functions stable with
respect to a fixed stability set S. Recall that there is an
a in R with s +a in S. Working in the quotient field
Q(s) of R[s], consider the field automorphism = induced by
the evaluation

For each

in S, we denote
1

d(s):=s < q(s" - a)

and let T be the subset of R[s] consisting of all such 4§,
We claim that

2(Tr(s)) = T (R[s]) . (3.1)

(The right-hand term denotes the ring of fractions with respect
to T.) It is clear that =n(Tr(S)) is included in T'](R[S]);
to prove the converse it will be enough to see that the monomial
s and every a'] are in the image of m, But s= n((s-+a)']),
and for q as above,

(s + o)) =57,
as wanted.
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Thus  Tr(S) 1ds isomorphic to a ring of fractions of a poly-
nomial ring. This representation helps in characterizing the
maximal ideals of the former. Indeed, by standard results in
ring theory, the set of maximal ideals M of T'](R[s]) is in
a one-to-one correspondence with the set of those prime ideals
P in R[s] which are maximal with respect to the property of
not intersecting T. Moreover, the corresponding quotient
fields satisfy

TV (RIsT)/M ~ Q(R[s1/P).

and the respective residue maps coincide on R[s]. In other
words, reduction modulo maximal ideals of T"](R[s]) corre-
sponds to homomorphisms (“"evaluations")

vy:R[s] = E

into fields E such that ker y 9s maximal with respect to not
intersecting T. Such maps can be extended canonically to
T'](R[s]). The corresponding evaluations for the original ring
Tr(S) are then obtained by composition through m. (The geo-
metric interpretation of all this for R a polynomial ring will
be discussed in the next section.)

A residue map on Tr(S) is then obtained as y-m, with v
as above, We would like to be able to express such a composite
map in terms of R and s directly, But a map like this may
not admit an extension which includes R[s], since Tr(S) does
not contain s (the latter is not a causal transfer function).
An extension will exist precisely when

v(s) = (y » m)(s+a)"V =:a 0, (3.3)

This is an obviously necessary condition, and we prove it is
also sufficient, Indeed, assume that ysm maps Tr(S) into

a field E and (3.3) holds. Let e be the restriction of ¥y
to R; this is the same as the restriction of yew to R,
because m leaves R invariant. Since s 1is independent over

R, we may extend € to:

e:R[s]1 >0, e(s):=a ' - e(a)
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By the theorem on extension of places, (see e.g., Bourbaki
[1972 vI. 2.4]) there is a common extension e' of e and
yen to a subring of Q(s) containing both R[s] and Tr(S).
Thus {y-w)(s) has a well-defined meaning, since e' is
uniquely determined by vy e+,

Thus the evaluations at maximal ideals of Tr(S) can be
classified into two types: those that are zero at (s-+a)']
and those that are a fortiori defined on s. We let Max(S)
be the set of maximal ideale corresponding to the latter kind
of map. When, as in the previous section, R s a subring of
k(o],...,or), a maximal ideal of T'](R[s]) corresponds to an
evaluation at a point (s5,5) in Kr+] (K universal). The
point (5,0) is uniquely determined from M modulo the Galois
group of K over k. We denote by QT a representative set
of points (5,5) € Kr+] corresponding to maximal ideals M in
Max(S), and define {for this choice):

a(s) = {((3+a(3)7,5)(5,5) € ap . (3.4)

(Representative meaning that each maximal M appears as an eval-
uation at some such point.)

For instance, in the classical case, say for discrete-time,
S is the set of real polynomials with no zeros s with
sl =21, a can be taken to be zero, and T is the set of poly-
nomials with no roots with |s{ < 1. The residue maps for
T'}(R[s]) are thus the evaluations at such s, and 0p can be
naturally taken as corresponding to evaluations at the s with
0 < |s] <1 (assuming that XK = T). So Q(S) corresponds to
evaluations at s with |[s| > 1. Note that the (only) maximal
ideal missing from (S) 1is precisely the kernel of "evalua-
tions at s = infinity."

tet S be a fixed stability set, and R a ring of rational
functions as above. We then have the

(3.5) THEOREM. The system I admits an observer with
respect to S if and only if T is Q{S)-detectable.
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This result will be a consequence of the following result,
valid for any domain R:

(3.6) LEMMA. The system L admite an observer with respect
to S if and only if the matrix

(s+a) ' (sI-F)

(3.7)
H

has rank n when reduced modulo every marimal ideal of Tr(S).
We note first that (3.6) indeed implies (3.5) if R 1is a
ring of rational functions. By the previous remarks, maximal
ideals of Tr(S) are kernels of y's which satisfy +v(s) = 0
or which evaluate at points of Q(S). Consider first those of
type v(s) = 0. Applying 7w to each entry of the matrix in
(3.7) results in
I - sF1
(3.8)
H
when F]: = al + F, But (3.8) always has rank n when evalu-
ated at a point with s = 0. Thus, checking (3.7) at such
ideals is redundant. For the ideals corresponding to points
{s,a) of (S), evaluations give

(5 + a(3))7 (31 - F(3))
(3.9)
H(c)
and this matrix has rank n if and only if

SF - F(o)
rank =n,
H(o)

as wanted., Thus (3.5) and (3.6) are equivalent.
The validity of (3.6) will in turn follow from:
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(3.10) LEMMA. The gystem I admits an observer if and
only if there exist stable causal transfer matrices M(s), N(s)

with
sI - F

[M(s) N(s)] =1 (3,11)

If such M,N exist, M <is necessarily strictly eausal.

Assume that (3.,11) holds. Then

[(s + a)M(s) N(s)] (3.12)

is a left inverse for the matrix (3.7) over the ring Tr(S).
Conversely, if (3.7) admits a left inverse then there are M,N
as in (3.11). Over any ring, left invertibility can be checked
at each maximal ideal (see e.g. Bourbaki [1972, Chapter II]).
In other words, lemma (3.10) becomes just a restatement of
Jerma (3.6).

We now prove (3.10). Assume first that (3.11) holds. Con-
sider the transfer matrix W(s) with m+p inputs and n out-
puts corresponding to

X = M(s)Gu + N(s)y (3.13)
This transfer matrix admits a stable realization f, since
M,N are causal and stable, Assume that x satisfies
sx = Fx + Gu + v, y = Hx (3.14)

as in (2.5). Note that M{s)(sI-F) + N(s)H =1 and
(sI-F)x = Gu + v, Then

X = x = M(s)Gu + N(s)y - M(s)(sI-F)x - N(s)Hx = M(s)v,
with M stable. (3.15)

Thus & is an observer for L.
Conversely, assume that such a g exists, and consider its
transfer matrix W(s), written as

X = R(s)u + N(s)y . (3.16)
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Solving formally,
X - X = R(s)u + N{s)Hx - x

1

R(s)u + (N(s)H-T)((sI-F) T6u + (sI-F)"Tv)

[R(s) + (N(s)H = T1)(sI - F)™G]u

+ (N(s)H-T)(sI-F)" v, (3.17)

This must equal M(s)v, so

R(s) = =(N(s)H - 1)(sI-F)7\g (3.18)
and
(N(S)H-T)(sI-F)") = M(s) . (3.19)
The last equation implies that
N{(s)H - T = M(s)(sI-F) , (3.20)

i.e., that [M N] provides a Jeft inverse as in (3.11). This
completes the proof of (3.10), and hence of theorem (3.5). I

Over any domain R observers will exist if and only if the
conditions in (3.6) or (3.10) are satisfied. Since an n-column
matrix A over R has rank n over every residue field pre-
cisely when the ideal generated by the n-minors Ai(s) of A
is trivial, the above conditions amount to requiring the exis-
tence of stable rational functions ai(s) such that
Zai(s)Ai(s) is ? stable rational function. It is again easier
to work with T '(R[s]). Thus applying = and letting A% be
the minors of {3.8), observers will exist if and only if there
exist bi(s) in R[s] such that

Zbi(s)A;(s) €T. (3.21)
The actual computation of such observers, and even the verifica-
tion of (3.21), will of course depend on the ring in question.
Although such questions are usually "decidable" in the sense
of computer science for effectively presented R and suitable
finiteness conditions (Noetherian, etc.), no general reasonable
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algorithm can be expected at this level of abstraction, and our
result is purely existential, When R is a ring of rational
functions, on the other hand, methods from elimination theory
can be used; examples of such rings will appear in the next sec-
tion,

We turn now to questions of feedback control. The most gen-
eral type of statement thatone would 1ike to have is that I =
(F,G,H) admits an (S-)feedback controller if and only if
(F',H',G') is 0(S)-detectable., Unfortunately such a statement
is too general, since feedback controllers are not the precise
dual notion to observers. However, the following somewhat less
general theorem is valid, for any R:

(3.22) THEOREM. The following statements are equivalent
for T = (F,G):

(a) For each o 1in R, there is a feedback controller with
respect to the stability set

s, - (s+a)t, t =00,

(b) For each o in R and Sa as above, there exist

stable causal transfer matrices V,W such that

W
[sI-F &] =1 (3.23)
)
and W causally divides V, i.e. V = KW for some causal K.
(¢) (F,G) s reachable.

Proof. We shall prove that (a) = (b) = (c)} = (a). If (a)
holds, then we may write u = K(s)x, with a suitable K(s),
and x = W(s)v, with
1

W(s) = (sI-F+GK(s))™ (3.24)

Further, W(s) and V(s) = K(s)W(s) are both stable, by the
definition of feedback controller. Writing (3.24) as
(sI -F+GK)W = I, we conclude that

(sI-F)W + G(KW) = T,

as wanted.
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We now prove that (b) implies (c). Let M be a maximal
ideal of R and let (F(M),G(M)) denote the reduction mod M
of (F,G). Working on (R/M)[s], we have that for each o in
R there are polynomial matrices w], V1 over (R/M)[s] such
that, for some j,

(ST-F(M)Hy + GV; = (s+a(m)1 . (3.25)

But R/M being a field, this implies that
[sI-F(M), G(M)]

has rank n for each s 1in the algebraic closure of R/M

(given M,s, take any o« with a{M) # -s). Thus (F(M),G(M))

is reachable for each M, so the original system is reachable,
Assume finally that (c) holds, and pick o in R. Let

L:=F+al. Since (L G) 1is again reachable, there is a right-
1

inverse to G,LG,... G, i.e., there exist m by n matrices
b]""’bn over R w1th
n-1 -
L Gb] + ... 1 LGbn_] + Gbn =1. (3.26)
For notational convenience, we let bO: = bn+1: = 0, We define:
n .
K(s) = (s+a)" E (s+a)"” ‘]bj(F+aI)nG, (3.27a)
- Y (s+a)™ (b, (Fral) - b (F + o)™
Kz(s) - ZI(S G-) (J+‘| CII) - J( a )s
= (3.27b)
K(s) : = Ky ()T (s) (3.27¢)

By the result in the appendix, K(s) 1is a causal transfer
matrix admitting a realization L, = (A,B,C,D) such that both
W(s) i = (sT-F+6K(s))
fer matrices, in fact, polynomial matrices in (s-+a)’], so in
particular Sa-stab1e. So 1, is a feedback controller for

2
(F,G). "

and (sl -A)_1Bw(s) are causal trans-
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The above feedback construction admits a dualization in terms
of a generalized notion of "Luenberger" observer. The dual
statement is that an observable system I admits an observer
whose “"error" e = X -x satisfies an equation

se = (F-GK(s))e + v . (3.28)

This form of the observer equation is, of course, more particu-
lar than the original definition, and it corresponds to the con-
dition that M causally divide N,

4, PARAMETRIC FAMILIES OF SYSTEMS. As an application of the
results in the previous sections we consider problems related to
observation and control of families of linear systems, parame-
trized either polynomially or rationally. For the types of rings
and stability sets that appear in these applications stronger
results than obtained in the previous section can be given,

This will be considered now.

Let R be a ring of polynomials k[o],...,cr], and assume

that S s a stability set of the type

Sy = {q € R{s]{q monic in s and

q(s,0) # 0 for all (s,a) in X}, (4.7)

r+]

where X 1is a subset of kc and k. <K 1s the algebraic

closure of k. For any subset X, SX is a saturated multipii-
cative set, and SX will contain a monomial s+a 1if some
hyperplane s = -a fails to intersect X. We shall assume that
there is such a hyperplane, so that S 1is a stability set as
before. For the rest of this section, R and S will have
this form, unless otherwise stated.

In the main examples we wish to consider here, k is the
real or complex field, K = kc is the complex field, and, for

any fixed nonpositive real number a,

X = {(s,0)|Res2-a, o in k} . (4.2)

Thus a stable transfer function is here a family of transfer
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functions, parametrized by polynomials in o, each of which has
all poles in a suitable left-hand semiplane. For any a > a

the monomial s+a is in SX. The development proceeds for
general X, but this will be our main illustration.

The detectability condition implies checking evaluations at
Q(S). It is always true that X can be taken as a subset of
Q(SX); when these two sets can be taken equal we shall say that
X 1is perfeet. In general, however, it may not be enough to
check full rank at points of X. We wish to see in some more
detail what else is required.

It is again more convenient to work with T-](R[s]). Note
that if S = SX we may introduce

-1

XN = {((s+0) o) (s,0) € X} U £(0,0) |0 € K"}

so that T becomes S - The ring of stable transfer functions
becomes then 1somorphié to the ring of those rational functions
which have no zeroes in X~'.

Recall from (3.21) that the condition for existence of ob-
servers is that there be some element of T in the ideal of
R[s] generated by the minors A;(s). In the present case, this
means that there must be some bi in R[s] such that

ZbiAi = f (4.3)

and f has no zeroes in X’]. Equivalently, the set of common

zeroes (over kc) of the A; must be contained in the set of
zeroes of some stable f, Indeed, any common zero of the A;

is clearly a zero of an f as in (4.3) and, conversely, if all
common zeroes of the A; are contained in the zeroes of some ¢
in T, then by Hilbert's Nullstellensatz (see Bourbaki [1972,
V. 3.3]) there is some t with f = gt satisfying (4.3).

Since T s multiplicative, this f 1is in T, as desired,

Thus the problem of deciding if an observer exists becomes
one of "interpolating" the common zeroes of the A% by a stable
polynomial. When v = 1 the situation is somewhat simpler.
Assume that the rank condition is satisfied for all points of

X_], i.e. that at each point of X'1 there is some A; which
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does not vanish there. Since r =1, the A% have either a
Ffinite set of common zeroes or they have a common divisor. In
the latter case, this common divisor is already stable and inter-
polates common zeroes, so we shall assume the A% have finitely
many Zzeroes {Xi} in common., If for each X; there is a poly-
nomial fi in T which has fi(xi) = 0, then the product f

of the fi is again in T and has all the common zeroes of the
A% as its zerpes. We then have the

(4.4) LEMMA. Let r =1, S=S,. The system (F,G,H)
admits an observer if and only 1f for each common root (S,0)
(in kg) of the minors of

sl - F(o)

H(g)
there is a p{s,0) € S with p(s,0) =0 .

The above will be especially useful in the context of delay
systems. For families of systems, the situation will be even
better. We have:

(4.5) PROPOSITION. Assume that X 1is of the form

where X] 18 an infinite subset of kC which 18 conjugate-
closed, i.e. such that X] is invariant under the Galois group
of kC over K. Then X <s perfect. In particular, the
detectability condition in (3.5) needs only be checked for

points in X.

Proof. We work with X_]. This set again satisfies the
hypothesis of the lemma; say X1 = Xy x kg. We must prove
that the prime ideals of k[oz,...,cr,s] which are maximal with
respect to not intersecting T are precisely the kernels of the
evaluations into (5,3), with (5,3) in X']. Let P be such
an ideal, and let V(P) be the zero set of P, 1i.e. the
irreducible algebraic subset of k£+] at which all polynomials

in P vanish. We prove that V(P) must contain a point (5,d)
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with 5 in Xpe If V(P) does not contain such a point, then
the projection of V(P) on the first coordinate fails to inter-
sect X2. Since X2 is infinfte, this means (see Dieudonné
(1974, p. 109]) that the projection has only finitely many
points, and hence by irreducibility just one. So V{P) is
included in some hyperplane s = g. Then the product of all

(s- 81) where B. are the conjugates of B in kes s in
V(P) n T, contradicting the fact that T n P was supposed
empty. We conclude that V(P) contains a point (5,0) with

5 in X2. But P is then contained in the maximal ideal M
which is the kernel of evaluation at (S,0), and MNT =9,

By maximality, P =M as wanted. i ¢

In fact, in this case elements of T, (and thus also those
of S), must be constant polynomials (i.e., in k[s]), since
the set of zeroes of an irreducible polynomial p(s,o) cannot
have a projection that fails to intersect X2 except if it is
contained in a hyperplane, in which case it is by dimensionality
and irreducibility the whole hyperplane. The numerators of
transfer functions, however, may still be arbitrary polynomials,
so that the calculations involved are not all trivial, and in
general rely on methods from elimination theory. With low-
dimensional specific examples it is best to try to solve directly
for transfer functions as in (3.17) rather than making effective
the various steps of the theoretical results; the latter insures
us that solutions will exist.

Note that a family of polynomially parametrized systems
Z, = (F(A), G(A), H(W)), A in k", is detectable (with X as
in (4.5)) precisely when the systems &, are each one detect-

A

able, for the corresponding X For example, a polynomial con-

1
tinuous-time family of linear systems over ( each of which

satisfies a detectability condition, say,

sI - F
rank =n
H

for all Re s 2 -a, will admit a polynomial parametrized
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family of observers such that for example for each fixed 2, )
will observe the state of the corresponding ZA
the order e'bt, for some b > a, Similarly, a polynomial
family over R[o],...,or] will admit a real-polynomial family
of observers provided that the detectability condition be satis-

fied for all real and complex parameters, as follows from (4.5).

A
with error of

{The intuitive reason why complex parameter values are relevant
is evidenced by examples of one-dimensional systems with

y = (AZ + 1)x: the inversion of this map cannot be carried out
over the ring of real (or complex) polynomials, even though for
each real A the system will be observablel) A polynomially
(or even rationally) parametrized family of observable real sys-
tems, however, will admit a rational family of observers (with
no real poles, i.e. well-defined for each real A); this fol-
lows by considering the ring of rational functions
p(o],...,cr)q(o],...,cr)'] over R with no real poles, and
applying the dual version of (3,22)., As a simple illustration,
consider a two-parameter family of linear systems over R:

i](t) = 'Xe(t)s iz(t) = 'X](t)

) (4.7)
(A 4'U)X2(t)a yZ(t) = (U -1)X](t),

1!

¥ (t)

where A,u are allowed to take arbitrary real values. (As
shown in Bumby, et al, [1979], pole-shifting arguments cannot

be in general applied to real 2-parameter families). The family
is observable as a system over the ring of rational functions
defined on RZ, since the rank of

s -1
-1 s
2 (4.8)
0 AT+
=1 0

is 2 for all complex s and real A,u. Thus there exists a
family of observers with any given convergence rate, say s = 1.

Indeed, a left inverse of (4.8) is for example given by (aij)’
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where
apy = L0252+ (3 51wa)s + 4081105 () ]!
a1z = 2y = (s )(s+)”
a1y = -2y, = ALOE)(+1)?] (4.9)

814 ¥ "93 7 -4s[(A3+1)(5+])2]_]

[(3241)s2 + (302-a)s + a(u-1)1[(x%+1)(s+1)377).

From this matrix (aij) an observer over this ring, i.e. a
family of observers for the original family, is obtained as in
(3.13).

(4.10) REMARK, A further area of application of the present
setup is yet to be explored in detail, This concerns certain
types of nonlinear systems. Specifically, consider state-linear
systems I of the following type:

x(t+1)[or x(t)] = Flu(t))x(t) ,

y{t) = H{u(t))x(t) ,

(4.11)

where u is a {vector) control. Realization and other proper-
ties of such systems were studied in some detail in Sontag
[1979]. Recently, Grasselli and Isidori [1979] have studied the
construction of uniform observers for (continuous-time)
internally-bilinear systems, i.e, the particular case where F
is affine in u and H is constant. They have shown that if
the system is observable for each constant u, then there are
observers for "slowly varying" (and bounded) controls wu. Their
proof relies implicitly in constructing observers for each fixed
value of u, viewing essentially {4,11) as a family of systems
(F(»), H(x)), showing that such an observer construction can be
done smoothly in u (i.e., A), and proving that the resulting
nobserver" remains such for slowly varying u. Now, even in the
case of bilinear systems their proof insures only that the ob-
server has F,H differentiable. It would be, of course, more
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desirable to obtain a finite structure for F,H. The methods
developed in this section provide in principle this finite struc-
ture, since observers for each (constant) u ‘are defined ration-
ally in u. Since the results of Grasselli and Isidori are
expressed for Lueberger-like observers, however, the technical
details of this extension are not quite trivial, and we Teave
this topic as a suggestion for further research. I

5. DELAY SYSTEMS. A delay-differential system is defined by
equations of the type

X(t) = ¥ Fix(t-o;) + I 6ju(t-g,)

(5.1)

y(t) = Hux(t-Yu) +2Jvu(t-6v)

where the ays Bi’ Y. » Bv are all nonnegative real numbers, If

all delays are integﬁal multiples of certain noncommensurable
delays TysesesT,s 1t is natural to model (5.1) as a system
over the polynomial ring ‘R[o],...,or], (or 3{01,...,0r]) as
suggested by Kamen [1975, 1978]. Thus, the results of sections
3 and 4 can be applied in this context. The proper notion of
stability is now different from that in section 4, Here the
natural stability set to consider (see Bellman and Cooke [1962]
or E1'sgol'Ts [19661]) is Sx with (for fixed a z 0):

-1y5 -1, 8
X = {(s,e N - J|Re s = -a} . (5.2)

Observers and regulators with respect to such a stability set

will have exponential convergence rates of order e-bt

for some
b > a.

Problems of control and regulation for (5.1) have been studied
by various authors. Two approaches in particular have been
dominant. One is the functional-analytic approach, which regards
{5.1) as an ordinary differential system in a suitable function
space and generalizes the classical results to this context,
Along these lines, Pandol1fi [1975] and Bhat and Koivo [1976] have

proved that Luenberger observers will exist under the natural
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detectability condition (i.e., that (2.3) hold for every (s,5)
in the above X) if one allows for much more general systems
than (5.1) as observers. The latter may now contain in the
right-hand side terms with "distributed" delays of the form
t
AMa)x(a) dx , {5.3)
t-1

for various functions X and numbers 1. A different, more
algebraic, approach was used by Morse [1976] who proved that
observers will exist (using only "point delays") with arbitrary
convergence rates, if (1)} the system is observable and
(2) r =1, i.e. all delays are multiples of some fixed unit.
Each of these assumptions is, of course, rather restrictive.
Somewhat more general conditions were given by Sontag [1976],
but this involved allowing for somewhat more general observer
configurations. A wide extension of this line of argument was
obtained by Kamen [1978a], who considered even more general
observer configurations, (Strictly speaking, all of the above
concentrate on feedback controllers and treat observes by dual-
ity.) Again in the work of Kamen, however, one encounters dis-
tributed delays as in (5.3) when designing observers for (5.1).

The above restrictions to observability and to r =1 can be
overcome using the present setup. If one has observability then
observers (with arbitrary convergence rates) will exiat whether
r =1 or not; this is clear from (3.22), and the dual statement
holds for feedback controllers. And the observers (controllers)
are again of type (5.1). But even if one does not have observ-
ability, however, the results in the previous sections do insure
that observers will exist under the respective detectability
assumptions. For example, if X 1is as in (5.2), with, say,

a = 0, observers will exist for any system that is Q(SX)
detectable. If one could prove that X ds perfect in the sense
of section 4, this statement would be directly comparable to
those of Pandolfi and of Bhat and Koivo, with the greatly
strengthened conclusion that the observer has the same structure

as the original system. Unfortunately, it appears that X is
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not perfect and that the determination of Q(SX) is nontrivial,
Take for simplicity r = 1. In view of (4.4), a point is not
in Q(SX) if it is a zero of a stable polynomial. For example,
the points (so,oo) with Re Sy < 0 are not in Q(Sx) (because
s-s, over g, or (s-so)(s-go) over R, where §0 is the
conjugate of S,» are stable polynomials zero at such a point).
Other examples can be obtained by taking the zeroces of any given

stable polynomial. For instance, we have the following result
(for r = 1),

(5.4) PROPOSITION, If |00| > 1, then (so?co) is not in

Q(SX).
Proof. We note that for a >0, bedg, |b|] <a, the poly-
nomial p(s,o):=s+a-bo 1is stable. Indeed
W(&e's)|2]s+a|-|b|2a -|bl >0 for 120,

Re s =2 0.

Therefore, if |o | > 1, we may choose b:= (a+ so)/o0 and a
so large that
la+s |

|
- ol _ _a 0
o T T () < i

Also (see E1'Sgol'Ts [1966]) (0,0) is not in Q(SX) for any
T > 0, since the polynomial s + uo has no roots of the form
(s,e™™) with Re s = 0 whenever

M
O<u<2T

Other points not in Q(SX) can be found by analysing the stabil-
ity of the polynomials s+a+bo for various a,b (see again
the book by E1'Sgol'Ts). On the other hand, it appears (E. Kamen
[personal communication]) that the point (1,0) is in Q(SX)
(but not in X), and thus that X is not perfect. We leave as
an open problem the characterization of Q(SX).

Thus, restricting for simplicity to r = 1, we can insure the
existence of observers precisely when each point at which




DETECTABILITY AND OBSERVERS 125

sl - F(o)
rank <n (5.5)
H(o)

is the root of at least one stable polynomial p, i.e. a p(s,0)
such that p(s,e”'®) # 0 whenever Re s > 0. If a real such p
can be found for every point at which (5.5) holds, the observer
will have real coefficients; if p s complex the resulting
observer will be a priori complex, and then the method described
in section 7 can be applied to obtain from this a real-coeffi-
cient observer,

(5.6) EXAMPLE. We work in some detail (the dual of) the main
example given by Kamen [1978a] as an illustration of his method
for po]e—shifting. The equations here are:

s
—
—
[nd
~—
It

Xz(t-T) + b1u(t)

e
N
—
o+
~
f

X](t-T) + x,(t) + b2u(t) (5.7)

2(

y(t) = x,(t).

(We added an indeterminate input term (b],bz) since the duali-
zation of Kamen's example gives us just F and H.) Note that
this system is unstable for any (positive) 1, since

x2 - x - e—2TX

has a positive real root, being negative at zero and positive
for large x. The problem of finding an observer is therefore
nontrivial, We must find then a left inverse to

5 -
-0 s-1 (5.8)
0 1

over the ring of stable transfer functions. The minors of (5.8)

2

are (s"-s -02), s, -0, so the only common root is (0,0),
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which as remarked before is not in Q(SX). Thus the rank of
(5.8) is 2 for all points in Q(SX), and the system is detect-
able. By inspection we can find a left inverse:

1 -u otus-y
s+uo s+uo S+UO
0 0 1

where u is any real number such that 0 < u < w/2t. Obtaining
a realization as in the proof of (3.5), we conclude that an ob-
server § s given by equations

2(t) = wz(t-r) + (bj-ubylu(t) + (1-u?)y(t-2) - wy(t)

X (1) = 2(t) + y(t), x,(t) = y(t) . (5.9)

It is interesting to contrast this observer with the one ob-
tained by Kamen's method, using his feedback matrix to define a
Luenberger observer:

i](t) = zz(t-r)-Zzz(t)- Zz(t—ZT) + 2y(t) + y(t-1) + b]u(t)

t t-27
Bo(t) = 2y(t-1) +2,(t) = 2 [ z,(a)da - 2,(a)da
t-t t-3t
(5.10)
t t-2
“az,(t) + 2 yla)da + [ Y (a)da
“t-T t-3t

+y(t) + byu(t) ,

and ;i =z, Close inspection of (5.10) reveals that in this
particular case it so happens that this system can be enlarged
to one containing only point delays, since the distributed
delays that appear are just finite-time integrators, In more
general examples, however, distributed delays may become more
involved. For instance, if the original system is perturbed by
adding a term “ék](t)" to the first equation, the new system is
still detectable in our sense, but (5.10) includes now
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distributed delays of more complicated form. We leave as an
open problem the comparison between these two approaches; each
seems to have a different domain of applicability and to lead to
very different configurations when both can be applied.

6. REGULATION. We saw in section 3 how to construct a state-
feedback controlier for a reachable system, and how to obtain a
state-observer for a detectable system. We do not know as yet
how to complete the general input/output regulator design combin-
ing these two results., A regulator may be shown to exist, how-
ever, under the stronger hypothesis that a nondynamic feedback
controller exists., We let R be any integral domain and S
any stability set.

(6.1) PROPOSITION. Asswume that £ s described by equations

sx = Fx + Gu + v
(6.2)

y = Hx ,

that

x>
t

M{s)Gu + N(s)y
defines the tranefer matrix of an obsewer for L, and that
K(s) s a stable matrix such that

W(s):= (sI-F +GK(s))™' (6.4)
i@ stable (which is in particular the case if K(s} <8 a non-

dynamic solution of the feedback controller problem). Then,

defining
L(s) : = K(s)(I+M(s)GK(s))™)

N(s) , (6.5)
and considering equation (6.2) together with

x = -L(s)y , (6.6)
results in a stable closed-loop system, T.e.

(sI-F+GL(s)H)™ (6.7)

18 stable.
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Proof. This is just an algebraic manipulation re-expressing
(6.7) in a suitable way. Since

X = M(sI -F)x + Ny = X + My . (6.8)

we have that

sx = Fx = GLy + v

Fx - GKX + v

(6.9)
= Fx - G(Kx - KMv) + v
= Fx - GKx + GKMv + v,
Thus
(sT-F+6LH)™! = W(GkM+1) , (6.10)

and the right-hand term is a product of two stable transfer
matrices; the left-hand term is therefore stable as wanted. n

Thus, at least one can solve the regulation problemas defined
in section 2 when the given transfer matrix has a realization
which is detectable and which admits a pole-shifting theorem.
The latter happens for example when the realization is reachable
and R is a polynomial ring in one variable [Morse, 1976] and
for some other rings [Bumby et al., 1979]. It is thus of inter-
est to know when such realizations exist. We answer this ques-
tion now for the case m = p = 1; the resulting condition turns
out to be a generalization of the split condition in Sontag
[1978] (see also Byrnes [1978]) which studies the stronger re-
quirement of reachable and observable (not just detectable)
realizations. We assume that the ring R is completely inte-
grally closed; this is a relatively mild technical condition,
which is satisfied for all our examples. Further, we state the
result for the case where R 1is a ring of rational functions,

).

(6.11) THEOREM. Let w(s} be a transfer function. The
following properties are equivalent, for fixed Q:

i.e., Rc k(o],...,or

(a) w(s) has a reachable and detectable realization;
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(b) the canoniecal realization of w(s) <is reachable and
detectable;

(¢} 2f w(s) 4s written as p(s)q(s)'] * W, with W, in
R and q(s) of minimal degree, then p(s,0) and

a(s,o) have no common roots in Q.

Proof. Since (b} trivially implies (a), it will be suffi-
cient to prove that (a) implies (b) and that (b), (c) are equiva-
lent. Assume that (a) holds for a realization £ = (F,G,H,J).
Since I is reachable, there is a system epiomorphism which
maps L onto the canonical realization Ew (see Eilenberg
[1974, Ch. 16]). Since L, is free (because R 1is completely
integrally closed, (see Rouchaleau and Sontag [1979])), this
morphism splits, i.e. the matrices (F,H) of I can be written
as

in a suitable basis, and (F]], H]) are matrices defining
(F,H) for the canonical realization, which is a priori reachable
and weakly observable, but not necessarily detectable, If
(F,H) is Q-detectable, (6.12) implies that (F]], H]) is
also Q-detectable, as wanted.

To prove that (b) and (c) are equivalent, we write the canoni-
cal realization with F in the "flat" (i.e., controllable
canonical) form:

0 1 0 0
0 0 .
F= 0 H= [byeeesb ]
0o .. 0
3 3 -1 (6.13)
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n-1 . n-1 .
where w = pq_] W, P = Y b.(o)s), q=s"+ > ai(o)s1 .
j=0 Y {20

Assume that (b) does not hold, so that for some (S,0) in @
the matrix
s1-F(a)

admits a nonzero kernel element v = [v],...,vn]' in K,

Because of the form of (6.13), this implies that Vo = SVys
Vg = SVoseeasV TSV 4. Thus
1
5
vy , (6.15)
§n-]

and we may take vy = 1. From the last two entries of Av =0
we conclude that p,q have a common root, i.e. (c) does not
held. Reversing the above argument yields the converse implica-
tion: a common root (s,6) of p and q gives rise to a non-
zero vector in the kernel of A(s,o). i

The above condition (c) is of course much weaker than the
"split" condition which requires that p,q have no common roots
at all in KI*1. Infact, for k =R or U, this condition is
"generic" when @ is a "thin" set. In the context of delay sys-
tems with r =1, the latter would happen if X 1is perfect,
since then Q@ would beananalytic set of codimension one. Even
if X fails to be perfect, the condition is rather weak. As
an illustration, take the transfer function w = ¢/s, corre-

sponding to the input/output map
y{t) = u(t-1) . (6.16)
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This is not a "split" 1i/0 map, but the only common root

5 =g =0 is not in the Q considered in section 4, so a regu-
lator can be built for this transfer function. Specifically,
the canonical realization is given by

x(t) = u(t), y(t) = x(t-1) ; (6.17)
then the feedback Taw u(t):= -x(t) in conjunction with the
observer

X(t) = =X(t-1) + y(t) + u(t) (6.18)

serves as a regulator.

7. REMARKS. In some applications requiring the existence
of observers and/or controllers with real coefficients, we may
be able to construct directly only an observer {or controller)
with complex coefficients. It is, however, possible in general
to modify such a construction in order to obtain also a real
controller or observer. For example, let

sz = Az + Byu + B,y, X =Cz + Dy (7.7)
be an observer having matrices in G[o],...,or], for a system
whose defining matrices are in R[c],...,or] and for which
u(t), v(t) are real-valued. Separating into real and complex
parts: 2z = z(]) + 12(2), A= A(l) + iA?z), etc., we may con-
sider the new observer (defined over the reals):

szy = A(])z] - A(2)22 + Bg])u + Bgl)y

5z, = A(Z)

) 2y + A(”z2 +8{2)y 4+ gl2)y (7.2)

—_
~N

% = ¢l

Thus the error x - x for the new observer will be the real
part of the error for the original one, and, for most reasonable
definitions of "convergence" (stability sets), this error will
become "small" if the original does.



132 M. L. J. HAUTUS and EDUARDO D. SONTAG

In the case of feedback controllers and of i/0 regulators
the situation is slightly more delicate due to the fact that
inputs u for the original system are now produced by the con-
troller and hence a priori may be complex valued. A similar
reduction can be performed, however, essentially by making the
(ideal) "complex part" of the original system part of the con-
troller. We omit the (straightforward) details.

APPENDIX

We prove here the technical result needed for theorem (3.22).
letting z:=s+a and L:=F+al, L"Teb, + ... +6Gb =1,
it must be proved that if (with by = by = 0):

n )
K](z): =2"1 - > 2" ",
mo j

n .
Ky(2) : = J):; 2" by "0 ™)
K(z) : = K](Z)_] Ky(2)

and
uI-L+GMzH'],

=

—_—
~N

~—
n

then W(z) 1s polynomial in z'] and there is a factorization
K(z) = C(zI-A)']B + D such that ﬁ(z) = (zl —A)'1Bw(z) is also
a polynomial in z_]. The statement about W(z) will be a con-
sequence of (a) the fact that W(z) 1is the transfer function
from u to x for the discrete-time system given by

x(t+1) = Lx(t) - GE(t) + u(t)

£(t+n) 2‘?0 (bygt" = byt )x(ten-g) (A1)
J:

n
+ bjLnGE(t+n-j)

j=1

when starting with x{(t) = 0, &(t) =0 for t <0, and of (b)
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the fact that x(t) = 0 when t =n, whenever x,E are as
above and u 1is such that u{t) =0 for t # -1. The state-
ment about K will similarly follow from the fact that

E(t) =0 for t=n when x,E and u are as above, so that

a choice of £(t-1),...,&(t-n) at time t wil) give a realiza-
tion of the transfer function K from v to & which has the
above stability property.

We prove then that x,Z both become eventually zero. Equa-
tions (A.1) are equivalent to

x(t) = Lx{t-1) - Gg(t=1) + u(t-1)

n
b2L x(t-1) + z; (b
j=2

ol
—
+
-
"

et x(E0) (A2)

n n
}: b L"Ge(t-3) + b, L u(t-1) .

For notational convenience, introduce bn+2’ bn+3"" all

zero, so that the above summations have upper limit infinity.
An easy induction argument shows from (A,2) that if x(t) and
g(t) are zero for t <0 and if wu(-1) = u_ 1is the only non-

0
zero value of u, then

x
—
=
~
0]

£, .
D N WY
i=1 oo

and

for all t =0, Thus &(t) 1is indeed zero for large t, and
also, for t =n

n ,
_ .t t-1i n
x(t) =L Uy - ;g% L GbiL Uy

n
-

n
t t-n n-1 n
u, - L (;éj L6, )Ly,

1]
—
=

]
—
—
=

—

=0 as wanted. X
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