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Abstract-We announce a new construction of a stabilizing 
feedback law for nonlinear globally asymptotically controllable 
(GAC) systems. Given a control affine GAC system, our feed- 
back renders the closed loop system input to state stable with 
respect to actuator errors and small observation noise. We 
also announce a variant of our result for fully nonlinear GAC 
systems. 

I. INTRODUCTION 
The theory of input to state stable (ISS) systems forms 

the basis for much current research in mathematical control 
theory (cf. [6], [7], [17]). The ISS property was introduced 
in [15]. In the past decade, there has been a great deal of 
research done to find ISS stabilizing control laws (cf. [5], 
[6], [7], [9]). In this note, we study the ISS stabilizability of 
control affine systems of the form 

5 = f(z) + G(x)u (1) 

where f and G are locally Lipschitz vector fields on Rn, 
f(0) = 0, and the control U is valued in Rm (but see also 
§V for extensions for fully nonlinear systems). We assume 
throughout this note that the system (1) is globally asymp- 
totically controllable (GAC), and we construct a feedback 
K : Rn --f Rm for which 

(2) 

is ISS (cf. $11 for the relevant definitions). As pointed out in 
[2], [ 171, a continuous (time-invariant) stabilizing feedback 
K fails to exist in general. 

This fact forces us to consider discontinuous feedbacks 
K ,  so our solutions will be interpreted in the more general 
sense of sampling and Euler solutions for dynamics which 
are discontinuous in the state (cf. [3], [17]). By an Euler 
solution, we mean a uniform limit of sampling solutions, 
taken as the frequency of sampling becomes infinite (cf. 
§II for precise definitions). Our construction extends [15], 
[16], which show how to make CO-stabilizable systems ISS 
to actuator errors. In particular, our feedback applies to the 
nonholonomic integrator (cf. [2], [12], and §IV below) and 

k = f(z) + G ( z ) K ( z )  4 G(z)u 
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other applications where Brockett’s necessary condition is 
not satisfied, and which therefore cannot be stabilized by 
continuous state feedbacks (cf. [2], [17]). 

Our results also strengthen [3], which constructed feed- 
backs for GAC systems which render the systems globally 
asymptotically stable. Our main tool will be the recent 
constructions of semiconcave control Lyapunov functions 
(CLF‘s) for GAC systems from [ll], [12], [13]. Our con- 
struction also applies in the more general situation where 
measurement noise may occur. In particular, our feedback K 
has the additional feature that the perturbed system 

(3) 

is ISS (with respect to the actuator error U )  when the 
observation ,error e : [O,co) -+ Rn in the controller is 
suBcienily sinal1 (cf. the definitions below). In this context, 
the precise value of e ( t )  is unknown to the’controller, but 
information about upper bounds on the magnitude of e ( t )  
can be used to design the feedback. The following theorem 
is shown in [8]: 

Theorem I :  If (1) is GAC, then there exists a feedback K 
for which (3) is ISS for Euler solutions. 

Theorem 1 characterizes the uniform limits of sampling 
solutions of (3) (cf. $11 for the definitions of Euler and 
sampling solutions). From a coniputational standpoint, it is 
also desirable to know how frequently to sample in order 
to achieve ISS for sampling solutions. This information is 
provided by the following theorem: 

Theorem 2: If (1) is GAC, then there exists a feedback K 
for which (3) is ISS for sampling solutions. 

This note is organized as follows. In $11, we review 
the relevant background on CLF’s, GAC and ISS systems, 
nonsmooth analysis, and discontinuous feedbacks. In SIII, 
we sketch the proofs of the above theorems (cf. [8] for their 
detailed proofs). This is followed in §IV by a comparison 
of our feedback construction with the known feedback con- 
structions for CO-stabilizable systems, and an application of 
our results to the nonholonomic integrator. We close in §V 
by announcing an extension of our results for fully nonlinear 
systems. 

x = f(z) + G(z)K(z  + e )  + G(z)u 

11. DEFINITIONS AND MAIN LEMMAS 
We let IC, denote the set of all continuous functions 

p : [O,m) + [O,m) for which (i) p(0) = 0 and (ii) p is 
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strictly increasing and unbounded. Let KCC denote the set of 
all continuous @ : [0,00) x [O,oo) -+ [ O , o o )  for which (1) 
p(., t )  E IC, for each t 2 0, (2) @(s, .) is nonincreasing for 
each s 2 0, and (3) P(s ,  t )  -+ 0 as t --$ +cm for each s 2 0. 

M k  := {measurable U : [O, 00) .--* W k  : lulo0 < 00) 

MP := {U E M k  : I u ( ,  <_ r } ,  
where 1. 1, is the essential supremum. We let ] ] U (  s) 11 I denote 
the essential supremum of the restriction of a function U to 
an interval I. Let I . 1 denote the Euclidean norm, and 

rBk := {z E W~ : 1x1 < r }  

for each I; E N and r > 0. The closure of rBk is denoted by 
r&, and bd(.) denotes the boundary operator. We set 

For each I ;  E N and r > 0, we use the control sets 

U := {e : lO,00) + BR}, 
U,, := {e E U : sup(e) 5 17) 

for all e E U and 7 > 0. For any compact set F 5 I" and 
E > 0, we define the compact set 

FE := {z E WR : min{)z -pl  : p E F} _< E } ,  

i.e., the %-enlargement of F'. Given a continuous function 
h : Wn x W" .+ Wn : ( x , ~ )  H h(z ,u)  which is locally 
Lipschitz in 2 uniformly on compact subsets of W" x I[$", we 
let &(., x,, U )  denote the trajectory of 5 = h(z ,  U )  starting 
at x, E Wn for each U E M". In this case, q5h(.,zo,u) 
is defined on some maximal interval [0, t ) ,  with t > 0 
depending on U and 2,. When we say that a function defined 
on Wn is C O  (resp., Cl), we mean that it is continuous 
(resp., continuously differentiable). We say that a function 
Q : Rk -+ [0,00) is proper (a.k.a. radially unbounded) 
provided a(.) -+ +oo as 12) -+ +oo. We say that a function 
Q : Rk -+ [0,03) is positive definite provided CY(.) = 0 iff 
z = 0. We use the following controllability notion: 

Dejinirion 2.1: A control system x = h(x,u)  is called 
globally asymptotically controllable (GAC) provided there 
exist a nondecreasing N : [O,oo) -+ [0, 00) and a function 

E ICCC satisfying the following: For each x, E WR, there 
exists U E M m  such that 

(b) Iu(t)l I N(Jz,)) for a.e. t 2 0. 
We call Af the GAC modulus of h. 

In this note, we allow discontinuous feedbacks, so the dy- 
namics are discontinuous in the state variable. This produces 
the technical problem of precisely defining what is meant by 
a solution, since the standard existence theorems for solutions 
would not apply. We will resolve this problem by forming 
our trajectories through sampling solutions and their uniform 
limits, as follows. 

We say that x = {to, t l , t 2 , .  . .} c [O,m) is a partition 
provided to = 0, t, < tz+l for all i 2 0, and t, + t-00 

as i -+ +W. We denote the set of all partitions by Par. 
Let F : B" x Bm x Wm + W" : (x ,p ,u)  H F(z ,p ,u )  
be a continuous function which is locally Lipschitz in x 
uniformly on compact subsets of W" x Bm x EXm. A (state) 
feedback (for F )  is defined to be any locally bounded 
function K : Wn -+ W" for which K(0)  = 0. In particular, 

sup(e) := sup{le(t)l : t 2 0 }  

(a) h ( t ,  To, .)I I P(1201, t> for all t L 0; and 

we allow discontinuous feedbacks. The arguments x, p ,  and 
U in F represent the state, feedback value, and actuator error, 
respectively. 

Given a feedback K : W n  - Wm, x, E R", a partition 

71 = {to,tl,t2,. . .} E Par, 

e E U ,  and U E M", the sampling solution for the initial 
value problem 

j.(t) = F(x ( t ) ,  K ( z ( t )  + e(t)), 4 t ) )  (4) 

z(0) = 2, ( 5 )  

k ( t )  F(z ( t ) ,K(x( t i )  + e( t i ) ) ,u( t ) )  

is the continuous function x( .) defined by recursively solving 

from the initial time t = ti up until the maximal time 

si := ti V sup{s E [ti, ti+l] : z(.) is defined on [ti, s)}, 

where ~ ( 0 )  = 5,. (The t iV term in the formula for si is 
used to allow the possibility that z(.) is not defined at all 
on [ti, ti+l], in which case the supremum in the definition of 
si is by definition -00.) In this case, the sampling solution 
of (4)-(5) is defined from time zero up to the maximal time 
f =  inf{si : si < ti+l}. We denote this sampling solution 
by t H z,(t; z,, U ,  e) to exhibit its dependence on x E Par, 
z, E RR, U E M", and e E U ,  or simply by z, where the 
dependence is clear. In particular, if si = ti+l for all i, then 
= $00, so in that case, z, is defined on [0, m). 
We also define the upper diameter and lower diameter of 

x = { to ,  t l ,  t z , .  . .} E Par by 

d(r) := sup(ti+l - t i ) ,  
- 

d ( x )  := inf(ti+l - t i )  
iZ0  220 

Par(6) := { x  E par  : a(,) < 6) 

for each b > 0. We say that a function y : [0,00) -+ W n  
is an Euler solution (robust to small observation errors) of 
(4)-(5) for U E M" provided there are sequences x,. E Par 
and e,. E U such that 
(a) a(w,.) -+ 0; (b) Sup(e,.)/d(x,.) ---f 0; and 
(c) t H z,,.(t; x,, U ,  e,.) converges uniformly to y 

as r ---t $00. In this note, we design feedbacks which make 
GAC systems ISS with respect to actuator errors in the 
following generalized sense: 

Definition 2.2: We say that (4) is ISS for sampling solu- 
tions provided there exist @ E ICL and y E IC, satisfying: 
For each E ,  M ,  N > 0 with 0 < E < M ,  there exist positive 
6 = 6 ( € , M , N )  and K = K ( E , M , N )  such that for each 
x E Par(G), 5, E M&, U E M Z ,  and e E U for which 

(6) 

respectively. We let 

sup(e) I Kd(X), 

Iz,(t; zo, U ,  e)l 5 P ( M ,  t )  + y ( N )  + E 

for all t 2 0. 
Roughly speaking, condition (6) says that the system is 

ISS, modulo small overflows, if the sampling is done 'quickly 
enough' (but not 'too quickly'). On the other hand, our results 
are new, even for the particular case where the observation 
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error e = 0. Moreover, if we restrict to the case where e = 0, 
then the condition on d ( ~ )  in Definition 2.2 is no longer 
needed. Notice that the bounds on e are in the supremum, 
not the essential supremum. We also use the following analog 
of Definition 2.2 for Euler solutions: 

Defmition 2.3: We say that (4) is ISSfor Euler solutions 
provided there exist /3 E ICC and y E IC, satisfying: If 
U E M" and x, E R", and if t ++ z ( t )  is an Euler solution 
of (4)-(5), then 

(7) l4t)l I P(IzC0L t )  + r(I&) 
for all t 2 0. 

Our main tools in this note will be nonsmooth analysis 
and nonsmooth Lyapunov functions. We use the following 
definitions (cf. [4], [17]), in which R is an arbitrary open 
subset of R". 

Definition 2.4: Let g : R -+ R be a continuous function 
on R; it is said to be semiconcave on R provided for any 
point x, E R, there exist p,  C > 0 such that 

for all x, y E x, + pB,. 
The proxinzal superdifferential (resp., proximal subdifer- 

ential) of a function V : R --+ R at x E 0, which is denoted 
by aPV(x)  (resp., +V(z)), is defined to be the set of all 
C E R" for which there exist a , ~  > 0 such that 

V(Y) - V ( Z )  - OlY - $I2 I (5, Y - 4 
('esp., V(Y) - V ( z )  - ply - XI2 L (C, Y - 4 )  

for all y E x + QB,. The limiting subdifferential of a 
continuous function V : R -+ R at x E R (cf. [IO]) is 

1. q E Rn : there exist z, 4 x and { qn E apV(z,) such that  qn -+ q.  a,v(x) := 

Assume h : Rn x Rm --+ R" : (2, U )  I--+ h(z ,  U )  is continuous 
and locally Lipschitz in z uniformly on compact subsets of 
Rn xRm, and h(0,O) = 0. The next definition was introduced 
in [14] and reformulated in proximal terms in [17]: 

Definition 2.5: A control-Lyapunov function (CLF) for 

x = h(x ,  U )  (8) 

is defined to be any continuous, positive definite, proper 
function V : R" --+ R for which there exist a continuous, 
positive definite function W : R" .--f R, and a nondecreasing 
function Q : [O, M) --f [O, M), satisfying 

for all z E R". 
Recall the following lenmas (cf. [13]): 
Lemim 2.6: If (8) is GAC, then there exists a CLF V for 

(8) which is semiconcave on Rn \ {0}, and a nondecreasing 
function Q : [0, M) .+ [0, co), that satisfy 

Lernnza 2.7: Let V : R --+ R be semiconcave. Then V is 
locally Lipschitz, and 0 # &V(z )  C_ aPV(z) for all x E R. 
Moreover, for each compact set Q c Q, there exist constants 
u,p > 0 such that 

V(Y) - V ( x >  - DIY - XI2 5 (C, Y - 4 
for all y E z + pBn,  all IC E Q, and all C E aPV(x). 

Remark 2.8: In [13], the control variable U takes all its 
values in a given compact metric space U .  The version of 
the CLF existence theorem in [I31 is the same as Lemma 
2.6 above except that the minimum in (9) is replaced by 
the minimum over all U E U .  Lemma 2.6 follows from a 
minor modification of the arguments of [12], [13], using the 
GAC modulus (see Definition 2.1). The existence theory [12] 
for semiconcave CLF's strengthens the proof that continuous 
CLF's exist for any GAC system (see [14]). 

111. DISCUSSION OF PROOFS OF THEOREMS 
In this section, we sketch the proofs of our theorems. Due 

to space restrictions, we only sketch the proof of Theorem 
2 for the special case where the observation error e = 0. 
For complete proofs of our theorems, see [SI. We begin by 
outlining the proof of Theorem 2. 

Let M.N > 0 be given, and V be a CLF satisfying the 
requirements oE Lemma 2.6 for the dynamics 

h(x, U )  := f ( z )  + G(x)u. (10) 

Define the functions g,E E IC, by 

(1 1) 

Let 2 H C(x) be any selection of a,V(x) on Rn \ {0} and 
( (0 )  E Rn be arbitrary. It follows that 

(12) 

For each x E I", we can choose U = U ,  E a(15cl)Bm that 
satisfies the inequality in (9) for (10) and 5 = [(z). Define 
the feedback K1 : R" + Rm by 

g(s)  := min{s,min{lz( : V ( x )  2 s}}  and 
~ ( s )  := max{lxl : V ( x )  5 s } .  

Yx E R", g(V(z)) 5 1x1 and Z(V(z) )  2 1x1. 

KI(T)  := U, 

for all z # 0 and Kl(0)  := 0. We use the functions 

4 2 )  := m>, f(x) + G(2)KI (x)) 
b, (x)  := ( [ (z ) ,g , (x ) )  for j = 1,2.. . . ,m (13) 
K ~ Z )  :=-V(z)(sgn{bl(s)}, . . . Isgn{bm(x)))T 

where 9, is the j th  column of G and 

1, s > o  

0, s = o  
sgn{s} := -1, s < O  . 

Therefore, K := K 1  + I<; : R" + R" is a feedback for the 
dynamics 

(14) 

{ 
F ( z , p ,  U )  := f(x) + G ( z ) ( p  + U>. 

We claim that K satisfies the requirements of the theorem. 
To see why this is the case, first choose 

s := {. E R" : V ( x )  5 g-I(N)} for all x E Rn. 
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and E E (0, min{l, M } )  for which (2c)B,  C S. Set 

Q := { [ho a-’(N + 34) + 13 & }  \ E & ,  

A- := min (V(p) : p E Q E / 2 }  , 
A+ := max {V(p) : p E Q‘} . 

It follows from the estimates (12) that S C Q‘. We can then 
choose .E E ( 0 , ~ )  for which 

h ( p  + %f) 5 h ( p )  + f Vp E [O,g-’(N) + A+] (15) 
8 

where C, > 1 is the Lipschitz constant for V on Q‘/, 
guaranteed by Lemma 2.7. By again applying Lemma 2.7, 
we can also find U, p > 0 such that 

(16) V(Y) - V(x) 5 (C(Z),Y - 4 + 4 Y  - XI2 

for all y E x + pBn and x E Q E / 2 .  We can then choose 

) (17) 
E s = b(&, M ,  N )  E 0; ( 16 +A+-+ 16A+ 

such that 

(where xi = x,(ti; xo, U ,  0)) and 

(19) 

for all U E M E ,  t E [ti,ti+l], 7r E Par(b), and all i such 
that xi E Q E / 2 .  Defining J ( t )  := 16/(16 + t ) ,  and defining 
P E  ICL and y E IC, by 

(20) 

we can then use the estimates (12) and (18)-(19) to conclude 
that the sampling ISS estimate (6) holds for all xo E M&, 
U E M E ,  7r E Par(d), and e = 0. This gives the conclusion 
of Theorem 2 for the case of zero observation errors. 

We turn next to Theorem 1. We need to show the ISS 
property (7) for all Euler solutions z( t )  of (4)-(5) with the 
choice (14). To this end, choose U E M” and 2, E Etn. 
Using the conclusion of Theorem 2 that (4) is ISS for 
sampling solutions, we can let 

IIC(Zi) . ( F ( X i 7  mi), 4 s ) )  - f ( 4 s ) )  
-G(Xx(s))[’ZL(S) + K ( t i ) l )  IIIt,s*+l] 5 k 

P(s, t )  := E (a- l (s)J( t ) )  , y(s )  := E 0 cy-l(s), 

be the constants from Definition 2.2 for large r E M. Let 
z( t )  be an Euler solution of (4)-(5), and let 7r, and e, satisfy 
the requirements of the Euler solution definition. It follows 
from the definition that there is a subsequence (7 rT , ,  e,,) of 
(7r,,er) such that 

- 
d(TTf )  I &, Sude,))  5 Krd(r+)  

for all T ,  r’. It follows from estimate (6) that 
1 

lGr,,(t; x O 7  ‘1L, +)I 5 P(lsol ,  t )  + 7(l&cJ + ; (21) 

for all t 2 0 and r , ~ ’  E M, where ,fl and y are in (20). The 
ISS condition (7) now follows by passing to the limit in (21) 
as T’,  T -+ 00. This gives the conclusion of Theorem 1. 

IV. ISS STABILIZATION OF THE 
NONHOLONOMIC INTEGRATOR 

In this section, we apply the feedback construction from 
SIII to Brockett’s nonholonomic integrator control system (cf. 
[2], [12], [17]). The nonholonomic integrator was introduced 
in [2], as an example of a system which cannot be stabilized 
using continuous state feedback. It is well-known that if the 
state space of a system contains topological obstacles (e.g., if 
the state space is W2 \ (-1, +1)2), then the system cannot be 
stabilized by a continuous state feedback; this follows from 
a theorem of Milnor (cf. [17]). Brockett’s example illustrates 
how there may still be obstacles to continuous stabilization, 
even if the state space is all of In. In Brockett’s example, the 
system is ‘nonholonomic’ in the sense that it is impossible to 
move instantly in some directions, even though it is possible 
to move eventually in every direction. 

The underlying physical model for Brockett’s example is 
as follows. Consider a three-wheeled shopping cart whose 
front wheel acts as a castor. The state variable is (z1,22, 
where (21, ~ 2 ) ~  is the midpoint of the rear axle of the cart, 
and 0 is the cart’s orientation. The front wheel, which is a cas- 
tor, is free to rotate, but there is a “non-slipping’’ constraint 
that (il, i2)T must always be parallel to (cos(e), sin(@))T. 
The following figure from [17] illustrates the model: 

I X 2  

2 1  
I c 

The equations for the model are therefore 

hl = u1 cos(@), X, = u1 sin(@), 8 = U ,  (22) 

where u1 is interpreted as a “drive” command and 212 is 
a steering command. Using a feedback transformation (cf. 
[17]) brings the equations (22) into the form 

Xi = ~ 1 ,  X 2  = ~ 2 ,  i3 = ~ 1 ~ 2  - 2 2 ~ 1  (23) 

which is called the nonholonomic integrator system. 
One can show that (23) is a GAC system. However, 

since Brockett’s necessaty condition is not satisfied for (23) 
(cf. [2], [17]), the system has no continuous state feedback 
stabilizer. While there does not exist a C’ CLF for (23), it is 
now well-known that every GAC system admits a continuous 
CLF (cf. [14]). In fact, it was shown in [ll] that (23) has 
the nonsmooth CLF 

V(x) = max { JG’, 1x31 - JG} . (24) 

For the case of the dynamics (23) and CLF (24), the feedback 
K = K1 + K2 we constructed in $111 is as follows. 

We use the radius 
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The sets 
so := {z E R3 : 2 3  # 0 ,  r ( z )  = O}, 
s+ := (2 E R3 : z: 2 4r2(z) > O}, 
s- := {z E 8 3  : x: < 473.)) 

fomi a partition of R3 \ (0). Note that V(z) = r(x) on S- 
and V(z) = 1x3) - r ( z )  on R3 \ S-. To find our selection 
<(z) E d ~ V ( z ) ,  we choose <(O)  = 0, and we set 

C(.) = (0, -I,sgn{23))T 

for all z E So. Using b(x) = (bl(z):  b ~ ( z ) ) ~  and the notation 
of (13), this gives 

x E s- 
x E so 

and 

with b(0)  = Kl(0) = 0, where 

In this case, we have taken 

Kl(X) = -b(z)V(z)/lb(z)l2 

for x # 0, and K1 is continuous at the origin. On the other 
hand, our feedback K2 from (1 3) becomes 

with Kz(0) = 0, where 

 PA^, b, x) := (1x3 I - +)) sgn{ br(x)  sgn{m) - a 1. 
Since V is semiconcave on SZ := R3 \ bd(S-), the argu- 
ment from §In applies to sampling solutions that satisfy 
the additional requirement that the corresponding perturbed 
solution & (cf. [8], [17]) remains in 0. It follows that the 
nonholonomic integrator system (23) can be stabilized for 
actuator errors and small observation errors (for this restricted 
set of sampling solutions), using the combined feedback 

Renzark 4.1: In this example, we used the CLF (24) 
because it has been explicitly proven in [ l l ]  to be a CLF 
for the control system (23). The example illustrates how to 
apply our feedback construction to more general CLFs that 
may not be semiconcave on R3 \ (0). On the other hand, 
one can show that (23) also has the CLF 

P(z) = (42- - 1x31) + 232, 

K = K1+ K2. 

which is semiconcave on R3 \ (0). The fact that is a CLF 
for the system follows from a slight variant of the change 
of coordinate Fguments used to show that (24) is a CLF. 
To check that V is semiconcave on R3 \ {0}, it suffices to 
verify this semiconcavity for S(x)  = -r(x)lx31, which in 
tum follows from the semiconcavity of 

(r,  s )  H -1rsl = min{&rs) 

(cf. [9] for details). Therefore, if we use to form our feed- 
backs for (23), instead of the CLF (24), then our theorems 
apply directly, without any state restrictions on the sampling 
solutions. 

Remark 4.2: Notice that our choice of K2 in (13) is 
continuous at the origin. On the other hand, the nonsmooth 
analog 

&(z) := -<(z)G(z) 

of the usual Lie derivative ISS stabilizing feedback (where 
C(z) E &V(x)  for all z # 0 and C(0) = 0) for the dynamics 
(23) and the CLF (24) is easily shown to be discontinuous 
at the origin. This can be seen by comparing the values of 

I;. ( ( E 1 E > 3 h E ) T )  = (l/&,l/d5)T+€(ll-l)T 

for small E > 0. 

V. ISS FOR FULLY NONLINEAR GAC SYSTEMS 

We conclude with an extension of our results that can be 
applied to &illy nonlinear GAC systems 

x = f(z, U ) .  (25) 

We assume for simplicity throughout this section that all 
observation errors in the controller are zero, and that 

f : R" x R" -+ Rn : ( & U )  H f(z,u) 

is continuous and locally Lipschitz in IC uniformly on com- 
pact subsets of Rn x R" and f(0,O) = 0. It is natural to ask 
whether these hypotheses are sufficient for the existence of 
a state feedback K(z)  for which 

x = f(z, K ( z )  + U )  

is ISS for Euler solutions. However, one can easily construct 
examples for which such feedbacks cannot exist. Here is an 
example of a GAC system from [16] where this situation 
occurs: 

Example 5.1: Consider the system 

j. = -x + 2x2  

x = -2 + ( K ( z )  + U ) % 2  

IK(.)I < x-1'2 

on R. If K ( z )  is any feedback for which 

(26) 

is ISS for sampling solutions, then 
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for sufficiently large z >( 0. It follows that each Euler 
solution of 

i = -z -t ( K ( z )  + 1 ) * 2  

starting at z(0) = 4 is unbounded. Therefore, there does not 
exist a feedback K for which (26) is ISS for Euler solutions. 

On the other hand, one can find a (possibly discontinuous) 
feedback that makes (25) ISS, in an appropriate weaker 
sense. We use the following weaker sense of ISS for fully 
nonlinear systems that was introduced in [ 161: 

Dejnition 5.2: We say that (25) is input to state sta- 
bilizable (ISSable) in the weak sense provided there exist 
a feedback K ,  and an m x m matrix G of continuously 
differentiable functions which is invertible at each point, 
such that 2 = F ( z , K ( z ) , u )  is ISS for sampling and Euler 
solutions, where F ( z , p ,  U )  = f ( z , p  + G(z)u) .  
The following result is shown in [8]: 

Proposition 5.3: If (25) is GAC, then (25) is also ISSable 
in the weak sense. 

The preceding proposition allows us to characterize GAC 
for fully nonlinear systems in terms of feedback equivalence, 
as follows. Recall that two systems 

f = f(z, U ) ,  2 = h(z ,  U )  

evolving on Rn x Rm are calledfeedback equivalent provided 
there exist a feedback K : Rn -+ Rm and an everywhere 
invertible function G. : In -+ R" for which 

h(z, U )  = f(z, K ( z )  + G(z)u)  Vz E Rn, U E Rm; 

in this case, we also say that k = f(z, U) is feedback equiva- 
lent to (4) with e = 0 and F(z ,p ,u)  := f ( z ,p+G(z)u)  (cf. 
'$II). The following elegant statement follows directly from 
Theorem 1 in [3] and Proposition 5.3: 

Corollary 5.4: The fully nonlinear control system (25) is 
GAC if and only if it is feedback equivalent to a system 
which is ISS for sampling and Euler solutions. 

VI. ACKNOWLEDGEMENTS 

The authors gratefully acknowledge the reviewers' com- 
ments. 

VII. REFERENCES 

[I] Z .  Artstein, Stabilization with relaxed controls, Nonlin- 
ear Analysis, vol. 7, 1983, pp. 1163-1173. 

[2] R. Brockett, Asymptotic stability and feedback sta- 
bilization, in Differential Geometric Control Theory, 
R. Brockett, R. Millman, and H. Sussmann, Eds., 
Birkhauser, Boston, 1983, pp. 181-191. 

[3] EH. Clarke, Yu.S. Ledyaev, E. Sontag, and A.I. Sub- 
both, Asymptotic controllability implies feedback sta- 
bilization, IEEE Trans. Automat. Control, vol. 42, 1997, 
pp. 1394-1407. 

EH. Clarke, Yu.S. Ledyaev, R. Stem, and P. Wolen- 
ski, Nonsmooth Analysis and Control Theory, Graduate 
Texts in Mathematics No. 178, Springer-Verlag, New 
York, 1998. 
M. KrstiC, I. Kanellakopoulos, and P. KokotoviC, Non- 
linear and Adaptive Control Design, Wiley, New York, 
1995. 
M. KrstiC, and Z .  Li, Inverse optimal design of input- 
to-state stabilizing nonlinear controllers, IEEE Trans. 
Automat. Control, vol. 43, 1998, pp. 336-350. 
D. Liberzon, E. Sontag, and Y. Wang, Universal con- 
struction of feedback laws achieving ISS and integral- 
ISS disturbance attenuation, Systems and Control Let- 
ters, vol. 46, 2002, pp. 111-127. 
M. Malisoff, L. Rifford, and E. Sontag, Global asymp- 
totic controllability implies input to state stabilization, 
LSU Mathematics Electronic Preprint Series No. 2003- 
6, and SIAM .I. Control Optim., to appear. 
M. Malisoff, and E. Sontag, Asymptotic controllability 
and input-to-state stabilization: The effect of actuator 
errors, in Optimal Control, Stabilization, and Nons- 
mooth Analysis, M. de Queiroz, M. Malisoff, and P. 
Wolenski, Eds., Lecture Notes in Control and Infor- 
mation Sciences, Springer-Verlag, Heidelberg, 2004, 
submitted. 
B. Mordukhovich, Maximum principle in problems of 
time optimal control with nonsmooth constraints, J. 
Appl. Math. Mech., vol. 40, 1976, pp. 960-969. 
L. Rifford, Problemes de stabilisation en thkorie du 
contr6le, Thbse, Universitk Claude Bemard Lyon 1, 
2000. 
L. Rifford, Existence of Lipschitz and semiconcave 
control-Lyapunov functions, SIAM J. Control Optim., 

L. Rifford, Semiconcave control Lyapunov functions 
and stabilizing feedbacks, SIAM J. Control Optim., vol. 

E. Sontag, A Lyapunov-like characterization of asymp- 
totic controllability, SIAM J. Control Optim., vol. 21, 

E. Sontag, Smooth stabilization implies coprime factor- 
ization, IEEE Trans. Automat. Control, vol. 34, 1989, 
pp. 435-443. 
E. Sontag, Further facts about input to state stabiliza- 
tion, IEEE Trans. Automat. Control, vol. 35, 1990, pp. 

E. Sontag, Stability and stabilization: Discontinuities 
and the effect of disturbances, in Nonlinear Analysis, 
Drperential Equations, and Control, E Clarke and R.J. 
Stem, Eds., Kluwer, Dordrecht, 1999, pp. 551-598. 

vol. 39, 2000, pp. 1043-1064. 

41, 2002, pp. 659-681. 

1983, pp. 462-471. 

473-476. 

Available at http : //uwv.math.lsu.edu/ - preprint/ 
See http : //nru.desargues.univ - 1yoni.f r/home/rif f ord/ 

1058 

http://uwv.math.lsu.edu

