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Abstract: Networks that contain only sign-consistent loops, such as positive feedforward and feedback loops,
function as monotone systems. Simulated using differential equations, monotone systems display well-ordered
behaviour that excludes the possibility for chaotic dynamics. Perturbations of such systems have unambiguous
global effects and a predictability characteristic that confers robustness and adaptability. The authors assess
whether the topology of biological regulatory networks is similar to the topology of monotone systems. For
this, three intracellular regulatory networks are analysed where links are specified for the directionality and
the effects of interactions. These networks were assembled from functional studies in the experimental
literature. It is found that the three biological networks contain far more positive ‘sign-consistent’ feedback
and feedforward loops than negative loops. Negative loops can be ‘eliminated’ from the real networks by the
removal of fewer links as compared with the corresponding shuffled networks. The abundance of positive
feedforward and feedback loops in real networks emerges from the presence of hubs that are enriched with
either negative or positive links. These observations suggest that intracellular regulatory networks are ‘close-
to-monotone’, a characteristic that could contribute to the dynamical stability observed in cellular behaviour.
1 Introduction
Three meso-scale (100–1000 nodes) intracellular regulatory
networks, where the directionality of the links and the
effects of interactions are specified, have been developed.
These are: mammalian cell signalling network [1];
Escherichia coli gene regulatory network [2, 3] and
Saccharomyces cerevisiae gene regulatory network [4, 5].
These networks were constructed manually from functional
experiments in the literature where the direction of
interactions (i.e. the assignments of source and target
nodes) is specified. The effects of interactions, such as
positive for activation and negative for repression or
inhibition, are also recorded. In these intracellular
regulatory systems, the nodes/vertices represent proteins,
metabolites or genes, and the links/edges that connect the
nodes embody their direct interactions and/or indirect
effects of one node on the other. Since these interactions
represent coupled reactions, they can be represented and
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analysed as systems of coupled ordinary differential
equations (ODEs). Dynamically, directed networks with
links that have specified signs and contain only ‘sign-
consistent’ loops always behave as monotone systems [6, 7].

Monotone systems have been extensively studied in control
theory. The dynamical behaviour of such systems is
guaranteed to evolve in a predictable manner. Monotone
systems generally do not exhibit chaotic behaviour [8–11].
Such dynamically stable behaviour is often observed
experimentally in cells. For example, bi-stability, multi-
stability and monotonic dynamics are typical behaviours of
many cell signalling regulatory networks [11-15] and gene
regulatory networks [16, 17].

In this study, we addressed the question of whether
intracellular biological regulatory networks may be ‘close-to-
monotone’ systems by analysing three directed, sign/effect
specified networks. We assessed the ‘distance-to-monotone’
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architecture/topology by analysing the level of ‘sign-consistency’
in feedback and feedforward loops in these networks.We find a
relative abundance of ‘sign-consistent’ loops in all three real
networks as compared with their corresponding shuffled
networks. This topology can explain the stability and order of
intracellular dynamics. Further, we show that the abundance
in positive feedback and feedforward loops may be due to
negative hubs that sequester the probability for inconsistent
loops.

2 Results
2.1 Toy model

To illustrate the predictable behaviour of monotone systems,
we compared two versions of a feedforward loop, one sign
consistent and the other inconsistent. Using a system
of ODEs, we analysed the effects of varying rates of
interactions on the levels of output node as a function
of time. For sign-consistent feedforward loops, irrespective
of the rates, the output behaviour is always predictable. The
output node D always increased monotonically (Fig. 1a).
On the other hand, when the signs of the links in the loop
are inconsistent, the behaviour is not predictable. Different
rates can make the output node D increase or decrease
monotonically depending on the actual parameters (Fig. 1b).

2.2 Counting feedback loops

All three regulatory networks that were analysed have similar
nodes to links ratio, positive to negative links ratio and display
‘small-world’ properties (high clustering coefficients and
similar characteristic path lengths compared with random
networks) (Table 1). All three networks have a similar
connectivity distribution that best fit a power-law function
(Fig. 2). This indicates that the networks are enriched in
highly connected nodes (hubs) in comparison to random
networks, and as such the regulatory networks contain
genes and proteins that are directly regulating or are
regulated by many other nodes, or both. Counting the
number of positive against negative feedback and
feedforward loops in the real regulatory networks against
shuffled networks, we find that there are significantly more
positive loops as compared with loops found in the three
types of shuffled networks (Table 2). Using approximate
binomial distribution analysis, we explain that these results
are not due to the fact that the networks contain more
positive than negative links.

If there are P positive and N negative links, and P and N
are sufficiently large, the probability of picking, using a
Bernoulli process, a negative link is p(�) ¼ N =(N þ P) and
a positive link is p(þ) ¼ 1� p(�).

We define ploop(k) as the probability that a feedback or
feedforward loop is positive, where k is the number of links
and nodes making up the loop. A positive loop is defined
as a loop with either all positive links or an even number of
The Institution of Engineering and Technology 2008
negative links. Thus, we have the following linear first-
order recursion

ploop(kþ 1) ¼ p(þ)ploop(k)þ (1� p(þ))(1� ploop(k))

with ploop(1) ¼ p(þ)

Figure 1 Simulation of toy models of positive and negative
feedforward loop

Feedforward loops were modelled using ordinary differential
equations
a Time evolution of the concentration of the output node D in a
four-node feedforward loops with various rates in the positive
configuration k3 and k4 represent the reaction rates associated
with the adjacent arrows
b Time evolution of the concentration of the outputs node D in a
four node feedforward loops with various rates in the negative
configuration. In the positive case (a), a positive perturbation of
A(0), from A(0) ¼ 1 (dashed plots) to A(0) ¼ 3 (solid), results in
an increase in the concentrations D(t), irrespective of the
numerical values of the kinetic constants
In contrast, in the negative case (b), the global effects of
perturbations cannot be predicted from topology alone: the
same positive perturbation of A(0) results in a smaller
concentration of D(t) if the kinetic constants satisfy the
inequality k3 . k4, but a larger concentration of D(t) results if,
instead, k3 , k4. Details about the system of ODEs used are
provided in the Methods section
IET Syst. Biol., 2008, Vol. 2, No. 3, pp. 103–112
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Table 1 Characteristics of the real regulatory networks

Network Nodes Links CC CPL Positive
links

Negative
links

Neutral or bidirectional
links

E. coli gene regulation 418 519 0.086 4.85� 321 172 26

E. coli gene regulation
(updated)

1123 2172 0.282 3.84�� 1313 826 33

S. cerevisiae gene regulation 690 1082 0.047 5.21��� 860 221 1

Mammalian cell signalling 546 1259 0.107 4.22 690 306 263

Statistical measurements for the networks: number of nodes, number of links, clustering coefficients (CC) and characteristic
path length (CPL) [18], positive, negative and neutral or bidirectional links
�Computed for the largest island made of 328 nodes and 456 links
��Computed for the largest island made of 1033 nodes and 2093 links
���Computed for the largest island made of 664 nodes and 1066 links
T
i

This recursion has the solution

ploop(k) ¼ (1þ (2p� 1)k)=2

Thus, for 0 , p(þ) , 1, ploop(k) converges to 0.5, and for
p(þ) ¼ 1 ploop(k) ¼ 1 (all links are positive) and ploop(k)
alternates between 0 and 1 if p(þ) ¼ 0 (the network is
made of only negative links).

For example, for k ¼ 5 and the E. coli transcriptional
network, where we have 321 positive links, 172 negative
links, and 26 neutral links (we count neutral links as
positive) we have p(þ) ¼ 347/(347þ 172) ¼ �0.67.

Therefore using this simplified Bernoulli argument, the
probability of obtaining a positive loop is
ploop(5) ¼ [1þ (0.34)5]/2 ¼ 0.502 (for k ¼ 4, p ¼ 0.507,
and for k ¼ 3, p ¼ 0.52). This analysis is similar to what
was suggested for the different possible configurations of
three-node feedforward loops in a prior study [19].

The real networks were compared with three types of
shuffled networks used as statistical controls: the first type
of shuffled networks maintains the exact connectivity as the
natural topology but differ in the distribution of signs/
effects associated with the links (sign-swapped). The other
two types of shuffled networks are Erdos–Renyi random
networks [20] which are completely randomised and
Maslov–Milo method of shuffling which preserves some of
the original topology [4, 21]. The Maslov–Milo shuffling
method maintains the connectivity distribution of nodes
but destroys the local structure of the networks by
repeatedly swapping the connectivity of pairs of interactions
making source nodes randomly linked to target nodes. The
Maslov–Milo shuffling method does not preserve the sign
distribution by blindly swapping positive and negative links.

Interestingly, the difference between the real and sign-
swapped shuffled networks for the yeast transcription
regulatory network is less significant than differences
Syst. Biol., 2008, Vol. 2, No. 3, pp. 103–112
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observed from similar comparisons for the mammalian
signalling and E. coli transcriptional networks (Table 2).
This difference can be explained by a single link that is
found in many feedforward loops in the yeast network. The
positive link between DAL80 and GLN3, when removed,
caused the abolishment of 22 out of a total of 42 negative
loops. Both genes encode GATA family transcription
factors, where DAL80 is a repressor that functions as an
outgoing hub that is regulated positively by GLN3 [22].
The GATA family of genes makes an extensive regulatory
circuit which contains many members of the family
regulating one another [23]. The mathematical derivation
described above assumes statistical independence of link
contribution to loops and as such would result in almost
even number of positive against negative loops in shuffled
networks. This is observed for the signed-shuffled E. coli
gene regulatory and mammalian cell signalling networks. In
contrast, in the yeast gene regulatory network, a single link
participates in 22 negative loops. Removing this link
abolishes all these loops. We term this phenomenon of
shared links (and/or nodes) to form multiple loops
‘nesting’. Nesting can drastically affect the distribution of
positive to negative loops ratio. In the natural topologies, as
well as in the sign-swapped topologies, there are several
links that contribute to the formation of many negative
loops in each network (Fig. 3).

2.3 Removing negative loops

We developed an algorithm that removes links that contribute
to the formation of negative feedback and feedforward loops.
The algorithm is demonstrated schematically on a toy network
(Fig. 4). We sequentially remove links to gradually eliminate
all small size negative loops (3–4 or 3–5 nodes per loop)
from any network. We applied this algorithm to the original
networks and compared the results with the results of
applying the algorithm to random-swap shuffled networks.
We found that we could remove �30% less links from the
E. coli transcription network, �50% less links from the yeast
transcription network or �65% less links from the
105
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mammalian signalling network, compared with the number of
links that need to be removed from the corresponding shuffled
networks in order to eliminate all negative loops of size 3–5
for the yeast and E. coli networks and 3–4 for the signalling
network (Fig. 5). These results indicate that it is easier to
convert real network topologies to monotone ‘sign-
consistent’ topologies as compared with the ‘effort’ needed
to convert shuffled networks into monotone topology.

Figure 2 Connectivity distribution plots

Connectivity distributions for the three real networks are plotted
on a log–log scale
Degree of connectivity is fitted against counts of nodes with a
specific degree using Microsoft Excel
a E. coli
b Yeast
c Mammalian signalling
he Institution of Engineering and Technology 2008
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2.4 Clumping of negative links by hubs

The relative abundance of positive loops in the real networks
and the relative ease in removing the negative loops could be
due to few highly connected nodes that have predominantly

Figure 3 Links reused in feedback and feedforward loops

Ranked links based on the number of times links are used to form
feedback and feedforward loops
The links were identified in all positive and negative feedback and
feedforward loops of size 3–5 found in the original E. coli and
yeast networks and 3–4 in the mammalian signalling network
and different types of randomised network for each of the
three real networks
a E. coli network
b Yeast network
c Mammalion Signalling network
Syst. Biol., 2008, Vol. 2, No. 3, pp. 103–112
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negative links. Since hubs contribute to the formation of
many feedback and feedforward loops and if a hub has all
or mostly negative links, the probability that such hub
would contribute two negative links to a loop is high. Since
each node in a feedforward or feedback loop contributes
two links to the loop, the two negative links in a loop that
are connected to a ‘negative’ hub would cancel each other,
because, by definition two adjacent negative links are
considered positive. This feature of the network would
make hubs with many negative links (negative hubs)
sequester the negative links because these negative hubs
would contribute pairs of negative links to loops. Pairs of
negative links in loops that involve negative hubs would
make these loops positive because of the double negative.
This would leave only few sparsely connected nodes with
negative links that can be present in negative loops.

Consider a graph G. We select one node as our ‘hub’ and
divide the graph into two graphs: G1 is the hub with its edges
(a star-like graph) and G2 is the rest of the graph (the hub’s
neighbouring nodes appear in both graphs). There is a
fraction p2 of positive links in G2 and a fraction
n2 ¼ 1� p2 of negative links. We assume that p2 . 1=2,
that is, there are more positive links than negative links in
G2. This assumption holds for the networks we analysed,
and if we chose a hub with relative majority of negative
edges than the fraction of positive edges in G2, this makes
our assumption even stronger than that of G.

We denote by sk the probability of a simple path of length
k in G2 to be positive (i.e. to include even number of negative
links). s1 ¼ p2 and s2 ¼ p22 þ (1� p2)

2.

Assuming p2 . 1=2, we obtain s1 . 1=2 and s2 . 1=2.
We show now that sk � 1=2 for any k. We have shown
this for k ¼ 1 and 2, and now we want to show that if it is
true for k then it must be true for kþ 1 as well.

Figure 4 Toy network to illustrate negative loops removal
algorithm

Toy network schematically illustrates the algorithm that removes
links that contribute to negative feedforward loops
First, the algorithm counts the number of times a link contributes
to the formation of negative feedback and feedforward loops
Then the link that contributes to the most number of negative
loops is removed from the network
The link from A to D is removed because it participates in two
negative feedforward loops (more than any other link)
After this link is removed there are no more negative loops left in
the toy network
Links are labelled 0, 1 or 2 depending on the number of negative
loops they participate in
107
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Figure 5 Gradual removal of links that contribute to negative loops

The number of positive and negative feedback and feedforward loops of size 3–5 in the yeast and E. coli networks and 3–4 in the
mammalian signalling network were counted. Then, the link that contributes to the most number of negative loops was removed
The process was repeated until the networks no longer had small-size negative feedback and feedforward loops
The results for the real networks are compared with results for shuffled networks created from the real networks
a E. coli gene regulation network
b S. cerevisiae gene regulation network
c Mammalian signalling network
T

A path of length kþ 1 is a path of length k with one
additional link. It can be positive in one of the two ways:
either the original path (of length k ) is positive, and the
extra edge is also positive or both are negative. Thus,
skþ1 ¼ p2 � sk þ (1� p2) � (1� sk). Now by simple algebra

(2sk � 1)(1� p2)� sk ¼ �skþ1

According to our assumptions, sk � 1=2 which means that
2sk � 1 � 0. In addition, 1� p2 , 1=2 and as a result:
�skþ1 , (2sk � 1)=2� sk ¼ �1=2 or skþ1 � 1=2.

Now we want to close this path into a loop, using two
edges from G1. We denote the fraction of positive edges in
G1 by p. The fraction of negative edges is n ¼ 1� p.
he Institution of Engineering and Technology 2008
The probability ploop of the loop to be positive is

ploop ¼ s(p2 þ n2)þ (1� s) � 2np

¼ s(1� 2np)þ (1� s) � 2np

¼ s� (2s� 1)2p(1� p)

We showed already that sk � 1=2 for any k and thus
2s� 1 � 0. Thus the second term is negative. The
function f (p) ¼ p(1� p) obtains its maxima at p ¼ 1=2
and is equal to zero at p ¼ 0 and 1. Thus, ploop obtains its
minima when the hub is balanced ( p ¼ 1=2) and is
increasing as p approaches 0 or 1.

To determine whether real networks are enriched in
negative hubs, we first plotted the in-links against out-links
difference on the x-axis and positive-links against negative-
IET Syst. Biol., 2008, Vol. 2, No. 3, pp. 103–112
doi: 10.1049/iet-syb:20070036



IET
doi

www.ietdl.org
links difference on the y-axis for all nodes (Fig. 6). The plots
show the existence of hubs with abundance of negative links
in all three real networks compared with a representative
random-swap shuffled network. In particular, the yeast and
the E. coli transcriptional networks have many more out-
going negative (and also positive) hubs. All three
intracellular regulatory networks show preferential

Figure 6 Visualisation of positive and negative and in-out
hubs

All nodes in the networks where positioned in a 2D grid based on
an x-axis location as the difference between the in and out links
for each node, and on y-axis location as the difference between
the positive and negative links for each node (solid diamonds)
The results are compared with a randomly selected shuffled
network plotted the same way (open squares)
a E. coli gene regulation network
b S. cerevisiae gene regulation network
c Mammalian signalling network
Syst. Biol., 2008, Vol. 2, No. 3, pp. 103–112
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enrichment for hubs with either only positive or only
negative links. Because negative links are concentrated
around few hubs, and are not evenly spread around like in
the shuffled networks, the probability of forming negative
loops is reduced. Hence, the existence of hubs enriched in
negative links in the topology of real networks leads to the
preference for positive feedback and feedforward loops.

3 Discussion
Cellular networks display stable behaviour in response
to complex and noisy external stimuli. How do natural
complex systems achieve such robust stability in dynamical
complex environments? Our study suggests that
intracellular biological regulatory networks may be ‘close-
to-monotone’ systems because of the selection for positive
feedback loops and positive feedforward loops and selection
against negative feedback loops and negative feedforward
loops. Negative ‘inconsistent’ feedback loops have been
shown to be more prone to produce unstable dynamics
such as oscillations [7, 24]. Hence, the selection against
them provides a mechanism to obtain stable dynamical
behaviour that is commonly observed in cells. Although,
intuitively negative feedback loops may seem to be
important for cellular homeostasis, whereas positive
feedback loops are important to establish multi-state
stability and state change, the observed topology of the real
networks shows that negative feedback loops are not
common, and as such, homeostasis is likely to be
maintained in large part through controlled degradation
and deactivation, for example, by dephosphorylation carried
out through constitutive phosphatases in signalling
networks that dampen incoming signals.

Besides dynamical stability, monotone system architecture
is also advantageous for ordered behaviour, predictability and
evolutionary modularity. For example, when we increase or
decrease the concentration of a node, or if we change the
reaction rates represented by links in a network containing
only positive feedforward and feedback loops, the output
would increase with time and then may decay because of
constitutive negative regulators. In contrast, changes in the
initial concentrations or rate constants in networks
containing inconsistent feedback or feedforward loops can
induce oscillations and lead to chaotic behaviour. Thus,
monotone topology preserves input/output relationships
between distal components in networks, a feature that is
commonly observed in cell signalling pathways.

With the completion of sequencing the human genome,
it has been found that there are 395 serine/threonine and
dual-specificity protein kinases as compared with 44 serine/
threonine and dual-specificity protein phosphatases, and
106 tyrosine protein kinases compared with 56 Tyrosine
protein phosphatases, respectively [25]. Our current
understanding of mammalian cell signalling indicates that,
generally, protein kinases are activated in response to
stimuli and are themselves more often activators than
109
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inhibitors [1]. In contrast, protein phosphatases are on
average less regulated than the protein kinases and have
broader substrate specificity, making them outgoing
negative hubs. This balance may provide the genetic basis
for the enrichment of sign-consistent positive feedback and
feedforward loops in cell signalling networks in mammalian
cells.

Mangan and Alon [19] reported the abundance of
different configurations of three-node feedforward loops, in
two of the networks also analysed here. Mangan and Alon
suggested that some specific types of three-node
feedforward loops, both positive ‘coherent’ and negative
‘incoherent’, are more abundant than others. However,
Mangan and Alon did not make the case that positive
feedforward loops are more abundant than negative
feedforward loops. The authors explained that the AND
version of the positive coherent feedforward loop is
functionally advantageous because of its ability to cooperate
and utilise both inputs. Here, we suggest that positive
coherent loops, including feedback and feedforward of sizes
3–5, are advantageous for providing dynamical stability.

In conclusion, we have found that three intracellular
regulatory networks in widely differing species are depleted
in negative feedback and feedforward loops as compared
with their corresponding shuffled networks. Links that
contribute to negative feedback and feedforward loops can
be easily removed to make these real networks sign-
consistent because of over-representation of negative hubs.
These results suggest that these networks may be close-to-
monotone systems. The predictable dynamics established
mathematically for monotone systems provide a useful basis
for understanding why cells display dynamic stability.

4 Methods
4.1 Network data sets analysed

Signal transduction network representing interactions in
mammalian neurons was assembled from literature [1]
and downloaded from http://amp.pharm.mssm.edu/data/
9.22.2004.sig.

E. coli transcriptional regulation data set [3]
was downloaded from http://www.weizmann.ac.il/mcb/
UriAlon/Network_motifs_in_coli/ColiNet-1.1/ on 4/15/
2005. The updated version was downloaded from
RegulonDB [2] on 9/6/2006. This network is available for
download from our website at http://amp.pharm.mssm.
edu/networks/ecoli.txt. Most of the analysis was applied
on the older version to minimise computational load.
The properties observed were verified also for the newer
version.

S. cerevisiae gene regulatory data set [4] was down-loaded
from http://www.weizmann.ac.il/mcb/UriAlon/Papers/
The Institution of Engineering and Technology 2008
networkMotifs/yeastData.mat and was created on 6/30/
2006.

These networks are mostly directed graphs, but formally
for the analysis we treated these as mixed graphs
G ¼ (V , Aþ, A�, E) with nodes/vertices (V ) and three
types of links/edges/arrows: activation arrows (Aþ),
inhibition arrows (A2) and neutral (signalling) or dual
regulation (gene regulation) edges (E). Neutral links in the
signalling network represent interactions where the source
and target relationships could not be easily determined, for
example, scaffolding interactions [26]. The gene regulatory
networks contain few bi-directional links, these are arrows
drawn from the source to the target and from the target to
the source and can have two negative, two positive signs, or
both one negative and one positive [4]. All three networks
are incomplete and represent only about 10% of the total
number of components (genes or protein) in these systems.
We use these networks since these are the most
comprehensive networks available that provide signs for the
links. A larger size yeast transcriptional network is available
from Balaji et al. [27] but we did not use this network
since the signs for the links are not specified.

4.2 Counting positive and negative cycles
in the networks

In the mixed graphs G ¼ (V , Aþ, A�, E) we analysed, a
positive, sign-consistent feedback loop is defined as a
closed path or cycle with no undirected edges (e) and where
arrows (a) all point in the same orientation. Negative
feedback loops contain an odd number of negative arrows
(a2); otherwise, the feedback loop is considered positive. A
feed forward loop is also defined as a closed path or cycle
with no undirected edges (e) but here the arrows are
divided into two paths with opposite orientations, such that
the cycle has one ‘source’ node (a node with two outgoing
arrows) and one ‘sink’ node (a node with two incoming
arrows). Negative feedforward loops contain an odd
number of negative arrows (a2); otherwise, the feedforward
loop is considered positive. Similar formal definitions of
this concept have been previously provided [1, 11, 26, 28].
A recursive algorithm that uses depth-first search was
developed to count positive and negative feedback and
feedforward loops [26]. The neutral links in the signalling
network and bidirectional links in the gene regulatory
networks have not been considered valid links when
counting feedback and feedforward loops. Neutral and bi-
directional links are not abundant in all three networks
(Table 1) and considering these links as either negative or
positive does not significantly affect our results.

4.3 Removing links that contribute to
negative loops

The following algorithm was applied to eliminate negative
feedback and feedforward loops of up to a certain size
IET Syst. Biol., 2008, Vol. 2, No. 3, pp. 103–112
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1. Apply the algorithm described in Fig. 7 to find all the
negative feedback and feedforward loops of a certain size.

2. Sort links based on the number of times links participate
in negative loops found in step 1.

3. Remove the link that contributes to the most number of
negative loops found in step 1.

4. Repeat until there are no more negative loops of a certain
size.

Fig. 4 illustrates this concept on a toy network model. This
algorithm was applied because removing all negative loops is
NP-hard, although approximation algorithms for this task
have been developed [29].

4.4 Creating shuffled networks

Three different types of shuffled networks were used as
statistical control: random-swap, Erdos–Renyi and
Maslov–Milo. Random-swap networks were created. Signs
of links are randomly shuffled by picking randomly a pair
of links and swapping their signs repeatedly. The random-
swap networks maintain the same connectivity and the
same ratio of negative to positive links as the original
networks. Erdos–Renyi network contain the same number
of nodes, the same number of links and the same types of
links but links are randomly assigned to pairs of nodes.
Maslov–Milo networks are created by repeatedly randomly
picking a pair of interactions and swapping the interactions
targets, such that source A points to target B and source B
points to target A after the swap.

Figure 7 Algorithm for finding feedback and feedforward
loops
Syst. Biol., 2008, Vol. 2, No. 3, pp. 103–112
: 10.1049/iet-syb:20070036
4.5 Modelling positive and negative
feedforward loops

Two feedforward loops (Fig. 1) were simulated with ordinary
differential equations. The same rate combinations and the
same initial conditions were used for both circuits. The
only difference is that the sign in one equation was
changed from positive to negative to reflect the topological
difference between the sign-consistent and sign-
inconsistent feedforward loops. The following equations
were used

dA

dt
¼ 0,

dA

dt
¼ 0

dB

dt
¼ k1A,

dB

dt
¼ k1A

dC

dt
¼ k2B,

dC

dt
¼ k2B

dD

dt
¼ D(k3C þ k4B),

dD

dt
¼ D(k3C � k4B)

Initial conditions were

A ¼ 3 or 1, D ¼ 1, B ¼ C ¼ 0

The rates were:

k1 ¼ k2 ¼ 0:001

k3 ¼ 0:004 and k4 ¼ 0:005 or

k3 ¼ 0:005 and k4 ¼ 0:003
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[20] ERDOS P., RÉNYI A.: ‘On random graphs I’, Publ. Math.
Debrecen, 1959, 6, pp. 290–297

[21] MASLOV S., SNEPPEN K.: ‘Specificity and stability in
topology of protein networks’, Science, 2002, 296,
pp. 910–913

[22] CUNNINGHAM T.S., COOPER T.G.: ‘Expression of the DAL80
gene, whose product is homologous to the GATA factors
and is a negative regulator of multiple nitrogen catabolic
genes in Saccharomyces cerevisiae, is sensitive to
nitrogen catabolite repression’, Mol Cell Biol., 1991, 11,
pp. 6205–6215

[23] CUNNINGHAM T.S., RAI R., COOPER T.G.: ‘The level of DAL80
expression down-regulates GATA factor-mediated
transcription in Saccharomyces cerevisiae’, J. Bacteriol.,
2000, 182, pp. 6584–6591

[24] SMITH H.L.: ‘Monotone Dynamical Systems’ (1995)

[25] VENTER J.C., ADAMS M.D., MYERS E.W., ET AL.: ‘The sequence of
the human genome’, Science, 2001, 291, pp. 1304–1351

[26] MA’AYAN A., BLITZER R.D., IYENGAR R.: ‘Toward predictive
models of mammalian cells’, Ann. Rev. Biophys. Biomol.
Struct., 2005, 34, pp. 319–349

[27] BALAJI S., BABU M.M., IYER L.M., LUSCOMBE N.M., ARAVIND L.:
‘Comprehensive analysis of combinatorial regulation using
the transcriptional regulatory network of yeast’, J. Mol.
Biol., 2006, 360, pp. 213–227

[28] REMY E., MOSSE B., CHAOUIYA C., THIEFFRY D.: ‘A description of
dynamical graphs associated to elementary regulatory
circuits’, Bioinformatics, 2003, 19, pp. 172–178

[29] DASGUPTA B., ENCISO G.A., SONTAG E., ZHANG Y.: ‘Algorithmic
and complexity results for decompositions of biological
networks into monotone subsystems’, Biosystems, 2007,
90, pp. 161–178

[30] GHOSH S., BALTIMORE D.: ‘Activation in vitro of NF-
[kappa]B” by phosphorylation of its inhibitor I[kappa]B’’,
Nature, 344, pp. 678–682
IET Syst. Biol., 2008, Vol. 2, No. 3, pp. 103–112
doi: 10.1049/iet-syb:20070036


	1 Introduction
	2 Results
	3 Discussion
	4 Methods
	5 Acknowledgments
	6 References

