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a b s t r a c t

Amatrix is called totally nonnegative (TN) [totally positive (TP)] if all itsminors are nonnegative [positive].
Multiplying a vector by a TN matrix does not increase the number of sign variations in the vector. In a
largely forgotten paper, Binyamin Schwarz (1970) considered matrices whose exponentials are TN or TP.
He also analyzed the evolution of the number of sign changes in the vector solutions of the corresponding
linear system. His work, however, considered only linear systems.

In a seemingly different line of research, Smillie (1984), Smith (1991), and others analyzed the stability
of nonlinear tridiagonal cooperative systems by using the number of sign variations in the derivative
vector as an integer-valued Lyapunov function.

We show that these two research topics are intimately related. This allows to derive important
generalizations of the results by Smillie (1984) and Smith (1991) while simplifying the proofs. These
generalizations are particularly relevant in the context of control systems. Also, the results by Smillie
and Smith provide sufficient conditions for analyzing stability based on the number of sign changes in
the vector of derivatives and the connection to the work of Schwarz allows to show in what sense these
results are also necessary. We describe several new and interesting research directions arising from this
new connection.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The trajectories ofmonotonedynamical systemspreserve a par-
tial ordering, induced by a proper cone, between their initial con-
ditions. Hirsch’s quasi-convergence theorem (Smith, 1995) shows
that this property has far reaching implications for the asymptotic
behavior of their trajectories. An important special case is coop-
erative systems arising when the cone that induces the partial
ordering is the positive orthant. In an interesting paper, Smillie
(1984) considered the time-invariant, nonlinear, strongly cooper-
ative, and tridiagonal system:

ẋ(t) = f (x(t)), (1)

where x(t) ∈ Rn and f : Rn
→ Rn, and has shown that

every trajectory either leaves any compact set or converges to an
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equilibrium point. This result has found many applications as well
as several interesting generalizations (see, e.g. Chua & Roska, 1990;
Donnell, Baigent, & Banaji, 2009; Fang, Gyllenberg, & Wang, 2013;
Margaliot & Tuller, 2012; Smith, 1991).1

To explain Smillie’s proof, let z := ẋ. Then (1) yields the
variational equation

ż(t) = J(x(t))z(t), (2)

where J(x) :=
∂
∂x f (x) is the Jacobian of the vector field f . Smillie

showed that since J is tridiagonal with positive entries on the
super- and sub-diagonal, the number of sign variations in the
vector z(t), denoted σ (z(t)), is a non-increasing function of t . Recall
that for a vector y ∈ Rn with no zero entries the number of sign
variations in y is

σ (y) := |{i ∈ {1, . . . , n − 1} : yiyi+1 < 0}| . (3)

For example, for n = 3 consider the vector z(ε) :=
[
−1 ε 2

]′.
For any ε ∈ R \ {0}, σ (z(ε)) is well-defined and equal to one. More
generally, the function σ can be extended, via continuity, to the

1 We note in passing that Fiedler and Gedeon (1999) have proved a similar result
using a very different technique.
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largest open set:

V :={y ∈ Rn
: y1 ̸= 0, yn ̸= 0, and if yi = 0

for some i ∈ {2, . . . , n − 1} then yi−1yi+1 < 0}.

Note in particular that if y ∈ V then y cannot have two adjacent
zero coordinates.

To explain the basic idea underlying Smillie’s proof, consider the
case n = 3. Seeking a contradiction, assume that the sign pattern
of z(t) near some time t = t0 is as follows:

t = t−0 t = t0 t = t+0
z1(t) + + +

z2(t) + 0 −

z3(t) + + +

Note that in this case σ (t) := σ (z(t)) increases from σ (t−0 ) = 0
to σ (t+0 ) = 2. However, using (2) and the structure of J yields

ż(t0) =

[
∗ + 0
+ ∗ +

0 + ∗

][
+

0
+

]
, where + means a positive value, and ∗

means some value, and thus ż2(t0) > 0, and the case described
in the table above cannot take place. Smillie’s analysis shows
rigorously that when σ (t) changes it can only decrease. This is
based on direct analysis of the ODEs and is non trivial due to the
fact that if an entry zi(t) becomes zero at some time t = t0 (thus
perhaps leading to a change in σ (t) near t0) one must consider
the possibility that higher-order derivatives of zi(t) are also zero
at t = t0. Smillie then used the behavior of σ (z(t)) to deduce that
for any point a in the state-space of (1) the omega limit set ω(a)
cannot include more than a single point, and thus every trajectory
either leaves any compact set or converges to an equilibriumpoint.

Smith (1991) extended Smillie’s approach to the case of a
time-varying cooperative system with a tridiagonal Jacobian with
positive entries on the super- and sub-diagonals for all time t .
He showed that if the time-varying vector field is periodic with
period T then every solution of the nonlinear dynamical system
either leaves any compact set or converges to a periodic solution
with period T . Fang et al. (2013) describe some generalizations of
these ideas to time-recurrent systems. The main advantage of this
analysis approach is that it allows to study the global behavior of
the nonlinear system (1) using the (time-varying) linear system (2).

Here, we show that these results can be generalized, and their
proofs simplified, by relating them to a classical topic from linear
algebra: the sign variation diminishing property (SVDP) of totally
nonnegative (TN) matrices (Fallat & Johnson, 2011; Pinkus, 2010),
and more precisely to the notion of totally positive differential
systems (TPDSs) introduced by Schwarz (1970).

To explain this, we recall two more definitions for the number
of sign variations in a vector (Fallat & Johnson, 2011). For y ∈ Rn,
let s−(y) denote the number of sign variations in the vector y
after deleting all its zero entries, and let s+(y) denote the maximal
possible number of sign variations in y after each zero entry is
replaced by either +1 or −1. Note that s−(y) ≤ s+(y) for all y ∈

Rn. For example, for y =
[
1 0 2 −3 0 1.1

]′, s−(y) = 2
and s+(y) = 4. Let W := {y ∈ Rn

: s−(y) = s+(y)}. Note that
if y ∈ W then y cannot have two adjacent zero coordinates. An
immediate yet important observation is thatW = V . Thus, if y ∈ W
then s−(y) = s+(y) = σ (y).

A classical result from the theory of TN matrices (Fallat &
Johnson, 2011) states that if A ∈ Rn×m is totally positive (TP)
and x ∈ Rm

\ {0} then s+(Ax) ≤ s−(x), whereas if A is TN (and
in particular if it is TP) then s−(Ax) ≤ s−(x) for all x ∈ Rm. To apply
this SVDP to the stability analysis of (1) note that if the transition
matrix corresponding to J(x(t)) in (2) is TP for all time t thenwemay
expect the number of sign variations in z(t) to be a nonincreasing
function of time. As already shown by Smillie (1984), this implies
that there exists a time s ≥ 0 such that x1(t) and xn(t) aremonotone

functions of time for all t ≥ s, and that every trajectory of (1) either
leaves any compact set or converges to an equilibrium point.

Schwarz (1970) considered the linear matrix differential equa-
tion Ẏ (t) = A(t)Y (t), Y (t0) = I , with A(t) ∈ Rn×n a continuous
matrix function of t . Note that every minor of I is nonnegative (as
it is either zero or one). Schwarz gave a formula for the induced
dynamics of the minors of Y (t). He defined the system as a to-
tally [nonnegative] positive dynamical system if for every t0 and
every t > t0 the matrix Y (t) is TP [TN].2 His analysis is based
on what is now known as the theory of cooperative dynamical
systems: the system is a totally nonnegative dynamical system
if the dynamics maps any set of nonnegative minors to a set of
nonnegative minors. However, the work of Schwarz seems to have
been largely forgotten and its potential for the analysis of nonlin-
ear dynamical systems has been overlooked. Indeed, according to
Google Scholar Schwarz’s paper has been cited 22 times since its
publication in 1970.

We show that TPDSs can be immediately linked to recent results
on the stability of nonlinear cooperative systems. We consider
a more general form than in Schwarz (1970), namely, Ẏ (t) =

A(t)Y (t),withA(t) ameasurablematrix function of time rather than
continuous.

We then show how this can be used to derive the interesting
results of Smillie (1984) and Smith (1991) under milder technical
conditions and with simpler proofs. These generalizations are par-
ticularly relevant to control systems.

The next section reviews relevant definitions and results from
the theory of TNmatrices. Section 3 reviews TPDSs. Section 4 shows
how these results can be applied to analyze the stability of nonlin-
ear time-varying tridiagonal cooperative systems. We believe that
highlighting the deep connections between the work of Schwarz
and more recent work on nonlinear tridiagonal cooperative sys-
tems opens the door for many new research directions. Some of
these potential directions are described in Section 5. The work of
Schwarz has been largely forgotten, and TN matrices are not well-
known in the systems and control community, soweprovide a self-
contained tutorial on the tools needed for the stability analysis of
nonlinear systems.

We use standard notation. Vectors [matrices] are denoted by
small [capital] letters. Rn is the set of vectors with n real coordi-
nates. For a (column) vector x ∈ Rn, xi is the ith entry of x, and x′ is
the transpose of x. Let Rn

++
:= {v ∈ Rn

: vi > 0, i = 1, . . . , n},
i.e. the set of all n-dimensional vectors with positive entries. A
square matrix B is called Metzler if every off-diagonal entry of B
is nonnegative. The square identity matrix is denoted by I , with
dimension that should be clear from context.

2. TN and TP matrices

We begin by reviewing known definitions and results from the
rich and beautiful theory of TN and TP matrices that will be used
later on. We consider only square and real matrices, as this is the
case that is relevant for our applications. Formore information and
proofs we refer to the two excellentmonographs (Fallat & Johnson,
2011; Pinkus, 2010). Unfortunately, this field suffers from nonuni-
form terminology. We follow the more modern terminology in
Fallat and Johnson (2011).

Definition 1. A matrix A ∈ Rn×n is called totally nonnegative
[totally positive] if the determinant of every square submatrix is
nonnegative [positive].

In particular, if A is TN [TP] then every entry of A is nonnegative
[positive].

2 We use here a slightly different terminology than that used in Schwarz (1970).
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Example 1. It is straightforward to verify that the matrix

A =

[
0 1 0
0 0 1
0 0 0

]
is TN. Consider the permutation matrix

P :=

[
0 1 0
0 0 1
1 0 0

]
. Then PAP−1

=

[
0 1 0
0 0 0
1 0 0

]
is not TN be-

cause det
([

0 1
1 0

])
< 0.

Determining that an n×nmatrix is TN [TP] by direct verification
of Definition 1 requires checking the signs of all its

∑n
k=1

(n
k

)2
minors. This is of course prohibitive. Fortunately, the minors are
not independent and thus there existmuchmore efficientmethods
for verifying that a matrix is TN [TP] (Fallat & Johnson, 2011, Ch. 3).
Also, some matrices with a special structure are known to be TN.
We review two such examples. The first is important in proving the
SVDP of TN matrices. The second example, as we will see below, is
closely related to Smillie’s results.

Example 2. Let Ei,j denote the n × n matrix with all entries zero,
except for entry (i, j) that is one. For p ∈ R and i ∈ {2, . . . , n}, let

Li(p) := I + pEi,i−1, Ui(p) := I + pEi−1,i. (4)

Matrices in this formare called elementary bidiagonal (EB)matrices.
If the identitymatrix I in (4) is replaced by a diagonalmatrixD then
the matrices are called generalized elementary bidiagonal (GEB). It
is straightforward to see that EB matrices are TN when p ≥ 0, and
that GEB matrices are TN when p ≥ 0 and the diagonal matrix D is
componentwise nonnegative.

Example 3. Consider the tridiagonal matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1 0 . . . 0

c1 a2
. . . . . .

...

0
. . .

. . . . . .
...

...
. . .

. . . . . . bn−1
0 . . . . . . cn−1 an

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5)

with bi, ci ≥ 0 for all i. In this case, the dominance condition

ai ≥ bi + ci−1 for all i ∈ {1, . . . , n}, (6)

with c0 := 0 and bn := 0, guarantees that A is TN (Fallat & Johnson,
2011, Ch. 0).

An important subclass of TN matrices is the oscillatory matrices
studied in the pioneering work of Gantmacher and Krein (2002). A
matrix A ∈ Rn×n is called oscillatory if A is TN and there exists an
integer k > 0 such that Ak is TP. It is well-known that a TNmatrix A
is oscillatory if and only if it is non-singular and irreducible (Fallat
& Johnson, 2011, Ch. 2), and that in this case An−1 is TP.

Example 4. Consider the matrix A =

[
2 1 0
1 2 1
0 1 2

]
. This matrix is TN,

non-singular and irreducible, so it is an oscillatory matrix. Here

An−1
= A2

=

[
5 4 1
4 6 4
1 4 5

]
, and it is straightforward to verify that

this matrix is indeed TP.

More generally, the matrix A in (5) satisfying bi, ci > 0, i =

1, . . . , n−1, and the dominance condition (6) is TN and irreducible.
If it is also non-singular then it is oscillatory.

An important property, that will be used throughout, is that the
product of two TN [TP] matrices is a TN [TP] matrix. This follows
immediately from Definition 1 and the Cauchy–Binet formula for
the minors of the product of two matrices (Horn & Johnson, 2013,

Ch. 0). (A straightforward proof of several important determinantal
identities can be found in Brualdi and Schneider (1983).)

When using TN matrices to study dynamical systems, it is im-
portant to bear in mind that in general coordinate transformations
do not preserve TN (see Example 1). An important exception,
however, is positive diagonal scaling. Indeed, if D is a diagonal
matrix with positive entries on the diagonal then multiplying a
matrix A by D either on the left or right changes the sign of no
minor, so in particular DAD−1 is TN [TP] if and only if A is TN [TP].

At this point we can already provide an intuitive explanation
revealing the so far unknown connection between Smillie’s results
and TNmatrices. To do this, consider for simplicity the system ż =

Jz, with J a constant tridiagonal matrix with positive entries on the
super- and sub-diagonals. Then to first order in t we have z(t) =

(I+tJ)z(0), and for any sufficiently small t > 0 thematrix I+tJ is TN
(see Example 3), irreducible, and non-singular, so it is an oscillatory
matrix.

2.1. Spectral properties of TN matrices

TN matrices have a strong spectral structure: all of their
eigenvalues are real and nonnegative, and the corresponding
eigenvectors have special sign patterns. This spectral structure is
particularly evident in the case of oscillatory matrices.

Theorem 1 (Pinkus, 1996). If A ∈ Rn×n is an oscillatory matrix
then its eigenvalues are all real, positive, and distinct. If we order the
eigenvalues as λ1 > λ2 > · · · > λn > 0 and let uk

∈ Rn denote the
eigenvector corresponding to λk then for any 1 ≤ i ≤ j ≤ n and any
scalars ci, . . . , cj that are not all zero

i − 1 ≤ s−(
j∑

k=i

ckuk) ≤ s+(
j∑

k=i

ckuk) ≤ j − 1.

In particular,

s−(ui) = s+(ui) = i − 1, i = 1, . . . , n. (7)

Note that eigenvectorsmay have some zero coordinates, but (7)
implies that ui

∈ V for all i.

Example 5. Consider the TPmatrix A =

[
5 4 1
4 6 4
1 4 5

]
. Its eigenvalues

are λ1 = 2(3+2
√
2), λ2 = 4, λ3 = 2(3−2

√
2) with corresponding

eigenvectors u1
=

[
1

√
2 1

]′

, u2
=

[
−1 0 1

]′, and u3
=[

1 −
√
2 1

]′

. Note that s−(uk) = s+(uk) = k − 1 for k = 1, 2, 3.

Note that A oscillatory implies that A is componentwise non-
negative and that Aℓ is TP for some integer ℓ ≥ 1 and thus by the
Perron– Frobenius Thm. (Horn and Johnson, 2013) Aℓ (and thus A)
has a real positive eigenvalue λ1 with maximum modulus and the
corresponding eigenvector u1 has positive entries, i.e. s−(u1) =

s+(u1) = 0. Theorem 1 shows that for oscillatory matrices a much
stronger spectral structure arises.

2.2. Sign variation diminishing property of TN matrices

TN matrices enjoy a remarkable variety of mathematical prop-
erties. For our purposes, the most relevant property is that mul-
tiplication by a TN matrix cannot increase the sign variation of
a vector. This is the sign variation diminishing property (SVDP) of
linear TN transformations.

Let A be a TN EB matrix. Pick x ∈ Rn, and let y := Ax. Then
there exists at most one index i such that sgn(yi) ̸= sgn(xi), and
either yi = xi + pxi−1 or yi = xi + pxi+1, and since p ≥ 0 the sign



4 M. Margaliot and E.D. Sontag / Automatica 101 (2019) 1–14

can change only in the ‘‘direction’’ of xi−1 or xi+1. In either case,
neither s− or s+ may increase. We conclude that if A is TN EB then

s−(Ax) ≤ s−(x) for all x ∈ Rn, (8)

and

s+(Ax) ≤ s+(x) for all x ∈ Rn. (9)

A similar argument shows that if A is TN GEB then (8) holds.
However, (9) does not hold in general for a TN GEB matrix A. For
example, A = 0 is TN GEB and clearly s+(Ax) = s+(0) = n− 1 may
be larger than s+(x).

This SVDP can be extended to all TN matrices using the follow-
ing fundamental decomposition result.

Theorem 2 (Fallat & Johnson, 2011, Ch. 2). Any TN matrix can be
expressed as a product of TN GEB matrices.

Example 6. For the simplest example of this bidiagonal factor-
ization, consider the case n = 2. Suppose that A =

[
a11 a12
a21 a22

]
is TN, that is, aij ≥ 0, i, j = 1,2, and det(A) = a11a22 −

a12a21 ≥ 0. We consider two cases. If a11 > 0 then A =[
1 0

a21/a11 1

][
a11 0
0 det(A)/a11

][
1 a12/a11
0 1

]
, and this is a product of

the required form. If a11 = 0 then the TN of A implies that a12a21 =

0. Assume without loss of generality that a12 = 0. Then A =[
0 0
a21 1

][
1 0
0 a22

]
, and this is again a product of the required form.

Combining Theorem 2with the fact that (8) holds for all TN GEB
matrices implies that (8) holds for any TN matrix A.

Remark 1. As noted above, A TN does not imply (9). However, (9)
does hold if A is a nonsingular TN matrix (Fallat & Johnson, 2011,
Ch. 4).

TP matrices satisfy a stronger SVDP.

Theorem 3 (Fallat & Johnson, 2011, Ch. 4). If A ∈ Rn×n is TP then

s+(Ax) ≤ s−(x) for all x ∈ Rn
\ {0}. (10)

If A is TN and nonsingular then s+(Ax) ≤ s−(x) for all x ∈ Rn such
that either x has no zero entries or Ax has no zero entries.

A natural question is whether SVDP characterizes TN or TP
matrices. Recall that a matrix is called strictly sign-regular (SSR) if
for every k all minors of order k are non-zero and share a common
sign (that may vary from size to size). For example, A =

[
1 2
3 1

]
is SSR because all minors of order one are positive, and the single
minor of order two is non-zero. Obviously, TP matrices are SSR.

Theorem4. Let A ∈ Rn×n be a nonsingularmatrix. Then the following
properties are equivalent.

(a) A is SSR.
(b) s+(Ax) ≤ s−(x) for all x ∈ Rn

\ {0}.

Note that the first assertion in Theorem 3 follows from this re-
sult. For the sake of completeness, we detail the proof of Theorem4
in the Appendix. The assumption that A is nonsingular cannot be
dropped. The next example demonstrates this.

Example 7. Consider the matrix A =

[
2 2
1 1

]
. Pick x ∈ R2

\ {0}.

If s+(Ax) = 0 then clearly s+(Ax) ≤ s−(x). Otherwise, s+(Ax) = 1,
that is, either 2x1 + 2x2 ≤ 0 and x1 + x2 ≥ 0 or 2x1 + 2x2 ≥ 0
and x1 + x2 ≤ 0. Both these cases imply that x1 = −x2, and
since x ̸= 0, we conclude that s−(x) = 1. Thus, condition (b) holds,
but condition (a) does not hold, as det(A) = 0.

2.3. Dynamics of compound matrices

Consider thematrix differential equation Ẏ (t) = A(t)Y (t).What
is the dynamics of some minor of Y? It turns out that we can
express the dynamics of every p× pminor in terms of all the p× p
minors of Y and the n2 entries of A. To explain this we review
multiplicative and additive compound matrices and their role in
certain differential equations (Muldowney, 1990).

Given A ∈ Rn×n and p ∈ {1, . . . , n}, consider the
(n
p

)2 minors
of A of size p×p. Each minor is defined by a set of row indexes 1 ≤

i1 < i2 < · · · < ip ≤ n and column indexes 1 ≤ j1 < j2 < · · · <

jp ≤ n. This minor is denoted by A(α|β) where α := {i1, . . . , ip}
and β := {j1, . . . , jp}.

The pth multiplicative compound matrix A(p) is the
(n
p

)
×

(n
p

)
matrix that includes all these minors ordered lexicographically.
For example, for n = 3 and p = 2 there are nine minors.
The (1, 1) entry of A(2) is A({1, 2}|{1, 2}), the (1, 2) entry of A(2)

is A({1, 2}|{1, 3}), and entry (3, 3) of A(2) is A({2, 3}|{2, 3}).
An important property that follows from the Cauchy–Binet

formula is

(AB)(p) = A(p)B(p). (11)

This justifies the term multiplicative compound.
The pth additive compound matrix of A is defined by A[p]

:=
d
dh (I + hA)(p)|h=0. Note that this implies that

(I + hA)(p) = I + hA[p]
+ o(h), (12)

and that A[p]
=

d
dh (exp(hA))

(p)
|h=0.

Example 8. Consider the case n = 3 and p = 2. Then (I + hA)(2)
is the matrix depicted in Box I where the row [column] marks are

the indexes in α [β]. Thus, A[2]
=

[
a11 + a22 a23 −a13

a32 a11 + a33 a12
−a31 a21 a22 + a33

]
.

Applying Cauchy–Binet again gives (I + hA)(p)(I + hB)(p) =

(I + hA + hB + o(h))(p), and this yields

(A + B)[p] = A[p]
+ B[p],

justifying the term additive compound.
The additive compound is important when studying the dy-

namics of the multiplicative compound. For a time-varying ma-
trix Y (t) we use the notation Y (p)(t) for (Y (t))(p). Suppose that
Ẏ (t) = A(t)Y (t). Then

Y (p)(t + h) = (Y (t) + hA(t)Y (t))(p) + o(h)

= (I + hA(t))(p)Y (p)(t) + o(h),

and combining this with (12) gives

d
dt

Y (p)(t) = A[p](t)Y (p)(t). (13)

Thus, the dynamics of Y (p)(t) is also linear, with the dynamical
matrix A[p](t). Note that combining (13) and (11) implies that for
a constant matrix A,

exp(A[p]) = (exp(A))(p).

The matrix A[p] can be determined explicitly.

Lemma 1. The entry of A[p] corresponding to (α|β) = (i1, . . . , ip|j1,
. . . , jp) is:

•
∑p

k=1aikik if iℓ = jℓ for all ℓ = 1, . . . , p;
• (−1)ℓ+maiℓjm if all the indexes in α and β coincide except for a

single index iℓ ̸= jm; and
• 0 otherwise.
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⎛⎝
12 13 23

12 (1 + ha11)(1 + ha22) − h2a21a12 (1 + ha11)ha23 − h2a13a21 h2a12a23 − ha13(1 + ha22)
13 (1 + ha11)ha32 − h2a12a31 (1 + ha11)(1 + ha33) − h2a13a31 ha12(1 + ha33) − h2a13a32
23 h2a21a32 − ha31(1 + ha22) ha21(1 + ha33) − h2a23a31 (1 + ha22)(1 + ha33) − h2a23a32

⎞⎠
Box I.

Note that the first case here corresponds to diagonal entries
of A[p]. Lemma 1 is usually proven by manipulating determi-
nants (Schwarz, 1970) or using exterior powers (Fiedler, 2008).

Example 9. For p = 1 we have Y (1)
= Y and Lemma 1 yields A[1]

=

A, so we obtain Ẏ = AY .

Example 10. For p = n thematrix Y (n) includes a single entrywhich
is det(Y ), whereas Lemma 1 yields A[n]

= trace(A), so (13) yields
d
dt

det(Y (t)) = trace(A(t)) det(Y (t)), (14)

which is the Abel–Jacobi–Liouville identity.

Schwarz (1970) considered the following problem. Suppose
that Ẏ = AY . Then the dynamics of the pth multiplicative com-
pound Y (p) is given by the linear system (13). When will every A[p]

be a Metlzer matrix? An interesting property that will be proven
below is that if A[1] and A[2] are Metzler then every A[p] is Metzler.
The next example demonstrates this for the case n = 4.

Example 11. Consider the case n = 4 i.e A = {aij}4i,j=1. Then
Lemma 1 yields

A[2]
=

⎡⎢⎢⎢⎣
a11 + a22 a23 a24 −a13 −a14 0

a32 a11 + a33 a34 a12 0 −a14
a42 a43 a11 + a44 0 a12 a13

−a31 a21 0 a22 + a33 a34 −a24
−a41 0 a21 a43 a22 + a44 a23
0 −a41 a31 −a42 a32 a33 + a44

⎤⎥⎥⎥⎦ ,

A[3]
=

⎡⎣ a11 + a22 + a33 a34 −a24 a14
a43 a11 + a22 + a44 a23 −a13

−a42 a32 a11 + a33 + a44 a12
a41 −a31 a21 a22 + a33 + a44

⎤⎦ .

Suppose that A[1]
= A is Metzler, that is, aij ≥ 0 for all i ̸= j.

Then A[2] is Metzler iff a13 = a14 = a24 = a31 = a41 = a42 =

0. Under these conditions, we see that A[3] is also Metzler. The
matrix A[4] is also Metzler, as it is a scalar.

We note in passing that contractivity of the second additive
compound J [2], where J is the Jacobian in the variational equa-
tion (2), can be used to analyze the existence and stability of
(non-constant) periodic solutions of (1) (Muldowney, 1990). This
proved useful in many models from systems biology, see e.g. Li
andMuldowney (1995),Wang, de Leenheer, and Sontag (2010) and
Xue, Manore, Thongsripong, and Hyman (2017).

3. Totally positive differential systems

Consider the matrix system

Ẏ (t) = A(t)Y (t), Y (t0) = I, (15)

with A(t) a continuous function of t . Let Y (t, t0) denote the solution
of (15) at time t . Schwarz (1970) called (15) a totally nonnegative
differential system (TNDS) if for every t0 the solution Y (t, t0) is TN
for all t ≥ t0, and a totally positive differential system (TPDS) if for
every t0 the solution Y (t, t0) is TP for all t > t0.

Schwarz combined the Peano– Baker representation for the
solution of (13) (see, e.g. Rugh, 1996) and Lemma 1 to derive
necessary and sufficient conditions for a system to be TNDS [TPDS].

Stated in modern terms, his analysis is based on the fact that (15)
is TNDS [TPDS] iff (13) is a cooperative [strongly cooperative]
dynamical system for all p. Indeed, note that Y (t0) = I implies
that Y (p)(t0) = I for all p, so in particular all the minors at time t0
are nonnegative. The cooperative [strongly cooperative] dynamics
maps these nonnegative initial conditions at time t0 to a nonneg-
ative [positive] solution for all t > t0. Schwarz also studied the
implications of TNDS/TPDS of (15) on the number of sign variations
in a solution of the associated vector differential equation.

Fix a time interval (a, b) with −∞ ≤ a < b ≤ ∞. For any
pair t0, t , with a < t0 ≤ t < b, consider the vector differential
equation

ż(t) = A(t)z(t), z(t0) = z0. (16)

We assume throughout a more general case than in Schwarz
(1970), namely, that

A : (a, b) → Rn×n is a matrix of locally (essentially)
bounded measurable functions. (17)

This more general formulation is important in the context of
control systems. Indeed, consider ẋ = f (x, u), with u a control
input. Then the variational equation is ż = J(x, u)z, where J is
the Jacobian of f with respect to x. In many cases, for example
when considering optimal controls, one must allow measurable
controls (see, e.g. Liberzon, 2012) and thus t → J(t) is typically
a measurable, but not continuous, matrix function.

The transition matrix associated with (16) is defined by
d
dt

Φ(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = I. (18)

Recall that (17) implies that (18) admits a unique, locally absolutely
continuous, nonsingular solution for all pairs (t0, t) ∈ (a, b)×(a, b)
(see, e.g., Sontag, 1998, Appendix C).

The formula z(t) = Φ(t, t0)z(t0) suggests that if Φ(t, t0) is TP
then σ (z(t)) will be no larger than σ (z(t0)). The next result formu-
lates this idea.

Theorem 5. Consider the time-varying linear system:

ż(t) = A(t)z(t), (19)

with A(t) satisfying (17) and suppose that

Φ(t, t0) is TP for all a < t0 < t < b. (20)

If z(t) is not the trivial solution z(t) ≡ 0 then:

(1) the functions s−(z(t)), s+(z(t)) are non-increasing functions of
time on (a, b);

(2) z(t) ∈ V for all t ∈ (a, b), except perhaps for up to n−1 discrete
values of t.

As we will see in Section 4, both these properties are useful in
the analysis of nonlinear ODEs.

Proof of Theorem 5. For any a < t0 < t < b we have z(t) =

Φ(t, t0)z(t0) and since the matrix here is TP, (10) yields

s+(z(t)) ≤ s−(z(t0)), (21)
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and thus s−(z(t)) ≤ s+(z(t)) ≤ s−(z(t0)). If z(t0) ∈ V
then s−(z(t0)) = s+(z(t0)), so (21) yields

s+(z(t)) ≤ s+(z(t0)).

If z(t0) ̸∈ V then s−(z(t0)) < s+(z(t0)), so

s+(z(t)) < s+(z(t0)).

Thus, s+(z(t)) never increases, and it strictly decreases as z(t) goes
through a point that is not in V . Since s+ takes values in {0, 1, . . . ,
n − 1}, this implies that z(t) ∈ V for all t , except perhaps for up
to n − 1 discrete points. □

The proof of Theorem 5 shows that we may view s−(z(t))
and s+(z(t)) as integer-valued Lyapunov functions of the time-
varying linear system (19). The same is true for σ (z(t)). Indeed,
if z(τ ) ̸∈ V for some τ (and recall that this can only hold for up
to n − 1 discrete points) then z(τ−), z(τ+) ∈ V , so

σ (z(τ+)) = s+(z(τ+)) < s+(z(τ−)) = σ (z(τ−)).

Thus, σ (z(t)) is piecewise constant with no more than n− 1 points
of discontinuity and at these points it strictly decreases.

Remark 2. Using Theorem 4 yields a converse for Theorem 5.
Indeed, suppose that the solution of ż = Az satisfies (21) for
all a < t0 < t < b and all z(t0) ∈ Rn

\ {0}. Then using the fact
that z(t) = Φ(t, t0)z(t0) and Theorem 4 imply that Φ(t, t0) is SSR
for all a < t0 < t < b. Pick 1 ≤ p ≤ n. Then all the

(n
p

)
minors

of order p of Φ(t, t0) are either all positive or all negative. Since
the matrix Φ(t0, t0) = I has a minor of order p that is one, and
the SSR property means that for any t > t0 this minor is not zero,
we conclude by continuity that this minor ofΦ(t, t0) is positive for
all t > t0, and thus all minors of order p are positive for all t > t0.
Since this holds for all p, Φ(t, t0) is TP for all a < t0 < t < b.

In particular, the next example shows that if we change the
word ‘‘TP’’ in condition (20) to ‘‘TN’’ then Theorem 5 no longer
holds.

Example 12. Consider the constant matrix A =

[
a11 a12
0 a22

]
, with

a12 > 0. For t0 = 0,

Φ(t, t0) = exp(At) =

[
1 + a11t + o(t) a12t + o(t)

0 1 + a22t + o(t)

]
,

and thus there exists T > 0 such that exp(At) is TN for all t ∈ [0, T ].
However, exp(At) is not TP for any t . For z(0) =

[
1 0

]′, the
solution of ż = Az is z(t) = exp(a11t)

[
1 0

]′. Since z2(t) ≡

0, z(t) ̸∈ V for all t ≥ 0.

We now formally state the definitions of a TNDS and a TPDS.

Definition 2. We say that (18) is a TNDS if for all a < t0 ≤ t < b
the matrix Φ(t, t0) is TN. We say that (18) is a TPDS if for all a <
t0 < t < b the matrix Φ(t, t0) is TP.

Example 13. Consider the matrix A(t) =

[
0 t
t 0

]
. Note that this

is tridiagonal and with positive entries on the sub- and super-
diagonals for all t > 0. In this case, the solution of (18) is

Φ(t, t0) =

[
cosh((t2 − t20 )/2) sinh((t2 − t20 )/2)
sinh((t2 − t20 )/2) cosh((t2 − t20 )/2)

]
.

Note that every entry here is positive for all t > t0 ≥ 0 and
that det(Φ(t, t0)) ≡ 1, so Φ(t, t0) is TP on any interval (a, b),
with a ≥ 0. Thus the system is a TPDS on such an interval.

For A(t) =

[
0 t
0 0

]
the solution of (18) is Φ(t, t0) =[

1 (t2 − t20 )/2
0 1

]
. This matrix is TN (but not TP) for all t ≥ t0 ≥ 0,

so the system is a TNDS on any interval (a, b), with a ≥ 0.

Since the product of TN [TP] matrices is a TN [TP] matrix, a
sufficient condition for TNDS [TPDS] is that there exists δ > 0, that
does not depend on t0, such that for any ϵ ∈ (0, δ)

Φ(t0 + ε, t0) is TN [TP] for all a < t0 < b − ε.

Our next goal is to describe conditions on A(t) guaranteeing
that (18) is a TNDS or a TPDS. A related question has already
been addressed by Loewner (1955) who studied the infinitesimal
generators of the group of TN matrices.

It is useful to first consider the case of a constant matrix. We
require the following notation.

Definition 3. Let M ⊂ Rn×n [M+
⊂ Rn×n] denote the set of

tridiagonal matrices with nonnegative [positive] entries on the
sub- and super-diagonal.

The next result provides a simple necessary and sufficient con-
dition for (18), with A a constant matrix, to be TNDS or TPDS.

Theorem 6 (Schwarz, 1970). Fix an interval (a, b). The system U̇(t) =

AU(t) is TNDS [TPDS] on (a, b) if and only if A ∈ M [A ∈ M+].

Due to the importance of this result, we provide two different
proofs. The second proof follows (Schwarz, 1970) and is useful
whenwe consider below the casewhere A is time-varying. The first
proof is new and possibly easier to follow.

First proof of Theorem 6. The solution of the matrix differential
equation:

U̇(t) = AU(t), U(0) = I, (22)

is

U(t) = I +
At
1!

+
A2t2

2!
+ . . . . (23)

If aij < 0 for some i ̸= j then uij(t) < 0 for all t > 0 sufficiently
small. Thus, a necessary condition for U(t) to be TN for all t > 0
sufficiently small is that A is a Metzler matrix.

We now show that another necessary condition for U(t) to
be TN for all t > 0 sufficiently small is that A is tridiagonal. If n = 2
then A is always tridiagonal, so assume that n ≥ 3. Pick 1 ≤ j <
k < i ≤ n. Then (23) yields

det
[
ukj(t) ukk(t)
uij(t) uik(t)

]
= t2akjaik − (1 + takk)taij + o(t)

= −taij + o(t).

This implies that if aij > 0 for some i > j + 1 then U(t) has a
negative 2 × 2 minor for all t > 0 sufficiently small. A similar
argument shows that if aij > 0 for some j > i + 1 then U(t) has a
negative 2 × 2 minor for all t > 0 sufficiently small.

Summarizing, a necessary condition for U(t) to be TN for all t >
0 sufficiently small is that A ∈ M. Suppose that this indeed holds.
If aij = 0 for some i, jwith |i− j| = 1 then the tridiagonal structure
implies that for any k, entry i, j of Ak is also zero, so uij(t) = 0 for
all t ≥ 0, and thus U(t) is not TP. We conclude that a necessary
condition forU(t) to be TN [TP] for all t > 0 is that A ∈ M [A ∈ M+].

To prove the converse implication, assume that A ∈ M+.
Then (23) implies that U(t) is irreducible for all t > 0. It is
enough to show that there exists ε0 > 0 such that U(t) is TP for
all t ∈ (0, ε0). By the result stated in Example 3, the matrix I +
At
k is TN for any sufficiently large k. Using the formula U(t) =

limk→∞

(
I +

At
k

)k
, we conclude that there exists ε > 0 such that

U(t) is TN for all t ∈ I := (0, ε). Summarizing, U(t) is irreducible,
non-singular and TN for all t ∈ I and is thus an oscillatory matrix
on this time interval. Hence, (U(t))n−1 is TP for all t ∈ I, so U(t)
is TP for all t ∈ (0, (n− 1)ε). This completes the proof for the TPDS
case. The TNDS case follows similarly. □
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Remark 3. The proof above has an important and non-trivial impli-
cation. It shows that a necessary condition for U (1)(t) and U (2)(t) to
be componentwise nonnegative [positive] for all t > 0 sufficiently
small is thatA ∈ M [A ∈ M+]. On the other hand, ifA ∈ M [A ∈ M+]
then every minor of U(t) is nonnegative [positive] for all t > 0.
Thus, checking the 1 × 1 and 2 × 2 minors of U(t) is enough to
establish TNDS or TPDS.

We now provide another proof of Theorem 6 that follows the
ideas in Schwarz (1970).

Second proof of Theorem6.Given (22), recall that for any 1 ≤ p ≤

n the induced dynamics for the p × p minors of U(t) is

U̇ (p)
= A[p]U (p), U (p)(0) = I, (24)

where U̇ (p)
:=

d
dt (U

(p)(t)), and A[p] is given in Lemma 1.
Our goal is to find conditions guaranteeing that A[p], p =

1, . . . , n, is Metzler. Indeed, it is easy to see that if an off-diagonal
entry of A[p] is negative then there will be an entry in U (p) that
is negative for all t > 0 sufficiently small. If A is not Metzler
then A[1]

= A has a negative off-diagonal entry, so we conclude
that a necessary condition for TNDS is that A is Metzler.

Assume that aij > 0 for some i, j with |i − j| > 1. Consider (24)
with p = 2. If j ≥ i + 2 [i ≥ j + 2] then Lemma 1 yields that
the off-diagonal entry of A[2] corresponding to (i, i + 1|i + 1, j)
[(j + 1, i|j, j + 1)] is (−1)1+2aij < 0 [(−1)2+1aij < 0]. We conclude
that a necessary condition for TNDS is that A ∈ M. If A ∈ M
and aij = 0 for some i, j with |i − j| = 1 then Uij(t) ≡ 0, so we
conclude that a necessary condition for TPDS is that A ∈ M+.

To prove the converse implication, assume that A ∈ M. Pick 1 ≤

p ≤ n. We now show that A[p] is Metzler. By Lemma 1, an off-
diagonal entry of A[p] corresponding to (α|β) is either zero and
then we are done, or it is (−1)ℓ+maiℓjm , when α and β have p − 1
identical entries and iℓ ̸= jm. Since A ∈ M, the term (−1)ℓ+maiℓjm
can be negative only if the set {iℓ, jm} is the set {k, k + 1} for
some k ∈ {1, . . . , n − 1}. Assume this is so. Then α and β each
include p increasing indexes, p − 1 of these coincide, with one
of k, k + 1 appearing in α but not in β and the second appearing
in β but not in α. This implies that ℓ = m. But then (−1)ℓ+maiℓjm =

aiℓjm ≥ 0. We conclude that if A ∈ M then A[p] is Metzler and then
it follows from known results on cooperative dynamical systems
(see, e.g. Smith, 1995) that every entry of Y (p)(t) is nonnegative for
all t ≥ 0. Since this holds for every p, the system is TNDS.

Assume now that A ∈ M+. Then A[1]
= A is an irreducible

matrix. Pick 2 ≤ p ≤ n. We will show that A[p] is irreducible using
the equivalence between irreducibility and strong connectivity of
the adjacency graph associated with A[p] (see e.g. Horn & Johnson,
2013, Ch. 6). As we only verify strong connectivity of this graph,
it is enough to consider the case where A is tridiagonal, with the
main diagonal all zeros, and the sub- and super-diagonal are all
ones. In this case all the entries of A[p] are zero, except for those that
correspond to (α, β)where exactly p−1 entries ofα andβ coincide,
and the two remaining indexes are iℓ and jm = jℓ satisfy |iℓ − jℓ| =

1. Then A[p](α|β) = 1.
Consider the adjacency graph associated with the matrix A[p].

Every node in this graph corresponds to a set of p increasing
indexes 1 ≤ i1 < · · · < ip ≤ n, and there are

(n
p

)
nodes. There is a

undirected edge between nodes α and β if exactly p−1 entries of α
and β coincide, and the two remaining indexes satisfy |iℓ − jℓ| = 1.
This means that there is a path in the graph from every node to the
node (1, 2, . . . , p). Hence, the graph is strongly connected, so A[p]

is irreducible. We conclude that if A ∈ M+ then A[p] is Metzler
and irreducible, and it follows from known results on cooperative
dynamical systems (see, e.g. Smith, 1995) that every entry ofU (p)(t)
is positive for all t > 0. Since this holds for every p, the system
is TPDS. □

Example 14. Consider the case n = 3 and the matrix A =[
0 a12 0
a21 0 a23
0 a32 0

]
, with aij > 0. Note that A ∈ M+. The solution U(t)

of (22) with t0 = 0 is

I + At + A2 t
2

2
+ o(t2)

=

⎡⎢⎢⎢⎢⎢⎣
1 + a12a21

t2

2
a12t a12a23

t2

2

a21t 1 + (a12a21 + a23a32)
t2

2
a23t

a21a32
t2

2
a32t 1 + a23a32

t2

2

⎤⎥⎥⎥⎥⎥⎦
+ o(t2).

It is straightforward to see that every 1 × 1 and 2 × 2 minor here
is positive for all t > 0 sufficiently small. Also, the Abel–Jacobi–
Liouville identity (14) yields det(U(t)) ≡ det(U(0)) = 1, so U(t)
is TP for all t > 0 sufficiently small.

We now turn to consider the time-varying case. Here we gener-
alize the results in Schwarz (1970) to ourmore general,measurable
case.

Theorem 7. Fix an interval (a, b). The system (18) with A(t) satisfy-
ing (17) is TNDS on (a, b) iff A(t) ∈ M for almost all t ∈ (a, b).

To prove this, we require the following result. We use Q ≥ 0
[Q ≫ 0] to denote that every entry of the matrix Q is nonnegative
[positive].

Lemma 2. For any t0 and t with a ≤ t0 < t ≤ b, denote by Θ(t, t0)
the unique solution, at time t, of Θ̇(s) = A(s)Θ(s), Θ(t0) = I . Then
the following two conditions are equivalent.

(1) Θ(t, t0) ≥ 0 for all a < t0 ≤ t < b;
(2) A(t) is Metzler for almost all t ∈ (a, b).

Proof of Lemma 2. Assume that A(t) is Metzler for almost all t ∈

(a, b). Since A(t) is a matrix of locally (essentially) bounded mea-
surable functions, we may pick an r > 0 such that rI + A(t) ≥ 0
for almost all t ∈ [a, b]. Pick t0 ∈ (a, b). We begin by assuming
that Θ(t0) ≫ 0, and introduce the auxiliary matrix function
Ψ (t) := er(t−t0)Θ(t, t0). Suppose that there would exist some
t1 > t0 such that Θ(t1, t0) ̸≥ 0, or equivalently, Ψ (t1) ̸≥ 0. Let
τ := inf{s ≥ t0 : Ψ (s) ̸≥ 0}. Then τ ∈ (t0, t1] and, by continuity
of Ψ (t), Ψ (τ ) ≥ 0. Now

Ψ (τ ) = Ψ (t0) +

∫ τ

t0

Ψ̇ (s) ds

= Ψ (t0) +

∫ τ

t0

(rI + A(s))Ψ (s) ds

≫ 0, (25)

where we used the fact that Ψ (t0) ≫ 0, rI + A(s) ≥ 0 for almost
all s, and Ψ (s) ≥ 0 for all s ∈ [t0, τ ]. But this implies that there
exists ε > 0 such Ψ (t) ≫ 0 for all t ∈ [τ , τ + ε], and this
contradicts the definition of τ . We conclude that if Θ(t0) ≫ 0
then Θ(t) ≥ 0 for all t ≥ t0. By continuity with respect to initial
conditions, this holds also for the case Θ(t0) ≥ 0 and, in particular,
forΘ(t0) = I . Thus, condition (2) in Lemma 2 implies condition (1).

To prove the converse implication, assume that Θ(τ2, τ1) ≥ 0
for any pair (τ2, τ1) with a < τ1 ≤ τ2 < b. Fix t0 ∈ (a, b). Then for
almost all t ∈ (a, b),

lim
ε→0

Θ(t + ε, t0) − Θ(t, t0)
ε

= A(t)Θ(t, t0).
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Multiplying on the right by Θ(t0, t) yields

lim
ε→0

Θ(t + ε, t) − I
ε

= A(t).

Since Θ(t + ε, t) ≥ 0, we conclude that A(t) is Metzler for almost
all t ∈ (a, b). □

We can now prove Theorem 7.

Proof of Theorem 7. Suppose that (18) is TNDS. ThenΦ(t, t0) is TN
for all a < t0 ≤ t < b. Thus, Φ(p)(t, t0) ≥ 0 for all a < t0 ≤ t < b
and all p ∈ {1, . . . , n}, with Φ (p)(t0, t0) = I . Lemma 2 implies
that A[p](t) is Metzler for almost all t ∈ (a, b). In particular, A(t)
and A[2](t) are Metzler for almost all t and arguing as in the second
proof of Theorem 6 implies that A(t) ∈ M for almost all t .

To prove the converse implication, assume that A(t) ∈ M for
almost all t . Pick p ∈ {1, . . . , n}. Arguing as in the second proof
of Theorem 6 implies that A[p](t) is Metzler for almost all t . Now
Lemma 2 implies thatΦ (p)(t, t0) ≥ 0 for all t ≥ t0. Thus, the system
is TNDS. □

The next result provides a sufficient condition for TPDS of (18).

Theorem 8. Suppose that A(t) ∈ M+ for almost all t ∈ (a, b) and,
furthermore, that aij(t) ≥ δ > 0 for all |i − j| = 1 and almost
all t ∈ (a, b). Then the system (18) is TPDS on (a, b).

Proof. By Theorem 7, the system is TNDS. Pick 1 ≤ p ≤ n. To
analyze Φ(p), pick 1 ≤ k ≤

(n
p

)
, and let v(t) denote the kth column

of Φ(p)(t). Then v̇(t) = A[p](t)v(t), with v(t0) = ek, where ek is
the kth canonical vector inR(np). Note that every off-diagonal entry
of A[p](t) is either zero or larger or equal to δ > 0 for almost all t .
For any j the linear equation for v̇j implies that there exists cj ∈ R
such that vj(t) ≥ exp(cj(t − t0))vj(t0) for all t ≥ t0. In particular,
if vj(τ ) > 0 at some time τ then vj(t) > 0 for all t ≥ τ . Thus,
vk(t) > 0 for all t ≥ t0. Pick a time τ ≥ t0, and let s ≥ 1 denote the
number of entries j such that vj(τ ) > 0. Without loss of generality,
assume that these entries are j = 1, 2, . . . , s. Write v̇ = A[p]v as

v̇ =

[
E F
G H

]⎡⎢⎢⎣
v1
...

vs
0

⎤⎥⎥⎦ ,

where 0 denotes a vector of
(n
p

)
−s zeros. Since A[p](t) is irreducible,

there exists a nonzero entry in G and this entry is larger or equal
to δ > 0 for almost all t . This means that at least s + 1 entries
of v(t) are positive for all t > τ . Our assumption on A(t) implies
that we can now use an inductive argument to conclude that all
the entries of v(t) are positive for all t > t0. Since this holds for
arbitrary p and k, we conclude that every minor of Φ(t) is positive
for all t > t0. □

In the special case where A(t) is continuous it is possible to
show in a similar manner that necessary and sufficient condition
for TPDS on (a, b) is that A(t) ∈ M for all t ∈ (a, b) and that none
of the functions ai,i+1(t), ai+1,i(t) is zero on an interval [r, s] with
a < r < s < b. This result has been proved in Schwarz (1970).

The next example generalizes Example 13.

Example 15. Let A(·) : (a, b) → Rn×n be the matrix with all entries
equal to zero except for the entries on the super- and sub-diagonal
that are all equal to t . Then (18) is TPDS on any interval (a, b),
with a ≥ 0, as A(t) is continuous and the off-diagonal terms are
positive except at t = 0.

The more general framework that we consider here allows to
include time-varying linear systems that ‘‘switch’’ between several
matrices (see, e.g., Liberzon, 2003). The next example demon-
strates this.

Fig. 1. σ (z(t)) as a function of t for the system in Example 16.

Example 16. Consider the system

ż(t) = A(t)z(t), (26)

with

A(t) :=

{C, t ∈ [0, 1/4],
B(t), t ∈ [1/4, 1/2],
C ′, t ∈ [1/2, 1],

where C :=

⎡⎣−1 2 0 0
2 −6 3 0
0 5 −1 6
0 0 4 −1

⎤⎦, B(t) is the 4 × 4 matrix with all

entries equal to zero except for the entries on the sub- and super-
diagonals that are all equal to t , and C ′ is the transpose of C . By The-
orem 8, the system is TPDS on (a, b) = (0, 1). Fig. 1 depicts σ (z(t))
for the initial condition z(0) =

[
−1 5 −13 17

]′. It may be
seen that σ (z(t)) is piecewise-constant and that at any pointwhere
its value changes it decreases.

Theorem 5 implies that if ż = Az is TPDS on (a, b) then the
combined number of zeros of z1(t) and zn(t) on (a, b) does not
exceed n−1. A natural question is whether the number of zeros of
other entries of the vector z(t) is also bounded.

Consider first the case where A ∈ M+ is a constant matrix. Then
there exists r ≥ 0 such that B := rI + A is TN (by the result in
Example 3), irreducible, and non-singular. Thus, B is oscillatory,
and applying Theorem 1 we conclude that all the eigenvalues of A
are real and can be ordered as λ1 > λ2 > · · · > λn. Any nontrivial
solution of ż = Az has the form z(t) =

∑n
i=1ci exp(λit)ui, where

the cis are not all zero. This implies that any entry of z(t) has no
more than n − 1 isolated zeros on any time interval.

On the other-hand, the next example from Schwarz (1970)
shows that if A(t) is time-varying then some entries of the TPDS ż =

Az may have an unbounded number of zeros.

Example 17. Consider (19) with n = 3 and A(t) =[ 0 1 0
3
2

− cos(t) 0
3
2

+ cos(t)
0 1 0

]
. Note that A(t) ∈ M+ for all t , so

the system is TPDS on any interval (a, b). Note that z(t) =[
2 + cos(t) − sin(t) −2 + cos(t)

]′ is a solution of (19) and that
z2(t) changes sign an unbounded number of times. Note also
that z(t) ∈ V and σ (z(t)) = 1 for all t .
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3.1. The periodic case

If ẋ = f (x) admits a solution φ(t) that is periodic with period T
then z := φ̇ satisfies ż(t) = J(φ(t))z(t), and thus the matrix here is
also periodic with period T . Analysis of the time-varying periodic
linear system canprovide considerable information on the periodic
trajectory of the nonlinear system (see, e.g. Mallet-Paret & Smith,
1990 and the references therein).

In this section, we thus consider the TPDS ż = A(t)z, z(t0) = z0,
with the additional assumption that A(t) is T -periodic, i.e.

A(t) = A(t + T ), for all t. (27)

We recall some known results from Floquet theory (see e.g.
Chicone, 1999, Ch. 2). For simplicity, we assume from hereon
that t0 = 0, and write Φ(t) = Φ(t, 0) for the solution of (18)
at time t . Let B := Φ(T ). Then Φ(t + T ) = Φ(t)B for all t ≥ 0.
The eigenvalues of B are called the characteristic multipliers of (18).
If α ∈ C, u ∈ Cn is an eigenvalue/eigenvector pair of B then z(t) :=

Φ(t)u is a solution of ż = A(t)z, and z(t + T ) = αz(t). If s ∈ C is
such that exp(sT ) = α then defining q(t) := exp(−st)z(t) yields
z(t) = exp(st)q(t), and q(t + T ) = q(t).

Since the system is TPDS, B = Φ(T ) is TP. Let αk ∈ C, pk ∈

Cn, k = 1, . . . , n, denote the eigenvalues and corresponding
eigenvectors of B. Theorem 1 implies that the eigenvalues are real
and satisfy α1 > α2 > · · · > αn > 0, i.e., all the characteris-
tic multipliers are real, positive, and distinct. The corresponding
eigenvectors satisfy s−(pk) = s+(pk) = k − 1 for all k. The next
result shows that this induces a strong structure on the solutions
of the periodic time-varying linear system.

Theorem9. Suppose that A(t) satisfies (27) and that Φ̇ = AΦ is TPDS
on (0, T ). Pick 1 ≤ i ≤ j ≤ n and ci, . . . cj ∈ R, with ci ̸= 0. Then the
solution of ż = A(t)z, z(0) =

∑j
k=ickp

k, satisfies

i − 1 ≤ σ (z(t)) ≤ j − 1, (28)

for all t ≥ 0 except, perhaps, for up to j − i isolated points, and
σ (z(t)) = i− 1 for all t sufficiently large. In particular, if z(0) = cipi,
with ci ̸= 0, then σ (z(t)) ≡ i − 1 for all t ≥ 0.

Thus, the eigenvectors of Φ(T ) induce a decomposition of the
state-space with respect to σ . The monotonicity of σ then restricts
the possible dynamics; see Fang et al. (2013) and Wang and Zhou
(2015).

Proof of Theorem 9. By Theorem 1,

i − 1 ≤ s−(z(0)) ≤ s+(z(0)) ≤ j − 1,

and TPDS implies that

s−(z(t)) ≤ s+(z(t)) ≤ j − 1. (29)

To proceed, note that z(t) = Φ(t)(
∑j

k=ickp
k) implies that

z(t + T ) = Φ(t + T )(
j∑

k=i

ckpk)

= Φ(t)B(
j∑

k=i

ckpk)

= Φ(t)(
j∑

k=i

ckαkpk),

and iterating this yields z(mT ) =
∑j

k=ick(αk)mpk, for any inte-
ger m ≥ 0. Since αi > αs for all s > i, this implies that σ (z(mT )) =

σ (pi) = i− 1 for any sufficiently largem. Combining this with (29)
and using the fact that the system is TPDS, we conclude that

i − 1 ≤ s−(z(t)) ≤ s+(z(t)) ≤ j − 1, for all t ≥ 0,

and this proves that (28) holds for all t ≥ 0 except, perhaps, for up
to j − i isolated points.

In the particular case, z(0) = cipi, with ci ̸= 0, (28) yields

i − 1 ≤ σ (z(t)) ≤ i − 1,

for almost all t ≥ 0 and using monotonicity implies that σ (z(t)) ≡

i − 1. □

Example 18. Consider the case n = 2 and A(t) =[
0 1 + sin(t)

1 + sin(t) 0

]
. Note that this is 2π-periodic and yields

a TPDS on any interval (a, b). The solution of (18) is Φ(t) =[
cosh(a(t)) sinh(a(t))
sinh(a(t)) cosh(a(t))

]
, where a(t) := 1 + t − cos(t), so B :=

Φ(2π ) =

[
cosh(2π ) sinh(2π )
sinh(2π ) cosh(2π )

]
. The eigenvalues of B are α1 =

exp(2π ), α2 = exp(−2π ) and the corresponding eigenvectors
are p1 =

[
1 1

]′ and p2 =
[
−1 1

]′. Note that σ (p1) = 0
and σ (p2) = 1. Consider z(t) for z(0) = c1p1 + c2p2 with c1 = 1
and c2 = 10. Then σ (z(0)) = 1. For large t , Φ(t) ≈

1
2 exp(a(t))J2,

where J2 is the 2 × 2 matrix with all entries equal to one, and
thus z(t) ≈ c1 exp(a(t))

[
1 1

]′. We conclude that σ (z(t)) = 0
for all sufficiently large t .

Schwarz considered only linear time-varying systems. In the
next section, we describe how the TPDS framework can be used
to analyze the stability of nonlinear dynamical systems.

4. Applications to stability analysis

Consider the nonlinear time-varying dynamical system

ẋ(t) = f (t, x(t)), (30)

whose trajectories evolve on an invariant set Ω ⊂ Rn, that is, for
any x0 ∈ Ω and any t0 ≥ 0 a unique solution x(t, t0, x0) exists and
satisfies x(t, t0, x0) ∈ Ω for all t ≥ t0. From here onwe take t0 = 0.
We assume that Ω is compact and convex, and that f is C1 with
respect to x.

Assumption 1. For any t ≥ 0 and along any line γ : [0, 1] → Ω

the matrix

A(t) :=

∫ 1

0
J(t, γ (r)) dr (31)

is well-defined, locally (essentially) bounded, measurable, and
Φ̇(t) = A(t)Φ(t) is TPDS. Here J(t, x) :=

∂
∂x f (t, x) is the Jacobian

of the dynamics.

Note that Theorem 8 can be used to establish conditions on J
guaranteeing the required TPDS property.

The next result shows that under Assumption 1 the system (30)
satisfies an ‘‘eventual monotonicity’’ property.

Lemma 3. Pick a, b ∈ Ω , with a ̸= b, and consider the solu-
tions x(t, a), x(t, b) of (30). There exists a time s ≥ 0 such that for
all t ≥ s either x1(t, a) > x1(t, b) or x1(t, a) < x1(t, b).

Proof of Lemma 3. Denote the line between the two solutions at
time t by

γ (r) := rx(t, a) + (1 − r)x(t, b), r ∈ [0, 1].
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Since Ω is convex, γ (r) ∈ Ω for all t ≥ 0 and all r ∈ [0, 1].
Let z(t) := x(t, a) − x(t, b). Then

ż(t) = f (t, x(t, a)) − f (t, x(t, b))

=

∫ 1

0

d
dr

f (t, γ (r)) dr

= A(t)z(t), (32)

with A(t) defined in (31). By assumption, this is TPDS, so Theorem5
yields z(t) ∈ V for all t except for up to n − 1 time points. In
particular, there exists s ≥ 0 such that z1(t) ̸= 0 for all t ≥ s. □

We consider from hereon the case where f is T -periodic for
some T > 0.

Assumption 2.

f (t, z) = f (t + T , z), for all z ∈ Ω and t ≥ 0.

Note that in the particular case where f is time-invariant this
property holds for all T . Note also that this implies that the ma-
trix A(t) in (31) is also T -periodic. A solution γ (t) of (30) is called
a T -periodic trajectory if γ (t + T ) = γ (t) for all t .

Theorem 10. If Assumptions 1 and 2 hold then every solution of (30)
converges to a T-periodic trajectory.

This result has been derived by Smith (1991) based on a direct
analysis of the number of sign variations in the vector of deriva-
tives z(t) := ẋ(t). In the particular case where f (t, x) = g(x, u),
with u(t) T -periodic, one may view u as a periodic excitation. Then
Theorem10 implies that the system entrains to the excitation in the
sense that every solution converges to a periodic solution with the
same period as the excitation. Entrainment is important in many
natural and artificial systems. For example, proper functioning of
biological organisms often requires entraining of various processes
to periodic excitations like the 24 h solar day or the cell-division
cycle (Margaliot, Sontag, & Tuller, 2014; Russo, di Bernardo, &
Sontag, 2010). Epidemics of infectious diseases often correlatewith
seasonal changes and interventions like pulse vaccinationmay also
need to be periodic (Grassly & Fraser, 2006; Margaliot, Grüne, &
Kriecherbauer, 2018).

It is well-known that the linear system ẋ = Ax + Bu, with A
Hurwitz, entrains to a periodic input. More generally, contractive
systems entrain (see e.g. Coogan & Margaliot, 2018). However,
nonlinear systems do not necessarily entrain. There are examples
of ‘‘innocent looking’’ nonlinear dynamical systems that generate
chaotic trajectories when excited with periodic inputs (Nikolaev,
Rahi, & Sontag, 2018).

The next example, which is a special case of a construction
from Takáč (1992), shows that even strongly cooperative systems
do not necessarily entrain.

Example 19. Consider the system

ẋ =

⎡⎢⎣1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

⎤⎥⎦ x +

⎡⎢⎢⎢⎢⎣
−2x31 + x1u

−2x32 − x2u

−2x33 + x3u

−2x34 − x4u

⎤⎥⎥⎥⎥⎦ . (33)

Note that this is a strongly cooperative system, but not a tridi-
agonal system because of the feedback connection from x4 to x1.
For u(t) = cos(2t) it is straightforward to verify that γ (t) :=[
cos(t) sin(t) − cos(t) − sin(t)

]′ is a solution of (33). Further-
more, it can be shown that this solution is locally asymptotically
stable (Takáč, 1992). Thus, for an excitation that is periodic with
period T = π there exist trajectories converging to γ that are
periodic with a minimal period 2T .

We can now prove Theorem 10. Pick a ∈ Ω . If the solu-
tion x(t, a) of (30) is T -periodic then there is nothing to prove. Thus,
suppose that x(t, a) is not T -periodic. Then x(t + T , a) is another
solution of (30) that is different from x(t, a). Using Lemma 3 we
conclude that there exists an integer m ≥ 0 such that x1(kT , a) −

x1((k+1)T , a) ̸= 0 for all k ≥ m.Without loss of generality, assume
that

x1(kT , a) − x1((k + 1)T , a) > 0 for all k ≥ m. (34)

Define the Poincaré map PT : Ω → Ω by PT (y) := x(T , y). Then PT
is continuous, and for any integer k ≥ 1 the k-times composition
of PT satisfies Pk

T (y) = x(kT , y). The omega limit set ωT : Ω → Ω

is defined by

ωT (y) :={z ∈ Ω : there exists a sequence n1, n2, . . .

with nk → ∞ and lim
k→∞

Pnk
T (y) = z}.

This set is not empty, invariant under PT , that is, PT (ωT (y)) = ωT (y),
and Pn

T (y) → ωT (y) as n → ∞. In particular, if ωT (y) = {q}
then PT (q) = q, that is, the solution emanating from q is T -periodic.
Thus, to prove the theoremwe need to show that ωT (a) is a single-
ton. Assume that this is not the case. Then there exist p, q ∈ ωT (a)
with p ̸= q. Thismeans that there exist integer sequences nk → ∞

andmk → ∞ such that

lim
k→∞

x(nkT , a) = p, lim
k→∞

x(mkT , a) = q.

Without loss of generality, we may pick nk < mk < nk+1 for all k,
which implies by (34) that x1(nkT , a) < x1(mkT , a) < x1(nk+1T , a)
for all k sufficiently large, which passing to the limit yields p1 = q1.
In other words, any two points p, q ∈ ωT (a) have the same first
coordinate. Consider the solutions emanating from p and from q at
time zero, that is, x(t, p) and x(t, q). We know that there exists an
integerm ≥ 0 such that, say,

x1(kT , p) − x1(kT , q) > 0 for all k ≥ m. (35)

But since p, q ∈ ωT (a), x(kT , p), x(kT , q) ∈ ωT (a) for all k, and this
means that x(kT , p) and x(kT , q) have the same first coordinate.
This contradiction completes the proof of Theorem 10. □

The time-invariant nonlinear dynamical system:

ẋ(t) = f (x(t)) (36)

is T -periodic for all T > 0, so Theorem 10 yields the following
result.

Corollary 1. Suppose that: (1) the solutions of (36) evolve on an
invariant compact and convex set Ω ⊂ Rn; (2) f ∈ C1; and (3) the
matrix J(x) :=

∂
∂x f (x) ∈ M+ for all x ∈ Ω . Then for every x0 ∈ Ω the

solution x(t, x0) converges to an equilibrium point.

This is a generalization of Smillie’s theorem. Indeed, the proof
in Smillie (1984) is based on studying σ (z(t)) near zeros of the zis
and since these may be high-order zeros, Smillie used iterative
differentiations and thus had to assume that every entry fi of the
vector field is (n − 1)-times differentiable (Smillie, 1984, p. 530).

Note that the approach used by Smillie provides a sufficient
condition for the dynamical system ż = Az to satisfy (21) for
all a < t0 < t < b and all z(t0) ∈ Rn

\ {0}, but it seems difficult to
use this approach to understand if this is also a necessary condition.
Remark 2 shows that the TPDS approach solves this question.

5. Directions for future research

We believe that one of the most important implications of this
paper is that it opens many new and interesting research direc-
tions. We now briefly describe several such potential directions.
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First, the elegant proofs of Schwarz from 1970 are based on
what is now known as the theory of cooperative dynamical sys-
tems. But since then this theory has been greatly developed. Ex-
tensions include for example cooperative systems in canonical
form (Smith, 2012), the theory of monotone (rather than coopera-
tive) systems, and the new notion ofmonotone control systems (An-
geli & Sontag, 2003). These extensions can perhaps yield new and
interesting results in the context of TPDS.

Second, the direct proof of the SVDP in the work of Smillie and
others is difficult to generalize to other cases. Using the connection
to TPDS suggests an easier track for generalizing these results to
other forms of dynamical systems, for example, those with transi-
tion operators that have an SVDP. Note that there is a large body of
work on kernels satisfying an SVDP (see, e.g. Karlin, 1968; Pinkus,
1996). Another possible direction is motivated by weakening the
requirement of TPDS to TNDS. Note that the proof of Theorem 10
mainly uses the eventualmonotonicity behavior of the first entry of
the solution z in a TPDS ż = Az described in Lemma 3. In a TNDS,
this property does not hold. Yet, Schwarz showed that a weaker
property does hold.

Lemma 4 (Schwarz, 1970). Suppose that ż = Az is a TNDS on (a, b)
and that there are times r, s with a < r < s < b such that z1(r) = 0
and z1(s) ̸= 0. Then

s+(z(s)) ≤ s+(z(r)) − 1. (37)

Thus, TNDSs do not satisfy the eventualmonotonicity described
in Lemma 3, but do satisfy the ‘‘non-oscillatory’’ condition de-
scribed in Lemma 4. The question then is whether it is possible to
use this to generalize the results in the TPDS case to TNDS with
some additional properties.

Another natural direction for further research is to study the
time-discretized solutions of TNDSs. For example, consider a ma-
trix A ∈ M+. A simple discretization of ẋ = Ax is given by z̃(k+1) =

z̃(k)+hAz̃(k),with h > 0. For any h > 0 sufficiently small it follows
from Example 3 that the matrix I + hA is TN. It is also nonsingular,
so

s−(z̃(k + 1)) ≤ s−(z̃(k)), s+(z̃(k + 1)) ≤ s+(z̃(k)),

for all k. A similar result holds formore sophisticated discretization
schemes, say when A(t) is time-varying and z(k + 1) = z(k) +

(
∫
A(s) ds)z(k) with integration on an appropriate time interval. An

interesting question is what can be deduced from these SVDPs on
the asymptotic behavior of the discrete-time systems.

The notion of TPDS may be useful also for studying nonlinear
time-varying, yet not necessarily periodic, dynamical systems. In-
deed, note that Lemma 3 does not require the vector field to be
periodic. Another related idea for further research is exploring the
applications of TPDS to differential analysis and contraction the-
ory (Aminzare & Sontag, 2014; Forni & Sepulchre, 2014; Lohmiller
& Slotine, 1998). To explain this, assume that the trajectories of

ẋ = f (t, x) (38)

evolve on a compact and convex state-space Ω . For a, b ∈ Ω ,
letγ (r) := ra+(1−r)b, with r ∈ [0, 1], denote the line connecting a
and b, and let w(t, r) :=

∂
∂r x(t, t0, γ (r)), that is, the change in the

solution at time t w.r.t. a change in the initial condition along the
line γ at the initial time t0. Then (see e.g. Russo et al., 2010)

ẇ(t, r) = J(t, x(t, t0, γ (r)))w(t, r).

This is again a linear time-varying system. If it is TPDS then one
can obtain strong results on the asymptotic behavior of (38) using
the SVDP. This idea has already been used extensively by Fusco and
Oliva (1990), Mallet-Paret and Smith (1990) and others, but using

direct analysis of the evolution of the number of sign changes inw.
The relation to TPDS may lead to new results.

Another topic for further research is based on the fact that sev-
eral authors used a slightly different notion of the number of sign
variations as a discrete-valued Lyapunov function. For a vector x ∈

Rn with no zero entries let σc(x) := |{i ∈ {1, . . . , n} : xixi+1 < 0}|,
where xn+1 := x1. This is the ‘‘cyclic’’ number of sign changes
in x. The results in Fusco and Oliva (1990) and Smith (1990) show
that for some linear dynamical systems σc(z(t)) can only decrease
along any solution z(t). The proofs are based on direct calculations.
Recall that the SVDP with respect to the ‘‘standard’’ number of
sign variationsσ characterizes the sign-regularmatrices. This leads
to the following question: when does A (and exp(At)) satisfies an
SVDP with respect to σc?

6. Conclusions

TN and TP matrices enjoy a rich set of powerful properties and
have found applications in numerous fields. A natural question is
when is the transition matrix of a linear dynamical system ż =

Az TN or TP? This problem has been solved by Schwarz (1970)
yielding the notion of TNDS and TPDS. One important property
of such systems is that for any solution z(t) the number of sign
variations σ (z(t)) is non-increasing with time. His approach is
based on what is now known as cooperative systems theory: a
system is TNDS [TPDS] if all the minors of the transition matrix,
that are all either zero or one at the initial time t0, are non-negative
[positive] for all t > t0. However, the seminal work of Schwarz has
been largely forgotten, perhaps because he did not show how to
apply these results to analyze non-linear dynamical systems.

More recently, the number of sign changes σ (z(t)), where z :=

ẋ, has been used by several authors as an integer-valued Lyapunov
function for the nonlinear system ẋ = f (t, x). In these works, the
fact that σ (z(t)) is non-increasing with time has been proved by a
direct and sometimes tedious analysis.

In this paper, we reviewed these seemingly different lines of
research and showed that the linear time-varying system describ-
ing the evolution of z (i.e., the variational system) is in fact TPDS.
Our results allow to derive important generalizations to several
known results, while greatly simplifying the proofs. We hope that
the expository nature of this paper will make these fascinating
topics accessible to a large audience as well as open the door to
many new and interesting research directions.
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Appendix. SVDP of square sign-regular matrices

In this Appendix, we review the SVDP of square sign-regular
matrices. We follow the presentation in Gantmacher and Krein
(2002, Ch. V), as this requires little more than basic manipulations
of determinants. We begin with an auxiliary result that provides
information on the number of sign changes in a vector obtained as
a linear combination ofm given vectors.

Proposition 1. Consider a set of m vectors u1, . . . , um
∈ Rn,

with m < n. Define the matrix U ∈ Rn×m by U :=[
u1 u2 . . . um

]
. The following two conditions are equivalent:

(1) For any c1, . . . , cm ∈ R, that are not all zero,

s+(
m∑

k=1

ciui) ≤ m − 1. (39)
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(2) All the minors of order m of U, that is, all minors of the form

U(i1 . . . im|1 . . . m), with 1 ≤ i1 < · · · < im ≤ n, (40)

are non-zero and have the same sign.

Remark 4. Note that if m = n then condition (1) always holds,
whereas condition (2) holds iff U is non-singular. Thus, the propo-
sition does not hold in the casem = n.

Example 20. Consider the TP matrix in Example 5. Its first two
eigenvectors are u1

=
[
1

√
2 1

]′

, and u2
=

[
−1 0 1

]′. We
know from Theorem 1 that for any c1, c2 ∈ R, that are not both
zero, s+(c1u1

+ c2u2) ≤ 1, that is, condition (1) holds. In this case,

U =

[ 1 −1
√
2 0
1 1

]
, and thus the minors in (40) are det(

[
1 −1

√
2 0

]
),

det(
[
1 −1
1 1

]
), det(

[√
2 0
1 1

]
). These are all positive, so condition (2)

also holds.

Proof of Proposition 1. It is enough to prove the result for the
case n = m + 1 (the proof when n > m + 1 is similar).

We first show that condition (2) implies condition (1). Suppose
that all the minors in (40) are non-zero and have the same sign.
Pick c1, . . . , cm ∈ R, that are not all zero, and let u :=

∑m
i=1ciu

i
∈

Rm+1.Weneed to show that s+(u) ≤ m−1. Seeking a contradiction,
assume that s+(u) ≥ m. This means that

uiui+1 ≤ 0 for i = 1, . . . ,m. (41)

Furthermore, condition (2) implies that at least one of the first m
entries of u is not zero. Consider the square matrix V :=[
u u1 . . . um

]
. Expanding its determinant along the first col-

umn and using (41) and condition (2) implies that det(V ) ̸= 0.
But, the first column of V is a linear combination of the other
columns, so det(V ) = 0. This contradiction completes the proof
that condition (2) implies condition (1).

To prove the converse implication, assume that condition (1)
holds. This implies in particular that for any c1, . . . , cm, that are not
all zero,

∑m
k=1ciu

i
̸= 0, so the uis are linearly independent. Assume

that one of the minors in (40) is zero. Then there exist c1, . . . , cm,
not all zero, such that

∑m
i=1cku

k hasm zero entries. Since n = m+1
this means that s+(

∑m
i=1cku

k) ≥ m and this is a contradiction. We
conclude that all the minors of orderm are not zero. To prove that
they all have the same sign it is enough to prove that all theminors

dk := U(1 . . . k − 1 k + 1 . . . m + 1|1 . . . m),

with k = 1, . . . ,m+ 1, have the same sign. Fix 1 ≤ i < j ≤ m+ 1.
Define a vector z ∈ Rm+1 by

zk :=

⎧⎨⎩(−1)i−1dj if k = i,
(−1)jdi if k = j,
0 otherwise.

Consider the squarematrix V :=
[
u1 . . . um z

]
. Expanding its

determinant along the last column yields det(V ) = 0. Thus, there
exist c1, . . . , cm+1, not all zero, such that

v :=

m∑
k=1

ckuk

= −cm+1z. (42)

If c1 = · · · = cm = 0 then this gives z = 0, but this is a
contradiction as dj, di ̸= 0. Thus, at least one of c1, . . . , cm is
not zero. If cm+1 = 0 then (42) yields

∑m
k=1cku

k
= 0 and this

contradicts condition (1). We conclude that cm+1 ̸= 0, and we
assume from here on that cm+1 = 1, so

v = −z. (43)

Let α := sgn(dj) ∈ {−1, 1} and let v̄ be the vector v but with every
zero entry vp replaced by (−1)pα. Then by the definition of s+,
s+(v) ≥ s+(v̄). Using (43) implies that the entries of 1

α
v̄ are

(−1)1, (−1)2, . . . (−1)i−1,
(−1)i

α
dj, (−1)i+1, . . . ,

(−1)j−1,
(−1)j−1

α
di, (−1)j+1, . . . , (−1)m+1.

If di, dj have different signs then we see that s+(v̄) ≥ m, so s+(v) ≥

m. This contradiction completes the proof that condition (1) im-
plies condition (2). □

We can now state the main result in this Appendix.

Theorem 11. Consider a set of n linearly independent vectors a1,
. . . , an ∈ Rn. The following two conditions are equivalent:

(1) For any vector c ∈ Rn
\ {0},

s+(
n∑

k=1

ciai) ≤ s−(c). (44)

(2) The matrix A :=
[
a1 a2 . . . an

]
is SSR.

Clearly, Theorem 11 is equivalent to Theorem 4.

Proof of Theorem 11. Assume that condition (1) holds. Pick 1 ≤

p ≤ n. We will show that all minors of order p of A are non-zero
and have the same sign. If p = n then this holds because the ais
are linearly independent. Thus, consider the case p < n. Pick p + 1
indices 1 ≤ k1 < k2 < · · · < kp < kp+1 ≤ n. For any c ∈ Rn,
define c̄ ∈ Rn by

c̄i :=

{
ci if i ∈ {k1, . . . , kp},

0 otherwise.

Then s−(c̄) ≤ p − 1, as c̄ has no more than p non-zero entries.
Let ā :=

∑n
i=1c̄ia

i
=

∑p
j=1ckja

kj . Applying condition (1) implies
that for any c̄ ̸= 0, s+(ā) ≤ p − 1. This means that the
set {ak1 , . . . , akp} satisfies condition (1) in Proposition 1. Thus, all
minors of the form

A(i1 . . . ip|k1 . . . kp), with 1 ≤ i1 < · · · < ip ≤ n, (45)

are non-zero and have the same sign. Denote this sign by ε(k1, . . . ,
kp). It remains to show that this sign depends on p, but not on the
particular choice of k1, . . . , kp. Pick v ∈ {1, . . . , p}. We will show
that

ε(k1, . . . , kv−1, kv+1, . . . , kp+1)

= ε(k1, . . . , kv, kv+2, . . . , kp+1). (46)

To do this, define p vectors āk1 , . . . , ākv , ākv+2 , . . . , ākp+1 by āki :=

aki for i ∈ {1, . . . , v − 1, v + 2, . . . , p + 1}, and ākv := dvakv +

dv+1akv+1 , where dv, dv+1 > 0. Pick c̄1, . . . , c̄v, c̄v+2, . . . , c̄p+1, that
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are not all zero, and let

a :=

p+1∑
i=1

i̸=v+1

c̄iāki . (47)

Then

a =

p+1∑
i=1

giaki , (48)

with gv := c̄vdv , gv+1 := c̄vdv+1, and gi = c̄i for all other i. Let g :=[
g1 . . . gp+1

]′. Note that g ̸= 0, and that since gvgv+1 =

(c̄v)2dvdv+1 ≥ 0, s−(g) ≤ p − 1. Applying condition (1) to (48)
yields s+(a) ≤ s−(g) = p − 1, that is,

s+(
p+1∑
i=1

i̸=v+1

c̄iāki ) ≤ p − 1.

Let Ā ∈ Rn×p be the matrix

Ā : =
[
āk1 . . . ākv−1 ākv ākv+2 . . . ākp+1

]
=

[
ak1 . . . akv−1 dvakv + dv+1akv+1 akv+2 . . . akp+1

]
.

Applying Proposition 1 to the set of p vectors āk1 , . . . , ākv , ākv+2 , . . . ,
ākp+1 ∈ Rn we conclude that all minors

Ā(i1, . . . , ip|k1, . . . , kv, kv+2, . . . , kp+1)
= dvA(i1, . . . , ip|k1, . . . , kv, kv+2, . . . , kp+1)
+ dv+1A(i1, . . . , ip|k1, . . . , kv−1, kv+1, . . . , kp+1) (49)

are non-zero. This holds for all dv, dv+1 > 0, so the two minors on
the right hand side of (49) have the same sign. Since this is true
for all v ∈ {1, . . . , p}, we conclude that the sign ε(k1, . . . , kp) does
not change if we change any one of the indices ki, and thus it is
independent of the choice of k1, . . . , kp. This completes the proof
that condition (1) implies condition (2).

To prove the converse implication, assume that A =[
a1 . . . an

]
is SSR. Pick c ∈ Rn

\ {0}, and let p := s−(c).
If p = n − 1 then clearly s+(

∑n
i=1ciai) ≤ s−(c). Consider the

case p < n − 1. We may assume that the first non-zero entry
of c is positive. Then c can be decomposed into p + 1 groups:
(c1, . . . , cv1 ), (cv1+1, cv1+2, . . . , cv2 ), . . . , (cvp+1, cvp+2, . . . , cvp+1 ),
where c1, . . . , cv1 ≥ 0 (with at least one of these entries positive);
cv1+1 < 0, cv1+2, . . . , cv2 ≤ 0, cv2+1 > 0, and so on. Define
vectors u1, . . . , up+1

∈ Rn by

u1
:=

v1∑
k=1

|ck|ak, u2
:=

v2∑
k=v1+1

|ck|ak, . . . .

Then

a :=

n∑
k=1

ckak = u1
− u2

+ u3
− · · · + (−1)pup+1. (50)

Note that every ui is a non-negative and non-trivial sum of a
consecutive set of aks. Let U :=

[
u1 . . . up+1

]
∈ Rn×(p+1).

Note that n > p + 1. The SSR of A implies that all the minors of
order (p + 1) of U are non-zero and have the same sign. Applying
Proposition 1 to (50) yields s+(a) ≤ p, so s+(a) ≤ s−(c). □
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