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We consider recurrent analog neural nets where the output of each gate is
subject to gaussian noise or any other common noise distribution that is
nonzero on a sufficiently large part of the state-space. We show that many
regular languages cannot be recognized by networks of this type, and we
give a precise characterization of languages that can be recognized. This
result implies severe constraints on possibilities for constructing recur-
rent analog neural nets that are robust against realistic types of analog
noise. On the other hand, we present a method for constructing feedfor-
ward analog neural nets that are robust with regard to analog noise of
this type.

1 Introduction

A fairly large literature (see Omlin & Giles, 1996) is devoted to the construc-
tion of analog neural nets that recognize regular languages. Any physical
realization of the analog computational units of an analog neural net in
technological or biological systems is bound to encounter some form of im-
precision or analog noise at its analog computational units. We show in this
article that this effect has serious consequences for the capability of analog
neural nets with regard to language recognition. We show that any analog
neural net whose analog computational units are subject to gaussian or other
common noise distributions cannot recognize arbitrary regular languages.
For example, such analog neural net cannot recognize the regular language
{w ∈ {0, 1}∗ | w begins with 0}.

A precise characterization of those regular languages that can be rec-
ognized by such analog neural nets is given in theorem 1. In section 3 we
introduce a simple technique for making feedforward neural nets robust
with regard to the types of analog noise considered here. This method is
employed to prove the positive part of theorem 1. The main difficulty in
proving this theorem is its negative part, for which adequate theoretical
tools are introduced in section 2. The proof of this negative part holds for
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quite general stochastic analog computational systems. However, for sim-
plicity, we will tailor our description to the special case of noisy neural
networks.

Before we give the exact statement of theorem 1 and discuss related pre-
ceding work, we provide a precise definition of computations in noisy neu-
ral networks. From the conceptual point of view, this definition is basically
the same as for computations in noisy boolean circuits (see Pippenger, 1985,
1990). However, it is technically more involved since we have to deal here
with an infinite state-space. Recognition of a language L ⊆ U∗ by a noisy
analog computational system M with discrete time is defined essentially as
in Maass and Orponen (1997). The set of possible internal states of M is as-
sumed to be some (Borel) measurable setÄ ⊆ Rn, for some integer n (called
the number of neurons or the dimension). A typical choice isÄ = [−1, 1]n. The
input set is the alphabet U. We assume given an auxiliary mapping,

f : Ä×U→ Ä̂,

which describes the transitions in the absence of noise (and saturation ef-
fects), where Ä̂ ⊆ Rn is an intermediate set that is (Borel) measurable, and
f (·,u) is supposed to be continuous for each fixed u ∈ U. The system de-
scription is completed by specifying a stochastic kernel1 Z(·, ·) on Ä̂×Ä. We
interpret Z(y,A) as the probability that a vector y can be corrupted by noise
(and possibly truncated in values) into a state in the set A. The probability
of transitions from a state x ∈ Ä to a set A ⊆ Ä, if the current input value is
u, is defined, in terms of these data, as:

Ku(x,A) := Z( f (x,u),A) .

This is itself a stochastic kernel for each given u.
More specifically for this article, we assume that the noise kernel Z(y,A)

is given in terms of an additive noise or error Rn-valued random variable
V with density φ(·), and a fixed (Borel) measurable saturation function,

σ : Rn → Ä,

as follows. For any y ∈ Ä̂ and any A ⊆ Ä, let Ay denote the set

σ−1(A)− {y} := {x− y | σ(x) ∈ A}.
(Also, generally for any A,B ⊆ Rn, let A − B denote the set of all possible
differences of elements A and B.) Then the kernel Z is defined as:

Z(y,A) := Probφ[σ(y+ V) ∈ A] =
∫

Ay

φ(v) dv.

1 That is, Z(y,A) is defined for each y ∈ Ä̂ and each (Borel) measurable subset A ⊆ Ä,
Z(y, ·) is a probability distribution for each y, and Z(·,A) is a measurable function for each
A.
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The main assumption throughout this article is that the noise has a wide
support. To be precise: There exists a subset Ä0 of Ä, and some constant
c0 > 0 such that the following two properties hold:

Ä̂0 := σ−1(Ä0) has finite and nonzero Lebesgue measure

m0 = λ(Ä̂0) (1.1)

and

φ(v) ≥ c0 for all v ∈ Q := Ä̂0 − Ä̂. (1.2)

A special (but typical) case of this situation is that in which Ä = [−1, 1]n

and σ is the standard saturation in which each coordinate is projected onto
the interval [−1, 1]. That is, for real numbers z, we let sat(z) = sign(z) if
|z| > 1 and sat(z) = z if |z| ≤ 1, and for vectors y = (y1, . . . , yn)

′ ∈ Rn we let
σ(y) := (sat(y1), . . . , sat(yn)). In that case, provided that the density φ of V
is continuous and satisfies

φ(v) 6= 0 for all v ∈ Ä− Ä̂, (1.3)

and assuming that Ä̂ is compact, both assumptions (1.1) and (1.2) are sat-
isfied. Indeed, we may pick as our set Ä0 any subset Ä0 ⊆ (−1, 1)n with
nonzero Lebesgue measure. Then σ−1 (Ä0) = Ä0, and since φ is continu-
ous and everywhere nonzero on the compact set Ä − Ä̂ ⊃ Ä0 − Ä̂ = Q,
there is a constant c0 > 0 as desired. Obviously, condition (1.3) is satisfied
by the probability density function of the gaussian distribution (and many
other common distributions that are used to model analog noise) since these
density functions satisfy φ(v) 6= 0 for all v ∈ Rn.

The main example of interest is that of (first-order or high-order) neural
networks. In the case of first-order neural networks, one takes a bounded
(usually, two-element) U ⊆ R, Ä = [−1, 1]n, and

f : [−1, 1]n ×U→ Ä̂ ⊆ Rn : (x,u) 7→Wx+ h+ uc , (1.4)

where W ∈ Rn×n and c, h ∈ Rn represent weight matrix and vectors, and
Ä̂ is any compact subset that contains the image of f . The complete noisy
neural network model is thus described by transitions

xt+1 = σ(Wxt + h+ utc+ Vt),

where V1,V2, . . . is a sequence of independent random n-vectors, all dis-
tributed identically to V; for example, V1,V2, . . . might be an independent
and identically distributed gaussian process.

A variation of this example is that in which the noise affects the activation
after the desired transition, that is, the new state is

xt+1 = σ(Wxt + h+ utc)+ Vt,
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again with each coordinate clipped to the interval [−1, 1]. This can be mod-
eled as

xt+1 = σ(σ(Wxt + h+ utc)+ Vt),

and becomes a special case of our setup if we simply let

f (x,u) = σ(Wxt + h+ utc).

For each (signed, Borel) measure µ on Ä, and each u ∈ U, we letKuµ be
the (signed, Borel) measure defined on Ä by (Kuµ)(A) := ∫ Ku(x,A)dµ(x).
Note that Kuµ is a probability measure whenever µ is. For any sequence
of inputs w = u1, . . . ,ur, we consider the composition of the evolution
operators Kui :

Kw = Kur ◦Kur−1 ◦ . . . ◦Ku1 . (1.5)

If the probability distribution of states at any given instant is given by the
measure µ, then the distribution of states after a single computation step
on input u ∈ U is given by Kuµ, and after r computation steps on inputs
w = u1, . . . ,ur, the new distribution isKwµ, where we are using the notation
in equation 1.5. In particular, if the system starts at a particular initial state
ξ , then the distribution of states after r computation steps on w is Kwδξ ,
where δξ is the probability measure concentrated on {ξ}. That is, for each
measurable subset F ⊆ Ä,

Prob [xr+1 ∈ F | x1 = ξ, input = w] = (Kwδξ )(F).

We fix an initial state ξ ∈ Ä, a set of “accepting” or “final” states F, and a
“reliability” level ε > 0, and say that M = (M, ξ,F, ε) recognizes the subset
L ⊆ U∗ if for all w ∈ U∗ :

w ∈ L ⇐⇒ (Kwδξ )(F) ≥ 1
2
+ ε,

w 6∈ L ⇐⇒ (Kwδξ )(F) ≤ 1
2
− ε.

In general a neural network that simulates a deterministic finite automa-
ton (DFA) will carry out not just one, but a fixed number k of computation
steps (i.e., state transitions) of the form x′ = sat(Wx+ h+ uc)+ V for each
input symbol u ∈ U that it reads (see the constructions described in Omlin
& Giles, 1996, and in section 3 of this article). This can easily be reflected in
our model by formally replacing any input sequence w = u1,u2, . . . ,ur from
U∗ by a padded sequence w̃ = u1, bk−1,u2, bk−1, . . . ,ur, bk−1 from (U∪{b})∗,
where b is a blank symbol not in U, and bk−1 denotes a sequence of k − 1
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copies of b (for some arbitrarily fixed k ≥ 1). Then one defines

w ∈ L ⇐⇒ (Kw̃δξ )(F) ≥
1
2
+ ε,

w 6∈ L ⇐⇒ (Kw̃δξ )(F) ≤
1
2
− ε.

This completes our definition of language recognition by a noisy analog
computational system M with discrete time. This definition agrees with
that given in Maass and Orponen (1997).

The main result of this article is the following:

Theorem 1. Assume that U is some arbitrary finite alphabet. A language L ⊆ U∗
can be recognized by a noisy analog computational system M of the previously
specified type if and only if L = E1

⋃
U∗E2 for two finite subsets E1 and E2 of U∗.

As an illustration of the statement of theorem 1 we would like to point
out that it implies, for example, that the regular language L = {w ∈ {0, 1}∗ |
w begins with 0} cannot be recognized by a noisy analog computational
system, but the regular language L = {w ∈ {0, 1}∗ | w ends with 0} can be
recognized by such system. The proof of theorem 1 follows immediately
from corollaries 1 and 2.

A corresponding version of theorem 1 for discrete computational systems
was previously shown in Rabin (1963). More precisely, Rabin showed that
probabilistic automata with strictly positive matrices can recognize exactly
the same class of languages L that occur in our theorem 1. Rabin referred
to these languages as definite languages. Language recognition by analog
computational systems with analog noise has previously been investigated
in Casey (1996) for the special case of bounded noise and perfect reliability
(i.e.,

∫
‖v‖≤η φ(v)dv = 1 for some small η > 0 and ε = 1/2 in our terminology)

and in Maass and Orponen (1997) for the general case. It was shown in
Maass and Orponen (1997) that any such system can recognize only regular
languages. Furthermore it was shown there that if

∫
‖v‖≤η φ(v)dv = 1 for some

small η > 0, then all regular languages can be recognized by such systems.
In this article, we focus on the complementary case where the condition∫
‖v‖≤η φ(v)dv = 1 for some small η > 0 is not satisfied, that is, analog noise

may move states over larger distances in the state-space. We show that even
if the probability of such event is arbitrarily small, the neural net will no
longer be able to recognize arbitrary regular languages.

2 A Constraint on Language Recognition

We prove in this section the following result for arbitrary noisy computa-
tional systems M as defined in section 1:
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Theorem 2. Assume that U is some arbitrary alphabet. If a language L ⊆ U∗
is recognized by M, then there are subsets E1 and E2 of U≤r, for some integer r,
such that L = E1

⋃
U∗E2. In other words: whether a string w ∈ U∗ belongs to

the language L can be decided by just inspecting the first r and the last r symbols
in w.

Corollary 1. Assume that U is some arbitrary alphabet. If L is recognized by M,
then there are finite subsets E1 and E2 of U∗ such that L = E1

⋃
U∗E2.

Remark. The result is also true in various cases when the noise random
variable is not necessarily independent of the new state f (x,u). The proof
depends only on the fact that the kernels Ku satisfy the Doeblin condition
with a uniform constant (see lemma 2 in the next section).

2.1 A General Fact About Stochastic Kernels. Let (S,S) be a measure
space, and let K be a stochastic kernel. As in the special case of the Ku’s
above, for each (signed) measure µ on (S,S), we let Kµ be the (signed)
measure defined on S by (Kµ)(A) := ∫

K(x,A)dµ(x). Observe that Kµ is
a probability measure whenever µ is. Let c > 0 be arbitrary. We say that K
satisfies Doeblin’s condition (with constant c) if there is some probability
measure ρ on (S,S) so that

K(x,A) ≥ cρ(A) for all x ∈ S,A ∈ S. (2.1)

(Necessarily c ≤ 1, as is seen by considering the special case A = S.) This
condition is due to Doeblin (1937).

We denote by ‖µ‖ the total variation of the (signed) measure µ. Recall
that ‖µ‖ is defined as follows. One may decompose S into a disjoint union
of two sets, A and B, in such a manner that µ is nonnegative on A and
nonpositive on B. Letting the restrictions of µ to A and B be µ+ and −µ−
respectively (and zero on B and A respectively), we may decompose µ as a
difference of nonnegative measures with disjoint supports, µ = µ+ − µ−.
Then, ‖µ‖ = µ+(A)+ µ−(B).

The following lemma is a well-known fact (Papinicolaou, 1978), but we
have not been able to find a proof in the literature; thus, we provide a self-
contained proof.

Lemma 1. Assume that K satisfies Doeblin’s condition with constant c. Let µ be
any (signed) measure such that µ(S) = 0. Then,

‖Kµ‖ ≤ (1− c) ‖µ‖ . (2.2)

Proof. In terms of the above decomposition of µ, µ(S) = 0 means that
µ+(A) = µ−(B). We denote q := µ+(A) = µ−(B). Thus, ‖µ‖ = 2q. If q = 0,
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then µ ≡ 0, and so alsoKµ ≡ 0 and there is nothing to prove. From now on
we assume q 6= 0. Let ν1 := Kµ+, ν2 := Kµ− and ν := Kµ. Then, ν = ν1−ν2.
Since (1/q)µ+ and (1/q)µ− are probability measures, (1/q)ν1 and (1/q)ν2 are
probability measures as well. That is,

ν1(S) = ν2(S) = q. (2.3)

We now decompose S into two disjoint measurable sets, C and D, in such a
fashion that ν1 − ν2 is nonnegative on C and nonpositive on D. So,

‖ν‖ = (ν1 − ν2)(C)+ (ν2 − ν1)(D) = ν1(C)− ν1(D)+ ν2(D)− ν2(C)

= 2q− 2ν1(D)− 2ν2(C), (2.4)

where we used that ν1(D) + ν1(C) = q and similarly for ν2. By Doeblin’s
condition,

ν1(D) =
∫

K(x,D)dµ+(x) ≥ cρ(D)
∫

dµ+(x) = cρ(D)µ+(A) = cqρ(D).

Similarly, ν2(C) ≥ cqρ(C). Therefore, ν1(D) + ν2(C) ≥ cq (recall that ρ(C) +
ρ(D) = 1, because ρ is a probability measure). Substituting this last in-
equality into equation (2.4), we conclude that ‖ν‖ ≤ 2q− 2cq = (1− c)2q =
(1− c) ‖µ‖, as desired.

2.2 Proof of Theorem 2. The main technical observation regarding the
measure Ku defined in section 1 is as follows.

Lemma 2. There is a constant c > 0 such that Ku satisfies Doeblin’s condition
with constant c, for every u ∈ U.

Proof. Let Ä0, c0, and 0 < m0 < 1 be as in assumptions 1.2 and 1.1, and
introduce the following (Borel) probability measure on Ä0:

λ0(A) := 1
m0
λ
(
σ−1 (A)

)
.

Pick any measurable A ⊆ Ä0 and any y ∈ Ä̂. Then,

Z(y,A) = Prob [σ(y+ V) ∈ A] = Prob [y+ V ∈ σ−1 (A)]

=
∫

Ay

φ(v)dv ≥ c0λ(Ay) = c0λ
(
σ−1 (A)

)
= c0m0λ0(A),

where Ay := σ−1 (A) − {y} ⊆ Q. We conclude that Z(y,A) ≥ cλ0(A) for all
y,A, where c = c0m0. Finally, we extend the measure λ0 to all of Ä by as-
signing zero measure to the complement of Ä0, that is, ρ(A) := λ0(A

⋂
Ä0)
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for all measurable subsets A ofÄ. Pick u ∈ U. We will show that Ku satisfies
Doeblin’s condition with the above constant c (and using ρ as the “com-
parison” measure in the definition). Consider any x ∈ Ä and measurable
A ⊆ Ä. Then,

Ku(x,A) = Z( f (x,u),A) ≥ Z( f (x,u),A
⋂
Ä0) ≥ cλ0(A

⋂
Ä0) = cρ(A),

as required.

For every two probability measures µ1, µ2 on Ä, applying lemma 1 to
µ := µ1 − µ2, we know that ‖Kuµ1 −Kuµ2‖ ≤ (1 − c) ‖µ1 − µ2‖ for each
u ∈ U. Recursively, then, we conclude:

‖Kwµ1 −Kwµ2‖ ≤ (1− c)r ‖µ1 − µ2‖ ≤ 2(1− c)r (2.5)

for all words w of length ≥ r.
Now pick any integer r such that (1 − c)r < 2ε. From equation 2.5, we

have that

‖Kwµ1 −Kwµ2‖ < 4ε

for all w of length≥ r and any two probability measuresµ1, µ2. In particular,
this means that, for each measurable set A,

|(Kwµ1)(A)− (Kwµ2)(A)| < 2ε (2.6)

for all such w (because, for any two probability measures ν1 and ν2, and any
measurable set A, 2 |ν1(A)− ν2(A)| ≤ ‖ν1 − ν2‖).

We denote by w1w2 the concatenation of sequences w1,w2 ∈ U∗.

Lemma 3. Pick any v ∈ U∗ and w ∈ Ur. Then

w ∈ L⇐⇒ vw ∈ L.

Proof. Assume that w ∈ L, that is, (Kwδξ )(F) ≥ 1
2 + ε. Applying inequal-

ity 2.6 to the measures µ1 := δξ and µ2 := Kvδξ and A = F, we have that∣∣(Kwδξ )(F)− (Kvwδξ )(F)
∣∣ < 2ε, and this implies that (Kvwδξ )(F) > 1

2 − ε,
i.e., vw ∈ L. (Since 1

2 − ε < (Kvwδξ )(F) < 1
2 + ε is ruled out.) If w 6∈ L, the

argument is similar.

We have proved that

L
⋂
(U∗Ur) = U∗(L

⋂
Ur).

So,

L =
(

L
⋂

U≤r
)⋃(

L
⋂

U∗Ur
)
= E1

⋃
U∗E2,

where E1 := L
⋂

U≤r and E2 := L
⋂

Ur are both included in U≤r. This
completes the proof of Theorem 2.
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3 Construction of Noise-Robust Analog Neural Nets

In this section we exhibit a method for making feedforward analog neural
nets robust with regard to arbitrary analog noise of the type considered
in the preceding sections. This method can be used to prove in corollary 2
the missing positive part of the claim of the main result (theorem 1) of this
article.

Theorem 3. LetC be any (noiseless) feedforward threshold circuit, and letσ : R→
[−1, 1] be some arbitrary function with σ(u) → 1 for u → ∞ and σ(u) → −1
for u → −∞ . Furthermore, assume that δ, ρ ∈ (0, 1) are some arbitrary given
parameters. Then one can transform the noiseless threshold circuit C into an analog
neural netNC with the same number of gates, whose gates employ the given func-
tion σ as activation function, so that for any analog noise of the type considered
in section 1 and any circuit input x ∈ {−1, 1}m, the output of NC differs with
probability ≥ 1− δ by at most ρ from the output of C.

Proof. We can assume that for any threshold gate g in C and any input
y ∈ {−1, 1}l to gate g the weighted sum of inputs to gate g has distance
≥ 1 from the threshold of g. This follows from the fact that without loss of
generality, the weights of g can be assumed to be even integers. Let n be the
number of gates in C, and let V be an arbitrary noise vector as described
in section 1. In fact, V may be any Rn-valued random variable with some
density function φ(·) . Let k be the maximal fan-in of a gate in C, and let w
be the maximal absolute value of a weight in C.

We choose R > 0 so large that∫
|vi|≥R

φ(v)dv ≤ δ

2n
for i = 1, . . . ,n.

Furthermore we choose u0 > 0 so large that σ(u) ≥ 1 − ρ/(wk) for u ≥ u0
and σ(u) ≤ −1 + ρ/(wk) for u ≤ −u0 . Finally, we choose a factor γ > 0 so
large that γ (1−ρ)−R ≥ u0. LetNC be the analog neural net that results from
C through multiplication of all weights and thresholds with γ and through
replacement of the Heaviside activation functions of the gates in C by the
given activation function σ .

We show that for any circuit input x ∈ {−1, 1}m, the output ofNC differs
with probability ≥ 1 − ρ by at most ρ from the output of C, in spite of
analog noise V with density φ(·) in the analog neural net NC . By choice of
R, the probability that any of the n components of the noise vector V has
an absolute value larger than R is at most δ/2. On the other hand, one can
easily prove by induction on the depth of a gate g in C that if all components
of V have absolute values ≤ R, then for any circuit input x ∈ {−1, 1}m, the
output of the analog gate g̃ in NC that corresponds to g differs by at most
ρ/(wk) from the output of the gate g in C. The induction hypothesis implies
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that the inputs of g̃ differ by at most ρ/(wk) from the corresponding inputs
of g. Therefore, the difference of the weighted sum and the threshold at g̃
has a value≥ γ · (1−ρ) if the corresponding difference at g has a value≥ 1,
and a value ≤ −γ · (1 − ρ) if the corresponding difference at g has a value
≤ −1. Since the component of the noise vector V that defines the analog
noise in gate g̃ has by assumption an absolute value ≤ R, the output of g̃ is
≥ 1− ρ/(wk) in the former case and≤ −1+ ρ/(wk) in the latter case. Hence
it deviates by at most ρ/(wk) from the output of gate g in C.

Remark.

1. Any boolean circuit C with gates for OR, AND, NOT, or NAND is a
special case of a threshold circuit. Hence one can apply theorem 3 to
such a circuit.

2. It is obvious from the proof that theorem 3 also holds for circuits with
recurrencies, provided that there is a fixed bound T for the computa-
tion time of such circuit.

3. It is more difficult to make analog neural nets robust against another
type of noise where at each sigmoidal gate, the noise is applied after
the activation σ . With the notation from section 1 of this article, this
other model can be described by

xt+1 = sat (σ (Wxt + h+ utc)+ Vt).

For this noise model, it is apparently not possible to prove positive
results like theorem 3 without further assumptions about the density
function φ(v) of the noise vector V. However, if one assumes that for
any i the integral

∫
|vi|≥ρ/(2wk) φ(v)dv can be bounded by a sufficiently

small constant (which can be chosen independent of the size of the
given circuit), then one can combine the argument from the proof of
theorem 3 with standard methods for constructing boolean circuits
that are robust with regard to common models for digital noise (see,
for example, Pippenger, 1985, 1989, 1990). In this case one chooses u0
so that σ(u) ≥ 1− ρ/(2wk) for u ≥ u0 and σ(u) ≤ 1+ ρ/(2wk) for u ≤
−u0, and multiplies all weights and thresholds of the given threshold
circuit with a constant γ so that γ · (1− ρ) ≥ u0. One handles the rare
occurrences of components Ṽ of the noise vector V that satisfy |Ṽ| >
ρ/(2wk) like the rare occurrences of gate failures in a digital circuit. In
this way, one can simulate any given feedforward threshold circuit by
an analog neural net that is robust with respect to this different model
for analog noise.

The following corollary provides the proof of the positive part of our
main result theorem 1.
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Corollary 2. Assume that U is some arbitrary finite alphabet, and language
L ⊆ U∗ is of the form L = E1

⋃
U∗E2 for two arbitrary finite subsets E1 and

E2 of U∗. Then the language L can be recognized by a noisy analog neural net N
with any desired reliability ε ∈ (0, 1

2 ), in spite of arbitrary analog noise of the type
considered in section 1.

Proof. On the basis of theorem 3, the proof of this corollary is rather
straightforward. We first construct a feedforward threshold circuit C for
recognizing L, which receives each input symbol from U in the form of a
bitstring u ∈ {0, 1}l (for some fixed l ≥ log2 |U|), which is encoded as the
binary states of l input units of the boolean circuit C. Via a tapped delay
line of fixed length d (which can easily be implemented in a feedforward
threshold circuit by d layers, each consisting of l gates that compute the
identity function of a single binary input from the preceding layer), one can
achieve that the feedforward circuit C computes any given boolean function
of the last d sequences from {0, 1}l that were presented to the circuit. On the
other hand, for any language of the form L = E1 ∪ U∗E2 with E1,E2 finite,
there exists some d ∈ N such that for each w ∈ U∗, one can decide whether
w ∈ L by just inspecting the last d characters of w. Therefore a feedforward
threshold circuit C with a tapped delay line of the type described above can
decide whether w ∈ L.

We apply theorem 3 to this circuit C for δ = ρ = min( 1
2 −ε, 1

4 ).We define
the set F of accepting states for the resulting analog neural netNC as the set
of those states where the computation is completed and the output gate of
NC assumes a value ≥ 3/4. Then according to theorem 3, the analog neural
net NC recognizes L with reliability ε. To be formally precise, one has to
apply theorem 3 to a threshold circuit C that receives its input not in a single
batch, but through a sequence of d batches. The proof of theorem 3 readily
extends to this case.

Note that according to theorem 3, we may employ as activation functions
for the gates ofNC arbitrary functions σ : R→ [−1, 1] that satisfy σ(u)→ 1
for u→∞ and σ(u)→−1 for u→−∞.

4 Conclusions

We have proven a perhaps somewhat surprising result about the computa-
tional power of noisy analog neural nets: analog neural nets with gaussian
or other common noise distributions that are nonzero on a large set cannot
accept arbitrary regular languages, even if the mean of the noise distribu-
tion is 0, its variance is chosen arbitrarily small, and the reliability ε > 0
of the network is allowed to be arbitrarily small. For example, they cannot
accept the regular language {w ∈ {0, 1}∗|w begins with 0}. This shows that
there is a severe limitation for making recurrent analog neural nets robust
against analog noise. The proof of this result introduces new mathematical
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arguments into the investigation of neural computation, which can also be
applied to other stochastic analog computational systems.

Furthermore, we have given a precise characterization of those regular
languages that can be recognized with reliability ε > 0 by recurrent analog
neural nets of this type.

Finally we have presented a method for constructing feedforward analog
neural nets that are robust with regard to any of those types of analog noise
considered in this article.
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