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a b s t r a c t

Contraction theory is a powerful tool for proving asymptotic properties of nonlinear dynamical systems
including convergence to an attractor and entrainment to a periodic excitation. We consider three
generalizations of contraction with respect to a norm that allow contraction to take place after small
transients in time and/or amplitude. These generalized contractive systems (GCSs) are useful for several
reasons. First, we show that there exist simple and checkable conditions guaranteeing that a system is a
GCS, and demonstrate their usefulness using severalmodels from systems biology. Second, allowing small
transients does not destroy the important asymptotic properties of contractive systems like convergence
to a unique equilibrium point, if it exists, and entrainment to a periodic excitation. Third, in some cases
as we change the parameters in a contractive system it becomes a GCS just before it looses contractivity
with respect to a norm. In this respect, generalized contractivity is the analogue of marginal stability in
Lyapunov stability theory.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Differential analysis is based on studying the time evolution of
the distance between trajectories emanating from different ini-
tial conditions. A dynamical system is called contractive if any
two trajectories converge to one other at an exponential rate.
This implies many desirable properties including convergence to
a unique attractor (if it exists), and entrainment to periodic ex-
citations (Aminzare & Sontag, 2014; Lohmiller & Slotine, 1998;
Russo, di Bernardo, & Sontag, 2010). Contraction theory proved
to be a powerful tool for analyzing nonlinear dynamical sys-
tems, with applications in control theory (Lohmiller & Slotine,
2000), observer design (Bonnabel, Astolfi, & Sepulchre, 2011), syn-
chronization of coupled oscillators (Wang & Slotine, 2005), and
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more. Recent extensions include: the notion of partial contrac-
tion (Slotine, 2003), analyzing networks of interacting agents us-
ing contraction theory (Arcak, 2011; Russo, di Bernardo, & Sontag,
2013), a Lyapunov-like characterization of incremental stability
(Angeli, 2002), and a LaSalle-type principle for contractive systems
(Forni & Sepulchre, 2014). There is also a growing interest in design
techniques providing controllers that render control systems con-
tractive or incrementally stable; see, e.g. Zamani, van de Wouw,
and Majumdar (2013) and the references therein, and also the in-
cremental ISS condition in Desoer and Haneda (1972).

A contractive system with added diffusion terms or random
noise still satisfies certain asymptotic properties (Aminzare &
Sontag, 2013; Pham, Tabareau, & Slotine, 2009). In this respect,
contraction is a robust property.

In this note, we introduce three forms of generalized contrac-
tive systems (GCSs). These are motivated by requiring contraction
with respect to a norm to take place only after arbitrarily small
transients in time and/or amplitude. Our work was motivated by
certain models from systems biology that are not contractive with
respect to any (fixed) norm, yet are ‘‘almost’’ contractive. One ex-
ample is where contraction is lost only on the boundary of the
state space, but trajectories emanating from this boundary ‘‘imme-
diately’’ enter the interior of the state space. Thus,wehave contrac-
tion after an arbitrarily short time transient. The goal of the note is
to rigorously define these formsof contraction, study its properties,
and derive sufficient conditions for its existence. The contribution
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of this note is thus two-fold: the theoretical study of this type of
contraction after an infinitesimal transient, and using this notion
to prove important asymptotic properties in applications. Indeed,
contraction is usually used to prove asymptotic properties, and thus
allowing (arbitrarily small) transients seems reasonable. We pro-
vide several sufficient conditions for a system to be a GCS. These
conditions are checkable, and we demonstrate their usefulness us-
ing several examples of systems that are not contractive with re-
spect to any norm, yet are GCSs.

In some cases, as we change the parameters in a contractive
system it becomes a GCS just before it looses contractivity. In this
respect, a GCS is the analogue of marginal stability in Lyapunov
stability theory.

We begin with a brief review of some ideas from contraction
theory. See Soderlind (2006), Jouffroy (2005) and Rüffer, van de
Wouw, and Mueller (2013) for more details, including the historic
development of contraction theory, and the relation to other no-
tions.

Consider the time-varying system

ẋ = f (t, x), (1)

with the state x evolving on a positively invariant convex set Ω ⊆

Rn. We assume that f (t, x) is differentiable with respect to x, and
that both f (t, x) and J(t, x) :=

∂ f
∂x (t, x) are continuous in (t, x). Let

x(t, t0, x0) denote the solution of (1) at time t ≥ t0 with x(t0) = x0
(for the sake of simplicity, we assume from here on that x(t, t0, x0)
exists and is unique for all t ≥ t0 ≥ 0 and all x0 ∈ Ω).

We say that (1) is contractive on Ω with respect to a norm | · | :

Rn
→ R+ if there exists c > 0 such that

|x(t2, t1, a) − x(t2, t1, b)| ≤ exp(−(t2 − t1)c)|a − b| (2)

for all t2 ≥ t1 ≥ 0 and all a, b ∈ Ω . In other words, any two trajec-
tories contract to one another at an exponential rate. This implies
in particular that the initial condition is ‘‘quickly forgotten’’. Note
that Lohmiller and Slotine (1998) provide a more general and in-
trinsic definition, where contraction is with respect to a time- and
state-dependent metric M(t, x). Simpson-Porco and Bullo (2014)
provide a general treatment of contraction on a Riemannian mani-
fold; see also Lewis (1949). Someof the results belowmaybe stated
using this more general framework. But, for a given dynamical sys-
tem finding such ametricmay be difficult; see e.g. Aylward, Parrilo,
and Slotine (2008) for an algorithm for finding such contraction
metrics using sum-of-squares programming.

Another extension of contraction is incremental stability
(Angeli, 2002). Our approach is based on the fact that there exists
a simple sufficient condition guaranteeing (2), so generalizing (2)
appropriately leads to checkable sufficient conditions for a system
to be aGCS. Another advantage of our approach is that aGCS retains
the important property of entrainment to periodic signals.

Recall that a vector norm | · | : Rn
→ R+ induces a matrix mea-

sure µ : Rn×n
→ R defined by µ(A) := limϵ↓0

1
ϵ
(∥I + ϵA∥ − 1),

where ∥ · ∥ : Rn×n
→ R+ is the matrix norm induced by | · |. A

standard approach for proving (2) is based on bounding some ma-
trixmeasure of the Jacobian J . Indeed, it iswell-known (Russo et al.,
2010) that if there exist a vector norm | · | and c > 0 such that the
induced matrix measure µ : Rn×n

→ R satisfies µ(J(t, x)) ≤ −c ,
for all t2 ≥ t1 ≥ 0 and all x ∈ Ω then (2) holds. (This is in fact a
particular case of using a Lyapunov–Finsler function to prove con-
traction Forni & Sepulchre, 2014.)

It is well-known (Vidyasagar, 1978, Ch. 3) that the matrix
measure induced by the L1 vector norm is

µ1(A) = max{c1(A), . . . , cn(A)}, (3)

where

cj(A) := Ajj +

1≤i≤n
i≠j

|Aij|, (4)
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i.e., the sum of the entries in column j of A, with non diagonal el-
ements replaced by their absolute values. The matrix measure in-
duced by the L∞ norm is µ∞(A) = max{d1(A), . . . , dn(A)}, where

dj(A) := Ajj +

1≤i≤n
i≠j

|Aji|, (5)

i.e., the sum of the entries in row j of A, with non diagonal elements
replaced by their absolute values.

Often it is useful to work with scaled norms. Let | · |∗ be some
vector norm, and let µ∗ : Rn×n

→ R denote its induced matrix
measure. If P ∈ Rn×n is an invertible matrix, and | · |∗,P : Rn

→ R+

is the vector norm defined by |z|∗,P := |Pz|∗ then the induced
matrix measure is µ∗,P(A) = µ∗(PAP−1).

One important implication of contraction is entrainment to a
periodic excitation. Recall that f : R+ × Ω → Rn is called T-
periodic if f (t, x) = f (t + T , x) for all t ≥ 0 and all x ∈ Ω . Note
that for the system ẋ(t) = f (u(t), x(t)), with u an input (or exci-
tation) function, f will be T -periodic if u is a T -periodic function.
It is well-known (Lohmiller & Slotine, 1998; Russo et al., 2010)
that if (1) is contractive and f is T -periodic then for any t1 ≥ 0
there exists a unique periodic solution α : [t1, ∞) → Ω of (1),
of period T , and every trajectory converges to α. Entrainment is
important in various applications ranging from biological systems
(Margaliot, Sontag, & Tuller, 2014; Russo et al., 2010) to the stability
of a power grid (Dorfler & Bullo, 2012). Note that for the particular
case where f is time-invariant, this implies that if Ω contains an
equilibrium point e then it is unique and all trajectories converge
to e.

The remainder of this note is organized as follows. Section 2
presents three generalizations of (2). Section 3 details sufficient
conditions for their existence, and describes their implications.
Due to space limitations, the proofs of all the results are placed at:
http://arxiv.org/abs/1506.06613.

2. Definitions of contraction after small transients

We begin by defining three generalizations of (2).

Definition 1. The time-varying system (1) is said to be:

• contractive after a small overshoot and short transient (SOST) on
Ω w.r.t. a norm | · | : Rn

→ R+ if for each ε > 0 and each τ > 0
there exists ℓ = ℓ(τ , ε) > 0 such that

|x(t2 + τ , t1, a) − x(t2 + τ , t1, b)|
≤ (1 + ε) exp(−(t2 − t1)ℓ)|a − b|

for all t2 ≥ t1 ≥ 0 and all a, b ∈ Ω .
• contractive after a small overshoot (SO) on Ω w.r.t. a norm | · | :

Rn
→ R+ if for each ε > 0 there exists ℓ = ℓ(ε) > 0 such that

|x(t2, t1, a) − x(t2, t1, b)| ≤ (1 + ε) exp(−(t2 − t1)ℓ)|a − b|

for all t2 ≥ t1 ≥ 0 and all a, b ∈ Ω .
• contractive after a short transient (ST) on Ω w.r.t. a norm | · | :

Rn
→ R+ if for each τ > 0 there exists ℓ = ℓ(τ ) > 0 such that

|x(t2 + τ , t1, a) − x(t2 + τ , t1, b)|
≤ exp(−(t2 − t1)ℓ)|a − b| (6)

for all t2 ≥ t1 ≥ 0 and all a, b ∈ Ω .

The definition of SOST is motivated by requiring contraction at
an exponential rate, but only after an (arbitrarily small) time τ , and
with an (arbitrarily small) overshoot (1 + ε). However, as we will
see below when the convergence rate ℓ may depend on ε a some-
what richer behavior may occur. The definition of SO is similar to
that of SOST, yet now the convergence rate ℓ depends only on ε,
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Fig. 1. Relations between various contraction notions. An arrow denotes
implication; a crossed out arrow denotes that the implication is in general false;
and adashed arrowdenotes an implication that holds under an additional condition.
Some of the relations are immediate. Others follow from the results marked near
the arrows.

and there is no time transient τ (i.e., τ = 0). In other words, SO is a
uniform (in τ ) version of SOST. The third definition, ST, allows the
contraction to ‘‘kick in’’ only after a time transient of length τ .

It is clear that every contractive system is SOST, SO, and ST. Thus,
all these notions are generalizations of contraction. Also, both SO
and ST imply SOST and, aswewill see below, under amild technical
condition on (1) SO and SOST are equivalent. Fig. 1 summarizes
the relations between these GCSs (as well as other notions defined
below).

One motivation for these definitions stems from the fact that
important applications of contraction are in proving asymptotic
properties. For example, proving that an equilibrium point is
globally attracting or that the state-variables entrain to a periodic
excitation. These properties describewhat happens as t → ∞, and
so it seems natural to generalize contraction in a way that allows
initial transients in time and/or amplitude.

The next simple example demonstrates a system that does not
satisfy (2), but is a GCS.

Example 1. Consider the scalar time-varying system ẋ(t) =

−α(t)x(t), with the state x evolving on Ω := [−1, 1], and α :

R+ → R+ is a class K function (i.e. α is continuous and strictly
increasing, with α(0) = 0). It is straightforward to show that
this system does not satisfy (2) w.r.t. any norm (note that the
Jacobian J(t) = −α(t) satisfies J(0) = 0), yet it is ST, with
ℓ(τ ) = α(τ) > 0, for any given τ > 0.

3. Main results

The next three subsections study the three forms of GCSs de-
fined above.
Contraction after a small overshoot and short transient

Just like contraction, SOST implies entrainment to a periodic
excitation.

Proposition 1. Suppose that the time-varying system (1), with
state x evolving on a compact and convex state-space Ω ⊂ Rn, is
SOST, and that the vector field f is T -periodic. Then for any t0 ≥ 0 it
admits a unique periodic solution γ : [t0, ∞) → Ω with period T ,
and x(t, t0, a) converges to γ for any a ∈ Ω .

Since both SO and ST imply SOST, Proposition 1 holds for all three
forms of GCSs.

Our next goal is to derive a sufficient condition for SOST. One
may naturally expect that if (1) is contractive w.r.t. a set of norms
| · |ζ , with, say ζ ∈ (0, p], p > 0, and that limζ→0 | · |ζ = |·| then (1)
is a GCS w.r.t. the norm | · |. In fact, this can be further generalized
by requiring (1) to be contractive w.r.t. | · |ζ only on suitable subset
Ωζ of the state-space. This leads to the following definition.
omatica 67 (2016) 178–184

Definition 2. System (1) is said to be nested contractive (NC) on Ω

with respect to a norm | · | if there exist convex sets Ωζ ⊆ Ω , and
norms |·|ζ : Rn

→ R+, where ζ ∈ (0, 1/2], such that the following
conditions hold.

(a) ∪ζ∈(0,1/2] Ωζ = Ω , and Ωζ1 ⊆ Ωζ2 , for all ζ1 ≥ ζ2.
(b) For every τ > 0 there exists ζ = ζ (τ ) ∈ (0, 1/2], with ζ (τ ) →

0 as τ → 0, such that for every a ∈ Ω and every t1 ≥ 0

x(t, t1, a) ∈ Ωζ , for all t ≥ t1 + τ , (7)

and (1) is contractive on Ωζ with respect to | · |ζ .
(c) The norms | · |ζ converge to | · | as ζ → 0, i.e., for every ζ > 0

there exists s = s(ζ ) > 0, with s(ζ ) → 0 as ζ → 0, such that
(1 − s)|y| ≤ |y|ζ ≤ (1 + s)|y|, for all y ∈ Ω .

Eq. (7)means that after an arbitrarily short time every trajectory
enters and remains in a subset Ωζ of the state space on which we
have contraction with respect to | · |ζ . We can now state the main
result in this subsection.

Theorem 1. If the system (1) is NC w.r.t. the norm | · | then it is SOST
w.r.t. the norm | · |.

The next example demonstrates Theorem 1. It also shows that
as we change the parameters in a contractive system, it may
become a GCS when it hits the ‘‘verge’’ of contraction (as defined
in (2)). This is reminiscent of an asymptotically stable system that
becomes marginally stable as it looses stability.

Example 2. Consider the system

ẋ1 = g(xn) − α1x1,
ẋ2 = x1 − α2x2,
ẋ3 = x2 − α3x3,

...

ẋn = xn−1 − αnxn, (8)

where αi > 0, and g(u) :=
1+u
k+u , with k > 1. This models a simple

biochemical feedback control circuit for protein synthesis in the
cell (Smith, 1995, Ch. 4). The xis represent concentrations of various
macro-molecules in the cell and thereforemust be non-negative. It
is straightforward to verify that x(0) ∈ Rn

+
implies that x(t) ∈ Rn

+

for all t ≥ 0.
Let α :=

n
i=1 αi, and for ε > 0 let

Dε := diag


1, α1 − ε, . . . ,

n−1
i=1

(αi − ε)


.

If

k − 1 < αk2 (9)

then (7) is contractive onRn
+
w.r.t. the scaled norm |·|1,Dε for all ε >

0 sufficiently small. If k−1 = αk2 then (7) does not satisfy (2),w.r.t.
any norm, on Rn

+
, yet it is SOST on Rn

+
w.r.t. the norm | · |1,D0 .

1

Note that for all x ∈ Rn
+
,

g ′(xn) =
k − 1

(k + xn)2
≤

k − 1
k2

= g ′(0).

Thus (9) implies that the system satisfies (2) if and only if the ‘‘total
dissipation’’ α is strictly larger than g ′(0).

Using the fact that g(u) < 1 for all u ≥ 0 it is straightforward
to show that the set Ωr := r([0, α−1

1 ] × [0, (α1α2)
−1

] × · · · ×

1 Due to space limitations, the details of the analysis are placed at: http://arxiv.
org/abs/1506.06613.
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[0, α−1
]) is an invariant set of the dynamics for all r ≥ 1. Thus,

(7), with k − 1 ≤ αk2, admits a unique equilibrium point e ∈ Ω1
and limt→∞ x(t, a) = e, for all a ∈ Rn

+
. This property also follows

from amore general result (Smith, 1995, Prop. 4.2.1) that is proved
using the theory of irreducible cooperative dynamical systems. Yet
theGCS approach leads to new insights. For example, it implies that
the distance between trajectories can only decrease, and can also
be used to prove entrainment to suitable generalizations of (7) that
include periodically-varying inputs.

Cells often respond to external stimulus bymodification of pro-
teins. Onemechanism for this is phosphorelay (also called phospho-
transfer) inwhich a phosphate group is transferred through a serial
chain of proteins from an initial histidine kinase (HK) down to a fi-
nal response regulator (RR). The next example uses Theorem 1 to
analyze amodel for phosphorelay from Csikasz-Nagy, Cardelli, and
Soyer (2011).

Example 3. Consider the system

ẋ1 = (p1 − x1)c − η1x1(p2 − x2),
ẋ2 = η1x1(p2 − x2) − η2x2(p3 − x3),

...

ẋn−1 = ηn−2xn−2(pn−1 − xn−1) − ηn−1xn−1(pn − xn),
ẋn = ηn−1xn−1(pn − xn) − ηnxn, (10)

where ηi, pi > 0, and c : [t1, ∞) → R+. In the context
of phosphorelay, c(t) is the strength at time t of the stimulus
activating the HK, xi(t) is the concentration of the phosphorylated
formof the protein at the ith layer at time t , and pi denotes the total
protein concentration at that layer. Note that ηnxn is the flow of the
phosphate group to an external receptor molecule.

In the particular case where pi = 1 for all i (9) becomes the
ribosome flow model (RFM) (Reuveni, Meilijson, Kupiec, Ruppin, &
Tuller, 2011). This is themean-field approximation of an important
model from non-equilibrium statistical physics called the totally
asymmetric simple exclusion process (TASEP) (Blythe & Evans, 2007).
In the RFM, xi ∈ [0, 1] is the normalized occupancy at site i,
where xi = 0 [xi = 1] means that site i is completely free [full],
and ηi is the capacity of the link that connects site i to site i + 1.
This has been used to model mRNA translation, where every site
corresponds to a group of codons on the mRNA strand, xi(t) is the
normalized occupancy of ribosomes at site i at time t , c(t) is the
initiation rate at time t , and ηi is the elongation rate from site i to
site i + 1.

Our original motivation for generalizing (2) was to prove en-
trainment in the RFM (Margaliot et al., 2014). For more results
on the RFM, see Margaliot and Tuller (2012a,b, 2013), Poker,
Zarai, Margaliot, and Tuller (2014) and Zarai, Margaliot, and Tuller
(2013).

Assume that there exists η0 > 0 such that c(t) ≥ η0 for
all t ≥ t1. LetΩ := [0, p1]× · · ·×[0, pn] denote the state-space of
(9). Eq. (9) does not satisfy (2), w.r.t. any norm, on Ω , yet it is SOST
on Ω w.r.t. the L1 norm.2

Considering Theorem 1 in the special case where all the setsΩζ

in Definition 2 are equal to Ω yields the following result.

Corollary 1. Suppose that (1) is contractive on Ω w.r.t. a set of
norms | · |ζ , ζ ∈ (0, 1/2], and that condition (c) in Definition 2 holds.
Then (1) is SOST on Ω w.r.t. | · |.

Corollary 1 may be useful in cases where some matrix measure
of the Jacobian J of (1) turns out to be non positive on Ω , but

2 Due to space limitations, the details of the analysis are placed at: http://arxiv.
org/abs/1506.06613.
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not strictly negative, suggesting that the system is ‘‘on the verge’’
of satisfying (2). The next result demonstrates this for the time-
invariant system

ẋ = f (x), (11)

and the particular case of the matrix measure µ1 : Rn×n
→ R

induced by the L1 norm. Recall that this is given by (3) with the cjs
defined in (4).

Proposition 2. Consider the Jacobian J(·) : Ω → Rn×n of the time-
invariant system (11). Suppose that Ω is compact and that the set
{1, . . . , n} can be divided into two non-empty disjoint sets S0 and S−

such that the following properties hold for all x ∈ Ω:

(1) for any k ∈ S0, ck(J(x)) ≤ 0;
(2) for any j ∈ S−, cj(J(x)) < 0;
(3) for any i ∈ S0 there exists an index z = z(i) ∈ S− such

that Jzi(x) > 0.

Then (11) is SOST on Ω w.r.t. the L1 norm.

The proof of Proposition 2 is based on the following idea. By
compactness of Ω , there exists δ > 0 such that

cj(J(x)) < −δ, for all j ∈ S− and all x ∈ Ω. (12)

The conditions stated in the proposition imply that there exists
a diagonal matrix P such that ck(PJP−1) < 0 for all k ∈ S0.
Furthermore, there exists such a P with diagonal entries arbitrarily
close to 1, so cj(PJP−1) < −δ/2 for all j ∈ S−. Thus,µ1(PJ(x)P−1) <
0 for all x ∈ Ω . NowCorollary 1 implies SOST. Note that this implies
that the compactness assumption may be dropped if for example
it is known that (12) holds.

Example 4. Consider the system:

ẋ = − δx + k1y − k2(eT − y)x,
ẏ = − k1y + k2(eT − y)x, (13)

where δ, k1, k2, eT > 0, and Ω := [0, ∞) × [0, eT ]. This is a basic
model for a transcriptional module that is ubiquitous in both biol-
ogy and synthetic biology (see, e.g., Del Vecchio, Ninfa, & Sontag,
2008, Russo et al., 2010). Here x(t) is the concentration at time t of
a transcriptional factor X that regulates a downstream transcrip-
tional module by binding to a promoter with concentration e(t)
yielding a protein–promoter complex Y with concentration y(t).
The binding reaction is reversible with binding and dissociation
rates k2 and k1, respectively. The linear degradation rate of X is δ,
and as the promoter is not subject to decay, its total concentra-
tion, eT , is conserved, so e(t) = eT − y(t). Russo et al. (2010) have
shown that (12) is contractive w.r.t. a certain weighted L1 norm.
The Jacobian of (12) is J =


−δ − k2(eT − y) k1 + k2x

k2(eT − y) −k1 − k2x


, and all the

properties in Proposition 2 hold with S− = {1} and S0 = {2}. In-
deed, J12 = k1 + k2x > k1 > 0 for all


x y

T
∈ Ω . Thus, (12) is

SOST on Ω w.r.t. the L1 norm.

Arguing as in the proof of Proposition 2 for the matrix
measureµ∞ induced by the L∞ norm (see (5)) yields the following
result.

Proposition 3. Consider the Jacobian J(·) : Ω → Rn×n of the time-
invariant system (11). Suppose that Ω is compact and that the set
{1, . . . , n} can be divided into two non-empty disjoint sets S0 and S−

such that the following properties hold for all x ∈ Ω:

(1) dj(J(x)) ≤ 0 for all j ∈ S0;
(2) dk(J(x)) < 0 for all k ∈ S−;
(3) for any j ∈ S0 there exists an index z = z(j) ∈ S− such that

Jjz(x) ≠ 0.

Then (11) is SOST on Ω w.r.t. the L∞ norm.
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Contraction after a short overshoot
A natural question is under what conditions SO and SOST are

equivalent. To address this issue, we introduce the following defi-
nition.

Definition 3. We say that (1) is weakly expansive (WE) if for
each δ > 0 there exists τ0 > 0 such that for all a, b ∈ Ω and
all t0 ≥ 0,

|x(t, t0, a) − x(t, t0, b)| ≤ (1 + δ)|a − b|, (14)

for all t ∈ [t0, t0 + τ0].

Proposition 4. Suppose that (1) is WE. Then (1) is SOST if and only if
it is SO.

Remark 1. Suppose that f in (1) is Lipschitz globally in Ω
uniformly in t , i.e. there exists L > 0 such that |f (t, x) − f (t, y)| ≤

L|x − y|, for all x, y ∈ Ω, t ≥ 0. Then by Gronwall’s Lemma
(see, e.g. Sontag, 1998, Appendix C), |x(t, t0, a) − x(t, t0, b)| ≤

exp (L(t − t0)) |a − b|, for all t ≥ t0 ≥ 0, and this implies that
(14) holds for τ0 :=

1
L ln(1 + δ) > 0. In particular, if Ω is compact

and f is periodic in t then WE holds under rather weak continuity
arguments on f .

Contraction after a short transient
For time-invariant systemswhose state evolves on a convex and

compact set it is possible to give a simple sufficient condition for ST.
Let Int(S) [∂S] denote the interior [boundary] of a set S. We require
the following definitions.

Definition 4. We say that (1) is non expansive (NE)w.r.t. a norm |·|

if for all a, b ∈ Ω and all s2 > s1 ≥ 0

|x(s2, s1, a) − x(s2, s1, b)| ≤ |a − b|. (15)

We say that (1) is weakly contractive (WC) if (15) holds with ≤

replaced by <.

Definition 5. The time-invariant system (11) with the state x
evolving on a compact and convex setΩ ⊂ Rn, is said to be interior
contractive (IC) w.r.t. a norm | · | : Rn

→ R+ if the following
properties hold:
(a) for every x0 ∈ ∂Ω , x(t, x0) ∉ ∂Ω , for all t > 0;
(b) for every x ∈ Int(Ω),

µ(J(x)) < 0, (16)

where µ : Rn×n
→ R is the matrix measure induced by | · |.

In other words, the matrix measure is negative in the interior
of Ω , and the boundary of Ω is ‘‘repelling’’. Note that these
conditions do not necessarily imply that the system satisfies (2)
on Ω , as it is possible that µ(J(x)) = 0 for some x ∈ ∂Ω . Yet, (16)
does imply that (11) is NE on Ω . We can now state the main result
in this subsection.

Theorem 2. If the system (11) is IC w.r.t. a norm | · | then it is ST w.r.t.
| · |.

The proof of this result is based on showing that IC implies
that for each τ > 0 there exists d = d(τ ) > 0 such that
dist(x(t, x0), ∂Ω) ≥ d, for all x0 ∈ Ω and all t ≥ τ , and then using
this to conclude that for any t ≥ τ all the trajectories of the system
are contained in a convex and compact set D ⊂ Int(Ω). In this set
the system is contractive with rate c := maxx∈D µ(J(x)) < 0. The
next example, that is a variation of a system studied by Russo et al.
(2010), demonstrates this reasoning.

Example 5. Consider a transcriptional factor X that regulates a
downstream transcriptional module by irreversibly binding, at
a rate k2 > 0, to a promoter E yielding a protein–promoter
complex Y . The promoter is not subject to decay, so its total
omatica 67 (2016) 178–184

concentration, denoted by eT > 0, is conserved. Assume also
that X is obtained from an inactive form X0, for example through
a phosphorylation reaction that is catalyzed by a kinase with
abundance u(t) satisfying u(t) ≥ u0 > 0 for all t ≥ 0. The sum
of the concentrations of X0, X , and Y is constant, denoted by zT ,
with zT > eT . Letting x1(t), x2(t) denote the concentrations of X, Y
at time t yields the model

ẋ1 =(zT − x1 − x2)u − δx1 − k2(eT − x2)x1,
ẋ2 =k2(eT − x2)x1, (17)

with the state evolving on Ω := [0, zT ] × [0, eT ]. Here δ ≥ 0 is the
dephosphorylation rate X → X0. Let P :=


1 1
0 1


, and consider

the matrix measure µ∞,P . Let J̃ := PJP−1. A calculation yields J̃ =
−u − δ δ

k2(eT − x2) k2(x2 − x1 − eT )


, so d1(J̃) = −u − δ + |δ| ≤ −u0 < 0,

and

d2(J̃) = k2(x2 − x1 − eT ) + |k2(eT − x2)|
= −k2x1.

Letting S := {0} × [0, eT ], we conclude that µ∞,P(x) < 0 for
all x ∈ (Ω \ S). For any x ∈ S, ẋ1 = (zT − x2)u ≥ (zT − eT )u0 > 0,
and arguing as in the proof of Theorem 2, we conclude that for
any τ > 0 there exists d = d(τ ) > 0 such that x1(t, a) ≥ d,
for all a ∈ Ω and all t ≥ τ . In other words, after time τ all
the trajectories are contained in the closed and convex set D =

D(τ ) := [d, zT ] × [0, eT ]. Letting c := c(τ ) = maxx∈D µ∞,P(J(x))
yields c < 0 and |x(t + τ , a)− x(t + τ , b)|∞,P ≤ exp(ct)|a− b|∞,P
for all a, b ∈ Ω and all t > 0, so (16) is ST w.r.t. | · |∞,P .

As noted above, the introduction of GCS ismotivated by the idea
that contraction is used to prove asymptotic results, so allowing
initial transients should increase the class of systems that can be
analyzed while still allowing to prove asymptotic results. The next
result demonstrates this.

Corollary 2. If (11) is IC with respect to some norm then it admits a
unique equilibrium point e ∈ Int(Ω), and limt→∞ x(t, a) = e for
all a ∈ Ω .

Remark 2. Consider the variational system (see, e.g., Forni &
Sepulchre, 2014) associated with (11):

ẋ = f (x),

δ̇x = J(x)δx. (18)

Our proof of Corollary 2 is based on Theorem2. An alternative proof
is possible, using the Lyapunov–Finsler function V (x, δx) := |δx|,
where | · | : Rn

→ R+ is the vector norm corresponding to
the matrix measure µ in (16), and the LaSalle invariance principle
described in Forni and Sepulchre (2014).

Contraction can be characterized using a Lyapunov–Finsler
function (Forni & Sepulchre, 2014). The next result describes a
similar characterization for ST. For simplicity, we state this for the
time-invariant system (11).

Proposition 5. The following two conditions are equivalent.
(a) The time-invariant system (11) is ST w.r.t. a norm | · |.
(b) For any τ > 0 there exists ℓ = ℓ(τ ) > 0 such that for

any a, b ∈ Ω and any c on the line connecting a and b the
solution of (17) with x(0) = c and δx(0) = b − a satisfies
|δx(t + τ)| ≤ exp(−ℓt)|δx(0)|, for all t ≥ 0.

Note that the latter condition implies that the function
V (x, δx) := |δx| is a generalized Lyapunov–Finsler function in the
following sense. For any τ > 0 there exists ℓ = ℓ(τ ) > 0 such that
along solutions of the variational system: V (x(t + τ , x(0)), δx(t +

τ , δx(0), x(0))) ≤ exp(−ℓt)V (x(0), δx(0)), for all t ≥ 0.
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It is straightforward to show that each of the three generaliza-
tions of contraction in Definition 1 implies that (1) is NE. One may
perhaps expect that any of the three generalizations of contraction
in Definition 1 also impliesWC. Indeed, ST does implyWC, because
|x(s2, s1, a)− x(s2, s1, b)| ≤ exp (−ℓ(s2 − s1)/2) |a−b| < |a−b|,
for all 0 ≤ s1 < s2 if ST holds (simply apply the definition
with t1 = s1, τ = (s2 − s1)/2 > 0, and t2 = s1 + τ in (6)).
However, the next example shows that SO does not imply WC.

Example 6. Consider the scalar system

ẋ =


−2x, 0 ≤ |x| < 1/2,

−
x
|x|

,
1
2

≤ |x| ≤ 1,

with x evolving on Ω := [−1, 1]. Clearly, this system is not WC.
However, it is not difficult to show that it satisfies the definition
of SO with ℓ = ℓ(ε) := min{ln(1 + ε), 1}.

Fig. 1 summarizes the relations between the various contraction
notions.
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