Available online at www.sciencedirect.com

scmnce@mnec-r@ Nonline_ar
Analysis

ELSEVIER Nonlinear Analysis 60 (2005) 1111—1150 _
www.elsevier.com/locate/na

On the representation of switched systems with
iInputs by perturbed control systems

J.L. Mancilla-Aguila?, R. Garci8, E. Sonta§* 1, Y. Wang'?

@Department of Mathematics, Faculty of Engineering, University of Buenos Aires, Argentina
bpepartment of Physics & Mathematics of the Instituto Tecnolégico de Buenos Aires; and the Faculty of
Engineering of the University of Buenos Aires, Argentina
CDepartment of Mathematics, Rutgers University, New Brunswick, NJ, USA
dDepartment of Mathematical Sciences, Florida Atlantic University, FL, USA

Received 19 July 2004; accepted 11 October 2004

Abstract

This paper provides representations of switched systems described by controlled differential inclu-
sions, in terms of perturbed control systems. The control systems have dynamics given by differential
equations, and their inputs consist of the original controls together with disturbances that evolve in
compact sets; their sets of maximal trajectories contain, as a dense subset, the set of maximal trajecto-
ries of the original system. Several applications to control theory, dealing with properties of stability
with respect to inputs and of detectability, are derived as a consequence of the representation theorem.
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1. Introduction

In the last decade, the study of the properties of switched systems described by

X(1) = fory(x(@), u®)), y(t) =h(x(1)), 1)

with g : [0, 4+00) — " an arbitraryswitching signahndI” an index set, has received a great
deal of attention, mainly motivated by the rapidly development of the area of intelligent
control (sed11] and references therein for details). In fact, switched systems (1) enable us,
for example, to model the continuous portion of a hybrid system[ééd]).

Different stability properties for system (1) were studied and characterized in terms of
Lyapunov functions (s€fd1,12,16,17). In [16] in particular, it was proved that, under suit-
able hypotheses, the set of maximal trajectories of system (1) is dense in the set of maximal
trajectories of an associated (non-switched) system with controls and perturbations. This
amounts to aepresentatiorof the switched system by a system with controls and pertur-
bations. By using this fact, different results about perturbed control systems described by
differential equations could be extended to switched system$8/1)5(17).

On the other hand, although under mild regularity conditions, the differential equation
(1) provides, for each initial condition and each switching signal, a complete description
of the time evolution of the state(-), a more robust model of behavior should take into
account uncertainties caused by modeling errors and disturbances that are inevitable in any
real-world control problem. This leads one to consider a more general model: switched
systems described by forced differential inclusions

X(1) € Fog(x(1), u(?)), y(t) = h(x(1)). @

In this work we obtain representations of switched systems (2) (assuming locally Lipschitz
right-hand sides) by means of perturbed control systems described by ordinary differential
equations, driven by inputs consisting of the controls of the original system and perturbations
that evolve in compact sets.

The representations obtained are characterized by the facts that every maximal trajectory
of a system (2) is also a maximal trajectory of the representing system, and that the set of
trajectories of (2) is dense (see Remark 2.4 for the precise meaning) in the set of trajectories
of the representing system. The latter statement is closely related to the relaxation theorems
of differential inclusions which assert that, under suitable conditions, relaxed trajectories
can be approximated by (regular) trajectories (Ze®). These approximation results allow
one to convert the analysis of an inclusion to its relaxation or vice versa. An interesting
application can be found in the recent wéil].

Our representation results in the current paper allow us to achieve two theoretical and
conceptual simplifications: (1) all “uncertainty” about the system can be summarized into
just one “disturbance” input, and (2) switching, which is in principle very hard to study
(because spaces of switching signals do not have any completeness properties), can be un-
derstood in terms of arbitrary Lebesgue-measurable disturbances with values on a compact
space.

As immediate applications of our results on representations, we extend previous results on
Lyapunov characterizations of input/output stability and detectability properties for systems
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of differential equations to switched systems defined by differential inclusions. (Further
corollaries will be explored in other papers; for instance, it is showa8hthat Lyapunov
characterizations can also be developed for systems whose switching functions are governed
by digraphs.)

We wish to emphasize that many of the results that we present are new even in the
very special cases of un-controlled differential inclusions (and even ordinary differential
equations) with switching, or of differential inclusions without switching.

The paper is organized as follows. In Section 2 we present the basic notation, the class of
switched systems that we address and the main results. Section 3 presents results on forced
differential inclusions that are instrumental for the proof of the main result. In Section 4, a
result on parametrization of set valued maps is presented and the main results are proved.
In Section 5, we develop Lyapunov characterizations of input—output-to-state stability and
several input-to-output stability properties. Finally, in Section 6, conclusions are given. An
appendix contains several additional results as well as some technical lemmas needed in
the main text.

2. Switched systems

We first introduce some notations and definitions that will be used in the sequel. We use
| - | to denote the Euclidean norm for any givigfh and with#, we denote the closed unit
ball in R?.

Given a metric spack, we denote by (E) the set of Lebesgue measurable functions
n : [0, +00) — E that ardocally essentially boundeth caseE = R™ we write% instead
of .#(R™). We say that a sequen¢g,, n € N} C .#(E) is locally equiboundedf for
each compact intervg¥f C [0, +o0) there exists a compact subgetC E such that for all
n e N,n,(t) € K foralmost allr € ¢.

For a measurable functioh: [0, c0) — R/, we denote by|0|| the (possibly infinite)
L°-norm of 0 and, for anyr >0, [|0]l;0,,] stands for theL.?°-norm of 0 restricted to the
interval[O, 7].

Let X be a metric space. We denote the distance from a gointX to a setA C X by
dist(&, A). TheHausdorff distanc®etween two nonempty closed subsetXoh andB, is
defined as/y (A, B) := max{sup:c g dist(¢, A), sup,eqdist(n7, B)}.

We let#" (X) be the set of nonempty compact subsebsafid we recall that the Hausdorff
distancely is a metric on#"(X) and that#"(X) is compact in the metri€y if Xis compact
(see[19, p. 279). For a normed spack, we still use| - | to denote the norm oK. For a
subsefA of X, coA and clA stand for the convex hull and the closurefafespectively. We
define||A|| := suf{|al : a € A}.

Given another metric spadewe say that a set-valued map: Z — " (X) is continuous
(Lipschitz) if it is continuous (Lipschitz) when the Hausdorff distance is considered in
A (X). We use?(Z, # (X)) to denote the class of continuous maps frano .7 (X)
equipped with the topology of uniform convergence on compact sets. It must be remarked
that this topological space is metrizable wheis a finite dimensional vector space. In
order to see it, consider any nofm| on Z and letC, denote the closed ball centered at
0 with radiusr in Z. ThenC, is compact. Let/, be the metric fof6(C,, # (X)) given by
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dy(f, 8) = SUPcc, du(f (x), g(x)). Then the metrid on 4 (Z, #"(X)) defined by

o

d(f,g) = Z M 2/,
=1 + dj (fv g)
induces the topology of uniform convergence on compact sets.

As usual, by a7 -function we mean a function: R> o — Rx¢thatis strictly increasing
and continuous, and satisfie®) =0, by a# . -function one that is in addition unbounded,
and we let#" . be the class of functionR>o x R>o — Rx>o which are of class?” on
the first argument and decrease to zero on the second argument.

Before we introduce the class of switched systems with which we deal in this work, it is
convenient to describe the class of functions that we will take as switching signals:

Definition 2.1. Given a nonempty sef, we say that a functiog : [0, +00) — C is a
switching signalf g verifies one of the two following conditions:

1. gis a piecewise constant function (i.e. the set of points where the furgtias jumps
is finite in each compact subinterval @, +o0), andg is constant between jumps)
continuous from the right;

2. there exist a sequence of real numbers k € No}withO=rn<n1<--- < <---
and lime_ 1otk = T, < + 00, a sequencée; € C : k € No} with ¢ % ¢4 for all
k>0 and a point* € C such thatg(r) = ¢ for all 1 <t < ;41 andg(¢) = ¢* for all
t>T,.

In what follows, we will denote by”(C) the family of all C-valued switching signals
and with.#pc(C) the subfamily of allC-valued piecewise constant switching signals.

Remark 2.2. The definition of switching signal that we use here is slightly more general
than that usually considered in the literature on switched systems, where a switching signal
means an element itf p,c(C). Switching signals that do not belong.%6,.(C) are usually
related with the so-called Zeno-behavior of a hybrid system[&&gand due to this reason

they will be here referred to as Zeno-switching signals.

As pointed out above, in this work we consider switched systems whose subsystems
are described by forced differential inclusions. More precisely, given a family of locally
Lipschitz set-valued maps

P ={F, e ¢(R" x R", #'(R")) : y € T}, ©)

wherel is an index set and, without loss of generaliy, F, if y # 7', we consider the
switched system with inputs

X € Fg(x,u), 4)

wherex takes values ifiR", u € %, ande € S (I').
Given an input: € % and a switching signat € .(I'), we say that a locally absolutely
continuous functiorx : .# — R" where.# =[0,T] or [0,7T) with0<7T< + o0 is a
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trajectory of (4) corresponding ta € % and too € S (I') if X(t) € Fg()(x(1), u(t)) for
almost allz € .#. Observe that, due to the assumptions atigutfor each € R", each
u € % and eacly € ¥ (I') there always exists a trajectoxycorresponding ta and toa
that verifiesx(0) = £ and that is defined on an inten@, 7') for some smalll” > 0.

A trajectoryx : [0,T) — R”" corresponding tat € % and toog € ¥ (I') is called
maximalif it does not have an extension which is a solution correspondingaitd too,
i.e., eitherT = +oc or there does not exist a trajectary [0, T’) — R”" corresponding to
uand too with 7’ > T so thatz(r) = x(¢) for all € [0, T). Given a maximal trajectory
corresponding ta € % and tos € % (I'), we denote its domain by, 7,). We write just
T, for simplicity, even though it i, .

For anyé € R", anyu € % and anys € ¥ (I'), we denote by7* (¢, u, o) the collection
of all the maximal trajectories of (4) corresponding to and toe that satisfyx (0) = £.

2.1. Main results

In what follows we will establish one of the main results of this work, which asserts that
under suitable hypotheses on the fanmihthe set of maximal trajectories of system (4) is
dense, in a sense that we will make precise, in the set of maximal trajectories of a system
with inputs described by a system of differential equations:

sz(Z,M,d, OJ), (5)

wherez takes values iR",u € %,d € /(D) with D a compact metric space, and
w € MB,).

In order to establish the precise result, we consider for the fagitiie following hy-
potheses:

e C1: The familyZ is uniformly locally Lipschitz, i.e., foreacN € N, there existéy >0
such that

du (Fy (& ), (& ) <In(E =&+ I — D),

forall ¢, &' € N4, and allu, ' € N%,, (where we have used?, to denote the closed
ball centered at 0 of radiusin R?).

e C2: The familyZ is pointwise equibounded, i.e., for each 1) € R" x R™ there exists
M ) =0 such thal| F, (&, <M, forally e I'.

One of the main results of the paper is the following:

Theorem 1. Suppose tha® verifiesClandC2.Then there exista compact metric spage D
an injective function : I' — D, and a continuous functiofi : R" x R" x D x 4, — R"
such that

1. The set(I) is dense in D
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2. The mapf (., -, v,-) is locally Lipschitz uniformly orv € D, i.e., for each compact
subset K ofR” x R there is some constank so that

LfCE v, O = fE Wy, DIk (€= E 4+ lu— | +10=CD,

forall (¢, w), (&, w)eK,al{, { e #,andallve D.
3. Foreaché e R", pne R™ andy e I,

co Fy(&, ) ={f(& w11, O) = { € Ay

4. Givenu € %, g € < (I') and a maximal trajectory x d#) corresponding to u and,
there existso € .#(%4,) such that x is a maximal trajectory @) corresponding to u
d;, =100 andow.

5. The trajectories of4) are dense in the set of trajectories &) in the two following
senses

(a) Givene >0 and a trajectoryz : [0, T] — R" of (5) corresponding ta: € %,
d € M(D)andw € .4 (%), there exisic € Spc(I') and a trajectory x o{4)
corresponding to u and with x(0) = z(0) such that

lz(t) — x(t)| <e, Vrel0T].

(b) Given a trajectoryz : [0, T) — R" of (5) with T < oo corresponding tar € %,
d € M (D)andw € .4 (%,) and a continuous function: [0, T) — R.g, there
existe € ¥ (I') and a trajectory x of4) corresponding to u ane such that

lz(t) — x()| <r(), VYtel0T).

In the case wheff = oo, the switching functiow can be chosen it¥’pc(I).

Remark 2.3. Parts 1-3 of Theorem 1 contain as a particular case a result obtaifieq] in
for switched systems described by differential equations (namely, Theorem[2Z)oin
fact, if a family of functions{ f, € ¥(R" x R™, R") : y e I'} verifies the hypotheses of
Theorem 3.2 0f17], then?={F, € G(R" xR"™, A (R")) : y € I'}with F,,(-, )={f,(-, )}
verifies C1 and C2. Consequently, there exist a compact metric Bpaoenjective function

1 : I' = D and a continuous functiogi : R" x R"™ x D x 4, — R" that verify 1-3
of Theorem 1. From statement 3, it easily follows th&t, u, v, {) = f(&, u, v, {’) for all
(U e #,, thatis, the functiorf (¢, u, v, -) is constant for any gived, u andv. Hencef
can be considered as a function fréth x R” x D to R", and we recover Theorem 3.2 of
[17].

Remark 2.4. Part 5(a) of Theorem 1 asserts that for fixed- 0,u € % and¢ € R", the
set of trajectories of (4) correspondingu@nd the initial stat€ with ¢ € % pc(I) that are
defined o0, T'] is dense in the set of trajectories of (5) correspondingdad the initial
state¢ with d € .# (D) andw € .#(%4,) that are defined ofD, T], when the topology in
consideration is the topology of uniform convergence on the int¢@val].

On the other hand, part 5(b) states that for fixed D < + oo (T = oo respectively)
andu € %, the set of trajectories of (4) correspondingutwith ¢ € S (I') (6 € Fpc)
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respectively) that are defined i 7') is dense in the set of trajectories of (5) corresponding
touwithd € .Z(D) andw € .%(%,) that are defined of0, T), when the topology under
consideration is th&° Whitney topology.

We point out that part 5(b) does not hold if we consider only piecewise constant switching
signals (see Section 3.1). That is the reason why we must also consider Zeno-switching
signals.

As a corollary of Theorem 1, we will also obtain the following representation theorem:

Theorem 2. Suppose that? verifiesC1 and C2. Then there exists a locally Lipschitz
function f* : R" x R" x 4, — R" such that

1. Foreaché € R" andp € R™,

cocl| | F&w | ={f"C w0 : Le B

yel’

2. Givenu € %, o € & (I') and a maximal trajectory x d#) corresponding to u and,
there existsy € .#(%,) such that x is a maximal trajectory of

X = f*(x,u, ). (6)

3. The trajectories of4) are dense in the set of trajectories (@) in the two following
senses

(a) Givene > 0 and a trajectoryz : [0, T] — R" of (6) corresponding ta: € % and
w € M (#,) there exisv € Y pc(I') and a trajectory x of4) corresponding to u
ando such thatx(0) = z(0) and

lz(t) — x(t)|<e, Vtel0T].

(b) Givenatrajectory : [0, T) — R" of (6),with T < 0o, corresponding ta € % and
w € (A, and a continuous function: [0, T) — R.o, there existb € . (I')
and a trajectory x of4) corresponding to u and such that

|z(t) —x()| <r(t), VtelO0,T).

In the case wheff = oo, the switching signaé can be choosen it pc(1).

The two results complement each other: while Theorem 1 provides a representation of the
given switched differential inclusion in terms of a switched system of differential equations
(driven by the same switching signal, provided that we identifyith 1 o ¢), Theorem
2 is more abstract, and it provides a representation in terms of a non-switched system of
differential equations. This latter form, which looses the information about the switching
signal, is of use for theoretical purposes, since it allows reducing questions about switched
differential inclusions into questions about ordinary differential equations; examples are
given later in the paper.
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Next, we establish an association between the switched system (4) and a forced differential
inclusion with two inputs. In order to do so, we will use the following result.

Lemma 2.5. Suppose tha? verifiesC1andC2. Then there exist a compact metric space
D, aninjective function : I' — D and a continuous set-valued map: R" x R x D —
" (R") such that

1. () isdensein D
2. F(-,-,v)is locally Lipschitz uniformly with respect toe D.
3. F& () =F (& wforallée R, all pe R" and ally e I'.

Proof. Consider? as a subset &f (R" x R™, 2#'(R")) equipped with the topology of the
uniform convergence on compact sets. Condition C2 implies that for(€agh € R" x R™
there exists a compact s&t¢ ,, C R" such thatF, (¢, w) € K¢ ) forall y e I'. Thus,
for each pair(¢, ), Fy(¢, p) € A (K ) forally € I'. Since# (K¢ ,,)) is compact,
{Fy(¢, v : 7 € I'} has compact closure " (R"). Since condition C1 implies that the
family 2 is also equicontinuous, it follows from the Arzela—Ascoli Theorem (8¢ p.
290) thatZ, the closure o2 in €(R" x R™, " (R")), is compact. A& (R" x R™, 4" (R™"))

is metrizable, we have thd := 2 is a compact metric space.

Now we define, foreache I',1(y) := F, and,for(¢, u, v) € R"xR"xD, F(&, pu, v) :=
v(&, n). Clearly statements 1 and 3 of the lemma are verified.

As for the continuity ofF, note that this function is the restriction & x R™ x D of
the evaluation map, : R" x R" x ¢(R" x R", #(R")) — # (R"), and that this last
map is continuous (sg&9, p. 287).

In order to prove assertion 2, it is sufficient to show that for esich N, F is Lipschitz
onN%, x N4, uniformly with respectto € D.LetN € N,v e D and(¢, p), (&', i) €
N%, x N%,,. Then there exists a sequereg=1(y,), v, € I', k € N} such thaty — v
and, due to C1 and to the continuity fef

dH(F(év M, V), F(i/’ ,Ll/, V)) = k”—>moo dH(F“/k(é» ,U), F}’k (é/v ,Ll/))
SIN(E =+ — D).

It follows that F (-, -, v) is Lipschitz onK = N%,, x N 4,, uniformly with respectto € D
with constantg =1Iy. 0O

Now we associate with the switched system (4) the following system with two inputs:
X € F(x,u,d), (7

wherex takes values ifiR", u € %, d € .4 (D) and whereéF andD are as in Lemma 2.5.
Givené € R", u € % andd € .# (D), we denote with7 (¢, u, d) the collection of all
the maximal solutions of (7), corresponding to the inputsandd, that satisfyx (0) = ¢.
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Remark 2.6. The following facts readily follow from Lemma 2.5:

(i) Foreachs € #(I') (Y pc(I) respectively), ifd; = 1 o ¢, thend, € ¥ (D) (S pc(D)
respectively) and7* (&, u, 0) = 7 (&, u, dy).
(i) Foreachd € (i(IN) (< pc(1(I)) respectively), there exists a unique switching signal
oq € S (I) (S pc(I') respectively) such thato 64 = d.
In this manner, any switched system (4) corresponding to a farhilyat verifies C1 and
C2 can be viewed as a system described by the forced differential inclusion (7) with two
inputs: one of them is the input to the switched system, and the other one is a switching
signal that takes values in a dense subset of a compact metricBpace

3. Some results about forced differential inclusions

In what follows we consider the time-varying system with inputs described by
X e Gt x,d), (8)

wherer >0, x takes values ifiR" andd € .# (D) with D a separable metric space. We also
consider the relaxation of (8)

x €ecoG(t,x,d). 9)
Throughout the rest of this section we will suppose that the set-valuedsmdp> o x
R" x D — 2 (R") verifies the following hypotheses:

(H1) G(, &, v)is measurable for eadld, v) € R" x D;

(H2) G(,-,-) is continuous for each>0;

(H3) for each compact subsé& c R"” x D there existd g € L%C(Rgo, R) such that
for each(é, v), (¢, v) € K,

du(G(t, &), G(t, &, V)<L (t)|E =&, V=0

(Hg) for each compact subs&t C R"” x D there existeix € LﬁJC(R>0, R) such that for
each(é,v) e K

G, & vll<ag(r), Vi=0.
Next, we will show that the set of trajectories of (8) generated by switching signals that

take values in a dense subggnf D are dense in the whole set of trajectories of its relaxation
(9) when either one of the two following topologies are considered:

e The topology of the uniform convergence on a compact intdfyal'] with 7 > 0;
o the%® Whitney topology on a intervdD, ') with 0 < T < + oc.

Theorem 3. Suppose that the set-valued n@p R>o x R" x D — #"(R"), where D is
a separable metric spaceatisfies the hypotheséd;)—(H,). Let D’ be a dense subset of
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D. Then given a maximal trajectory : [0, T,) — R" of (9) corresponding te/* € .# (D),
the following hold

1. Given0<T < T, and e> 0, there exist a piecewise constant switching sigma&
S pe(D') and a maximal trajectory x of8) corresponding to d such that(0) = z(0)
and

Ix(t) —z(t)| <&, Vel T (10)

2. Given0 < T < T, and a continuous function: [0, T) — R.q, there exist a switching
signald € (D) (d € Spe(D') if T = +00) and a maximal trajectory x of8)
corresponding to d such that

|x(t) —z(t)| <r(), Vtel0T). (112)

Remark 3.1. Theorem 3 (whose proofis given in Sections 3.2.1-3.2.2) remains valid, with
the same proof, when the domain of the first variabl&df a finite intervals of the form
[0, a] or [0, @) with R> ¢ replaced by# in hypothesesH1)—(Ha).

Remark 3.2. Parts 1 and 2 of Theorem 3 can be considered extensions of the Filippov—
Wazewski Theorem and Theorem 1[8, respectively, since they are particular cases of
Theorem 3. To see it, just consider the case wibém Theorem 3 is a singleton.

3.1. Aresult on forward completeness of time-varying forced differential inclusions

In this short section we present a result about the forward completeness of the time-
varying differential inclusion (8), which is a simple consequence of Theorem 3 part 2. We
also show that part 2 of that theorem does not hold if we consider only piecewise constant
switching signals.

Given a subclass of inputg’ C .# (D), we will say that system (8) is forward complete
with respect ta«Z if every maximal trajectory of (8) which corresponds to an input .7
and starts at timg = 0, is defined for alk > 0. In case«Z = .# (D) we will say that the
system is forward complete.

The following result follows readily from Theorem 3:

Theorem 4. Suppose that the set-valued map R>o x R* x D — #(R"),withD a
separable metric spageatisfies the hypotheséd;)—(H,). Let D’ be a dense subset of D
Then the following statements are equivalent

1. Systen{8) is forward complete
2. Systen{8) is forward complete with respect t&(D").

The implication 1 = 2.istrivial. To prove the implication2= 1., we quote an existence
result for differential inclusions (e.§6], Theorem 7 on p. 85).

Lemma 3.3. LetQ c R x R” be an open set containin@, xo), and let G be a set-valued
map so thaiG(z, x) is nonempty and closed far, x) € Q. Suppose thafor (7, x) € Q,
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IG(t, x)|| <m(t) for somen(.) € L|10C([R€>o, R), and that G is continuous in measurable

in t. Then there exist > 0 and a solutionx (-) of
xeG(t,x), x(0)=xp

defined on the intervdD, T].

Proof of Theorem 4.2 = 1. If system (8) is not forward complete, there exist an input
d € /(D) and a trajectory (-) corresponding ta defined on a maximal interv0, T')
with T < co. On the other hand, consider. [0, T) — R > 0 defined by-(¢) = (r — T)2.

By Theorem 3 part 2, there exist an inpiite & (D’) and a maximal trajectory(-) of

(8) defined or{0, oo) corresponding t@’ such thatz(r) — x(¢)| < r(¢) forall r € [0, T).
Consequently, lim., 7z(z) = x(T). By Lemma 3.3, there exists somie- 0 such that(z)
can be extended {®, T + o], which contradicts the maximality @. [J

Remark 3.4. From the proof of Theorem 4 it is clear that the statements of Theorem 4
still hold if we replace¥’(D’) by any subclass of inputs/ € .# (D) for which part 2 of
Theorem 3 holds.

Now, we show that part 2 of Theorem 3 does not hold if we consider only inputs that
belong ta¥pc(D’) instead of the wholg”(D’). Due to Remark 3.4, a system that is forward
complete with respect t&’pc(D) but not forward complete serves as a counterexample.

Example 3.5. Consider the system witfl1, d2) as inputs
X =d1f1(x) + dafa(x), (12)
wheref; : R — R? (i =1, 2) is given byf1(&) = (1+ [¢H) A1, fo(&) = (14D A,

with
0o 2 _01 05
Al:[—os —0.1] AF[—Z o]

and wherel = (d1, d») € .4 (D) with D = D’ = {(1, 0), (0, 1)}. Observe that

G, & v) == {vaf1(O) +v2f2(d)}

verifies hypothese@1)—(Hg).

Since the vector fieldg, and f> are both globally asymptotically stable and therefore for-
ward complete, it follows that the system (12) is forward complete with respe€g¢aD).
On the other hand, with the inpdt= (d1, d») defined by the feedback rule

(1,0) if xa()x2(r) =0,

d) = { 0,1) if x1(t)xa(r) <O, (13)

there are trajectories with finite escape time. To see this, observe that the system (12) has
the same phase portrait as the linear system

7=d1A17 + d2A2z. (14)
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By explicitly solving the linear system (14), it can be seen that with the input give by (13),
the trajectories of (14) are spirals running clockwise. Consider the trajectory starting at
(0, ¢) for somec # 0. Let 0=19 <11 <12 <13 < - - - be the switching times faf () given

by (13) (i.e., the time when the trajectory crosses the coordinate axes). Thes, for#],

the trajectory of (14) with the initial statg0) = (0, ¢) is given by

2 .
71(8) = 70 e “ sin bt,

z22() = % e " sin bt + ce ' cosbt,
where ¢ = 0.05h = /1—(1/400. From this it can be calculated that
11 = [arctantb/a)l/b<m/2,|z1(t1)| = L.5|c| (@andz2(r1) = 0).

Consequentlylz(r1)| > 1.5|z(t0)|. By symmetry (or by the same calculation), it can be
shown that for each > 1,1, — 11 =11, |z(tx)| = 1.5|z(tx_1)|. Furthermore, with

ro := Mino<; <€ 44|71 (=miny, <, <, 420~ |71,

one hasz(t)| >rolz(tx—1)| forall t € [tx_1, tx]-

We now consider the trajectory(r) of (12) starting at0, 1). By the uniqueness property
of the trajectories, one hasr) = z(¢(z)), whereg(-) is the solution of

d=1+1z(p)I% @) =0.

Let 0= 19 <11 <712 <--- be the crossing times of the trajectory) with the coordinate
axes. Them, = ¢(ty).
Since fort € [1-1, %], (1) = (1 + |2(@(1)?) 21+ rgla(ie-) 1> >r§ - LEE,
it follows that
Iy — tk—1

_ 1 E5-2z
1.52(](71)}’3_1.5 T,

T — Th—1<

wheret = 1.5%1/r8. Let Ty = 11 + 12 + --- + 1. ThenT; — T for someT < oo. As
Ix (tx)| > 1.5%, it follows thatlimsup,  ;|x(t)| = oo. This shows that the system (12) is not
forward complete.

Remark 3.6. Note that system (14) also serves as an example to show that a system that
switches between two globally asymptotically stable linear systems may fail to be asymp-
totically stable for some choices of the switching signals/ig.(D).

3.2. Proof of Theorem 3
The following lemma is needed in the proof of Theorem 3.

Lemma 3.7. Let G be as in Theorerdandx : [0, T] — R" be a solution o{8) corre-
sponding tad € .# (D). Let{dy, k € N} C .4 (D) be a locally equibounded sequence
such thatlimy_. di (t) = d(¢) a.e. on[0, +oc0). Then there exists a sequendey}; - 1,
with x; a maximal trajectory of8) corresponding tal; that verifiest; (0) =x(0), such that
xy is defined oni0, 7] for k large enough and in additiofx; } converges uniformly to x on
[0, T].
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Proof. Let K c R" be a compact set such that) € K for all ¢ € [0, T']. Pick a smooth
functiond : R" — R such that

e 0O K1 forallé e R

e 0(&)=1forallé € K + H,;

o 0(& =0, forallé € R"\(K + 2%,)

(where we have usek + r 4, to denote the s€iy € R" : d(, K) <r}), and define the
set-valued ma* : [0, T] x R" x D — #"(R") by
G*(t,&,v) = 0(5)G(1, &, v).

It easily follows thatG* verifies

(@) G*(-, &, v) is measurable for eache R" and eachv € D;

(b) G*(z, -, -) is continuous for eache [0, T7];

(c) for each compact subset c D there exists, € L([0, T], R) such that for all

E & eR"andally € 4,
du(G*(t, &, v), G*t, &, v <P,mIE—E|, Ve[0Tl

(d) foreach compact subsétc D there exists,4 € L1([0, T, R) suchthatfor alt € R"
and allv € 4,

IG*(t, &, v <oy(r), Ve e[0T (15)
Then, if we consider for eache N, Gy : [0, T] x R" — A (R") defined by
Gi(t, &) = G*(1, &, dr (1)),

we have thaG is measurable i In addition, from the local equiboundednessdf} and
(c), it follows that for allé, & € R",

dy (Gi(t, &), Gi(t, &) <K& =&, Vi el0,T],
for a suitablex € L1([0, ], R).
Let p, (r) =dist(x(t), Gi(t, x(1))). We have, for almost all € [0, T,
pi(t) = dist(x (1), Gi(t, x(1))) )
<dist(x (1), G, x(1), d(1))) + du(G(t, x(1), d(1)), G (t, x(1)))
=dy(G*(t, x(1),d(1)), G*(t, x(1), di(1))). (16)
Thus, due to the continuity @* with respect to its third argument,

klim dy(G*(t,x(t),d®)), G*(t,x(t),dr(1))) =0, ae te[0,T].

Consequently, lim, 4~ p,(t) =0 for almost allr € [0, T].

On the other hand, from (16) it follows that for almost all
t € [0,T], pp (1) <|IIG*(t, x(2), d(@))|l + |G*(¢, x(t), dr(1))]|. Taking into account the
equiboundedness ¢#l;} and (15), we conclude that there existe L1([0, 7], R) such
that for eachk € N, p, (r) <a(r) for almost allr € [0, T'].
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From Lemma 8.3 of5] we have that for each € N there exists a solutiomy of the
initial value problemx; € Gy (¢, x¢), xx(0) = x(0) such that

Ix(®) = xk (<@ (@), Vvt e[0,T],
whereg;, is the solution of the initial value problem

Q) = k()@ (t) + pp(t), @ (0)=0

As p, (1) — 0 almost everywhere ar{@, } is majorized by an integrable functiop; — 0
uniformly on[0, T']. Consequently{x;} converges uniformly taon [0, T'].

The proof concludes by noticing that is a solution of (8) corresponding tf for k
large enough. In fact, there exists e N such that for alk > N, |x; (1) — x(¢)| <1 for all
t € [0, T]. Thus, ifk > N, for almost alls € [0, T'] we have that

i (1) € Gi(t, xk(1) = 0 ()G (¢, xi (), di (1) = G (¢, (1), di (1)),

and hencey is a solution of (8) corresponding th. [

3.2.1. Proof of part 1 of Theorem 3
From the Filippov—Waéwski Relaxation Theorem (df5]) we can easily deduce the
existence of a trajectoryof (8) corresponding ta@* so thatx(0) = z(0) and

2(6) — x ()] < g Vi € [0, T].

On the other hand, due to the density®@f in D, there exists a locally equibounded
sequencédy} in Spe(D’) such that, — 4* almost everywhere off), +o0). (First of all,
sinceD is separable, by Remark C.1.2[@l], there exists a locally equibounded sequence
{dk} in #pe(D) SO thatdk — d* almost everywhere ofD, +00). Next, for eachk € N,
we choose a piecewise constant switching sigpal % pc(D’) such that the distance from
di(t) to c?k(t) is less than 1k for all r € R>0. The equiboundedness @i, k € N} can
be proved by using arguments similar to those of Remark C.1[319¥. By Lemma 3.7,
there exists a sequenge}, with x; a maximal trajectory of (8) correspondingdp that
verifiesx; (0) =x(0), such thaty is also defined ofD, T'] for klarge enough and in addition
{xx} converges uniformly taon [0, T]. In consequence, for soné we have that

&
[x(#) — xp= (1) < > vt € [0, T],
and, a posteriori, that
lz(t) — xp= (1) <&, Vi1 el[0,T).

The proof of part 1 is completed by takidg= dy+. [

3.2.2. Proof of part 2 of Theorem 3

The proof that we give here is similar to the proofs of Lemma Il 28] and its
generalization in Theorem 1 ii®] and it uses similar techniques to those used in these
papers.
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Let {Tx}72, be a strictly increasing sequence of times such that= 0 and
Mt Tk =T.

We claim that there exist a sequerigg};> ; C pe(D’), a sequence )i, of positive

real numbers and, for each nonnegative int&gasequence of pointé’]‘-}j?';o which satisfy
the following:

(i) Foreachk>0,0< ;< min{r(t) : t € [Tk, Tr+11};
(ii) for eachk>0, é'j‘. € Vi :== z(Ty) + 614, for all j >0, where foré € R" ando > 0,
we useé + 04, to denote the closed ball centeredtatith radiusd;
(i) forany k>1, ifa subsequenc{af’]‘-l}fi1 converges, say t¢*, then the subsequence

{51;]71}?21 also converges, say td 1, and there is a solutiofy : [0, Ty — Tx_1] —
R" of the initial value problem

X €G(Ti1+1t,x,d), x(0) =", (17)
that verifiesc, (T — Tr—1) = ék and

Xk () — z2(Tp—1 + 1) <r(Tp—1+1), Vtel0, Tx — Tr—1l. (18)

Proof of the Claim. Let {r(};2; be the sequence of positive numbers defined by
re=min{r) : ¢t € [Tr_1, Tr]}.

First, we will construct by induction a sequence of positive numb&rg? ,, a sequence
of sets{Vi}2 o, With Vi = z(Ty) + 6x%,, and a sequence of piecewise switching signals
{di}321 C S pe(D’) such that the following hold for eadh> 1:

o Jr_1<ry;

o there exists a continuous functiap : [0, T, — Tx—1] x Vi — R" which satisfies the
following:

(a) for eachy € Vi, xx (-, n) is a solution of
x € Gi(t, x), (19)

with Gy : [0, T} — Tr—1] x R* — % (R") defined byGi(r, &) = —G(T —
t, &, di(Ty — Tr—1 — 1)), that verifiesy (0, ) = », and

|2(Te —t) — xk(t, DI <rr, Yt € [0, Ty — Ti—al;

(0) xk(Tx — Tk—1, Vi) S Vi—1.
We start the induction procedure by settiig= r1 and Vg = z(Tp) + 00%,,. Assuming
that we have already construct&d 1 for some positivek, we will constructdy, di, andxy.
First note that if we consider the forced differential inclusion

i e Gt x,d), (20)
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With G : [0, Ty — Te—1] x R* x D — # (R") defined byG(t, &, v) = =G (Tx — t, £, v)
and its relaxation

% € coGir(t, x, d), (21)

we have thaty : [0, Ty — Tx—1] — R" defined byz;(r) = z(T} — t) is a solution of (21)
corresponding to the inpuf (1) = d* (T — 1).

Note thatG, verifies (H1)—(Ha) (with [0, T, — Tj_1] instead ofR > o). Then, from the
first part of Theorem 3 (which holds if we replaBe. g by [0, Tx — Tx—1]), there exist a
piecewise constant switching sigra?@le S pe(D') and atrajectory; of (20) corresponding
to dy that verifiesx; (0) = z(0) = z(Ty) and

&k
lxg () — 2k ()] < > vt € [0, Tx — Ti—1l,

wheregy := min{ék_l, Fk4+1}-

Letd; € Ypc(D’) be the piecewise constant switching signal definedloy) =dp (T —
Ti_1—1) fort € [0, Ty — Ti_1] anddy (t) = di (0) for t > Ty — Ty_1. Thenx; is a solution
of (19) which corresponds . and verifiest; (0) = z(7}). By applying Lemma 3.1 0]
to system (19) (with; ande /2 instead ok ande respectively), it follows the existence of
a 0< d; < ¢ and a continuous functiaty, : [0, Ty — Tr_1] x Vi — R" such that for each
n € Vi, x¢(+, ) is a solution of (19) withx (0, n) = and

&k
lxf (t) — xx (2, )| < o Vi€ [0, T — Ti—1l.
In consequence, for everye Vi and allt € [0, Ty — Ty—1],

12(Tke = 1) = xx (2, M| = |z () — xx (2, )]

Kz () — x (O] + xg @) — xi (2, m)|
& &

k
<=4 — =&, <rgs1.
> > k STk+1

In particular, taking = Ty, — Tx_1, we have that
|2(Ti—1) — xk(Tk — Ti—1, M| < & <Ok—1.
In other words{x; (T — Tr—1,71) : 1 € Vi} C Vi—1.
Next, we construct a sequence of poihi‘; € R" : k>0, j >0} as follows. We set, for
j=0andk>j,
& =2(Tp).
Forj>0and 0<k < j, we obtainé’j by the recursive formula

f]; = X421 (T2 — Tk €];+1)~

By construction, eactf e V;.
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We note thatox )2 o and{é’j‘- : k>0, j >0} verify (i) and (ii). It remains to verify that

this construction satisfies (iii). Suppose that for s@rnel, {«ff;] }724 converges tg. Taking
into account that, by definition,

St = (T — Tien, &), VK<
and thatx is continuous, it follows that

Jim &= (T = Ty, &) = 8

Now, considefy : [0, Ty — Ty_1] — R” defined byxy (1) = x¢(Tx — Te—1 — t, &). Note
thatxy is a solution of the initial value problem (17) which verifieg Ty — Ty—1) = é" and
(18). The claim is thus proved.

We are now ready to show the existence of a switching sigral”’ (D’) and a trajectory
x of (8) corresponding td that verify (11).

Pick anyc € D’ and defined : [0, +00) — D’ by d(t) = di(t — Ty—1) for all ¢ €
[Ti—1, Ty) andd(r) = c forallt > T. Clearlyd € &(D’) and, in the case wheh = +o0,

d e Spe(I).

Since{é’}}?‘;o C Vi andV; is compact for eack> 0, by using a diagonalization process,
we deduce the existence of a subsequéngg’ , of the sequence of the nonnegative integers
such that{i’;,} converges, say td(, for eachk >0.

Then, from statement (iii) in the previous claim, there exists a soluijon [0, T; —
Ti_1] — R" of (17) that verifiest; (0) = &1, %4 (T — Tr—1) = & and that satisfies (18).
Therefore, the function : [0, T) — R" given by

x(t) =xp(t — Tr—1) whent € [Ti_1, Tj),
is a trajectory of (8) corresponding tb In addition, it follows from (18) that

x(t) —z(®)| <r(), Vtel0,T). O

4. Proofs of Theorems 1 and 2

In this section we give the proofs of the main results Theorems 1 and 2. For this purpose,
we first study the existence of parametrizations for set-valued maps that take honempty
convex compact values.

4.1. Parametrizations of set-valued maps

The following parametrization result for set-valued maps, whose proof is based on a
construction developed [20] for globally Lipschitz set-valued maps (see dB]), asserts
that under suitable conditions a set-valued ntdpadmits a parametrization which is as
regular asF'™*.
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Theorem 5. Consider two metric spaces, D and a continuous set-valued map
F*: E x D — # (R") which takes convex values. Assume that for each compact subset
K C D, F*(-,v) is locally Lipschitz uniformly inv € K. Then there exists a function

[ E x D x %, — R"such that

1. fis continuous

2. for each compact subsé&t C D, f (-, v, -) is locally Lipschitz uniformly irv € K

3. f(& v, By)=F*(, v)Ve € E,Vv e D.

Proof. Let.#".(R") denote the family of all nonempty compact convex subsef®'ofor

K e A (R"), lets,(K) be the Steiner point d. It follows from Theorem 9.4.1 of2]
thats,(K) € K forall K € 2 .(R") and that

s (K) —su(L)|<ndy(K,L), VK,Le A (R"). (22)
LetP : R" x A (R") — % .(R") be the map defined by
P(y,K)=K N (y+ 2dist(y, K)%,).

(It can be seen indeed th&t(y, K) € # (R") foranyy € E and anyK € % .(R").)
Observe thaP(y, K) = {y}ifand only ify € K.

From Lemma 9.4.2 d2] (see also Lemma 1 ¢20]), we have thaP is a Lipschitz map,
more precisely,

dg(P(y, K), P(x, L))
<5(dH(K7 L)+|y_x|)’ Vx9y€ an VKvLEXL(Rn) (23)

Let f: E x D x %, — R" be defined by

FEv. ) =sn(PAF*E Wy, F*(E ).

Proof of 3. First note thatP (|| F*(&, v)||y, F*(&, v)) € F*(&,v) forall £ € E andv € D.
Sinces, (K) € K forall K € A .(R"), it follows that £ (£, v, y) € F*(&,v) forall ¢ € E,
allv e Dandally € 4,. This implies thatf (¢, v, 4,,) € F*(&,v) forall £ € E and all
veD.

On the other hand, for eaéhe F*(&, v) there existsg € %4,, suchthat=| F*(&, v)||yo.
In consequence,

(& v, y0) = sy (PUIF*(E Wlyo, F*(& ) = s, (P F*(E ) =s({LH =

ThusF*(&,v) C f(¢, v, 4,) and statement 3 follows.
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Proof of 1 and 2. From (22) and (23) we easily deduce that

|FE v,y = FE VDI
= [sa(PUIF*EWly, F*(E ) = sy (PUF*(E Y, F*(E )
<ndp(PUIF*(E )y, FX(& W), PUFX(E )Y, FX(EV))
<Snldu (F* (&), F* (& V) + NF*E W = IF*E -1yl
+ IF*EI -1y =Y'I

As F*(E,v) C F*(& V) +du(F*(&,v), F*(&,V))B,, it follows that

[F*(E ) = 1F*(E ) <dn (F*(&,v), F*(E' V).
Then, by symmetry,

HESE I = IF*E A <du (F*(E, v), F*(E, V).
In consequence, we have that foral’ € E, allv,v € D and ally, y' € %,,

Lf (v, y) = fEV YNI<ELA+ [yDdu (F*(E, v), F*(&' V)

+ I FEE -1y =Y. (24)
Now, from (24), it easily follows thattis continuous and thaf(-, v, -) is locally Lipschitz
uniformly with respect to € K whenK is a compact subset &f. [J
Now, we are ready to prove Theorem 1 and afterwards Theorem 2.

4.2. Proof of Theorem 1

Consider a compact metric spdagea set-valued map : R" x R" x D — # (R") and
an injective function : I' — D as in Lemma 2.5. As(I') = D’ is dense irD, part 1 of
Theorem 1 holds.

Let F*: R" x R" x D — 4 (R") be defined by

F*(& pu,v) =CoF (& p, v).

SinceF is compact valuedF* takes values in# . (R"). Also observe thaf* has the
same regularity aF, that is, F* is continuous and locally Lipschitz i€, i) uniformly
onv € D. According to Theorem 5 (applied with= (¢, 1)), there exists a continuous
function f : R" x R™ x D x %4, — R" sothatf(., -, v, -) is locally Lipschitz uniformly
with respecttor € D and for allf € R", all u € R™ and allv € D it holds that

FE v, By)=F (& p1,v). (25)

As foreach e R", p e R" andy e I', F, (&, ) = F(&, i, 1(y)), we have for alE € R",
all u € R™ and ally € I' that

COF}'(é’ ,Ll) = COF(é’ ﬂ’ l("/)) = F*(é’ ,LL, 1(”)’)) = f(é9 ,uv 1(7)» =@n)~

Parts 2 and 3 of the Theorem 1 are thus proven.
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Before we prove the remaining statements of the theorem, it is convenient to note that,
from (25) and Filippov’s Lemma, it easily follows that the set of maximal trajectories of
the relaxation of (7)

i e F*(x,u,d) (26)

coincides with the set of maximal trajectories of (5). More precisely, given % and

d € (D), we have thak is a maximal trajectory of (26) correspondinguandd if and
only if there existsv € .#(%,) such thak is a maximal trajectory of (5) corresponding to
u, d andow.

In order to prove part 4, letbe a maximal trajectory of (4) correspondingite& % and
g € (I'). Then, according to Remark 2x6is a maximal trajectory of (7) and therefore of
(26), corresponding teandd, =100 and hence, as was said above, there exists 7 (%4,,)
such thak is a maximal trajectory of (5) correspondinguad, andw.

As for part 5(a), letw € %,d € .# (D), w € #(%,) and letz : [0,T] — R" be a
trajectory of (5) corresponding tg d andw. Pick¢ > 0 and consider the set valued map
G :RxoxR'"x D — X (R") defined byG(z, &, v) = F(&, u(t), v). Observe thaG
satisfiesH1)—(Hg).

Aszis a trajectory of (26) correspondingu@ndd, zis a trajectory of (9) corresponding
tod. From Theorem 3 part 1, there exist a piecewise constant switching gigaal’ pc(D’)
and a maximal trajectory of (8) corresponding td’ such thatt (0) = z(0) and

lz(t) —x(t)| <&, VrelO,T].

On the other hand, from the definition Gf we have thax is a maximal trajectory of (7)
corresponding tar andd’. The proof of this part concludes by noticing that, from Remark
2.6, we know thax is a maximal trajectory of (4) correspondingutand a certain piecewise
constant switching signal; € & pc(I).

The proof of part 5(b) is the same as the proof of part 5(a) if we replace the inter7al
ande by the intervall0, T) andr(¢) respectively, and use part 2 of Theorem 3 instead of
part 1 of that theorem. (I

4.3. Proof of Theorem 2

_LetD,:1: ' - D, andf : R" x R" x D x %, — R" be as in Theorem 1 and define
F:R"x R" - % (R") by

FEW=fCEuD,B)={fEnv,0:veDeB)
We will consider the following differential inclusions withas input:

i€ F(x,u) (27)
and

X € COF(x,u). (28)
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Sincef satisfies statement 2 of Theorem 1, it follows thaand hence the convex hull éo
of F', are both locally Lipschitz. Therefore, from Theorem 5, there exists a locally Lipschitz
function /* : R" x R™ x 4, — R", so that for allé € R" and allu € R™ it holds that

COF(E, 1) = f*(& s Bu) = (F5(E 1, O) 2 € B (29)

We claim thatf* satisfies part 1 of Theorem 2, or equivalently, for@ak R* and all
ue Rm'

cocl (U Fy (&, u)) =coF (¢, p). (30)

yel’

Leté e R" andu € R™. By part 3 of Theorem 1,

J coF &y ={f (& mv.n):veD ne B
yell

whereD’ = 1(I') is dense irD. By the continuity off and the compactness bfand%,,,
one has

cl (U CoFy(¢, u)) ={fE wv.n):veD, neB,)=F(E .

yel’

Therefore,

cocl (U COF, (¢, u)) =coF (¢, p).

yel’

Taking into account that

cocl (U COF, (¢, ,u)) =clco (U COF, (¢, ,u)) =clco (U Fy(&, H))

yell vel vel

=cocl (U Fy(¢, u)) :

yel’

we get (30). Part 1 of the theorem thus follows.

Part 2 is a straightforward consequence of part 1 and Filippov's Lemmax bheta
maximal trajectory of (4) corresponding o€ % and to certainy € . (I'). Then, from
(30),xis a maximal trajectory of (28) correspondingitd-rom this fact, (29) and Filippov’s
Lemma, there exist® € .#(4,) so thatx is a maximal trajectory of (6).

Finally we prove part 3. We note first that for a fixe& % and due to Filippov's Lemma,
the maximal trajectories of (5) and those of (27) coincide, and that the same holds for the
maximal trajectories of systems (6) and (28). Thatis,a maximal trajectory of (27) (resp.
(28)) corresponding toif and only if xis maximal trajectory of (5) (resp. (6)) corresponding
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to u and certaind € .# (D) andw € .4 (%4,) (resp.w € .#(%4,)). Combining this fact
with parts 5(a)—(b) of Theorem 1, it will be enough to prove the following statements:

(i) Given a trajectory; : [0, T] — R" of (28) corresponding ta € % ande > 0, there
exists a trajectory of (27) corresponding ta satisfyingx (0) = z(0) such that

lz(t) — x(t)|<e, Vrel0,TI;

(i) givenatrajectory : [0, T) — R" of (28), withT < +o0, correspondingte € % anda
continuous function : [0, T) — R-o, there exists a trajectowyof (27) corresponding
to u such that

lz(t) —x(®)| <r(t), VtelO0,T).

Part (i) readily follows from the Filippov—Wzewski Theorem (or Theorem 3 part 1;
see Remark 3.2). Part (ii) can be easily deduced from Theorem[9] ¢br part 2 of
Theorem 3).

5. Stability properties of switched systems

In this section, we consider several stability properties for switched systems with input
and output as in the following:

X(1) € Fouy(x(0), u(r)), y="h(x()), (31)

wherex, u, ¢ and F, are still as in Section 2, the output map: R" — R? is locally
Lipschitz, and:(0)=0. The results on parametrization given in Section 2 allow the extension
of several important previous results for systems given by differential equations too switched
systems defined by differential inclusions. (Many of these extensions are novel even for
the very special cases of switched systems of differential equations, or for non-switched
differential inclusions.) In this section, we treat the notion of input—output-to-state stability
and a few notions on input-to-output stability.

Throughout this section, we assume that the collec#disee (3)) satisfies assumptions
Cland C2.

5.1. Uniform input—output-to-state stability
The following definition is based on the wofkO]:
Definition 5.1. Given a subclass”* of ¥ (I'), we say that the system (31) imiformly

input—output-to-state stable with respectd’ (UIOSS w.r.t.9*) if there existf € 4%,
0 € A andy € & suchthatforalt € R",allu € %,alloc € ¥*andallx € 7°(&, u, 6),

xO1< B D) + 0yl + yUul), Vi € [0, Ty). (32)

Observe that it results in the same definition if one repldadsin (32) by ||u|(0,:-
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When applying the ulOSS definition to systems with zero output map £i.es, 0),
one recovers the standard input-to-state stability notion, but extended to switched systems
defined by differential inclusions:

Definition 5.2. The system (31) isiniformly input-to-state stable with respect f6*
(UISS w.r.t.9¥) if there existf € #"¥ andy € # such that for alt € R", allu € %, all
ce S andallx € 7°(, u, 0),

xOI<BAC D +ydlul), Vi e[0, Tx). (33)

For system (31), lef* : R" x R™ x %4, — R" be as in Theorem 2, and consider the
corresponding parametrization of (31):

X(0) = @), ul), o), y)=hx®). (34)

For such a system, the ulOSS property means that an estimate as in (32) holds for any
maximal trajectory starting at with anyu € % and anyw € .#(%,) over the maximal
interval (c.f.[10]).

Lemma 5.3. The syster(81)is ulOSS w.r.t¥pc(I') if and only if the corresponding system
(34)is ulOSS

Proof. The statementthat ulOSS property of (34) implies the ulOSS property of (31) w.r.t.
S pc(I) follows immediately from statement 2 of Theorem 2.

Suppose system (31) is ulOSS w.ifpc(I") with the decay estimate (32). Let :
[0,T;,) — R" be a solution of (34) with some € % and somew € .#(B,). Pick
anye>0and O< T < T;. Letr = | zlj0,77, @and letd > O be such thafz (&) — k()| < & for
allé e (r + )%, and alll € (r + 1)4,, such thaté — {| < 6. Without loss of generality,
we assume that< max{1, ¢}.

By 3(a) of Theorem 2, there exists some trajecto¢y of (31) corresponding ta and
someg € Spc(I) with x(0) = z(0) such that

lz(t) — x(t)| <o, VrelO,T]. (35)
By the choice ob, one has

|h(x (1)) — h(z(t))| <&, Viel0,T]. (36)
With the ulOSS estimate (32) for (31), we get

lx ()< BUx O, 1) + OCllA ) llo,i) + y(llul), Vi €[0,T].
Sincez(0) = x(0), it follows from (35)—(36) that

lzMI<BUzO), 1) + O~ l0.n + &) + y(lull) +&, Vi €[0,T].
SinceT < T, ande > 0 can be chosen arbitrarily, we get

lz(OI<BUzO), 1) + O~ () llj0.i) + 7(lulD), Vi € [0, Ty).
This shows that the system (34) is ulOS$1]
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Applying the Lyapunov results on 0SS obtained 10, Theorem 2.41o system (34),
we get the following:

Theorem 6. Assume for systeif81) F,(0,0) = {0} for all y € I'. Then the system is
ulOSS w.rt.%pc(I) if and only if there exists a smooff#) functionV : R" — Rx>o
such that

e There exist? 5 -functionsxq, oz such that

a(IEH <V <o2(lED, VEe R (37)

e there exist a# ,,-functiono and .#"-functionso1, 2 such that
DV (&Hv< —a(l) + a1(|h(D]) + o2(lul), VYEe R,

forall u e R",all y e I'and allv € Fy (¢, .
A functionV as in Theorem 6 is called@mmon ulOSS-Lyapunov functifam (31).

Remark 5.4. In Theorem 6 we assume th&t(0, 0) = {0} for all y € I" because ifiL 0] the
authors consider by hypothesis systems as in (34) that vgftif, 0, {) =0for all{ € 4,,.

Remark 5.5. To be precise, in order to app[¢0, Theorem 2.4]n the above proof, one
should assume that the output nfeip %*. But one can relax this condition to only requiring
h to be locally Lipschitz. To see this point, suppdsis a locally Lipschitz function. Find
a smooth functior : R” — R g so that for some# .-functionsp, po,

p1(ROD <A < pp(Ih(DD), V¢ e R

(see Lemma B.1 in the appendix for details). Replacing the outputmim$31) with 4,
one gets the following system with a smooth output map:

X(1) € Fouy(x(0), u(r)), y=hx@)). (38)

It can be seen that the system (31) is ulOSS if and only if the system (38) is ulOSS; and
V is a ulOSS-Lyapunov function for (31) if and only\fis a ulOSS-Lyapunov function

for (38). Hence, one can establish Theorem 6 for (31) by first showing the existence of
ulOSS-Lyapunov functions for (38) with ti#! output mapy = /(x).

Applying Theorem 6 to the special case witk= 0, we get the following ulSS-Lyapunov
result, which can be viewed as an extension of the Lyapunov results obtaifted for
switched systems defined by differential equations to switched systems defined by differ-
ential inclusions.

Theorem 7. The system is ulSS w.t.¥xc(I') if and only if there exists a smooffs>)
functionV : R" — R such that

o for someuy, ap € A o, (37)holds and
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o for somex# o -functiona and.#"-functionses the following holds
DV (Hv< — a(lE]) + a(lul),
forall u e R",all y e I'and allv € Fy (¢, .

5.2. Uniform input-to-output stability

Following the work in[23], in what follows we will introduce some notions on input-
to-output stability properties for switched systems defined by differential inclusions, but
first we need introduce some terminology. Given a subctésf & (I'), we say that a
system as in (31) is forward complete with respec¥toif every trajectoryc € 7°(¢, u, o)
corresponding to any € R", anyu € % and anys € .* is defined for alk € [0, +00).
When the system is forward complete w.£A(I") we just say it is forward complete. We
observe that the forward completeness property of (31)avith? pc(I") does not guarantee
the forward completeness property of (31) w#i(I") (c.f. Example 3.5).

Definition 5.6. Let.%* be a subclass o¥ (I'). A forward complete system w.r.#* as in
(31)is

1. Uniformly input to output stable with respect £6* (uIOS w.r.t.. ™) if there exist a
A" ZL-function f and a#"-functiony such that for alé € R", allu € %, all 0 € &*
and allx € 7°(¢, u, 0),

lyOI<BACL O + y(lul), V=0 (39)

2. uniformly output-Lagrange input to output stable with respect#td (UOLIOS w.r.t.
F*)if it is ulOS w.r.t. * and there exist somg -functionsa1, a2 such that for all
teRallued, aloce ¥ andallx € 7°(, u, o),

ly(OI< max{ar(|h(O)D), o2(lul)}, Vi =0; (40)

3. uniformly state-independent input-to-output stable with respectto(uSIIOS w.r.t.
) if there exist somé € #".% and some € %" such thatforalt € R", allu € %,
alle € Y*and allx € 7°(&, u, o),

yOI<BARL ) + y(llul), V2 =0. (41)

Note that wherh is the identity function, the properties ulOS, uOLIOS and uSIIOS co-
incide with the ulSS property.

As in Section 5.1, we consider the parametrization (34) for system (31), wtideeas
in Theorem 2.

For a forward complete system as in (34), the ulOS (UOLIOS, uSIIOS, respectively)
property means that (39) ((40), (41) respectively) holds for any trajectory startingitit
anyu € % and anyw € . (%4,,).

Following the same idea as in the proof of Lemma 5.3, and taking into account that system
(34) is forward complete whenever (31) is forward complete (cf. Theorem 2 part 3(b)), one
can prove the following ulOS analogue of Lemma 5.3.
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Lemma 5.7. Suppose the syste(B1) is forward complete. Then it is ulQ®OLIOS
uSIIOS respectively w.r.tZpc(I) if and only if the corresponding systef84) is ulOS
uOLIOS uSIIOS, respectively

To present the Lyapunov characterizations of the output stability properties, we need to
introduce the following:

Definition 5.8. A system as in (31) isniformly bounded input bounded state stable with
respect to¥”* (UBIBS w.r.t.. ") if there exist some nondecreasing functiensand o2
suchthatforalt ¢ R",allu € %, allec € ¥* and allx € 7°(&, u, o),

lx()| < max{a1(|E), aa(llul)}, Vr=0. (42)

A system asin (34) is uBIBS if there exist some nondecreasing functipasdo, such
that (42) holds for any trajectory of (34) startingzawith anyu € % and anyw € .4 (%,).
An entirely analogous proof to that of Lemma 5.3 gives the following result:

Lemma 5.9. The syster(81)is uBIBS w.r.t%pc(I') if and only if the corresponding system
(34)is uBIBS

Remark 5.10. From Lemma 5.9 and Theorem 2 part 2 it follows that if a system as in (31)
is UBIBS w.r.t.%pc(I) then it is forward complete.

In [24], some Lyapunov characterizations on several input-to-output stability properties
were developed for systems as in (34) in the special case when the disturbancedees
not appear in the system. It is straightforward to generalize the Lyapunov resjag to
the more general case when a system as in (34) is subject to disturbances taking values in
compact sets. See Appendix A for more details.

Combining Lemmas 5.7, 5.9, and A.2 and taking into account Remark 5.10, we obtain
the following:

Theorem 8. Suppose the syste@il) is uBIBS w.r.t.%pe(I).

1. The system is ulOS w.r.&pc(I') if and only if there exist a smooth function
V :R" — R>o such that

e forsomen; € # o, 02 € H s,
a(lh(OD <V (O <a([E]), VEeR" (43)

o forsomey € # anduag € ¥, the following holds for alE € R", all x € R™, all
yel'yandallv e Fy (&, p):

V(O 21 = DV(Ov< —ag(V(Q), [<D. (44)
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2. The system is uOLIOS w.r.&#/pc(I") if and only if there exists a smooth function
V : R" - R such that

o for somexy, 0p € A o,

u(|h( DSV <az(|h(OD), VEeR" (45)

e for somey € # '« and somexz € 7%, (44)holds for allé € R", all u € R™, all
yel,andallv e F, (&, p).
3. The system is uSIIOS w.r.&pc(I") if and only if there exists a smooth function
V : R" - Rx>¢ such that

o for someus, 0o € A4 o, (45)holds and
o there existiz € # o, andy € A » such thatforallé € R*,all u € R™,all y € I',
and allv € Fy(¢, ),

V(O Zx(uh) = DV(E&v< —az(|E). (46)

As indicated in Remark A.3, the uBIBS condition is not needed in the uSIIOS case.
Instead, the uBIBS condition can be replaced by the forward completeness property. Hence,
for the uSIIOS case, we have the following:

Proposition 5.11. Suppose the syste(31) is forward complete. Then the system is
uSIOS w.r.t.%pe(I) if and only if there exists a smooth functidh: R* — R such
that

e for someuy, ap € A4, (45)holds and
e there existiz € # '« andy € A« suchthatforallé € R",all u € R™,ally € I',and
all v e Fy(¢, ), property(46) holds

6. Conclusions

In this paper we have studied the representation of switched systems given by differential
inclusions, by perturbed control systems described by differential equations, whose inputs
are the original control and perturbations that take values in compact sets. We have obtained,
under suitable hypotheses, representations whose sets of maximal trajectories contain, as
a dense subset (both in the topology of uniform convergence in a compact interval and
in the Whitney topology, according to the switching signals involved) the set of maximal
trajectories of the original switched system. As immediate applications, we have extended
previous results on Lyapunov characterizations for the input—output-to-state stability and
input-to-output stability properties to switched systems defined by differential inclusions.
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Appendix A. Input-to-output stability properties

In this section, we discuss how the Lyapunov results develog@djican be generalized
to systems with disturbances taking values in compact metric spaces.

Consider a system whose dynamics depend on two types of inputs, which we call respec-
tively controlsanddisturbances

X(t) = fx(@), u(®), w®), y)=hx()), (47)

where the state(-) and the input:(-) are the same as in the previous sections. The dis-
turbances are measurable functians R>o — € with Q a compact metric space. The
function f : R" x R™ x Q — R" is continuous, and locally Lipschitz igx, «) uniformly
onw andh : R* — RP is locally Lipschitz and vanishes at 0.

Definition A.1. A forward-complete system as in (47) is:

e uniformly input to output stabl@lOS) if there exist & ¥ -functionf and a# -function
7y such that

ly@, & u, w)| <BAEL D) + p(lul), V=0 (48)

e uniformly output-Lagrange input to output stalfleDLIOS) if it is ulOS and there exist
some/ -functionsoy, o2 such that

ly@@, & u, w)l < max{or(|h (D), o2(llulD}, V=0 (49)

o uniformly state-independent input-to-output stafi8110S) there exist somge %%
and some € % such that

Iy, & u, w)<BAROI 1) + y(llul),  V1=0. (50)

In each case, we interpret the estimates as holding for all ingand initial stateg € R”
and all disturbances.

Observe that it results in an equivalent definition if one replaces (48) by
ly(r, & u, wyl< max{p(cl, o), y(lulD}, Ve =0. (51)

We say that a system (47)usiformly bounded input bounded statable (UBIBS) for short,
if it is forward complete and, for some nondecreasing functipthe following estimate
holds for all solutions:

lx (@, & u, w)l < maxo (<), o(llul)},  Vi=0, V¢, Vu, Yw. (52)
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In [24], some results on Lyapunov characterizations on the output stability properties
were obtained for systems as in (47) for the disturbance free case, that is, the case when the
disturbancew(-) is not present. Following the same proofs apii, one can show that the
Lyapunov results obtained [24] also hold for more general systems with disturbance:

Lemma A.2. Suppose the systd@i7)is uBIBS

1. The system is ulOS if and only if there exist a smooth fundtio®" — R o, some
o1, 02 € Koo, y € A, andog € A ¥ such that

ar(|h(OD VO <a([E]), VEeR" (53)
and
V(&) =y(u) = DV(E) F(E, 1, v)
< —a3(V(O, 1E), VEeR" VueR" VveQ. (54)

2. The systemis uOLIOS if and only if it admits a Lyapunov function V as in the ulOS case
satisfying(54) for somey € 4"« and somexz € 4", and with(53) strengthened to

a1 (D <V <o2(lh (O, Ve R, (55)

for someny, 0p € A .
3. The system is uSIIOS if and only if it admits a Lyapunov function as in the ulOS case
with (53) strengthened t@5) for somexs, a2 € # «, and(54) strengthened to

V(O Z=y(ul) = DV FE, u,v)
< —oag(V(&), VEeR" VueR™ VveQ, (56)

for somey € 4" andag € A.

Remark A.3. Asinthe workf24], the uBIBS condition is not needed in the case of uSIIOS,
thatis, part 3 of LemmaA.2 holds true for forward complete systems that are not necessarily
uBIBS.

A.1. Uniform output stability properties

Definition A.4. For a system free of the control signals as in

X(t) = fx(®), w(), y@)=nhx@)), (57)

we say that the system is uniformly output stable (uOS) if it is forward complete and for
somef € A% it holds that

[y, & w)<PEL ), V=0, V¢ Yw. (58)
If, in addition, there exists € ¢ such that

ly@ & wl<a(h(©)), V=0 (59)
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holds for all trajectories of the system withe .4 ((2), then the system Butput-Lagrange

uniformly output stablevith respect tav € .Z(Q). Finally, if (58) is strengthened to

ly(, & w<PUr(O], 1), V=0, (60)
holding for all trajectories of the system with respectutoc .#(Q2), then the system is
state-independent uniformly output stableh w € .Z(Q).

The proof of LemmaA.2 follows the same idea af2i], which depends on the following
result on uOS (see Theorem 3.2[24]).

Lemma A.5. LetQ be a compact metric spacand suppose that a systé&y)is uniformly
output stable with respect te € .#(Q). Then the system admits a smooth Lyapunov
function V satisfying the following properties

e There existi, oo € A~ such that

wu((hODSV(E<m(E]), Ve R, (61)
o there exists3 € ¥ such that
DV f(E < —a3(V(D), KD, VEeR", Vel (62)

Moreover if the system is output-Lagrange uniformly output stable with respagtdo
A (£2), then(61) can be strengthened to

a1 (D <V <o2(lh (DD, Ve R, (63)

for somens, ap € A . Finally, if the system is state-independent uniformly output stable
with respect tow € .#(Q), then(61) can be strengthened {63) and also(62) can be
strengthened to

DV FENS —u(V(E), VEeR' Wreq. (64)

for somevy € A
A.2. Proof of Lemma A.2

As in the work[24], to prove Lemma A.2, we need first to explore some relations among
several output stability properties.

A.2.1. Relations among the output stability properties
Lemma 4 in[23] can be generalized to the following:

Lemma A.6. Suppose systef7)is ulOS. Then there exists a smooth,,-functionA such
that the system

x(t) = f(x@), d®)A(h(x@)]), w(®), y(t) =h(x()), (65)
whered € ./ (%,,) is uOS(with (d, w) as disturbances
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Lemma A.6 will be proved in Section A.2.3.

As defined if23], we say that a system (47) is uOLIQ@der output redefinitioii there
exist a locally Lipschitz mapg : R" — R> o with 29(0) =0, and ay € # «, such that

ho(9) = 7x(1R (D)D), V¢,
and that the system
X=f(x,u,w), y=ho(x) (66)

is UOLIOS. One of the main objectives of this appendix is to generalize Theoreii28]in
to the following result:

Lemma A.7. The following are equivalent for a systdav):
(i) The systemis ulQS

(i) The system is uOLIOS under output redefinition

A.2.2. Proof of LemmaA.7

The implication (ii)= (i) should be clear. Below we prove the converse.

Assume that system (47) with=h(x) isulOS with an estimate as (51) for sophe #".¥
and some € . Without loss of generality, we assume that % . Lethg : R" — Rx>o
be defined by

ho($) = sup {maxX{|y(z, &, u, w)| — y([lul), O}}. (67)

t>0,u,w

Observe that forward completeness is being used in this definition. Bi(@e, u, w)| —
y(Jlul)) = |h(&)| >0 foru = 0, the above is equivalent to

ho() = sup {ly(, ¢, u, w)| = y(lulD}.

t>0,u,w

It is clear that

IR(OI<ho(©) < Pollch,  VEe R,

wherefy(s) = (s, 0). Since, for anysg with p(|luoll) = fo(s),

max{((I<l, 1), y(luolD} — y(luol) < max{fo(1<D, y(luolD} — y(lluoll) =0,

it follows that

ho(O=suplly(, & u, w)|=y(lul):t >0, ull <y~ (Bo(ED), we.k(Q)}.  (68)
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Also note that for any >0, any controkg and any disturbanceo,

ho(x(z, &, uo, wo)) = sup {|y(, x(z, &, uo, wo), u, w)| — y(llull)}

t>0,u,w

= >SOUP {ly( + 7, &, uoteu, wotl;w)| — y(lluofctt|l[z,00))}
t20,u,w

< ilép {max{(B(I&l, t + 1), y(lluotcul)} — y(luotcitllfr,00))}
t =20,u

< supmax{f(I<l, ), y(lluotculD} — y(lluotculliz,o0)}
< supmax{f(I&l, ), y(lluodzull) — y(luotzulliz,o0)}}
< maX{f(&l, o), yluollo.)}, (69)

where for any two functions; andv; defined onR > o, v1v2 iS the concatenation af
andv; defined by

_Jva(), ifo<r <,
vifiev2(t) = {vz(t —1), iftr>t

This shows that the system (47) with the output mag ho(x) satisfies an ulOS-type
estimate (51) with the same functiofi®ndy as the original system.
Next, let us show that (47) with=ho(x) also satisfies an output Lagrange estimate (49),

with o1(r) = 2r ando2(r) = 2y(r). Indeed, for any inpuio, any disturbancevg and any
>0, we have

ho(x(t, &, uo, wo)) = sup {|y(t, x(z, &, uo, wo), u, w)| — p(flul)}

t>0,u,w

= SOup {ly(t + 7, &, uotu, wot;w)| — Yluoticullfr,00))}
t>0,u,w

< Sélp {ly(s, &, uotteu, wotzw)| — y(lluotcull) + y(lluol)}
s> 0,u,w

< osup {ly(Gs, & a, w)| = p(llal) + y(lluol)}
s >0,i,w

=ho(&) + y(lluoll) < max{2ho(&), 2y(lluol))}, (70)

as desired.
DefineC := {& : ho(¢) = 0}. Then for any¢ ¢ C, it holds that

ho(&) = sup {ly@, & u, w)| = p(lulD},
0 el 7= 2Bo(1€D). we k(@)

wheret: = Tj¢(ho($)/2), andT, (s) is associated witlf as in LemmaA.9.

Lemma A.8. The functiorkgislocally Lipschitz onthe setwhelig(&) # 0and continuous
everywhere

Proof. We first remark that

élirr% ho(&) =2 ho(&p), Vép e R", (71)
—C0
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that is,o(&) is lower semi-continuous oR”. Indeed, pickéy and lete := h(&g). Take any
&> 0. Then there are som, wo andzg so that y(to, &g, uo, wo)| — y(Jluoll) =c —&/2. By
continuity ofy(zo, -, uo, wo), there is some neighborhoﬁhj of &g sothaty(to, &, uo, wo)|—
y(Jlugll) =c —eforall & € Ug. Thus,ho(&) >c — e forall ¢ € Ug, and this establishes (71).

Fix any &g ¢ C, and letcg = ho(&g) /2. Then there exists a neighborhobg of £ with
compact closure such that

ho(&) =co, V& € Up.
Let sg be such thaté| <sg for all & € Up. Then
ho(&) =sup|y(t, & u, w)| — y(llul) : t € [0, 11], ull<b, w e #(Q)}, Ve U,

wherer; = Ty, (co/2), andb = y*l([io(so)). By [13, Proposition 5.5]one knows that
x(t, &, u, w) is Lipschitz in¢ € U uniformly on the setju|| <b, w € .#(Q2) andr €
[0, #1], and therefore, so is(¢, £, u, w). Let L1 be a constant such that

[y, & u, w) — y(t, 0, u, w)
<Li1|lE—nVE, n e Up, YO<Kt<ty, Yull<b, Yw € 4 (Q).

For anys > 0 and any¢ € Up, there exist someg , € [0, 1], someu, . and somev, . such
that

ho(O) <Iy(te e, Couge, we )l —v(lugl) + e
Then it follows that, for any, € Up, for anye > 0,

ho(&) — ho(n) <|y(tee, & ug g we )l — yllug )
+ &— (|y(t§,a» N ug e, wcf,;:)| - V(”Mf;”))

<Ll —nl+e.
Consequently,
ho(&) —ho() <L1l¢ —nl, VY&, n € Uo.
By symmetry,

ho(n) — ho(&) < Lal< —nl, V& n € Uo.

This proves thakg is locally Lipschitz onR"\C.
We now show thakg is continuous ort. Fix &y € C. One would like to show that

lim ho(é) =0. (72)
%o

Assume that this does not hold. Then there exists a seqyépceith &, — &5 and some
&0 > 0 such thatig(&;) > ¢ for all k. Without loss of generality, one may assume that, for
somesy >0, || <s3 for all k. Then it follows that

ho(Sx) = suply(t, &, u, w)l — y(llull) = ¢ € [0, 2], ull <b1, w € (D)},
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wheret, = Ty, (60/2), andby = y*l(ﬂo(sl)). Hence, for eachk, there exists some;, with
llug || < b1, SOmew; € 4 (L), and some;. € [0, 12] such that

|y (ths Eps urs wi)| — (lukll) =ho(Ey) — e0/2=e0/2. (73)

Again, by the locally Lipschitz continuity of the trajectories, one knows that there is some
L, > 0 such that

ly(, i, u, w) — y(t, Eo, u, w)| < L2|&y — ol
Vk>0, VO<Lt<1p, V |u||l<b1, Yw € 4 ().

Hence,

|)’(Tk, 503 Uk, U)k)| - V(||uk||)>|Y(Tk7 éka U, U)k)| - 80/4_ V(||Mk||)>80/4

for k large enough, contradicting the fact th@{£y) = 0. This shows that (72) holds @
O

Below we follow the same proof as [23] to modify /o to get an output function that
is locally Lipschitz everywhere so that system (66) wits uOLIOS.

We first pick a functiori (&) that is smooth ofiR*\ C with the property

<h(E)<2ho(§), VEe R

This can be done according to, e.g., Theorem B.[18]. By Lemma 4.3 in[13], there
exists a# . -functionp such thap o i is smooth everywhere. Lét= p o h. Note then that

p(ho(8)/2) (&) < p(2ho()).- (74)
Combining this with the fact thaty(¢) > |k ()|, one sees that

W& =7, Ve,
wherey(s) = p(s/2). Because of (69), one has

Rx(t, & u, w) < max(BAEl, 0, 7(lul)), Ve =0,
WhereB(s, t) = p(2P(s, 1)), andy(s) = p(2y(s)), and because of (74) and (70), one has

hx(t, & u, w) < p(2ho(x(t, &, u, w))) < max{p(4ho(&)), p(4y(lul))}
<maxpBp (&), pdy(lul))}, Vt=0,

that is,
h(x(t, & u, w)) < max{G1(h()), G2(llul)}, V=0,

forall &, alluand allw, whereg1(s) = p(8~p_1(s)) andaa(s) = p(4y(s)). We conclude that
system (66) with the output function= 4 (x) is uOLIOS.
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In the above proof, we used the following result (see Lemma A.[R4}) regarding
A Z-functions:

Lemma A.9. For any #"%-function f3, there exists a family of mappingg;}, -~ ¢ such
that

e for each fixedr >0, 7, : [Ri>o°—m§)R>o is continuous and strictly decreasingnd
To(s) = 0;

e for each fixeds >0, T,(s) is strictly increasing as r increases@nd is such that
P(r, T, (s)) < s, and consequenth\i(r, 1) < s for all ¢ > T, (s).

A.2.3. Proof of Lemma A.6
We will follow the same idea as if23] to prove Lemma A.6. We first establish the
following.

Lemma A.10. Assume that the systef#7) is forward complete and admits an output-
Lagrange estimate as i{@#9). Then there is a smoott¥ ., function/ such that the system

X =g, d,w):= fx,dA(lyD, w), y=hx), (75)
whered € ./ (%,,), is forward complete and
o2(ld(®)|A(y,.(2, ¢, d, w)l))éélh(é)l (76)

holds a.e. or{0, co), where we have useg (¢, &, d, w) to denote the output function of
(75) with the initial state¢ and the disturbance functions d and

Proof. Let a1, o2 be 2 -functions such that (49) holds. Without loss of generality, we
assume that both are ", and thatr1(s) >s for all s > 0. Henceafl(s) <sforalls >0.
Let A be any smooth?” .. -function such that

a2(As)) < 37 t(s), Vs>O0.

Below we show that with such a choice Adfthe resulting system (75) satisfies the desired
properties.

To show that system (75) is complete, we first prove that (76) holds a.e. on the maximal
interval of definition[0, T,) of the solutionx;.

Pick any¢, anyd and anyw, and use simply,(¢) andy, (¢) to denote the corresponding
trajectory and the output function respectively. To prove (76)®f,), it is enough to
show that

a2y, (O < 5 (@), (77)

for sucht. O
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Casel: h(d) # O. S|nceo-2()(|y;(0)|)) —Uz(ﬂ(lh(é)l))< o1 (Ih(§)|)<4lh(é)|
it follows thata2(A(|y, (1)) < 7 |h(§)| for t small enough. Let

n=inf{r € (0, 7)) : 02(A(y,())) > 5 RO},

with 11 = T, if the set is empty. Suppose by way of contradiction that T,,.
Then (77) holds on0, t1), and hence, (76) holds a.e. §0, r1). Note that on[0, T\, )
@)=y, ¢ u, w) wWithu(t) =d(t)A(]y,(t)]). With (49), Oneseesth@h(t)l<61(|h(§)l)
for all 0<7 <11, and in particular]y, (t1)| < o1(|h(£)]). Consequently,

2041y, (D) < § 07 N2 D < F 1A )],

contradicting the definition of.. Thus, (77) holds for all € [0, Ty)).

Case2: h(¢) = 0. In this case, it is enough to show thair) =0 for all € [0, Ty,).
Suppose this is not true. Then there exists semé and some, < (0, Ty,) such that
|y, (t2)| >¢. Let O< ¢ < ¢ be such thaﬂ‘l(agl(ao)) < ¢/2. Then there is somee (0, 12)
such thaty,(t)| = eo. Applying (77) proved for case 1 to the new initial stdie= x, (1),
one sees that

woI<i™ (a3 (G 1y@1)) <47 Nop o) <2

forallz € [1, Ty,), and in particulany, (r2)| < /2, acontradiction. This shows thagit(r) =0
forall ¢ € [0, T e

We have shown thatinboth cases, (77) holdsfarall0, T,,), whichimplies that, forany
¢, anydand anyw, the functionu(r) := d(¢)A(|y,(t, &, d, w)|) remains essentially bounded
on|[0, Ty,). Supposd’; < co. Then, by the forward completeness property of system (47),
thetrajectory; (¢, &, d, w) (whichisinfactx (z, &, u, w) withu(t)=d(t)A(|y, (¢, &, d, w)]))
is bounded ofi0, 7y,). This contradicts the maximality @f,. Therefore 7', = oo for every
¢, everyd and everyw. Consequently, (76) holds for alle [0, c0). O

Lemma A.11. Suppose a systefd7) is uOLIOS. Then there exists some smaath,
functionZ such that the resulting system as(ifb) is output-Lagrange uniformly output
stable with(d, w) as disturbances

Proof. Suppose estimates as in (51) and (49) hold for see ¥ ¥, y € 4,61 € A
ando; € % . Without loss of generality, we assume thatr) >r for all r ando, € %

Let the function/ be as in Lemma A.10 so that system (75) is forward complete and (76)
holds for almost alt > 0. By [1, Corollary 2.3] there exist some# -functionsg, ¢, and
somec >0 such that

(2, ¢, d, w)| < e1(1) + 22(ICD) + ., (78)

for all &, all d, all w and allz >0.
Below we will show that system (75) satisfies the two properties listed in Remark A.12.
First, by (76) and (49), one has:

|y, & d, w)l < max{o1(h(&))), 3 1h(OI} = o1 <F(E), V=0, (79)
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whereg is any.#"-function such that1 (|2 (&)]) <& (|€]) for all £. Property 1 follows readily.
To prove Property 2, we first show the following:
Claim. For eachr > 0, s > 0, there is somé&. ; > 0 such that

12T, [EI<r, [ROI<s = [y, ¢ d, w)|<s/2, Vd, Yw. (80)
To prove the claim, note that by (51) and (76), one has, fof a#f in (80),

vt & d, w)| < maX{ﬂ(Iél, 0, 'h(—j)'} < max{ﬂ(r, 0. %] Vi>0.

Sincef € #' ¥, there is somd,. ; > 0 such thati(r, r) <s/2 for all > T, 5, and conse-
quently,

N
|yﬂ([7 6vusw)|<§s vr>Tr’x.

This T, s satisfies the requirements of the claim.

Let k be a7 -function such thath ()| <x(|&]) for all £. Let e > 0 be given. Pick any
& # 0and letr = |£]. Then|h(&)| < k(r). Letl > 0 be such that 2 k(r) < e. Lets; = k(r)
ands; = s;_1/2 fori > 2. By (80), there is somg, ;, > 0 such that

ly;(t, & d, w)|<s1/2, Vt>T,,, Vd, Yw.

By (78), one has
13 (Tr sy, € dy w01 (Trsy) + 02(r) + ¢ :=r2, Vd, Yuw.

Applying (80) tor, andsz, one sees that there is soffig s, such that the following holds:
Vit + Ty, & dow)| <52/2, Nt2Thy s, Vd, Yw.

Inductively, lettingT} = Zf.‘zl T,,.s; (wherer; = r) and applying (80) tex+1 and
res = 01(Ti) + 0o(r) + ¢,

one sees that there is soffig, , 5., such that
lvi(t + Te, €. d, w)|<%k, VIS Ty Vd, Y.

Finally, we letT = T;,1. Then, for any > T, anyd and anyw,
e, & dow)| <5 <.

Observe that in the above argumehgnly depends of| ande. Thus, the system satisfies
Property 2 of Remark A.12. Consequently, system (75) admits an estimate as in (58) with
(d, w) as disturbances. The output Lagrange condition required as in (59) follows from
(79). O
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In the above proof, we have used the following (E18]):

Remark A.12. Suppose system (75) is forward complete. Then, the existencg agan
(58) is equivalent to the following:

1. Thereis a# «-functiond(-) such that for any > 0, it holds that
ly(r, &, w)|<e, Vi=0, Vw,

whenevel ¢ <d(g); and
2. for anyr >0 and any > 0, there exists somE. . > 0 such that

ly(, &, w)|<e,

forallt>T,,, allw, and all|¢| <r.

The proof of Lemma A.6 then follows from Lemmas A.7 and A.11.

A.2.4. Sketch of the proof of Lemma A.2

Finally, we sketch the idea of the proof of Lemma A.2. The sufficiency parts can be done
with some comparison principle (and in fact can be done by exactly the same proofs as in
[24]).

To prove the necessity part of Statement 2 of Lemma A.2, first note that if a system
is UOLIOS, then by Lemma A.11, there exists some smaéth -function 4 such that
the corresponding system (65) is output-Lagrange uniformly output stablgavith) e
M (HBy) x A (Q). By Lemma A.5, there exists a Lyapunov functidrsatisfying (63) for
someus, oo € A o and

DV () f (&, pa(|h(OD, < —aa(V (D), [E), VEe R, Viul<l, VveQ, (81)
for somexz € 4% . Note then that (81) implies that

VO Zx(ul) = DV fE u < —a3(V(, LD,

forall ¢ € R", u € R™ andv € Q, wherey(r) = a2 (AL (r)).

The proof of the necessity of Statement 3 of Lemma A.2 follows the same idea as the
proof of Statement 2. The necessity of Statement 1 of Lemma A.2 follows from Lemma
A.7 and the necessity of Statement 2.

Remark A.13. Inthe workg23] and[24], it was assumed thgt(0, 0)=0. This assumption
was in fact not necessary. Indeed, in many interesting applications, it is not reasonable to
assume that 0 is an equilibrium for the zero-input system.
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Appendix B. An approximation lemma

Lemma B.1. Let/ : R" — R” be a continuous map. Then there exists a smooth function
h:R" — R>0 so that for somet -functionsp,, p,,

PR IR <p(h©)D), V¢ € R™.

Proof. Lethbe a continuous function, and lét= {¢ : 7(¢) # 0}. Applying [3, Theorem
4.8]to the continuous functiofk(-)|, there is & function’ : ©® — R>¢ such that

. h(&
1RO = h(D] < LZH V¢e .

Extendh to R" by letting /(&) = 0 if ¢ ¢ €. Thenh is > on ¢, continuous oriR”, and
h(&) =0 onR™"\O. Note also that

FIOI<h(O<2R©Q)], VEe R

Applying [13, Lemma 4.3}o the functionz, one sees that there exists sosfg,-function
y such thaty(h(-)) is €°°. The lemma is proved by letting(&) = x(h(&)), p1(s) = x(s/2)
andp,(s) = x(2s). O
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