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Abstract

Characterizations of various uniform stability properties of switched systems described by differ-
ential inclusions, and whose switchings are governed by a digraph, are developed. These characteri-
zations are given in terms of stability properties of the system with restricted switchings and also in
terms of Lyapunov functions.
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1. Introduction

Recently the study of the stability properties of switched systems described by

ẋ(t)= f�(t)(x(t), u(t)), y(t)= h(x(t)), (1)
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with � : [0,+∞) → � an arbitraryswitching signaland� the index set, has received a
great deal of attention, mainly motivated by the rapid development of the area of intelligent
control (see[8] and references therein for details). In particular, in[10,11,4]the existence
of common Lyapunov functions for systems as in (1) was established for input-to-state
stability and other related properties.
Although under mild regularity conditions, the differential equation (1) provides for each

initial condition and each switching signal a complete description of the time evolution
of the statex(·) and, in consequence, a tractable analysis of the closed loop system (with
u(t)= k(x(t))), it lacks robustness in terms of the external disturbances and system uncer-
tainties that are inevitable in practice. In order to take into account such disturbances and
uncertainties, it is more appropriate to consider switched systems described by controlled
differential inclusions of the form

ẋ(t) ∈ F�(t)(x(t), u(t)), y(t)= h(x(t)). (2)

Systems as in (2) form a very rich class of systems which include in particular control sys-
tems defined by differential inclusions (cf.[1,2]) and switched systems as in (1). In recent
works[12,13], it was shown that a switched system as in (2) can be represented by a per-
turbed control system described by differential equations, driven by inputs consisting of the
controls of the original systems and perturbations that evolve in compact sets, in the sense
that the set of maximal trajectories of the system of differential inclusions is a dense subset
of maximal trajectories of the representing system. The obtained representation theorems
allowed one to extend previous results on Lyapunov characterizations of input/output sta-
bility and detectability properties for systems of differential equations to switched systems
defined by differential inclusions.
In this work we will consider systems as in (2) with switchings governed by a given

digraphH ∗ ⊆ � × �. This restriction of the switchings enables us, for example, to model
the restrictions imposedby the discrete process of a hybrid systemwhose continuous portion
is as in (1) (see[3,9]).
The stability properties that will be studied are formulated in the theoretic framework of

input-to-state stability (ISS). In the last decade, the notion of ISS has been generalized to
systems with outputs of the form

ẋ(t)= f (x(t), u(t)), y(t)= h(x(t)), (3)

yielding a number of useful concepts that deal with the output stability of these systems.
The different notions on input/output stability introduced in[15] serve to formalize the idea
of stabledependence of outputsy upon inputsu. They differ in the precise formulations of
the decay estimates and the transient behavior characteristics of the output, though they all
specialize to the ISS property when the output is the complete state.
Another important notion, theinput–output-to-state stability(IOSS) introduced in[7],

concerns thestabledependence of statesx upon outputsy and inputsu. This is a notion of
zero-detectability that incorporates the effect of a disturbance input, and characterizes the
property that the information from the output and the input is sufficient to deduce stability of
the state to the origin. Although for nonlinear systems the IOSS condition cannot guarantee
the existence of a “complete” observer, it does guarantee the existence of norm observers
(see[7]).
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It is well understood that the existence of Lyapunov functions yields insight into stability
properties and provides powerful tools in system design. In[16,7] necessary and sufficient
characterizations of input/output stability and IOSS in terms of Lyapunov functions were,
respectively, provided.
In this work we will consider the different input/output stability properties as well as the

IOSS property for switched systems as in (2) with switchings governed by digraphs. The
digraphH ∗ imposes a restriction on the switchings, which results in a family of subclasses
of switching signals, so that a switching signal belongs to a certain subclass whenever it
takes values in a strongly connected component ofH ∗. The behavior of system (2) when the
switchings are restricted to these classes plays a significant role, as it will be shown in this
work that several uniform stability properties of the system with switchings governed by
H ∗ are equivalent to the same properties when the switchings are restricted to each of these
subclasses. Combining these results with those obtained in[13], we will present converse
Lyapunov theorems for the input/output stability and IOSS properties for systems as in (2)
with switchings governed by digraphs.
The outline of the paper is as follows. In Section 2, the basic notation is presented. In

Section 3, we introduce the formal notion of switched systems described by differential
inclusions with a brief review of our previous results on the notions of uniform stability for
switched systems. In Section 4 we present characterizations of uniform uOLIOS, uSIIOS,
and the uIOSS stability properties of switched systems with switchings governed by a
digraph, both in terms of the stability properties of the restricted system and in terms of
Lyapunov functions for the restricted system. In Section 5 we introduce the notions of
uniform input-measurement-to-error stability and strong uniform input-measurement-to-
error stability, which allows us to deal with the uIOSS and the output stability properties in
a unifiedmanner. Section 6 contains proofs of the results presented in the previous sections,
and some conclusions are given in Section 7.

2. Notation

Here we introduce some notations and definitions that will be used in the sequel. We
use| · | to denote the Euclidean norm for any givenRq and withBq we denote its closed
unit ball, i.e.,Bq := {z ∈ Rq : |z|�1}. For a normed vector spaceX, we define‖A‖ :=
sup{‖a‖ : a ∈ A} if A ⊆ X.
Given a metric spaceE, we denote byM(E) the set of Lebesgue measurable functions

� : [0,+∞) → E that arelocally essentially bounded, i.e., for each compact interval
J ⊂ [0,+∞) there is a compact subsetK ⊆ E such that�(t) ∈ K for almost allt ∈ J.
For a functiong ∈ M(Rq) we denote by‖g‖ the (possibly infinite)Lq∞-norm ofg, i.e.,
‖g‖ := ess sup{|g(t)| : t�0} and, for anyt�0, ‖g‖[0,t] stands for theLq∞-norm of g
restricted to the interval[0, t], i.e.,‖g‖[0,t] := ess sup{|g(s)| : 0�s� t}.
Let X be a metric space. We denote the distance from a point� ∈ X to a setA ⊆ X by

dist(�, A). TheHausdorff distancebetween two nonempty closed subsets ofX,A andB,
is defined asdH(A,B) := max{sup�∈B dist(�, A), sup�∈A dist(�, B)}.
We denote byK(X) the set of nonempty compact subsets ofX and we recall that the

Hausdorff distancedH is a metric onK(X). Given another metric spaceZ, we say that
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a set-valued mapG : Z → K(X) is locally Lipschitz if it is locally Lipschitz when the
Hausdorff distance is considered inK(X).
As usual, by aK-functionwemeana function� : R�0 → R�0 that is strictly increasing

and continuous, and satisfies�(0)=0, by aK∞-function one that is in addition unbounded,
and we letKL be the class of functionsR�0 × R�0 → R�0 which are of classK∞
on the first argument and decrease to zero on the second argument. A continuous function
V : Rn → R is positive definite ifV (0) = 0 andV (�)>0 for all � �= 0; and is radially
unbounded if it is proper, i.e., if{� : V (�) ∈ A} is compact wheneverA is compact.

3. Stability of switched systems

In this work we consider switched systems whose subsystems are described by forced
differential inclusions. More precisely, given a family of locally Lipschitz set-valued maps
P = {F� : Rn × Rm → K(Rn), � ∈ �}, where� is an index set and, without loss of
generality,F� �= F�′ if � �= �′, and given a locally Lipschitz output-maph : Rn → Rp,
with h(0)= 0, we consider the switched system with inputs and outputs

ẋ ∈ F�(x, u), y = h(x), (4)

wherex takes values inRn, u ∈ U := M(Rm), and theswitching signal� : [0,+∞) → �
is a piecewise constant function.Associated with each switching signal� there are a strictly
increasing sequence{ti}N�

i=0, withN��∞, t0 = 0, and limi→∞ ti = ∞ whenN� = ∞, and

a sequence of indexes{�i}N�
i=0 ⊆ �, with �i �= �i+1 for all 0� i <N�, such that�(t) = �i

for all ti� t < ti+1 with 0� i <N�, and�(t)=�N� for all t� tN� whenN� is finite.We will
denote byS the family of switching signals of a given switched system and byS(�∗) the
subclass of switching signals that takes values in a subset�∗ ⊆ �.
Given an inputu ∈ U and a switching signal� ∈ S, we say that a locally absolutely

continuous functionx : I → Rn whereI = [0, T ] or [0, T ) with 0<T � + ∞ is a
trajectoryof (4) correspondingto u ∈ U and to� ∈ S if ẋ(t) ∈ F�(t)(x(t), u(t)) a.e.
t ∈ I. Observe that, due to the assumptions aboutF�, for each� ∈ Rn, eachu ∈ U and
each� ∈ S, there always exists a trajectoryz corresponding tou and to� that verifies
x(0)=� and that is defined on an interval[0, T ) for someT >0 small enough.A trajectory
x corresponding tou ∈ U and to� ∈ S is calledmaximalif it does not have an extension
which is a solution corresponding tou and to�, i.e., if [0, Tx) is the interval of definition
of x, eitherTx = +∞ or there does not exist a trajectoryz : [0, T ) → Rn corresponding to
u and to� with T >Tx so thatz(t)= x(t) for all t ∈ [0, Tx).
For any� ∈ Rn, anyu ∈ U and any� ∈ S, we denote withTs(�, u,�) the collection

of all the maximal trajectoriesx of (4) corresponding tou and to� that satisfyx(0)= �.
We will say that system (4) isforward completewith respect to a subclass of switching

signalsS0 ⊆ S if every maximal solutionx ∈ Ts(�, u,�) corresponding to any initial
condition� ∈ Rn, any inputu ∈ U and any switching signal� ∈ S0 is defined for allt�0,
i.e.,Tx = ∞. We just say that system (4) isforward completewhen it is forward complete
with respect toS. It is not hard to see that (4) is forward complete with respect toS(�∗)
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if and only if ẋ ∈ F�(x, u) is forward complete for each parameter� ∈ �∗. To derive the
main results of this work, we assume the following:

• C1: The familyP is uniformly locally Lipschitz, i.e., for eachN ∈ N, there existslN �0
such that

dH(F�(�,�), F�(�
′,�′))� lN (|� − �′| + |� − �′|)

for all (�,�), (�′,�′) ∈ NBn ×NBm and all� ∈ �.
• C2: The familyP is pointwise equibounded, i.e., for each(�,�) ∈ Rn×Rm there exists
M(�,�)�0 such that

‖F�(�,�)‖�M(�,�) ∀� ∈ �.

Remark 3.1. We observe that AssumptionsC1 andC2 are trivially satisfied when� is a
finite set.

Below we briefly review several results on stability properties for switching systems
developed in[13].

Definition 3.2. Given a subclass of switched signalsS0 ⊆ S, system (4) isuniformly
input–output-to-state stable with respect toS0 (uIOSS w.r.t.S0) if there exist a function
� of classKL and functions� and	 of classK such that

|x(t)|��(|�|, t)+ 	(‖y‖[0,t])+ �(‖u‖[0,t]) ∀t ∈ [0, Tx), (5)

for all � ∈ Rn, all u ∈ U, all � ∈ S0 and allx ∈ Ts(�, u,�).

Definition 3.3. Given a subclass of switched signalsS0 ⊆ S, a system as in (4) is

• uniformly input–output stable with respect toS0 (uIOS w.r.t.S0), if it is forward
complete w.r.tS0 and there exist a function� of classKL and a function� of class
K such that for all� ∈ Rn, all u ∈ U, all � ∈ S0 and allx ∈ Ts(�, u,�),

|y(t)|��(|�|, t)+ �(‖u‖) ∀t�0; (6)

• uniformlyoutput–Lagrange input tooutput stablewith respect toS0 (uOLIOS w.r.t.S0)
if it is uIOS w.r.t.S0 and there exist someK-functions�1,�2 such that for all� ∈ Rn,
all u ∈ U, all � ∈ S0 and allx ∈ Ts(�, u,�),

|y(t)|� max{�1(|h(�)|),�2(‖u‖)} ∀t�0; (7)

• uniformly state independent input–output stable with respect toS0 (uSIIOS w.r.t.S0)
if it is forward complete w.r.tS0 and there exist a function� of classKL and a
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function� of classK such that the following holds:

|y(t)|��(|h(�)|, t)+ �(‖u‖) ∀t�0, (8)

for all � ∈ Rn, all u ∈ U, all � ∈ S0 and allx ∈ Ts(�, u,�).

Remark 3.4. Note that by causality, the same estimates (6), (7) and (8) will result if one
replaces‖u‖by‖u‖[0,t].Also, by causality, equivalent definitionsof thepropertiesof uIOSS,
uIOS, uOLIOS and uSIIOS (w.r.tS0) will be obtained if one considers only inputs with
finite norm instead of inputs inU.

Remark 3.5. It was shown in[15] that for anyKL-function�andanyK-function� there

are aKL-function�̂ and aK-function̂� so that min{�(s),�(r, t)}� �̂(s, t/(1+ �̂(r))) for
all s, r, t . It follows that a system is uOLIOS w.r.tS0 if and only if there exist a function�
of classKL and two functions
 and� of classK such that

|y(t)|��
(

|h(�)|, t

1+ 
(|�|)
)

+ �(‖u‖) for all t�0, (9)

for all � ∈ Rn, all u ∈ U, all � ∈ S0 and allx ∈ Ts(�, u,�).

We note that the stability properties introduced in Definitions 3.2–3.3 are natural ex-
tensions of those given, respectively, in[7] and[16] for systems described by differential
equations.
Various stability properties are particular cases of these ones. For example, for systems

without inputs, the global asymptotic stability of the system with respect to a forward
invariant setA is equivalent to the SIIOS property, if we consider as output maph(�) =
dist(�,A). Thewell-known ISSproperty is also a particular case of these properties. In fact,
if we consider as output maph(�)= 0, then the IOSS property becomes the ISS property.
On the other hand, if we considerh(�)= �, then both the SIIOS and the IOS properties are
equivalent to ISS.
In our previous work[13], we have shown the following:

Lemma 3.6. Assume that AssumptionsC1–C2hold for system(4).SupposeF�(0,0)={0}
for all � ∈ �.Then the system is uIOSSw.r.t.S(�) if and only if there exists a smooth(C∞)
functionV : Rn → R�0, called a common uIOSS-Lyapunov function w.r.t.S(�), such
that

• for someK∞-functions�1, �2,

�1(|�|)�V (�)��2(|�|) ∀� ∈ Rn; (10)

• for someK∞-function� andK-functions�1,�2

DV(�)v� − �(|�|)+ �1(|h(�)|)+ �2(|�|) ∀ � ∈ Rn,

for all � ∈ Rm, all � ∈ � and allv ∈ F�(�,�).
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For the Lyapunov characterizations for the input/output stability properties, we need the
following:

Definition 3.7. A system as in (4) isuniformly bounded input bounded state stable with
respect toS0 ⊆ S (uBIBS w.r.t.S0) if there exist some nondecreasing functions�1 and
�2 such that for all� ∈ Rn, all u ∈ U, all � ∈ S0 and allx ∈ Ts(�, u,�),

|x(t)|� max{�1(|�|),�2(‖u‖)} ∀t�0. (11)

As shown in[13], if a system as in (4) is uBIBS w.r.t.S0, then it is forward complete
w.r.t.S0.

The following was obtained in[13]:

Lemma 3.8. Suppose system(4) is uBIBS w.r.t.S(�).
1.The system is uIOS w.r.t.S(�) if and only if there exists a smooth functionV : Rn →

R�0 such that

• for some�1 ∈ K∞, �2 ∈ K∞,

�1(|h(�)|)�V (�)��2(|�|) ∀� ∈ Rn; (12)

• for some� ∈ K∞ and�3 ∈ KL, the following holds for all� ∈ Rn, all � ∈ Rm, all
� ∈ � and allv ∈ F�(�,�):

V (�)��(|�|) ⇒ DV (�)v� − �3(V (�), |�|). (13)

2. The system is uOLIOS w.r.t.S(�) if and only if there exists a smooth functionV :
Rn → R�0 such that

• for some�1, �2 ∈ K∞,

�1(|h(�)|)�V (�)��2(|h(�)|) ∀� ∈ Rn, (14)

• for some� ∈ K∞ and some�3 ∈ KL, (13) holds for all� ∈ Rn, all � ∈ Rm, all
� ∈ � and allv ∈ F�(�,�).

3.The system is uSIIOS w.r.tS(�) if and only if there exists a smooth functionV : Rn →
R�0 such that

• for some�1, �2 ∈ K∞, (14)holds; and
• there exist�3 ∈ K∞ and� ∈ K∞ such that

V (�)��(|�|) ⇒ DV (�)v� − �3(|�|) (15)

for all � ∈ Rn, all � ∈ Rm, all � ∈ � and allv ∈ F�(�,�).

The functionV as in Lemma 3.8 is called a common uIOS- uOLIOS- and uSIIOS-
Lyapunov function w.r.t.S(�), respectively.
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4. Systems with switchings governed by a digraph

In this section we consider switched systems whose switchings are governed by a given
digraphH ∗ ⊆ � × �. More precisely:

Definition 4.1. We say that a switching signal� is anadmissible switching signalif and
only if (�(ti),�(ti+1)) ∈ H ∗ for all 0� i <N�.

We denote bySadm the class of all admissible switching signals.

Remark 4.2. Observe that if we consider the set-valued mapH : � → 2�, defined by
H(�)= {�′ : (�, �′) ∈ H ∗}, then we have that� ∈ Sadm if and only if �(ti+1) ∈ H(�(ti))
for all 0� i <N�.

Ourmain concern is to characterize under suitable hypotheses the uIOSS, uIOS, uOLIOS
and uSIIOS properties of system (4) with switching signals constrained toSadm. Some
terminology and results from graph theory will be used (see[6] for details).
Given �, �′ ∈ �, we say that�′ is accessiblefrom � if there exists a finite sequence

� = �0, . . . , �k = �′ with k ∈ N0 such that(�i , �i+1) ∈ H ∗ for all 0� i < k. In other words,
�i+1 ∈ H(�i ) for all 0� i < k. Then, if we consider in� the relation defined by� ∼ �′
if and only if � is accessible from�′ and�′ is accessible from�, it follows that this is an
equivalence relation and that its equivalence classes are the so-called strongly connected
components of the digraphH ∗. Throughout this work, we assume the following:

• C3: The digraphH ∗ has a finite number of strongly connected components�1, . . . ,�N .

Theorem 1. Suppose that AssumptionsC1–C3 hold for system(4). Then the following
statements are equivalent:

1. System(4) is uIOSS w.r.t.Sadm.
2. System(4) is uIOSS w.r.t.S(�i ) for eachi ∈ {1, . . . , N}.

For the input/output stability properties, we first have the following:

Lemma 4.3. Suppose AssumptionsC1–C3 hold for system(4).Then the system is uBIBS
w.r.t.Sadm if and only if it is uBIBS w.r.t.S(�i ) for eachi = 1,2, . . . , N .

The proof of Lemma 4.3 will be given in Section 6.2.

Theorem 2. Suppose that AssumptionsC1–C3 hold for system(4). Assume further that
the system satisfies the uBIBS property w.r.t.Sadm. Then the following statements are
equivalent:

1. System(4) is uOLIOS(uSIIOS, respectively) w.r.t.Sadm.
2. System(4) is uOLIOS(uSIIOS, respectively) w.r.t.S(�i ) for eachi ∈ {1, . . . , N}.
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ThesignificanceofTheorems1and2 is that they reduce thestability propertiesof a system
as in (4) with switchings governed by a digraph to the corresponding stability properties
of the system with switchings taking arbitrary values in some given subsets of�. This will
allow one to apply the previous results for systems with switchings taking arbitrary values
to obtain the Lyapunov characterizations for systems whose switchings are governed by a
digraph.
The implications 1. ⇒ 2. of Theorems 1 and 2 follow from the following approximation

result:

Lemma 4.4. Suppose that AssumptionsC1–C2hold. Let�∗ be a strongly connected com-
ponent of the digraphH ∗ and letx ∈ Ts(�, u,�) with � ∈ Rn, u ∈ U and� ∈ S(�∗).
Then, given0<T <Tx and �>0 there exists a trajectoryx∗ ∈ Ts(�, u,�∗) with �∗ ∈
Sadm such thatTx∗ >T and

|x(
)− x∗(
)|< � ∀
 ∈ [0, T ]. (16)

The proof of Lemma 4.4 will be given in Section 6.1.

4.1. Some remarks about the uIOS case

It is not hard to prove under AssumptionsC1–C2, by using Lemma 4.4, that if a system
is uIOS w.r.tSadm then it is uIOS w.r.t.S(�∗) for any strongly connected component�∗
of H ∗.
Unfortunately, in contrast to the results on the uOLIOS and uSIIOS stated in Theorem 1,

the uIOS property w.r.t.S(�i ) for 1� i�N does not imply the uIOS property w.r.t.Sadm

even when the system satisfies the additional hypothesis of being uBIBS stable, as shown
by the following counterexample.

Example 4.5. Consider the switched linear system without inputs

ẋ(t)= A�(t)x(t), y = x2(t), (17)

wherex(t)= (x1(t), x2(t)) ∈ R2, �(t) ∈ � = {1,2} and

A1 =
[
0 0
0 −1

]
and A2 =

[−1 0
1 −1

]
.

ConsiderH ∗ = {(1,2)}. Then the strongly connected components ofH ∗ are�1 = {1} and
�2 = {2}. We observe that each subsystemẋ =Aix, y = x2, i = 1,2, is output stable (OS)
(and in consequence IOS). We also observe that, from the fact that the derivative of the
positive definite and radially unbounded functionW(x) = x21 + x22 along the trajectories
of (17) is semidefinite negative, it follows that the trajectories of (17) are bounded by a
K-function in the initial values (and in consequence the system is uBIBS).
We claim that (17) is not uOS w.r.tSadm(and in consequence it is not uIOS w.r.tSadm).
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Suppose, on the contrary, that system (17) is uOS w.r.tSadm. Therefore, the following
straightforward consequence of the uOS property holds.

(,) Given a sequence{�k, k ∈ N} of admissible switching signals and�0 ∈ R2, if yk
is the output of (17) corresponding to the switching signal�k and the initial condition
x(0)= �0, thenyk(t) → 0 ast → +∞ and the convergence is uniform with respect to
k ∈ N.
Now, consider the sequence of admissible switching signals{�k, k ∈ N}, with �k(t)=1

for 0� t < k and�k(t) = 2 for t�k. Let yk be the output of (17) corresponding to the
switching signal�k and the initial condition(x1(0), x2(0))= (1,0).
An easy computation shows that

yk(t)=
{
0, 0� t < k,

(t − k)e−(t−k), t�k.

Thus,yk(k + 1) = e−1 for all k ∈ N and the convergence ofyk(t) to zero is not uniform
with respect tok, which contradicts(,). This fact shows that (17) is not uOS w.r.t.Sadm.

The following sufficient condition for the uIOS w.r.t.Sadm of system (4) is a simple
consequence of Theorem 1.

Proposition 4.6. Suppose that AssumptionsC1–C3 hold for a uBIBS system(4).Assume
that there exists a continuous functionh0 : Rn → R�0 such that the following hold:

1. for someK∞-function� it holds that

|h(�)|��(h0(�)) ∀� ∈ Rn;

2. system(4)with outputy = h0(x) is uOLIOS w.r.t.S(�i ) for eachi ∈ {1, . . . , N}.
Then the system is uIOS w.r.t.�adm.

Remark 4.7. We observe that hypotheses 1 and 2 of Proposition 4.6 establish that system
(4) is uOLIOS under output redefinitionw.r.t. S(�i ) for eachi, (see[15]) and that the
redefined output functionh0 is the samefor all the switched subsystems.
As a matter of fact, by using the results of[13], one can show for eachi ∈ {1, . . . , N}

the existence of a continuous functionhi such that system (4) with outputy = hi(x) is
uOLIOS w.r.t.S(�i ). The extra assumption made in Proposition 4.6 is that there is a
common output redefinitionh0 valid for all 1� i�N .

4.2. Lyapunov characterizations

In this subsection we characterize, in terms of Lyapunov functions, the uIOSS and the
uniform output stability properties of switched systems with switching governed by a
digraphH ∗.
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Theorem 3. Suppose that AssumptionsC1–C3 for system(4)hold. Assume thatF�(0,0)=
{0} for all � ∈ �.Then the system is uIOSS w.r.t.Sadm if and only if there exists a common
uIOSS-Lyapunov functionVi w.r.t.S(�i ) for eachi = 1, . . . , N .

Theorem 4. Suppose that AssumptionsC1–C3 for system(4) hold. Assume further that
the system is uBIBS w.r.t.Sadm. Then the system is uOLIOS(uSIIOS, respectively) w.r.t.
Sadm if and only if there exists a common uOLIOS-Lyapunov function(uSIIOS-Lyapunov
function, respectively) Vi w.r.t.S(�i ) for eachi = 1, . . . , N .

Theorem 3 is a straightforward application of Lemma 3.6 and Theorem 1. Theorem 4 is
a consequence of Lemma 3.8, Theorem 2 and Lemma 4.3.
For the uIOS case, we have the following as a consequence of Proposition 4.6, Lemmas

3.8 and 4.3.

Proposition 4.8. Suppose that AssumptionsC1–C2 hold for system(4). System(4) is
uIOS w.r.t.Sadm if it is uBIBS w.r.t.S(�i ) for i = 1, . . . , N and there exists a contin-
uous functionh0 : Rn → R�0 that verifies the following:

• there exists a function� of classK∞ such that|h(�)|��(h0(�)) for all � ∈ Rn;
• system(4) with output maph0 admits a common OLIOS-Lyapunov functionVi w.r.t.
S(�i ) for eachi = 1, . . . , N .

5. Input-measurement-to-error stability

To provide a unified proof for the implications 2.⇒ 1. of Theorems 1 and 2, we consider
a system as in (4) with two output maps

y(t)= h(x(t)), e(t)= g(x(t)), (18)

whereh : Rn → Rp andg : Rn → Rq are continuous maps. Typically,y denotes the
output variables that can be measured, andedenotes the output variables to be regulated.

Definition 5.1. Let a subclass of switched signalsS0 ⊆ S and a system as in (4) with
output maps (18) be given.We say that the system isuniformly input-measurement-to-error
stable w.r.t.S0 ( uIMES w.r.t.S0) if there exist� ∈ KL, 	 ∈ K and� ∈ K such that

|e(t)|��(|�|, t)+ 	(‖y‖[0,t])+ �(‖u‖[0,t]) ∀t ∈ [0, Tx) (19)

holds for all� ∈ Rn, all u ∈ U, all � ∈ S0 and allx ∈ Ts(�, u,�).

The uIMES notion is a generalization of the uIOSS and the output stability properties.
It was introduced in[5] for systems without switchings, where some primary work was
developed for the Lyapunov characterizations for the special case when there is no inputu
acting on the system. In order to complete the proofs of Theorems 1 and 2, we will consider
the following stronger variation of the uIMES notion.
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Definition 5.2. Let a subclass of switched signalsS0 ⊆ S and a system as in (4) with
outputmaps (18) be given.We say that the system isstrongly uniformly input-measurement-
to-error stablew.r.t.S0 (strongly uIMES w.r.t.S0) if thereexist� ∈ KL,	 ∈ K,� ∈ K
and a continuous, nondecreasing and nonnegative definite function� : R�0 → R�0 such
that

|e(t)|��
(

|g(�)|, t

1+ �(|�|)
)

+ 	(‖y‖[0,t])+ �(‖u‖[0,t]) (20)

holds for all� ∈ Rn, all u ∈ U, all � ∈ S0 and allx ∈ Ts(�, u,�).

As in the uIMES case, the strongly uIMES property requires the magnitude of the error
output to be eventually small if the norms of the input and themeasurement output are small.
On the other hand, strongly uIMES is stronger than uIMES in the sense that it requires the
“overshoot” ofe(t) to depend only on|e(0)|, while in the uIMES case, the overshoot is
merely required to be dominated by|�|.

Remark 5.3. The strongly uIMES notion will enable one to consider the uIOSS and the
input/output stability properties in a unified approach: uIOSS is the special case when
�(s) ≡ 0 andwheng(�)=� (i.e., when the outputerepresents the full set of state variables);
and for a forward complete system, uOLIOS is the special case wheny ≡ 0, which further
results in uSIIOS when�(s) ≡ 0.

The following is a robust version of the input–output-to-state boundedness property
introduced in[1]:

Definition 5.4. Let a subclass of switched signalsS0 ⊆ S and a system as in (4) with out-
put maps (18) be given.We say that the system isuniformly input–output-to-state bounded
w.r.t. y (uIO-BND) forS0 if there exist�0 ∈ K, �y ∈ K and�u ∈ K such that

|x(t)|� max{�0(|�|), �y(‖y‖[0,t]), �u(‖u‖[0,t])} ∀ t ∈ [0, Tx) (21)

holds for all� ∈ Rn, all u ∈ U, all � ∈ S0 and allx ∈ Ts(�, u,�).

Lemma 5.5. Suppose that AssumptionsC1–C3 hold for system(4) with the output maps
given in(18).Then the system is uIO-BND w.r.t. y forSadm if and only if it is uIO-BND w.r.t.
y forS(�i ) for each1� i�N .

The proof of Lemma 5.5 will be given in Section 6.2.

Theorem 5. Suppose that AssumptionsC1–C3 hold for system(4) with the output maps
given in (18). Assume that the system is uIO-BND w.r.t. y forSadm. Then the system
is strongly uIMES w.r.t. Sadm if and only if it is strongly uIMES w.r.t.S(�i ) for each
1� i�N .
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To prove Theorem 5, we associate with a given switching signal� ∈ Sadm the
subsequence{
l}L�

l=0 of the switching sequence{tk}N�
k=0, whose elements verify the

following:

• 
0 = 0;
• for eachl = 0,1, . . . , there exists a connected component�il such that�(tk) ∈ �il for
all tk ∈ [
l , 
l+1) and�(
l+1) /∈�il .

That is, 0= 
0< 
1< 
2< · · · are the switching moments when� switches from a value in
one connected component to a value in a different connected component.

Lemma 5.6. Suppose that AssumptionC3 holds. Then for each� ∈ Sadm, L��N − 1.

Proof. ForN = 1 the result is clear. Suppose thatN�1 andL��N ; then there exist two
integers 0� i∗< i∗ + 1<j∗ �L� such that�ii∗ = �ij∗ . Thus�(
j∗) is accessible from
�(
i∗+1) because� is an admissible switching signal. On the other hand, since�(
i∗) ∈
�ii∗ = �ij∗ , it follows that �(
i∗) is accessible from�(
j∗), which implies further that
�(
i∗+1) is accessible from�(
j∗). Consequently,�(
i∗+1) ∈ �ii∗ ,which contradicts the
definition of the sequence{
k}. �

Proof of Theorem 5. The necessitypart (the “only if” part) of the theorem is a direct
consequence of Lemma 4.4. Below we show the sufficiency part.
Assume that the system is strongly uIMES w.r.t.S(�i ) for 1� i�N andN is finite.

Without loss of generality, we assume that there exist� ∈ KL, 	 ∈ K∞, � ∈ K∞ and
a nondecreasing and nonnegative definite continuous function� such that for all 1� i�N ,
� ∈ Rn, u ∈ U, � ∈ S(�i ) and allx ∈ Ts(�, u,�).

|e(t)|� max

{
�

(
|g(�)|, t

1+ �(|�|)
)
, 	(‖y‖[0,t]), �(‖u‖[0,t])

}
∀t ∈ [0, Tx).

(22)

Let �0(s)= �(s,0). Without loss of generality, we assume that�0(s)�s for all s�0.

Lemma 5.7. Consider� ∈ Rn, u ∈ U, � ∈ Sadm andx ∈ Ts(�, u,�). Let 0< t <Tx
and let k be the greatest nonnegative integer such that
k� t . Then

|e(t)|� max{�k+1
0 (|g(�)|),�k0 ◦ 	(‖y‖[0,t]),�k0 ◦ �(‖u‖[0,t])}, (23)

where�00(s)= s, and�l+1
0 = �0 ◦ �l0 for l�0.

Proof. We will prove it by induction onk. The case ofk = 0 follows directly from (22).
Assume now that (23) holds fork − 1 with k�1. This means that

|e(
)|� max{�k0(|g(�)|),�k−1
0 ◦ 	(‖y‖[0,
]),�k−1

0 ◦ �(‖u‖[0,
])}
∀
 ∈ [
k−1, 
k). (24)
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Let t1=t−
k, �1=x(
k) andu1,�1 andx1 be defined byu1(
)=u(
+
k),�1(
)=�(
+
k)
andx1(
)= x(
+ 
k), e1= g(x1), andy1=h(x1). Thenx1 ∈ Ts(�1, u1,�1) with Tx1> t1
and�1(
) ∈ �ik for all 
 ∈ [0, t1]. Hence,

|e1(
)|� max{�0(|g(�1)|), 	(‖y1‖[0,
]), �(‖u1‖[0,
])} ∀ 
 ∈ [0, t1]. (25)

Then, it follows from (24) (by letting
 → 
k) that

�0(|g(�1)|)= �0(|e(
k)|)
� max{�k+1

0 (|g(�)|),�k0 ◦ 	(‖y‖[0,
k]), �k0 ◦ �(‖u‖[0,
k])}.
Combining this with (25) together with the fact thate(t) = e1(t1) (and noticing that�k0 ◦
�(s)��(s) for any� ∈ K), we get (23). �

We now continue with the proof of Theorem 5. Let� ∈ Rn, u ∈ U, � ∈ Sadm and
x ∈ Ts(�, u,�). Fix t ∈ [0, Tx). Let a = ‖y‖[0,t], b = ‖u‖[0,t] and consider the partition
of [0, t] given byI0 = [
0, 
1), . . . , Ik−1 = [
k−1, 
k), Ik = [
k, t] with 
k� t . By Lemma
5.6,k�N − 1. Consequently, at least one of these intervals, sayIj , has length equal to or
greater thant/N , and from Lemma 5.7,

|e(
j )|� max{�j+1
0 (|g(�)|),�j0 ◦ 	(a),�j0 ◦ �(b)}

� max{�N0 (|g(�)|),�N−1
0 ◦ 	(a),�N−1

0 ◦ �(b)}.
Arguments similar to those used in the proof of Lemma 5.7 show that, in the case when
j < k,

|e(
j+1)|� max

{
�

(
|g(�j )|, t

N(1+ �(|�j |))
)
, 	(a), �(b)

}

� max

{
�

(
�N0 (|g(�)|),

t/N

1+ �(|�j |)
)
,�N0 ◦ 	(a),�N0 ◦ �(b)

}
, (26)

where we have let�j = x(
j ), and in the case whenj = k,

|e(t)|� max

{
�

(
|g(�j )|, t

N(1+ �(|�j |))
)
, 	(a), �(b)

}

� max

{
�

(
�N0 (|g(�)|),

t/N

1+ �(|�j |)
)
,�N0 ◦ 	(a),�N0 ◦ �(b)

}
.

Since from the uIO-BND property we have

�(|�j |)� max{� ◦ �0(|�|),� ◦ �y(a),� ◦ �u(b)},
it follows that for anyr >0,

�
(
r,

t/N

1+ �(|�j |)
)

� max

{
�

(
r,

t/N

1+ � ◦ �0(|�|)
)
,�

(
r,

t/N

1+ � ◦ �y(a)

)
,

�
(
r,

t/N

1+ � ◦ �u(b)

)}
.



486 J.L. Mancilla-Aguilar et al. / Nonlinear Analysis 63 (2005) 472–490

Considering the two cases whenr�s andr < s, we see that for anyKL-function�̂,

�̂
(
r,

t

1+ s

)
� max

{
�̂

(
r,

t

1+ r

)
, �̂(s,0)

}
.

Hence, witĥ�(r, t) := �(�N0 (r), t), we get

�̂
(
r,

t/N

1+ �(|�j |)
)

� max

{
�̂

(
r,

t/N

1+ � ◦ �0(|�|)
)
, �̂

(
r,
t/N

1+ r

)
,

�̂0 ◦ � ◦ �y(a), �̂0 ◦ � ◦ �u(b)
}
.

Combining this with (26), we get, for the case whenj < k,

|e(
j+1)|� max

{
�̂

(
|g(�)|, t/N

1+ � ◦ �0(|�|)
)
,

�̂
(

|g(�)|, t/N

1+ |g(�)|
)
, �̂y(a), �̂u(b)

}
, (27)

wherê�y and̂�u are functionsof classK∞ that verifŷ�y(s)� max{̂�0◦�◦�y(s),�
N
0 ◦	(s)}

and�̂u(s)� max{̂�0 ◦ � ◦ �u(s),�
N
0 ◦ �(s)}, respectively. Let

�̃(r, s)=max

{
�̂(r, s/N), �̂

(
r,
s/N

1+ r

)}
.

Then, (27) yields, in the case whenj < k,

|e(
j+1)|� max

{
�̃

(
|g(�)|, t

1+ � ◦ �0(|�|)
)
, �̂y(a), �̂u(b)

}
. (28)

Similarly, for j = k, we have

|e(t)|� max

{
�̃

(
|g(�)|, t

1+ � ◦ �0(|�|)
)
, �̂y(a), �̂u(b)

}
. (29)

In the case thatj < k, it follows from Lemma 5.7 that

|e(t)|� max{�k−j0 (|g(x(
j+1))|),�k−j−1
0 ◦ 	(a),�k−j−1

0 ◦ �(b)}
� max

{
�∗

(
|g(�)|, t

1+ � ◦ �0(|�|)
)
, 	∗(a), �∗(b)

}
,

where�∗(r, t)= �N0 (̃�(r, t)), and

	∗(r)=max{�N0 ◦ �̂y(r),�
N
0 ◦ 	(r)}, �∗(r)=max{�N0 ◦ �̂u(r),�

N
0 ◦ �(r)}.
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Combining this with (29) for the case whenj = k, and taking into account the definitions
of a andb, we get

|e(t)|� max

{
�∗

(
|g(�)|, t

1+ � ◦ �0(|�|)
)
, 	∗(‖y‖[0,t]), �∗(‖u‖[0,t])

}
.

We complete the proof by noting that�∗ ∈ KL, 	∗ ∈ K, �∗ ∈ K and�◦�0 is continuous
and nondecreasing.�

Remark 5.8. It can be seen in the proof above that the uIO-BND condition is redundant
when�(s) ≡ 0 in (20), since in this case, estimate (20) can be reduced to

|e(t)|��(|g(�)|, t)+ 	(‖y‖[0,t])+ �(‖u‖[0,t]), 0� t < Tx . (30)

Accordingly, one can derive (29) from (26) without using the uIO-BND condition.

6. Proofs

In this section, we provide proofs of Theorems 1 and 2 and some lemmas used in the
paper.

6.1. Proof of Lemma 4.4

Take� ∈ �∗, and let{ti}N�
i=0 be the sequence of switching times of� and let�i = �(ti).

Consider the greatest nonnegative integerk such thattk�T . As �0, . . . , �k belong to�∗

then, for each integer 0< l�k, there exists a sequence�l−1=�0l , �
1
l , . . . , �

jl
l =�l of elements

of �∗ such that�j+1
l ∈ H(�jl ) for all j = 0, . . . , jl − 1.

Then, if we consider for�n = 1/n, with n ∈ N large enough, the switching signal�n
defined by

�n(t)=




�l−1 if t ∈ [tl−1, tl − (jl − 1)�n), l = 1, . . . , k,

�jl if t ∈ [tl − (jl − j)�n, tl − (jl − j − 1)�n), l = 1, . . . , k,
j = 1, . . . , jl − 1,

�k if t� tk,

(31)

we have that�n ∈ Sadm.

Claim. There exists a sequence of maximal solutions{xn, n ∈ N} of (4) so that:
(i) xn ∈ Ts(�, u,�n) andTxn >T , for n large enough;
(ii) {xn} converges uniformly to x on[0, T ].

Proof. As AssumptionsC1–C2 hold, it follows from Lemma 2.5 and Remark 2.6 of[13]
that there exist an injective function� : � → D, with D a compact metric space, and a
set-valued mapF : Rn × Rm × D → K(Rn) such that anȳx ∈ Ts(�, u,�) is also a
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maximal solution of˙̄x ∈ F(x̄, u, d�) with initial condition �, corresponding tou and to
d� = � ◦ � ∈ M(D).
If we consider now, for eachn ∈ N, dn = � ◦ �n, then the family{dn, n ∈ N} is locally

equibounded and, in addition, limn→∞ dn(
) = d�(
) a.e. on[0, tk+1) if k <N� or on
[0,+∞) if k =N�.
Let us define, for any
�0, any� ∈ Rn and any� ∈ D the set-valued mapG(
, �, �) :=

F(�, u(
), �). It follows thatG verifies the hypotheses of Lemma 3.7 of[13] and thatx is a
maximal solution of the forced differential inclusion

ż ∈ G(
, z, d), (32)

corresponding tod = d�. Then according to Lemma 3.7 of[13], there exists a sequence
{xn : n ∈ N}, with xn a maximal trajectory of (32) corresponding todn that verifies
xn(0) = �, andTxn >T for n large enough. In addition,{xn} converges uniformly tox in
[0, T ]. But, according to Remark 1.4 of[12] and the definition ofG, xn ∈ Ts(�, u,�n),
and hence the claim follows.�

6.2. Proof of Lemmas 4.3 and 5.5

Lemma 4.3 is a corollary of Lemma 5.5 withh(�) ≡ 0. Below we prove Lemma 5.5.
The necessity of Lemma 5.5 follows from the approximation result Lemma 4.4. In what

follows we prove that if system (4) is uIO-BND w.r.t.y forS(�i ) for eachi ∈ {1, . . . , N},
then it is uIO-BND w.r.t.y forSadm.
Due toAssumptionC3, wemayassume that there exists� ∈ K such that for all 1� i�N ,

|x(t)|� max{�(|�|),�(‖y‖[0,t]),�(‖u‖[0,t])}, 0� t < Tx , (33)

for all � ∈ Rn, allu ∈ U, all� ∈ S(�i ) and allx ∈ Ts(�, u,�).Without loss of generality,
we assume that�(s)�s for s�0. As a consequence,�n��j whenn�j .
Consider� ∈ Rn, u ∈ U, � ∈ Sadmandx ∈ Ts(�, u,�). We will prove the lemma by

showing the following:

|x(t)|� max{�N(|�|),�N(‖y‖[0,t]),�N(‖u‖[0,t])}, ∀t�0. (34)

In order to prove this claim let, as in the proof of Theorem 5,k be the greatest nonnegative
integer such that
k� t . Then

|x(
)|� max{�j (|�|),�j (‖y‖[0,t]),�j (‖u‖[0,t])} ∀
 ∈ [
j−1, 
j ), 1�j�k. (35)

We prove (35) by induction onj; the casej = 1 is a straightforward consequence of (33).
Suppose that (35) holds forj − 1. Then, from (35) and the continuity ofx, we have that

|x(
j )|� max{�j−1(|�|),�j−1(‖y‖[0,t]),�j−1(‖u‖[0,t])}
∀
 ∈ [
j−1, 
j ), 1�j�k.

By the same argument used in the proof of Lemma 5.7, we have, for
 ∈ [0, 
j+1 − 
j ),

|x(
j + 
)|� max{�(|�j |),�(‖yj‖[0,
]),�(‖uj‖[0,
])}
� max{�j (|�|),�j (‖y‖[0,t]),�j (‖u‖[0,t])},
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where we have let�j = x(
j ), xj (
) = x(
j + 
), yj = h(xj ) anduj (
) = u(
j + 
).
The induction is thus completed. Applying the uIO-BND estimate (34) once more with the
estimate (35) withj = k, we get

|x(t)|� max{�k+1(|�|),�k+1(‖y‖[0,t]),�k+1(‖u‖[0,t])}.

Estimate (34) is thus proved by noting thatk�N − 1.

6.3. Proof of Theorems 1 and 2

It follows from the following facts that Theorems 1 and 2 are consequences of Theorem
5. LetS0 be a subclass ofS.

1. A system as in (4) with the output mapy = h(x) is uIOSS w.r.t.S0 if and only if it is
strongly uIMES w.r.t.S0 as in Definition 5.2 withg(�)= �. Also, note that if this is the
case, then the uIO-BND condition follows from the uIOSS property.

2. A system as in (4) is uBIBS w.r.t.S0 if and only if it is uIO-BND w.r.t.y forS0 as in
Definition 5.4 with the output maph(�) ≡ 0.

3. A forward complete system as in (4) with the output mape= g(x) is uOLIOS w.r.t.S0
if and only if it is strongly uIMES w.r.t.S0 as in Definition 5.2 withh(�) ≡ 0.

4. A forward complete system as in (4) with the output mape = g(x) is uSIIOS w.r.t.S0
if and only if it is strongly uIMES w.r.t.S0 as in Definition 5.2 withh(�) ≡ 0 and
�(s) ≡ 0.

6.4. A remark about the uSIIOS property

As indicated in[13], the uBIBS condition in the uSIIOS-Lyapunov characterization (c.f.
Lemma 3.8) can be replaced by the forward completeness condition. Remark 5.8 also
indicates that the uBIBS condition is redundant in the statement of Theorem 2 about
the uSIIOS property. In order to state the results about uSIIOS without assuming the
uBIBS condition, we need to introduce the notion of Zeno switching signal.
We say that� : [0,+∞) → � is aZeno switching signalif there exist a sequence of

real numbers{tk, k ∈ N0} with 0= t0< t1< · · ·< tk < · · · and limk→+∞ tk = T�<+ ∞,
a sequence{�k ∈ �, k ∈ N0} with �k �= �k+1 for all k�0 and a point�∗ ∈ � such that
�(t)= �k for all tk� t < tk+1 and�(t)= �∗ for all t�T�.
The definition of trajectory and maximal trajectory of (4) when� is a Zeno switching

signal is the same as in the case in which� is a piecewise constant one (see[13] for details).
We denote bySZ the set of all (piecewise constant) switchings and all Zeno switchings

taking values in� and we say that system (4) is forward complete with respect toSZ if
every maximal trajectoryx of (4) corresponding to any initial condition�, any inputu and
any� ∈ SZ is defined for allt�0. We observe that any uBIBS switched system is, in
particular, forward complete w.r.t.SZ.
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Proposition 6.1. Suppose that AssumptionsC1–C3 hold for system(4). Assume that the
system is forward complete w.r.t.SZ. Then the following hold:

1. The system is uSIIOS w.r.t.Sadm if and only if the system is uSIIOS w.r.t.S(�i ) for all
1� i�N .

2. The system is uSIIOS w.r.t.Sadm if and only if there exists a common uSIIOS-Lyapunov
functionVi w.r.t.S(�i ) for all 1� i�N .

7. Conclusion

In this paper we have studied different types of uniform stability properties of switched
systems defined by differential inclusions with inputs and outputs. For such a switched
system whose switchings are governed by a digraph, we have shown that, under suitable
hypotheses, the stability properties are equivalent to the corresponding stability properties
for the system when the switching signals are restricted to take arbitrary values in the
strongly connected components of the digraph. As a consequence, we obtained Lyapunov
characterizations, under suitable hypotheses, for the stability properties for systems with
switchings governed by a digraph.
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