
Chapter 11
Checkable Conditions for Contraction After
Small Transients in Time and Amplitude

Michael Margaliot, Tamir Tuller and Eduardo D. Sontag

Abstract Contraction theory is a powerful tool for proving asymptotic properties

of nonlinear dynamical systems including convergence to an attractor and entrain-

ment to a periodic excitation. We consider generalizations of contraction with respect

to a norm that allow contraction to take place after small transients in time and/or

amplitude. These generalized contractive systems (GCSs) are useful for several rea-

sons. First, we show that there exist simple and checkable conditions guaranteeing

that a system is a GCS, and demonstrate their usefulness using several models from

systems biology. Second, allowing small transients does not destroy the important

asymptotic properties of contractive systems like convergence to a unique equilib-

rium point, if it exists, and entrainment to a periodic excitation. Third, in some cases

as we change the parameters in a contractive system it becomes a GCS just before it

looses contractivity with respect to a norm. In this respect, generalized contractivity

is the analogue of marginal stability in Lyapunov stability theory.

11.1 Introduction

Differential analysis studies nonlinear dynamical systems based on the time evolu-

tion of the distance between trajectories emanating from different initial conditions.

A dynamical system is called contractive if any two trajectories converge to one
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other at an exponential rate. A contractive system has many important properties

including convergence to a unique attractor (if it exists), and entrainment to periodic

excitations [2, 21, 34]. These properties can be proven even when the equilibrium

point or attractor are not known explicitly. Contraction theory found applications in

control theory [22], observer design [10], synchronization of coupled oscillators [3,

44], and more. It has also been extended in many directions including the notion of

partial contraction [38], analysis of networks of interacting agents using contraction

theory [6, 35], and Lyapunov and Lyapunov-Finsler characterizations of incremen-

tal stability [4] and contraction [18]. The latter also leads to a LaSalle-type principle

for contractive systems [18]. There is also a growing interest in design techniques

for controllers that render control systems contractive or incrementally stable; see,

e.g. [45] and the references therein, and also the incremental ISS condition in [15].

A contractive system with added diffusion terms or random noise still satisfies

certain asymptotic properties [1, 28]. Also, there exist explicit bounds on the devi-

ations between trajectories of the system and those of its discretization [15]. In this

respect, contraction is a robust property.

Contraction can in general be defined with respect to a norm that depends on

time and/or space [21]. However, establishing that a given dynamical systems is

contractive with respect to such a norm may be difficult (see, e.g. [8]). There are,

however, easy to check conditions for establishing contraction with respect to a fixed

norm that are based on the corresponding matrix measure.

Since contraction is usually used to prove asymptotic properties, i.e. properties

that hold as time goes to infinity, it is natural to consider systems that are eventually
contractive, i.e. that become contractive after some time T > 0. However, finding

checkable conditions that guarantee this property seems difficult.

In this chapter, we consider three forms of generalized contractive systems

(GCSs). These are motivated by requiring contraction, with respect to a fixed norm,

to take place after arbitrarily small transients in time and/or amplitude. We give easy

to check sufficient conditions for GSC that are based on matrix measures. In some

cases as we change the parameters in a contractive system it becomes a GCS just

before it looses contractivity. In this respect, a GCS is the analogue of marginal

stability in Lyapunov stability theory. We demonstrate the usefulness of these gen-

eralizations using examples of systems that are not contractive with respect to any

norm, yet are GCSs.

The remainder of this chapter is organized as follows. The next section provides a

brief review of some ideas from contraction theory. Section 11.3 presents three gen-

eralizations of contraction with respect to a fixed norm. Section 11.4 details sufficient

conditions for their existence and describes their implications. The proofs of all the

results are placed in Sect. 11.5. The GSCs reviewed here were introduced in [42] (see

also [24]). Due to space constraints, [24, 42] did not include the proofs of the main

results. These are included here, as well as several new results and examples.
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11.2 Preliminaries

We begin with a brief review of some ideas from contraction theory. For more details,

including the historic development of contraction theory, and the relation to other

notions, see e.g. [20, 33, 40].

Consider the time-varying dynamical system

ẋ = f (t, x), (11.1)

with the state x evolving on a positively invariant convex set 𝛺 ⊆ ℝn
. We assume

that f (t, x) is differentiable with respect to x, and that both f (t, x) and J(t, x) ∶= 𝜕f
𝜕x
(t, x)

are continuous in (t, x). Let x(t, t0, x0) denote the solution of (11.1) at time t ≥ t0
with x(t0) = x0. For the sake of simplicity, we assume from here on that x(t, t0, x0)
exists and is unique for all t ≥ t0 ≥ 0 and all x0 ∈ 𝛺.

We say that (11.1) is contractive on 𝛺 with respect to a norm | ⋅ | ∶ ℝn → ℝ+ if

there exists c > 0 such that

|x(t2, t1, a) − x(t2, t1, b)| ≤ exp(−(t2 − t1)c)|a − b| (11.2)

for all t2 ≥ t1 ≥ 0 and all a, b ∈ 𝛺. This means that any two trajectories contract to

one another at an exponential rate. This implies in particular that the initial condition

is “quickly forgotten.”

Note that Ref. [21] provides a more general definition, where contraction is with

respect to a time- and state-dependent metric M(t, x) rather than to a fixed norm (see

also [37] for a general treatment of contraction on a Riemannian manifold). Some

of the results below may be stated using this more general framework. But, for a

given dynamical system finding such a metric may be difficult. Another extension of

contraction is incremental stability [4].

Our approach is based on the fact that there exists a simple sufficient condition

guaranteeing (11.2), so generalizing (11.2) appropriately leads to checkable suffi-

cient conditions for a system to be a GCS. Another advantage of our approach is that

a GCS retains the important property of entrainment to periodic signals.

Recall that a vector norm | ⋅ | ∶ ℝn → ℝ+ induces a matrix measure 𝜇 ∶ ℝn×n →

ℝ defined by 𝜇(A) ∶= lim
𝜖↓0

1
𝜖
(||I + 𝜖A|| − 1), where || ⋅ || ∶ ℝn×n → ℝ+ is the

matrix norm induced by | ⋅ |. It is well known (see, e.g. [34]) that if there exist a

vector norm | ⋅ | and c > 0 such that the induced matrix measure 𝜇 ∶ ℝn×n → ℝ
satisfies

𝜇(J(t, x)) ≤ −c, (11.3)

for all t ≥ 0 and all x ∈ 𝛺 then (11.2) holds. This is in fact a particular case of using

a Lyapunov-Finsler function to prove contraction [18].

We list here the matrix measures corresponding to some vector norms (see,

e.g. [43, Chap. 3]). The matrix measure induced by the L1 vector norm is
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𝜇1(A) = max{c1(A),… , cn(A)}, (11.4)

where

cj(A) ∶= Ajj +
∑

1≤i≤n
i≠j

|Aij|, (11.5)

i.e., the sum of the entries in column j of A, with non diagonal elements replaced by

their absolute values. The matrix measure induced by the L∞ norm is

𝜇∞(A) = max{d1(A),… , dn(A)}, (11.6)

where

dj(A) ∶= Ajj +
∑

1≤i≤n
i≠j

|Aji|, (11.7)

i.e., the sum of the entries in row j of A, with non diagonal elements replaced by their

absolute values.

Often it is useful to work with scaled norms. Let | ⋅ |∗ be some vector norm, and

let 𝜇∗ ∶ ℝn×n → ℝ denote its induced matrix measure. If P ∈ ℝn×n
is an invertible

matrix, and | ⋅ |∗,P ∶ ℝn → ℝ+ is the vector norm defined by |z|∗,P ∶= |Pz|∗ then the

induced matrix measure is 𝜇∗,P(A) = 𝜇∗(PAP−1).
One important implication of contraction is entrainment to a periodic excitation.

Recall that f ∶ ℝ+ ×𝛺 → ℝn
is called T-periodic if

f (t, x) = f (t + T , x)

for all t ≥ 0 and all x ∈ 𝛺. Note that for the system ẋ(t) = f (u(t), x(t)), with u an input

(or excitation) function, f will be T periodic if u is a T-periodic function. It is well

known [21, 34] that if (11.1) is contractive and f is T-periodic then for any t1 ≥ 0
there exists a unique periodic solution 𝛼 ∶ [t1,∞) → 𝛺 of (11.1), of period T , and

every trajectory converges to 𝛼. Entrainment is important in various applications

ranging from biological systems [23, 34] to the stability of a power grid [17]. Note

that for the particular case where f is time-invariant, this implies that if 𝛺 contains

an equilibrium point e then it is unique and all trajectories converge to e.

11.3 Definitions of Contraction After Small Transients

We begin by defining three generalizations of (11.2).

Definition 11.1 The time-varying system (11.1) is said to be contractive after a
small overshoot and short transient (SOST) on 𝛺 w.r.t. a norm | ⋅ | ∶ ℝn → ℝ+ if

for each 𝜀 > 0 and each 𝜏 > 0 there exists 𝓁 = 𝓁(𝜏, 𝜀) > 0 such that
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|x(t2 + 𝜏,t1, a) − x(t2 + 𝜏, t1, b)| ≤ (1 + 𝜀) exp(−(t2 − t1)𝓁)|a − b| (11.8)

for all t2 ≥ t1 ≥ 0 and all a, b ∈ 𝛺.

This definition is motivated by requiring contraction at an exponential rate, but

only after an (arbitrarily small) time 𝜏, and with an (arbitrarily small) overshoot (1 +
𝜀). However, as we will see below when the convergence rate 𝓁 may depend on 𝜀 a

somewhat richer behavior may occur.

Definition 11.2 The time-varying system (11.1) is said to be contractive after a
small overshoot (SO) on 𝛺 w.r.t. a norm | ⋅ | ∶ ℝn → ℝ+ if for each 𝜀 > 0 there

exists 𝓁 = 𝓁(𝜀) > 0 such that

|x(t2,t1, a) − x(t2, t1, b)| ≤ (1 + 𝜀) exp(−(t2 − t1)𝓁)|a − b| (11.9)

for all t2 ≥ t1 ≥ 0 and all a, b ∈ 𝛺.

The definition of SO is thus similar to that of SOST, yet now the convergence

rate 𝓁 depends only on 𝜀, and there is no time transient 𝜏 (i.e., 𝜏 = 0). In other

words, SO is a uniform (in 𝜏) version of SOST.

Definition 11.3 The time-varying system (11.1) is said to be contractive after a
short transient (ST) on 𝛺 w.r.t. a norm | ⋅ | ∶ ℝn → ℝ+ if for each 𝜏 > 0 there

exists 𝓁 = 𝓁(𝜏) > 0 such that

|x(t2 + 𝜏,t1, a) − x(t2 + 𝜏, t1, b)| ≤ exp(−(t2 − t1)𝓁)|a − b| (11.10)

for all t2 ≥ t1 ≥ 0 and all a, b ∈ 𝛺.

This definition allows the contraction to “kick in” only after a time transient of

length 𝜏.

It is clear that every contractive system is SOST, SO, and ST. Thus, all these

notions are generalizations of contraction. Also, both SO and ST imply SOST and,

as we will see below, under a mild technical condition on (11.1) SO and SOST are

equivalent. Figure 11.2 on p. 16 summarizes the relations between these GCSs (as

well as other notions defined below).

The next simple example demonstrates a system that does not satisfy (11.2), but

is a GCS.

Example 11.1 Consider the scalar time-varying system

ẋ(t) = −𝛼(t)x(t), (11.11)

where the state x evolves on 𝛺 ∶= [−1, 1], and 𝛼 ∶ ℝ+ → ℝ+ is a class K function

(i.e. 𝛼 is continuous and strictly increasing, with 𝛼(0) = 0). It is straightforward to

show that this system does not satisfy (11.2) w.r.t. any norm (consider the trajectories

emanating from x(0) = 0 and from x(0) = 𝜀, with 𝜀 > 0 sufficiently small), yet it

is ST, with 𝓁(𝜏) = 𝛼(𝜏) > 0, for any given 𝜏 > 0.
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The next section analyzes the properties of the three forms of GCSs introduced

above, with an emphasis on checkable conditions for establishing that a system is a

GCS based on matrix measures. We assume from here on that the state space𝛺 ⊂ ℝn

is compact and convex. The proofs of all the results are placed in Sect. 11.5.

11.4 Properties of GCSs

The next three subsections study the three forms of GCSs defined above.

11.4.1 Contraction After a Small Overshoot and Short
Transient (SOST)

Just like contraction, SOST implies entrainment to a periodic excitation. To demon-

strate this, assume for example that the vector field f in (11.1) is T periodic. Pick t0 ≥
0. Define m ∶ 𝛺 → 𝛺 by m(a) ∶= x(T + t0, t0, a). In other words, m maps a to the

solution of (11.1) at time T + t0 for the initial condition x(t0) = a. Then m is contin-

uous and maps the convex and compact set 𝛺 to itself, so by the Brouwer fixed point

theorem (see, e.g. [11, Chap. 6]) there exists 𝜁 ∈ 𝛺 such that m(𝜁 ) = 𝜁 , i.e., x(T +
t0, t0, 𝜁 ) = 𝜁 . This implies that (11.1) admits a periodic solution 𝛾 ∶ [t0,∞) → 𝛺

with period T . Assuming that the system is also SOST, pick 𝜏, 𝜀 > 0. Then there

exists 𝓁 = 𝓁(𝜏, 𝜀) > 0 such that

|x(t − t0 + 𝜏, t0, a) − x(t − t0 + 𝜏, t0, 𝜁 )| ≤ (1 + 𝜀) exp(−(t − t0)𝓁)|a − 𝜁 |,

for all a ∈ 𝛺 and all t ≥ t0. Taking t → ∞ implies that every solution converges

to 𝛾 . In particular, there cannot be two distinct periodic solutions. Thus, we proved

the following.

Proposition 11.1 Suppose that the time-varying system (11.1), with state x evolving
on a compact and convex state-space 𝛺 ⊂ ℝn, is SOST, and that the vector field f
is T-periodic. Then for any t0 ≥ 0 it admits a unique periodic solution 𝛾 ∶ [t0,∞) →
𝛺 with period T, and x(t, t0, a) converges to 𝛾 for any a ∈ 𝛺.

Since both SO and ST imply SOST, Proposition 11.1 holds for all three forms

of GCSs.

Our next goal is to derive a sufficient condition for SOST. One may naturally

expect that if (11.1) is contractive w.r.t. a set of norms | ⋅ |
𝜁
, with, say 𝜁 ∈ (0, p], p >

0, and that lim
𝜁→0 | ⋅ |𝜁 = | ⋅ | then (11.1) is a GCS w.r.t. the norm | ⋅ |.

In fact, this can be further generalized by requiring (11.1) to be contractive w.r.t. | ⋅ |
𝜁

only on suitable subsets 𝛺
𝜁

of the state-space. This leads to the following definition.
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Definition 11.4 System (11.1) is said to be nested contractive (NC) on 𝛺 with

respect to a norm | ⋅ | if there exist convex sets𝛺
𝜁
⊆ 𝛺, and norms | ⋅ |

𝜁
∶ ℝn → ℝ+,

where 𝜁 ∈ (0, 1∕2], such that the following conditions hold.

(a) ∪
𝜁∈(0,1∕2]𝛺𝜁

= 𝛺, and

𝛺
𝜁1
⊆ 𝛺

𝜁2
, for all 𝜁1 ≥ 𝜁2. (11.12)

(b) For every 𝜏 > 0 there exists 𝜁 = 𝜁 (𝜏) ∈ (0, 1∕2], with 𝜁 (𝜏) → 0 as 𝜏 → 0, such

that for every a ∈ 𝛺 and every t1 ≥ 0

x(t, t1, a) ∈ 𝛺
𝜁
, for all t ≥ t1 + 𝜏, (11.13)

and (11.1) is contractive on 𝛺
𝜁

with respect to | ⋅ |
𝜁
.

(c) The norms | ⋅ |
𝜁

converge to | ⋅ | as 𝜁 → 0, i.e., for every 𝜁 > 0 there exists s =
s(𝜁 ) > 0, with s(𝜁 ) → 0 as 𝜁 → 0, such that

(1 − s)|y| ≤ |y|
𝜁
≤ (1 + s)|y|, for all y ∈ 𝛺.

Equation (11.13) means that after an arbitrarily short time 𝜁 every trajectory

enters and remains in a subset 𝛺
𝜁

of the state space on which we have contraction

with respect to | ⋅ |
𝜁
. We can now state the main result in this subsection. Recall that

the proofs of all the results are placed in Sect. 11.5.

Theorem 11.1 If the system (11.1) is NC w.r.t. the norm | ⋅ | then it is SOST w.r.t.
the norm | ⋅ |.

The next result is an application of Theorem 11.1 to systems with a cyclic struc-

ture (see, e.g. [6, 7] and the references therein). It also shows that as we change the

parameters in a contractive system, it may become a GCS when it hits the “verge”

of contraction (as defined in 11.2). This is reminiscent of an asymptotically stable

system that becomes marginally stable as it looses stability.

Proposition 11.2 Consider the system

ẋ1 = −f1(x1) + g(xn),
ẋ2 = −f2(x2) + k1x1,
ẋ3 = −f3(x3) + k2x2,

⋮

ẋn = −fn(xn) + kn−1xn−1. (11.14)

Suppose that the following properties hold for all i: ki > 0, fi(0) = 0, f ′i (s) is a non-
decreasing function of s with f ′i (0) > 0, g(0) > 0, and g′(s) is a strictly decreasing
function of s with g′(s) > 0 for all s ≥ 0. (Note that these properties imply in par-
ticular that ℝn

+ is an invariant set of the dynamics. We further assume that there
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exists a compact and convex set 𝛺 ⊂ ℝn
+ that is an invariant set of the dynamics.)

Let k ∶=
∏n−1

i=1 ki. For 𝜀 > 0, let

D
𝜀
∶= diag

(

1,
f ′1(0) − 𝜀

k1
,

(f ′1(0) − 𝜀)(f ′2(0) − 𝜀)
k1k2

,… ,

n−1∏

i=1

f ′i (0) − 𝜀

ki

)

.

If
n∏

i=1
f ′i (0) > kg′(0) (11.15)

then (11.14) is contractive on𝛺 w.r.t. the scaled norm | ⋅ |1,D
𝜀

for all 𝜀 > 0 sufficiently
small. If

∏n
i=1 f ′i (0) = kg′(0) then (11.14) does not satisfy (11.2), w.r.t. any (fixed)

norm on 𝛺, yet it is SOST on 𝛺 w.r.t. the norm | ⋅ |1,D0
.

Example 11.2 Consider the cyclic system

ẋ1 = −𝛼1x1 + g(xn),
ẋ2 = −𝛼2x2 + x1,
ẋ3 = −𝛼3x3 + x2,

⋮

ẋn = −𝛼nxn + xn−1, (11.16)

where 𝛼i > 0, and

g(u) ∶= 1 + u
c + u

, with c > 1.

As explained in [39, Chap. 4] this is a model for a simple biochemical feedback con-

trol circuit for protein synthesis in the cell. The xi’s represent concentrations of var-

ious macromolecules in the cell and are therefore non-negative. It is straightforward

to see that this system satisfies all the properties in Proposition 11.2 with fi(s) = 𝛼is,

and ki = 1. Using the fact that g(u) < 1 for all u ≥ 0 it is straightforward to show

that the set 𝛺r ∶= r([0, 𝛼−1
1 ] × [0, (𝛼1𝛼2)−1] × · · · × [0, 𝛼−1]) is an invariant set of

the dynamics for all r ≥ 1.

Let 𝛼 ∶=
∏n

i=1 𝛼i. We conclude that if

c − 1 < c2𝛼

then (11.16) is contractive on 𝛺r w.r.t. the scaled norm | ⋅ |1,D
𝜀

for all 𝜀 > 0 suffi-

ciently small, where D
𝜀
∶= diag

(

1, 𝛼1 − 𝜀, (𝛼1 − 𝜀)(𝛼2 − 𝜀),… ,
∏n−1

i=1 (𝛼i − 𝜀)
)

. On

the other hand, if c − 1 = c2𝛼 then (11.16) does not satisfy (11.2), w.r.t. any (fixed)

norm on 𝛺r, yet it is SOST on 𝛺r w.r.t. the norm | ⋅ |1,D0
. Intuitively speaking, this

means that the system is contractive when the “total dissipation” 𝛼 is strictly larger
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than the maximal value of the feedback’s derivative g′(0), and looses contractivity

to become SOST when these two values are equal.

Thus, (11.16), with c − 1 ≤ c2𝛼, admits a unique equilibrium point e ∈ 𝛺1 and

lim
t→∞

x(t, a) = e, for all a ∈ ℝn
+.

This property also follows from a more general result [39, Prop. 4.2.1] that is proved

using the theory of irreducible cooperative dynamical systems. Yet the contraction

approach leads to new insights. For example, it implies that the distance between

trajectories can only decrease, and can also be used to prove entrainment to suitable

generalizations of (11.16) that include periodically varying inputs.

We now describe another application of Theorem 11.1 to a model from systems

biology. Cells often respond to stimulus by modification of proteins. One mecha-

nism for doing this is phosphorelay (also called phosphotransfer) in which a phos-

phate group is transferred through a serial chain of proteins from an initial histidine

kinase (HK) down to a final response regulator (RR). The next example uses Theo-

rem 11.1 to analyze a model for phosphorelay studied in [13].

Example 11.3 Consider the system

ẋ1 = (p1 − x1)c − 𝜂1x1(p2 − x2),
ẋ2 = 𝜂1x1(p2 − x2) − 𝜂2x2(p3 − x3),

⋮

ẋn−1 = 𝜂n−2xn−2(pn−1 − xn−1) − 𝜂n−1xn−1(pn − xn),
ẋn = 𝜂n−1xn−1(pn − xn) − 𝜂nxn, (11.17)

where 𝜂i, pi > 0, and c ∶ [t1,∞) → ℝ+. In the context of phosphorelay [13], c(t) is

the strength at time t of the stimulus activating the HK, xi(t) is the concentration of

the phosphorylated form of the protein at the ith layer at time t, and pi denotes the

total protein concentration at that layer. Note that 𝜂nxn is the flow of the phosphate

group to an external receptor molecule.

In the particular case where pi = 1 for all i (11.17) becomes the ribosome flow
model (RFM) [32]. This is the mean-field approximation of an important model

from nonequilibrium statistical physics called the totally asymmetric simple exclu-
sion process (TASEP) [9]. In the RFM, xi ∈ [0, 1] is the normalized occupancy at

site i, where xi = 0 [xi = 1] means that site i is completely free [full], and 𝜂i is the

capacity of the link that connects site i to site i + 1. This has been used to model

mRNA translation, where every site corresponds to a group of codons on the mRNA

strand, xi(t) is the normalized occupancy of ribosomes at site i at time t, c(t) is the

initiation rate at time t, and 𝜂i is the elongation rate from site i to site i + 1.

Our original motivation for introducing GCSs was to prove entrainment in the

RFM [23]. For more on the analysis of the RFM, and networks of interconnected

RFMs, using tools from systems and control theory, see [25–27, 29–31, 46].
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Assume that there exists 𝜂0 > 0 such that c(t) ≥ 𝜂0 for all t ≥ t1. Let 𝛺 ∶=
[0, p1] × · · · × [0, pn] denote the state-space of (11.17). Then, as shown in

Sect. 11.5, (11.17) does not satisfy (11.2), w.r.t. any norm, on 𝛺, yet it is SOST

on 𝛺 w.r.t. the L1 norm.

Systems in which every state variable describes the amount of “material” in a

compartment, and the dynamics describes the flow between the compartments and

the environment are called compartmental systems [19]. Both (11.16) and (11.17)

are thus compartmental systems. Analysis of contraction in such systems using the

matrix measure corresponding to the scaled L1 norm goes back at least to the work

of Sandberg [36].

Considering Theorem 11.1 in the special case where all the sets 𝛺
𝜁

in Defini-

tion 11.4 are equal to 𝛺 yields the following result.

Corollary 11.1 Suppose that (11.1) is contractive on 𝛺 w.r.t. a set of norms | ⋅
|
𝜁
, 𝜁 ∈ (0, 1∕2], and that condition (c) in Definition 11.4 holds. Then (11.1) is SOST

on 𝛺 w.r.t. | ⋅ |.

Corollary 11.1 may be useful in cases where some matrix measure of the Jaco-

bian J of (11.1) turns out to be non positive on𝛺, but not strictly negative, suggesting

that the system is “on the verge” of satisfying (11.2). The next result demonstrates

this for the time-invariant system

ẋ = f (x), (11.18)

and the particular case of the matrix measure 𝜇1 ∶ ℝn×n → ℝ induced by the L1
norm. Recall that this is given by (11.4) with the cjs defined in (11.5).

Proposition 11.3 Consider the Jacobian J(⋅) ∶ 𝛺 → ℝn×n of the time-invariant sys-
tem (11.18). Suppose that𝛺 is compact and convex, and that the set {1,… , n} can be
divided into two nonempty disjoint sets S0 and S− such that the following properties
hold for all x ∈ 𝛺:

1. for any k ∈ S0, ck(J(x)) ≤ 0;
2. for any j ∈ S−, cj(J(x)) < 0;
3. for any i ∈ S0 there exists an index z = z(i) ∈ S− such that Jzi(x) > 0.

Then (11.18) is SOST on 𝛺 w.r.t. the L1 norm.

The proof of Proposition 11.3 is based on the following idea. By compactness

of 𝛺, there exists 𝛿 > 0 such that

cj(J(x)) < −𝛿, for all j ∈ S− and all x ∈ 𝛺. (11.19)

The conditions stated in the proposition imply that there exists a diagonal matrix P
such that ck(PJP−1) < 0 for all k ∈ S0. Furthermore, there exists such a P with

diagonal entries arbitrarily close to 1, so cj(PJP−1) < −𝛿∕2 for all j ∈ S−. Thus,

𝜇1(PJP−1) < 0. Now Corollary 11.1 implies SOST. Note that this implies that the
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compactness assumption may be dropped if for example it is known that (11.19)

holds.

Example 11.4 Consider the system:

ẋ = − 𝛿x + k1y − k2(eT − y)x,
ẏ = − k1y + k2(eT − y)x, (11.20)

where 𝛿, k1, k2, eT > 0, and 𝛺 ∶= [0,∞) × [0, eT ]. This is a basic model for a tran-

scriptional module that is ubiquitous in both biology and synthetic biology (see,

e.g. [14, 34]). Here x(t) is the concentration at time t of a transcriptional factor X
that regulates a downstream transcriptional module by binding to a promoter with

concentration e(t) yielding a protein-promoter complex Y with concentration y(t).
The binding reaction is reversible with binding and dissociation rates k2 and k1,

respectively. The linear degradation rate of X is 𝛿, and as the promoter is not sub-

ject to decay, its total concentration, eT , is conserved, so e(t) = eT − y(t). The Jaco-

bian of (11.20) is J =
[
−𝛿 − k2(eT − y) k1 + k2x

k2(eT − y) −k1 − k2x

]

, and all the properties in Propo-

sition 11.3 hold with S− = {1} and S0 = {2}. Indeed, J12 = k1 + k2x > k1 > 0 for

all
[
x y

]T ∈ 𝛺. Thus, (11.20) is SOST on 𝛺 w.r.t. the L1 norm. Note that Ref. [34]

showed that (11.20) is contractive w.r.t. a certain weighted L1 norm. Here we showed

SOST w.r.t. the (unweighted) L1 norm.

Example 11.5 A more general example studied in [34] is where the transcription

factor regulates several independent downstream transcriptional modules. This leads

to the following model:

ẋ = − 𝛿x + k11y1 − k21(eT ,1 − y1)x + k12y2 − k22(eT ,2 − y2)x
+ · · · + k1nyn − k2n(eT ,n − yn)x,

ẏ1 = − k11y1 + k21(eT ,1 − y1)x,
⋮

ẏn = − k1nyn + k2n(eT ,n − yn)x, (11.21)

where n is the number of regulated modules. The state-space is 𝛺 = [0,∞) ×
[0, eT ,1] × · · · × [0, eT ,n]. The Jacobian of (11.21) is

J =
⎡
⎢
⎢
⎣

−𝛿−
∑n

i=1 k2i(eT ,i−yi) k11+k21x k12+k22x … k1n−1+k2n−1x k1n+k2nx
k21(eT ,1−y1) −k11−k21x 0 … 0 0
k22(eT ,2−y2) 0 −k12−k22x 0 … 0

⋮
k2n(eT ,n−yn) 0 0 … 0 −k1n−k2nx

⎤
⎥
⎥
⎦

,

and all the properties in Proposition 11.3 hold with S− = {1} and S0 = {2, 3,… , n}.

Thus, this system is SOST on 𝛺 w.r.t. the L1 norm.

Arguing as in the proof of Proposition 11.3 for the matrix measure 𝜇∞ induced

by the L∞ norm (see 11.7) yields the following result.
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Proposition 11.4 Consider the Jacobian J(⋅) ∶ 𝛺 → ℝn×n of the time-invariant sys-
tem (11.18). Suppose that 𝛺 is compact and that the set {1,… , n} can be divided
into two nonempty disjoint sets S0 and S− such that the following properties hold for
all x ∈ 𝛺:

1. dj(J(x)) ≤ 0 for all j ∈ S0;
2. dk(J(x)) < 0 for all k ∈ S−;
3. for any j ∈ S0 there exists an index z = z(j) ∈ S− such that Jjz(x) ≠ 0.

Then (11.18) is SOST on 𝛺 w.r.t. the L∞ norm.

11.4.2 Contraction After a Small Overshoot (SO)

A natural question is under what conditions SO and SOST are equivalent. To address

this issue, we introduce the following definition.

Definition 11.5 We say that (11.1) is weakly expansive (WE) if for each 𝛿 > 0 there

exists 𝜏0 > 0 such that for all a, b ∈ 𝛺 and all t0 ≥ 0

|x(t, t0, a) − x(t, t0, b)| ≤ (1 + 𝛿)|a − b|, for all t ∈ [t0, t0 + 𝜏0]. (11.22)

Proposition 11.5 Suppose that (11.1) is WE. Then (11.1) is SOST if and only if it is
SO.

Remark 11.1 Suppose that f in (11.1) is Lipschitz globally in 𝛺 uniformly in t, i.e.,

there exists L > 0 such that

|f (t, x) − f (t, y)| ≤ L|x − y|, for all x, y ∈ 𝛺, t ≥ 0.

Then by Gronwall’s Lemma (see, e.g. [41, Appendix C])

|x(t, t0, a) − x(t, t0, b)| ≤ exp
(
L(t − t0)

)
|a − b|,

for all t ≥ t0 ≥ 0, and this implies that (11.22) holds for 𝜏0 ∶=
1
L
ln(1 + 𝛿) > 0. In

particular, if 𝛺 is compact and f is periodic in t then WE holds under rather weak

continuity arguments on f .

To explore the connection of SO with other notions related to contraction, we

require the following definitions.

Definition 11.6 We say that (11.1) is non expansive (NE) w.r.t. a norm | ⋅ | if for

all a, b ∈ 𝛺 and all s2 > s1 ≥ 0

|x(s2, s1, a) − x(s2, s1, b)| ≤ |a − b|. (11.23)

We say that (11.1) is weakly contractive (WC) if (11.23) holds with ≤ replaced by <.
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One may perhaps expect that any of the three generalizations of contraction also

implies WC. However, the next example shows that SO does not imply WC.

Example 11.6 Consider the scalar system

ẋ =

{
−2x, 0 ≤ |x| < 1∕2,
− x

|x|
,

1
2
≤ |x| ≤ 1, (11.24)

with x evolving on 𝛺 ∶= [−1, 1]. Clearly, this system is not WC. However, it is not

difficult to show that it satisfies the definition of SO with 𝓁 = 𝓁(𝜀) ∶= min{ln(1 +
𝜀), 1}.

11.4.3 Contraction After a Short Transient (ST)

For time-invariant systems whose state evolves on a convex and compact set 𝛺 it

is possible to give a simple sufficient condition for ST. Let Int(S) [𝜕S] denote the

interior [boundary] of a set S.

Definition 11.7 The time-invariant system (11.18) with the state x evolving on a

compact and convex set𝛺 ⊂ ℝn
, is said to be interior contractive (IC) w.r.t. a norm | ⋅

| ∶ ℝn → ℝ+ if the following properties hold:

(a) for every x0 ∈ 𝜕𝛺,

x(t, x0) ∉ 𝜕𝛺, for all t > 0; (11.25)

(b) for every x ∈ Int(𝛺),
𝜇(J(x)) < 0, (11.26)

where 𝜇 ∶ ℝn×n → ℝ is the matrix measure induced by | ⋅ |.

In other words, the matrix measure is negative in the interior of 𝛺, and the bound-

ary of 𝛺 is “repelling”. Note that these conditions do not necessarily imply that

the system satisfies (11.2) on 𝛺, as it is possible that 𝜇(J(x)) = 0 for some x ∈ 𝜕𝛺.

Yet, (11.26) does imply that (11.18) is NE on 𝛺. We can now state the main result

in this subsection.

Theorem 11.2 If the system (11.18) is IC w.r.t. a norm | ⋅ | then it is ST w.r.t. | ⋅ |.

The proof of this result is based on showing that IC implies that for each 𝜏 > 0
there exists d = d(𝜏) > 0 such that

dist(x(t, x0), 𝜕𝛺) ≥ d, for all x0 ∈ 𝛺 and all t ≥ 𝜏,

and then using this to conclude that for any t ≥ 𝜏 all the trajectories of the system

are contained in a convex and compact set D ⊂ Int(𝛺). In this set the system is con-
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tractive with rate c ∶= maxx∈D 𝜇(J(x)) < 0. The next example, that is a variation of

a system studied in [34], demonstrates this reasoning.

Example 11.7 Consider a transcriptional factor X that regulates a downstream tran-

scriptional module by irreversibly binding, at a rate k2 > 0, to a promoter E yielding

a protein-promoter complex Y . The promoter is not subject to decay, so its total con-

centration, denoted by eT > 0, is conserved. Assume also that X is obtained from an

inactive form X0, for example through a phosphorylation reaction that is catalyzed

by a kinase with abundance u(t) satisfying u(t) ≥ u0 > 0 for all t ≥ 0. The sum of

the concentrations of X0, X, and Y is constant, denoted by zT , with zT > eT . Let-

ting x1(t), x2(t) denote the concentrations of X,Y at time t yields the model

ẋ1 =(zT − x1 − x2)u − 𝛿x1 − k2(eT − x2)x1,
ẋ2 =k2(eT − x2)x1, (11.27)

with the state evolving on 𝛺 ∶= [0, zT ] × [0, eT ]. Here 𝛿 ≥ 0 is the dephosphoryla-

tion rate X → X0. Let P ∶=
[
1 1
0 1

]

, and consider the matrix measure 𝜇∞,P. A calcu-

lation yields

J̃ ∶= PJP−1

=
[

−u − 𝛿 𝛿

k2(eT − x2) k2(x2 − x1 − eT )

]

,

so d1(J̃) = −u − 𝛿 + |𝛿| ≤ −u0 < 0, and

d2(J̃) = k2(x2 − x1 − eT ) + |k2(eT − x2)|
= −k2x1.

Letting S ∶= {0} × [0, eT ], we conclude that 𝜇∞,P(x) < 0 for all x ∈ (𝛺 ⧵ S). For

any x ∈ S, ẋ1 = (zT − x2)u ≥ (zT − eT )u0 > 0, and arguing as in the proof of The-

orem 11.2 (see Sect. 11.5), we conclude that for any 𝜏 > 0 there exists d = d(𝜏) > 0
such that

x1(t, a) ≥ d, for all a ∈ 𝛺 and all t ≥ 𝜏.

In other words, after time 𝜏 all the trajectories are contained in the closed and convex

set D = D(𝜏) ∶= [d, zT ] × [0, eT ]. Letting c ∶= c(𝜏) = maxx∈D 𝜇∞,P(J(x)) yields c <

0 and

|x(t + 𝜏, a) − x(t + 𝜏, b)|∞,P ≤ exp(ct)|a − b|∞,P, for all a, b ∈ 𝛺 and all t > 0,

so (11.27) is ST w.r.t. | ⋅ |∞,P.
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Fig. 11.1 Solution x1(t)
(solid line) and x2(t) (dashed
line) of the system in

Example 11.8 as a function

of t
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As noted above, one motivation for GCSs is that contraction is used to deduce

asymptotic results, so allowing initial transients should increase the class of systems

that can be analyzed. The next result demonstrates this.

Corollary 11.2 If (11.18) is IC with respect to some norm then it admits a unique
equilibrium point e ∈ Int(𝛺), and limt→∞ x(t, a) = e for all a ∈ 𝛺.

Remark 11.2 The proof of Corollary 11.2, given in the Appendix, is based on The-

orem 11.2. It is possible to give another proof using the variational system (see,

e.g. [18]) associated with (11.18):

ẋ = f (x),
̇𝛿x = J(x)𝛿x. (11.28)

The function V(x, 𝛿x) ∶= |𝛿x|, where | ⋅ | ∶ ℝn → ℝ+ is the vector norm correspond-

ing to the matrix measure 𝜇 in (11.26), is a Lyapunov-Finsler function of (11.28),

and Corollary 11.2 follows from the LaSalle invariance principle described in [18].

Since IC implies ST and this implies SOST, it follows from Proposition 11.1 that

IC implies entrainment to T-periodic vector fields.
1

The next example demonstrates

this.

Example 11.8 Consider again the system in Example 11.7, and assume that the

kinase abundance u(t) is a strictly positive and periodic function of time with

period T . Since we already showed that this system is ST, it admits a unique periodic

solution 𝛾 , of period T , and any trajectory of the system converges to 𝛾 . Figure 11.1

1
Note that the proof that IC implies ST used a result for time-invariant systems, but an analogous

argument holds for the time-varying case as well.
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depicts the solution of (11.27) for 𝛿 = 2, k2 = 1, zT = 4, eT = 3, u(t) = 2 + sin(2𝜋t),
and initial condition x1(0) = 2, x2(0) = 1∕4. It may be seen that both state variables

converge to a periodic solution with period T = 1. (In particular, x2 converges to the

constant function x2(t) ≡ eT that is of course periodic with period T .)

Contraction can be characterized using a Lyapunov-Finsler function [18]. The

next result describes a similar characterization for ST. For simplicity, we state this

for the time-invariant system (11.18).

Proposition 11.6 The following two conditions are equivalent.

(a) The time-invariant system (11.18) is ST w.r.t. a norm | ⋅ |.
(b) For any 𝜏 > 0 there exists 𝓁 = 𝓁(𝜏) > 0 such that for any a, b ∈ 𝛺 and any c

on the line connecting a and b the solution of (11.28) with x(0) = c and 𝛿x(0) =
b − a satisfies

|𝛿x(t + 𝜏)| ≤ exp(−𝓁t)|𝛿x(0)|, for all t ≥ 0. (11.29)

Note that (11.29) implies that the function V(x, 𝛿x) ∶= |𝛿x| is a generalized

Lyapunov-Finsler function in the following sense. For any 𝜏 > 0 there exists 𝓁 =
𝓁(𝜏) > 0 such that along solutions of the variational system:

V (x(t + 𝜏, x(0)), 𝛿x(t + 𝜏, 𝛿x(0), x(0))) ≤ exp(−𝓁t)V(x(0), 𝛿x(0)),

for all t ≥ 0.

Figure 11.2 summarizes the relations between the various contraction notions.

ST

WCCONTRACTION

SO

NE

SOST

NC

IC

Ex. 6

Ex. 1

Thm. 1

Thm. 2

Prop. 5
Ex. 6

Fig. 11.2 Relations between various contraction notions. A solid arrow denotes implication; a

crossed out arrow denotes that the implication is in general false; and a dashed arrow denotes

an implication that holds under some additional conditions. Some of the relations are immediate.

Others follow from the results marked near the arrows
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11.5 Proofs

Proof of Theorem 11.1 Fix arbitrary t1 ≥ 0. The function 𝜁 = 𝜁 (𝜏) ∈ (0, 1∕2] is as in

the statement of the Theorem. For each 𝜏 > 0, let c
𝜁
> 0 be a contraction constant

on 𝛺
𝜁
, where we write 𝜁 = 𝜁 (𝜏) here and in what follows. Pick a, b ∈ 𝛺 and 𝜏 > 0.

By (11.13), x(t, t1, a), x(t, t1, b) ∈ 𝛺
𝜁

for all t ≥ t1 + 𝜏, so

|x(t, t1, a)−x(t, t1, b)|𝜁
≤ exp(−c

𝜁
(t − t1 − 𝜏))|x(t1 + 𝜏, t1, a) − x(t1 + 𝜏, t1, b)|𝜁 ,

for all t ≥ t1 + 𝜏. In particular,

|x(t, t1, a) − x(t, t1, b)|𝜁 < |x(t1 + 𝜏, t1, a) − x(t1 + 𝜏, t1, b)|𝜁 , (11.30)

for all t > t1 + 𝜏. From the convergence property of norms in the Theorem statement,

there exist v
𝜁
,w

𝜁
> 0 such that

|y| ≤ v
𝜁
|y|

𝜁
≤ w

𝜁
v
𝜁
|y|, for all y ∈ 𝛺, (11.31)

and v
𝜁
→ 1, w

𝜁
→ 1 as 𝜏 → 0. Combining this with (11.30) yields

|x(t, t1, a) − x(t, t1, b)| < v
𝜁
w
𝜁
|x(t1 + 𝜏, t1, a) − x(t1 + 𝜏, t1, b)|,

for all t > t1 + 𝜏. Note that taking 𝜏 → 0 yields

|x(t, t1, a) − x(t, t1, b)| ≤ |a − b|, for all t > t1. (11.32)

Now for t ≥ t1 + 𝜏 let p ∶= t − t1 − 𝜏. Then

|x(t, t1, a) − x(t, t1, b)| ≤ v
𝜁
|x(t, t1, a) − x(t, t1, b)|𝜁

≤ v
𝜁
exp(−c

𝜁
p)|x(t1 + 𝜏, t1, a) − x(t1 + 𝜏, t1, b)|𝜁

≤ v
𝜁
w
𝜁
exp(−c

𝜁
p)|x(t1 + 𝜏, t1, a) − x(t1 + 𝜏, t1, b)|

≤ v
𝜁
w
𝜁
exp(−c

𝜁
p)|a − b|,

where the last inequality follows from (11.32). Now pick 𝜀 > 0. Since v
𝜁
→ 1, w

𝜁
→

1 as 𝜏 → 0, v
𝜁
w
𝜁
≤ 1 + 𝜀 for 𝜏 > 0 small enough. We conclude that there exists 𝜏m >

0 sufficiently small such that for all 𝜏 ∈ [0, 𝜏m]

|x(t + 𝜏, t1, a) − x(t + 𝜏, t1, b)| ≤ (1 + 𝜀) exp(−c
𝜁
(t − t1))|a − b|, (11.33)

for all a, b ∈ 𝛺 and all t ≥ t1. Now pick 𝜏 > 𝜏m. For any t ≥ t1, let s ∶= t + 𝜏 − 𝜏m.

Then
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|x(t + 𝜏, t1, a) − x(t + 𝜏, t1, b)| = |x(s + 𝜏m, t1, a) − x(s + 𝜏m, t1, b)|
≤ (1 + 𝜀) exp(−c

𝜁
(s − t1))|a − b|

≤ (1 + 𝜀) exp(−c
𝜁
(t − t1))|a − b|,

and this completes the proof of Theorem 11.1. □
Proof of Proposition 11.2 The Jacobian of (11.14) is

J(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−f ′1(x1) 0 0 … 0 g′(xn)
k1 −f ′2(x2) 0 … 0 0
0 k2 −f ′3(x3) … 0 0

⋮
0 0 0 … kn−1 −f ′n(xn)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (11.34)

so

D
𝜀
J(x)D−1

𝜀
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−f ′1(x1) 0 0 … 0 g′(xn)
∏n−1

i=1
f ′i (0)−𝜀

ki

f ′1(0) − 𝜀 −f ′2(x2) 0 … 0 0
0 f ′2(0) − 𝜀 0 … 0 0

⋮
0 0 0 … f ′n−1(0) − 𝜀 −f ′n(xn)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Thus, for any sufficiently small 𝜀 > 0, 𝜇1,D
𝜀

(J(x)) is the maximum of the n values:

v1 ∶= f ′1(0) − f ′1(x1) − 𝜀,… , vn−1 ∶= f ′n−1(0) − f ′n−1(xn−1) − 𝜀,

and

vn ∶=
kg′(xn) − f ′n(xn)

∏n−1
i=1 (f

′
i (0) − 𝜀)

∏n−1
i=1 (f

′
i (0) − 𝜀)

.

Since f ′i is nondecreasing, vi ≤ −𝜀 for all i = 1,… , n − 1. Suppose that
∏n

i=1 f ′i (0) >
kg′(0). Then since f ′i (xn) ≥ f ′i (0) and g′(xn) ≤ g′(0), there exists a sufficiently small

𝜀 > 0 such that vn ≤ −𝜀∕2, so 𝜇1,D
𝜀

(J(x)) ≤ −𝜀∕2 for all x ∈ ℝn
+, and thus the system

is contractive on ℝn
+ w.r.t. | ⋅ |1,D

𝜀

.

Now assume that
n∏

i=1
f ′i (0) = kg′(0). (11.35)

By (11.34),

det(J(x)) = (−1)n
( n∏

i=1
f ′i (xi) − kg′(xn)

)

,
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so (11.35) implies that det(J(0)) = 0, and thus the system does not satisfy (11.2)

w.r.t. any (fixed) norm on ℝn
+.

We now use Theorem 11.1 to prove that (11.14) is SOST on ℝn
+. For 𝜁 ∈ (0, 1∕2],

let

𝛺
𝜁
∶= {x ∈ ℝn

+ ∶ x ≥ 𝜁}.

It is straightforward to verify that (11.14) satisfies condition (BR) in [23, Lemma 1],

and this implies that for every 𝜏 > 0 there exists 𝜀(𝜏) > 0 such that x(t) ∈ 𝛺
𝜀

for

all t ≥ 𝜏. Then g′(xn) < g′(0), and f ′n(xn) ≥ f ′n(0) so for any sufficiently small 𝜀 > 0,

kg′(xn) − f ′n(xn)
n−1∏

i=1
(f ′i (0) − 𝜀) < kg′(0) − f ′n(0)

n−1∏

i=1
f ′i (0) = 0.

We already showed that this implies that there exists a 𝜁 > 0 and a norm | ⋅ |1,D
𝜁

such

that (11.14) is contractive on 𝛺
𝜀

w.r.t. this norm. Summarizing, all the conditions in

Theorem 11.1 hold, and we conclude that (11.14) is SOST on ℝn
+ w.r.t. | ⋅ |1,D0

. □
Analysis of the system in Example 11.3. For a ∈ 𝛺, let x(t, t1, a) denote the solu-

tion of (11.17) at time t ≥ t1 for the initial condition x(t1) = a. Pick 𝜏 > 0. Equa-

tion (11.17) satisfies condition (BR) in [23, Lemma 1], and this implies that there

exists 𝜀 = 𝜀(𝜏) > 0 such that for all a ∈ 𝛺, all i = 1,… n, and all t ≥ t1 + 𝜏

xi(t, t1, a) ≥ 𝜀.

Furthermore, if we define yi(t) ∶= pn−i+1 − xn−i+1(t), i = 1,… , n, then the y system

also satisfies condition (BR) in [23, Lemma 1], and this implies that there exists 𝜀1 =
𝜀1(𝜏) > 0 such that for all a ∈ 𝛺, all i = 1,… n, and all t ≥ t1 + 𝜏

yi(t, t1, a) ≥ 𝜀1.

We conclude that after an arbitrarily short time 𝜏 > 0 every state variable xi(t), t ≥
𝜏 + t1, is separated from 0 and from pi. This means the following. For 𝜁 ∈ [0, 1∕2],
let

𝛺
𝜁
∶= {x ∈ 𝛺 ∶ 𝜁pi ≤ xi ≤ (1 − 𝜁 )pi, i = 1,… , n}.

Note that 𝛺0 = 𝛺, and that 𝛺
𝜁

is a strict subcube of 𝛺 for all 𝜁 ∈ (0, 1∕2]. Then for

any t1 ≥ 0, and any 𝜏 > 0 there exists 𝜁 = 𝜁 (𝜏) ∈ (0, 1∕2), with 𝜁 (𝜏) → 0 as 𝜏 → 0,

such that

x(t, t1, a) ∈ 𝛺
𝜁
, for all t ≥ t1 + 𝜏 and all a ∈ 𝛺. (11.36)

The Jacobian of (11.17) satisfies J(t, x) = L(x) − diag(c(t), 0,… , 0, 𝜂n), where
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L(x) =
⎡
⎢
⎢
⎢
⎣

−𝜂1(p2−x2) 𝜂1x1 0 0
𝜂1(p2−x2) −𝜂1x1−𝜂2(p3−x3) … 0

0 𝜂2(p3−x3) … 0
⋱

0 … −𝜂n−2xn−2−𝜂n−1(pn−xn) 𝜂n−1xn−1
0 … 𝜂n−1(pn−xn) −𝜂n−1xn−1

⎤
⎥
⎥
⎥
⎦

.

Note that L(x) is Metzler, tridiagonal, and has zero sum columns for all x ∈ 𝛺. Note

also that for any x ∈ 𝛺
𝜁

every entry Lij on the sub- and superdiagonal of L satis-

fies 𝜁s1 ≤ Lij ≤ (1 − 𝜁 )s2, with s2 ∶= maxi{𝜂ipi} > s1 ∶= mini{𝜂ipi} > 0.

Note also that there exist x ∈ 𝜕𝛺 such that J(x) is singular (e.g., when x1 = 0
and x3 = p3 the second column of J is all zeros), and this implies that the system

does not satisfy (11.2) on 𝛺 w.r.t. any norm.

By [23, Theorem 4], for any 𝜁 ∈ (0, 1∕2] there exists 𝜀 = 𝜀(𝜁 ) > 0, and a diagonal

matrix D = diag(1, q1, q1q2,… , q1q2 … qn−1), with qi = qi(𝜀) > 0, such that (11.17)

is contractive on 𝛺
𝜁

w.r.t. the scaled L1 norm defined by |z|1,D ∶= |Dz|1. Further-

more, we can choose 𝜀 such that 𝜀(𝜁 ) → 0 as 𝜁 → 0, and D(𝜀) → I as 𝜀 → 0. Summa-

rizing, all the conditions in Definition 11.4 hold, so (11.17) is NC on 𝛺 and applying

Theorem 11.1 concludes the analysis. □
Proof of Proposition 11.3 Without loss of generality, assume that S0 = {1,… , k},

with 1 ≤ k < n − 1, so that S− = {k + 1,… , n}. Fix 𝜀 ∈ (0, 1). Let D = diag
(d1,… , dn) with the dis defined as follows. For every i ∈ S0, di = 1 and dz(i) = 1 − 𝜀.

All the other dis are one. Let J̃ ∶= DJD−1
. Then J̃ij =

di

dj
Jij. We now calculate 𝜇1(J̃).

Fix j ∈ S0. Then dj = 1, so

cj(J̃) = J̃jj +
∑

1≤i≤n
i≠j

|J̃ij|

= Jjj +
∑

i∈S0
i≠j

di|Jij| +
∑

k∈S−
k≠j

dk|Jkj|

= Jjj +
∑

i∈S0
i≠j

|Jij| +
∑

k∈S−
k≠j

dk|Jkj|

< cj(J),

where the inequality follows from the fact that dk ≤ 1 for all k, and for the spe-

cific value k = z(j) ∈ S− we have dk = 1 − 𝜀 and |Jkj| > 0. We conclude that for

every j ∈ S0, cj(J̃) < cj(J) = 0. It follows from property 11.3) in the statement of

Proposition 11.3 and the compactness of𝛺 that there exists 𝛿 > 0 such that cj(J(x)) <
−𝛿 for all j ∈ S− and all x ∈ 𝛺, so for 𝜀 > 0 sufficiently small we have cj(J̃(x)) <
−𝛿∕2 for all j ∈ S− and all x ∈ 𝛺. We conclude that for all 𝜀 > 0 sufficiently

small,𝜇1(DJD−1) = maxj cj(J̃) < 0, i.e., the system is contractive w.r.t. | ⋅ |1,D. Clearly, | ⋅
|1,D → | ⋅ |1 as 𝜀 → 0, and applying Corollary 11.1 completes the proof. □
Proof of Proposition 11.5 Suppose that (11.1) is WE, and also SOST w.r.t. some

norm | ⋅ |v. Pick 𝜀 > 0. Since the system is WE, there exists 𝜏0 = 𝜏0(𝜀) > 0 such that
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|x(t, t0, a) − x(t, t0, b)|v ≤
(

1 + 𝜀

2

)

|a − b|v,

for all t ∈ [t0, t0 + 𝜏0]. Letting 𝓁2 ∶=
1
𝜏0
ln( 1+𝜀

1+(𝜀∕2)
) yields

|x(t, t0, a) − x(t, t0, b)|v ≤ (1 + 𝜀) exp(−(t − t0)𝓁2)|a − b|v, (11.37)

for all t ∈ [t0, t0 + 𝜏0]. It is not difficult to show that SOST implies that there exists

𝓁1 = 𝓁1(𝜏0, 𝜀) > 0 such that

|x(t, t0, a) − x(t, t0, b)|v ≤ (1 + 𝜀) exp(−(t − t0)𝓁1)|a − b|v,

for all t ≥ t0 + 𝜏0. Combining this with (11.37) yields

|x(t, t0, a) − x(t, t0, b)|v ≤ (1 + 𝜀) exp(−(t − t0)𝓁)|a − b|v,

for all t ≥ t0, where 𝓁 ∶= min{𝓁1,𝓁2} > 0. This proves SO. □
Proof of Theorem 11.2 We require the following result.

Lemma 11.1 If system (11.18) is IC then for each 𝜏 > 0 there exists d = d(𝜏) > 0
such that

dist(x(t, x0), 𝜕𝛺) ≥ d, for all x0 ∈ 𝛺 and all t ≥ 𝜏.

Proof of Lemma 11.1 Pick 𝜏 > 0 and x0 ∈ 𝛺. Since 𝛺 is an invariant set, Int(𝛺)
is also an invariant set (see, e.g. [5, Lemma III.6]), so (11.25) implies that x(t, x0) ∉
𝜕𝛺 for all t > 0. Since 𝜕𝛺 is compact, ex0 ∶= dist(x(𝜏, x0), 𝜕𝛺) > 0. Thus, there

exists a neighborhood Ux0 of x0, such that dist(x(𝜏, y), 𝜕𝛺) ≥ ex0∕2 for all y ∈ Ux0 .

Cover 𝛺 by such Ux0 sets. By compactness of 𝛺, we can pick a finite subcover.

Pick smallest e in this subcover, and denote this by d. Then d > 0 and we have that

dist(x(𝜏, x0), 𝜕𝛺) ≥ d for all x0 ∈ 𝛺. Now, pick t ≥ 𝜏. Let x1 ∶= x(t − 𝜏, x0). Then

dist(x(t, x0), 𝜕𝛺) = dist(x(𝜏, x1), 𝜕𝛺)
≥ d,

and this completes the proof of Lemma 11.1. □
We can now prove Theorem 11.2. We recall some definitions from the theory of

convex sets. Let B(x, r) denote the closed ball of radius r around x (in the Euclidean

norm). Let K be a compact and convex set with 0 ∈ Int(K). Let s(K) denote the

inradius of k, i.e., the radius of the largest ball contained in K. For 𝜆 ∈ [0, s(K)] the

inner parallel set of K at distance 𝜆 is

K−𝜆 ∶= {x ∈ K ∶ B(x, 𝜆) ⊆ K}.

Note that K−𝜆 is a compact and convex set; in fact, K−𝜆 is the intersection of all

the translated support hyperplanes of K, with each hyperplane translated “inwards”
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through a distance 𝜆 (see [12, Section 17]). Assume, without loss of generality,

that 0 ∈ Int(𝛺). Pick 𝜏 > 0. Let M = M(𝜏) ∶= {x(t, x0) ∶ t ≥ 𝜏, x0 ∈ 𝛺}. By

Lemma 11.1, M ⊂ 𝛺 and dist(y, 𝜕𝛺) ≥ d > 0 for all y ∈ M. Let 𝜆 = 𝜆(𝜏) ∶= 1
2
min

{d, s(𝛺)}. Then 𝜆 > 0. Pick z ∈ M. We claim that B(z, 𝜆) ⊆ 𝛺. To show this, assume

that there exists v ∈ B(z, 𝜆) such that v ∉ 𝛺. Then there is a point q on the line con-

necting v and z such that q ∈ 𝜕𝛺. Therefore,

dist(z, 𝜕𝛺) ≤ |z − q|
≤ |z − v|
≤ 𝜆

≤ d∕2,

and this is a contradiction as z ∈ M. We conclude that M ⊆ K−𝜆. Let c = c(𝜏) ∶=
maxx∈K−𝜆

𝜇(J(x)). Then (11.26) implies that c < 0. Thus, the system is contractive

on K−𝜆, and for all a, b ∈ 𝛺 and all t ≥ 0

|x(t + 𝜏, a) − x(t + 𝜏, b)| ≤ exp(ct)|a − b|,

where | ⋅ | is the vector norm corresponding to the matrix measure 𝜇. This estab-

lishes ST, and thus completes the proof of Theorem 11.2. □
Proof of Corollary 11.2. Since 𝛺 is convex, compact, and invariant, it includes an

equilibrium point e of (11.18). Clearly, e ∈ Int(𝛺). By Theorem 11.2, the system

is ST. Pick a ∈ 𝛺 and 𝜏 > 0, and let 𝓁 = 𝓁(𝜏) > 0. Applying (11.10) with b = e
yields

|x(t + 𝜏, a) − e| ≤ exp(−𝓁t)|a − e|,

for all t ≥ 0. Taking t → ∞ completes the proof. □

Remark 11.3 Another possible proof of Corollary 11.2 is based on defining V ∶
𝛺 → ℝ+ by V(x) ∶= |x − e|. Then for any a ∈ 𝛺, V(x(t, a)) is nondecreasing, and

the LaSalle invariance principle tells us that x(t, a) converges to an invariant subset

of the set {y ∈ 𝛺 ∶ |y − e| = r}, for some r ≥ 0. If r = 0 then we are done. Other-

wise, pick y in the omega limit set of the trajectory. Then y ∉ 𝜕𝛺, so (11.26) implies

that V is strictly decreasing. This contradiction completes the proof.

Proof of Proposition 11.6. Pick a, b ∈ 𝛺. Let 𝛾 ∶ [0, 1] → 𝛺 be the line 𝛾(r) ∶=
(1 − r)a + rb. Note that since 𝛺 is convex, 𝛾(r) ∈ 𝛺 for all r ∈ [0, 1]. Let

w(t, r) ∶= d
dr

x(t, 𝛾(r)).

This measures the sensitivity of the solution at time t to a change in the initial con-

dition along the line 𝛾 . Note that w(0, r) = d
dr
𝛾(r) = b − a, and

ẇ(t, r) = J(x(t, 𝛾(r)))w(t, r).
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Comparing this to (11.28) implies that w(t, r) is equal to the second component, 𝛿x(t),
of the solution of the variational system (11.28) with initial condition

x(0) = (1 − r)a + rb, (11.38)

𝛿x(0) = b − a.

Suppose that the time-invariant system (11.18) is ST. Pick 𝜏 > 0. Let 𝓁 = 𝓁(𝜏) >
0. Then for any r ∈ [0, 1) and any 𝜀 ∈ [0, 1 − r],

|x(t + 𝜏, 𝛾(r + 𝜀)) − x(t + 𝜏, 𝛾(r))| ≤ exp(−t𝓁)|𝛾(r + 𝜀) − 𝛾(r)|.

Dividing both sides of this inequality by 𝜀 and taking 𝜀 ↓ 0 implies that

|w(t + 𝜏, r)| ≤ exp(−t𝓁)|b − a|, (11.39)

so

|𝛿x(t + 𝜏)| ≤ exp(−t𝓁)|𝛿x(0)|.

This proves the implication (a) → (b). To prove the converse implication, assume

that (11.29) holds. Then (11.39) holds and thus

|x(t + 𝜏, b) − x(t + 𝜏, a)| =
|
|
|
|
|
∫

1

0

d
dr

x(t + 𝜏, 𝛾(r))dr
|
|
|
|
|

≤
∫

1

0
|w(t + 𝜏, r)| dr

≤
∫

1

0
exp(−𝓁t)|b − a|dr

= exp(−𝓁t)|b − a|,

so the system is ST. □
Above, we have used several times the fact that singularity of the Jacobian implies

that the system ẋ = f (x) cannot be contractive (as defined in 11.2) w.r.t. any (fixed)

norm. For the sake of completeness, we now show this.

Pick any point a ∈ Int(𝛺) and any fixed 𝜀 > 0 such that the sphere B of radius

𝜀 around a is contained in 𝛺. Pick any b = a + q, q ∈ B, and let 𝛾 ∶ [0, 1] → 𝛺

be the line 𝛾(r) ∶= (1 − r)a + rb = a + rq. Since 𝛺 is convex, this line is contained

in 𝛺. Let w(t, r) ∶= d
dr

x(t, 𝛾(r)). Since ẇ(t, r) = J(x(t, 𝛾(r)))w(t, r), we have that for

any vector norm and for any 𝜏 > 0,

|w(𝜏, 0)| − |w(0, 0)| = |(I + 𝜏J(x(0, 𝛾(0))) + o(𝜏))w(0, 0)| − |w(0, 0)|
= |(I + 𝜏J(a))q| − |q| + o(𝜏) .
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Pick r ∈ [0, 1), and 𝜀 > 0 sufficiently small. If the system is contractive then there

exist a vector norm | ⋅ | and 𝜂 > 0 such that for all t ≥ 0,

|x(t, 𝛾(r + 𝜀)) − x(t, 𝛾(r))| ≤ exp(−𝜂t)|𝛾(r + 𝜀) − 𝛾(r)|.

Dividing both sides by 𝜀 and taking limits as 𝜀 → 0 yields |w(t, r)| ≤ exp(−𝜂t)|q|,
for all t ≥ 0, and all r ∈ [0, 1). In particular,

|w(𝜏, 0)| − |w(0, 0)| ≤ (exp(−𝜂𝜏) − 1)|q|.

Combining all this information, we have that

|(I + 𝜏J(a))q| − |q| + o(𝜏) ≤ (exp(−𝜂𝜏) − 1)|q|

and therefore, dividing by |q| and 𝜏 > 0,

|(I+𝜏J(a))q|
|q|

− 1

𝜏
≤ −𝜂 + o(𝜏)

𝜏
.

For each fixed 𝜏, pick a q = q(𝜏) so that ‖I + 𝜏J(a)‖ = |(I+𝜏J(a))q|
|q|

, so the inequality

gives

‖I + 𝜏J(a)‖ − 1
𝜏

≤ −𝜂 + o(𝜏)
𝜏

.

Taking the limit as 𝜏 ↘ 0 gives that 𝜇(J(a)) ≤ −𝜂, where 𝜇 is the matrix measure

associated to the given norm. It follows that the real part of every eigenvalue of J(a)
is also less than −𝜂 [16, p. 35], so J(a) is nonsingular. There remains the case when

a is not in the interior of 𝛺. However, continuity of eigenvalues implies that the

conclusion that the real part of every eigenvalue of J(a) is ≤ −𝜂 is true as well.

11.6 Conclusions

Contraction theory is a powerful tool for studying nonlinear dynamical systems.

Contraction implies several desirable asymptotic properties such as convergence to

a unique attractor (if it exists), and entrainment to periodic excitation. This holds

even if the equilibrium point or periodic attractor are not known in explicit form.

However, proving contraction is in many cases nontrivial.

We considered three generalizations of contraction. These are motivated by

allowing contraction to take place after an arbitrarily small transient in time and/or

amplitude. In particular, this means that they have the same asymptotic proper-

ties as contractive systems. We provided checkable conditions guaranteeing that a
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dynamical system is a GCS, and demonstrated their usefulness by using them to

analyze a number of models from systems biology. Some of these models do not

satisfy (11.2), w.r.t. any (fixed) norm, yet are a GCS.
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