
Computational Aspects of Feedback in Neural
Circuits
Wolfgang Maass

1*
, Prashant Joshi

1
, Eduardo D. Sontag

2

1 Institute for Theoretical Computer Science, Technische Universitaet Graz, Graz, Austria, 2 Department of Mathematics, Rutgers, The State University of New Jersey,

Piscataway, New Jersey, United States of America

It has previously been shown that generic cortical microcircuit models can perform complex real-time computations on
continuous input streams, provided that these computations can be carried out with a rapidly fading memory. We
investigate the computational capability of such circuits in the more realistic case where not only readout neurons, but
in addition a few neurons within the circuit, have been trained for specific tasks. This is essentially equivalent to the
case where the output of trained readout neurons is fed back into the circuit. We show that this new model overcomes
the limitation of a rapidly fading memory. In fact, we prove that in the idealized case without noise it can carry out any
conceivable digital or analog computation on time-varying inputs. But even with noise, the resulting computational
model can perform a large class of biologically relevant real-time computations that require a nonfading memory. We
demonstrate these computational implications of feedback both theoretically, and through computer simulations of
detailed cortical microcircuit models that are subject to noise and have complex inherent dynamics. We show that the
application of simple learning procedures (such as linear regression or perceptron learning) to a few neurons enables
such circuits to represent time over behaviorally relevant long time spans, to integrate evidence from incoming spike
trains over longer periods of time, and to process new information contained in such spike trains in diverse ways
according to the current internal state of the circuit. In particular we show that such generic cortical microcircuits with
feedback provide a new model for working memory that is consistent with a large set of biological constraints.
Although this article examines primarily the computational role of feedback in circuits of neurons, the mathematical
principles on which its analysis is based apply to a variety of dynamical systems. Hence they may also throw new light
on the computational role of feedback in other complex biological dynamical systems, such as, for example, genetic
regulatory networks.

Citation: Maass W, Joshi P, Sontag ED (2007) Computational aspects of feedback in neural circuits. PLoS Comput Biol 3(1): e165. doi:10.1371/journal.pcbi.0020165

Introduction

The neocortex performs a large variety of complex
computations in real time. It is conjectured that these
computations are carried out by a network of cortical
microcircuits, where each microcircuit is a rather stereo-
typical circuit of neurons within a cortical column. A
characteristic property of these circuits and networks is an
abundance of feedback connections. But the computational
function of these feedback connections is largely unknown.
Two lines of research have been engaged to solve this
problem. In one approach, which one might call the
constructive approach, one builds hypothetical circuits of
neurons and shows that (under some conditions on the
response behavior of its neurons and synapses) such circuits
can perform specific computations. In another research
strategy, which one might call the analytical approach, one
starts with data-based models for actual cortical micro-
circuits, and analyses which computational operations such
‘‘given’’ circuits can perform under the assumption that a
learning process assigns suitable values to some of their
parameters (e.g., synaptic efficacies of readout neurons). An
underlying assumption of the analytical approach is that
complex recurrent circuits, such as cortical microcircuits,
cannot be fully understood in terms of the usually considered
properties of their components. Rather, system-level ap-
proaches that directly address the dynamics of the resulting
recurrent neural circuits are needed to complement the
bottom-up analysis. This line of research started with the

identification and investigation of so-called canonical micro-
circuits [1]. Several issues related to cortical microcircuits
have also been addressed in the work of Grossberg; see [2] and
the references therein. Subsequently it was shown that quite
complex real-time computations on spike trains can be
carried out by such ‘‘given’’ models for cortical microcircuits
([3–6], see [7] for a review). A fundamental limitation of this
approach was that only those computations could be modeled
that can be carried out with a fading memory, more precisely
only those computations that require integration of informa-
tion over a timespan of 200 ms to 300 ms (its maximal length
depends on the amount of noise in the circuit and the
complexity of the input spike trains [8]). In particular,
computational tasks that require a representation of elapsed
time between salient sensory events or motor actions [9], or
an internal representation of expected rewards [10–12],

Editor: Rolf Kotter, Radboud University, The Netherlands

Received December 1, 2005; Accepted October 24, 2006; Published January 19,
2007

A previous version of this article appeared as an Early Online Release on October
24, 2006 (doi:10.1371/journal.pcbi.0020165.eor).

Copyright: � 2007 Maass et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Abbreviations: FSM, finite state machine; HH, Hodgkin–Huxley; I&F, integrate and
fire

* To whom correspondence should be addressed. E-mail: maass@igi.tugraz.at

PLoS Computational Biology | www.ploscompbiol.org January 2007 | Volume 3 | Issue 1 | e1650001

working memory [13], accumulation of sensory evidence for
decision making [14], the updating and holding of analog
variables such as for example the desired eye position [15],
and differential processing of sensory input streams accord-
ing to attentional or other internal states of the neural system
[16] could not be modeled in this way. Previous work on
concrete examples of artificial neural networks [17] and
cortical microcircuit models [18] had already indicated that
these shortcomings of the model might arise only if one
assumes that learning affects exclusively the synapses of
readout neurons that project the results of computations to
other circuits or areas, without giving feedback into the
circuit from which they extract information. This scenario is
in fact rather unrealistic from a biological perspective, since
pyramidal neurons in the cortex typically have in addition to
their long projecting axon a large number of axon collaterals
that provide feedback to the local circuit [19]. Abundant
feedback connections also exist on the network level between
different brain areas [20]. We show in this article that if one
takes feedback connections from readout neurons (that are
trained for specific tasks) into account, generic cortical
microcircuit models can solve all of the previously listed
computational tasks. In fact, one can demonstrate this also
for circuits whose underlying noise levels and models for
neurons and synapses are substantially more realistic than
those which had previously been considered in models for
working memory and related tasks.

We show in the Theoretical Analysis section that the
significance of feedback for the computational power of
neural circuits and other dynamical systems can be explained
on the basis of general principles. Theorem 1 implies that a
large class of dynamical systems, in particular systems of
differential equations that are commonly used to describe the
dynamics of firing activity in neural circuits, gain universal
computational capabilities for digital and analog computa-
tion as soon as one considers them in combination with
feedback. A further mathematical result (Theorem 2) implies
that the capability to process online input streams in the light
of nonfading (or slowly fading) internal states is preserved in
the presence of fairly large levels of internal noise. On the
basis of this theoretical foundation, one can explain why the

computer models of generic cortical microcircuits, which are
considered in the section Applications to Generic Cortical
Microcircuit Models, are able to solve the previously
mentioned benchmark tasks. These results suggest a new
computational model for cortical microcircuits, which
includes the capability to process online input streams in
diverse ways according to different ‘‘instructions’’ that are
implemented through high-dimensional attractors of the
underlying dynamical system. The high dimensionality of
these attractors results from the fact that only a small fraction
of synapses need to be modified for their creation. In
comparison with the commonly considered low-dimensional
attractors, such high-dimensional attractors have additional
attractive properties such as compositionality (the intersec-
tion of several of them is in general nonempty) and
compatibility with real-time computing on online input
streams within the same circuit.
The presentation of theoretical results for abstract circuit

models in the Theoretical Analysis section is complemented
by mathematical details in the Methods section, under the
heading Mathematical Definitions, Details to the Proof of
Theorem 1, and Examples, and the heading Mathematical
Definitions and Details to the Proof of Theorem 2. Details of
the computer simulations of more detailed cortical micro-
circuit models are discussed in Applications to Generic
Cortical Microcircuit Models in the Methods section. A
discussion of the results of this paper is given in the
Discussion section.

Results

We consider two types of models for neural circuits.
The first model type is mean field models, such as those

defined by Equation 6, which models the dynamics of firing
rates of neurons in neural circuits. These models have the
advantage that they are theoretically tractable, but they have
the disadvantage that they do not reflect many known details
of cortical microcircuits. However we show that the theoret-
ical results that are proven in the section Theoretical Analysis
hold for fairly large classes of dynamical systems. Hence, they
potentially also hold for some more detailed models of neural
circuits.
The second model type involves quite detailed models of

cortical microcircuits consisting of spiking neurons (see the
description in Applications to Generic Cortical Microcircuit
Models and in Details of the Cortical Microcircuit Models). At
present these models cannot be analyzed directly by
theoretical methods, hence we can only present statistical
data from computer simulations. Our simulation results show
that feedback has in these more detailed models a variety of
computational consequences that we have derived analyti-
cally for the simpler models in Theoretical Analysis. This is
not totally surprising insofar as the computations that we
consider in the more detailed models can be approximately
described in terms of time-varying firing rates for individual
neurons.
In both types of models we focus on computations that

transform time-varying input streams into time-varying
output streams. The input streams are modeled in Theoret-
ical Analysis by time-varying analog functions u(t) (that might
for example represent time-varying firing rates of neurons
that provide afferent inputs) and in Applications to Generic

Author Summary

Circuits of neurons in the brain have an abundance of feedback
connections, both on the level of local microcircuits and on the level
of synaptic connections between brain areas. But the functional role
of these feedback connections is largely unknown. We present a
computational theory that characterizes the gain in computational
power that feedback can provide in such circuits. It shows that
feedback endows standard models for neural circuits with the
capability to emulate arbitrary Turing machines. In fact, with suitable
feedback they can simulate any dynamical system, in particular any
conceivable analog computer. Under realistic noise conditions, the
computational power of these circuits is necessarily reduced. But we
demonstrate through computer simulations that feedback also
provides a significant gain in computational power for quite
detailed models of cortical microcircuits with in vivo–like high
levels of noise. In particular it enables generic cortical microcircuits
to carry out computations that combine information from working
memory and persistent internal states in real time with new
information from online input streams.

PLoS Computational Biology | www.ploscompbiol.org January 2007 | Volume 3 | Issue 1 | e1650002

Feedback in Neural Circuits

Cortical Microcircuit Models by spike trains generated by
Poisson processes with time-varying rates. Output streams are
analogously modeled by time-varying firing rates, or directly
by spike trains. We believe that such online computations,
which transform time-varying inputs into time-varying out-
puts, provide a better framework for modeling cortical
processing of information than computations that transform
a static vector of numbers (i.e., a batch input) into a static
output. Mappings from time-varying inputs to time-varying
outputs are referred to as filters (or operators) in mathe-
matics and engineering. A frequently discussed reference
class of linear and nonlinear filters includes those that can be
described by Volterra or Wiener series (see, e.g., [21]). These
filters can equivalently be characterized as those filters that
are time-invariant (i.e., they are input-driven and have no
‘‘internal clock’’) and have a fading memory (see [5]). Fading
memory (which is formally defined in Fading-Memory Filters
means intuitively that the influence of any specific segment of
the input stream on later parts of the output stream becomes
negligible when the length of the intervening time interval is
sufficiently large. We show in the next two subsections that
feedback endows a circuit, which by itself can only carry out
computations with fading memory, with flexible ways of
combining fading-memory computations on time-varying
inputs with computational operations on selected pieces of
information in a nonfading memory.

Theoretical Analysis
The dynamics of firing rates in recurrent circuits of

neurons is commonly modeled by systems of nonlinear
differential equations of the form

x9
iðtÞ ¼ �kixiðtÞ þ r

Xn
j¼1

aijxjðtÞ þ bi � vðtÞ
 !

; i ¼ 1; . . . ; n ;

ð1Þ

or

x9
iðtÞ ¼ �kixiðtÞ þ r

Xn
j¼1

aijxjðtÞ
 !

þ bi � rðvðtÞÞ ; i ¼ 1; . . . ; n

ð2Þ

[22–25]. Here each xi,i ¼ 1,. . .,n, is a real-valued variable that
represents the current firing rate of the ith neuron or
population of neurons in a recurrent neural circuit, and v(t)
is an external input stream. The coefficients aij,bi denote the
strengths of synaptic connections, and ki . 0 denotes time
constants. The function r is some sigmoidal activation
function (nondecreasing, with bounded range). In most
models of neural circuits, the parameters are chosen so that
the resulting dynamical system has a fading memory for
preceding inputs. If one makes the synaptic connection
strengths aij in Equation 1 or Equation 2 so large that
recurrent activity does not dissipate, the neural circuit tends
to exhibit persistent memory. But it is usually quite difficult
to control the content of this persistent memory, since it
tends to be swamped with minor details of external inputs (or
initial conditions) from the distant past. Hence this chaotic
regime of recurrent neural circuits (see [62] for a review) is
apparently also not suitable for biologically realistic online
computations that combine new information from the
current input with selected (e.g., behaviorally relevant)
aspects of external or internal inputs from the past.

Recurrent circuits of neurons (e.g., those described by
Equations 1 or 2) are from a mathematical perspective special
cases of dynamical systems. The subsequent mathematical
results show that a large variety of dynamical systems, in
particular also fading-memory systems of type Equation 1 or
Equation 2, can overcome in the presence of feedback the
computational limitations of a fading memory without
necessarily falling into the chaotic regime. In fact, feedback
endows them with universal capabilities for analog computing, in
a sense that can be made precise in the following way (see
Figure 1A–1C for an illustration):
Theorem 1. A large class Sn of systems of differential equations of

the form

x9
iðtÞ ¼ fiðx1ðtÞ; . . . ; xnðtÞÞ þ giðx1ðtÞ; . . . ; xnðtÞÞ � vðtÞ; i ¼ 1; . . . ; n

ð3Þ

are in the following sense universal for analog computing:
This system (3) can respond to an external input u(t) with the

dynamics of any nt order differential equation of the form

zðnÞðtÞ ¼ GðzðtÞ; z9ðtÞ; z 99ðtÞ; . . . ; zðn�1ÞðtÞÞ þ uðtÞ ð4Þ

(for arbitrary smooth functions G: Rn ! R) if the input term v(t) is
replaced in Equation 3 by a suitable memoryless feedback function
K(x1(t), . . . ,xn(t),u(t)), and if a suitable memoryless readout function
h(x(t)) is applied to its internal state x(t) ¼ hx1(t),. . .,xn(t)i: one can
achieve then that h(x(t))¼ z(t) for any solution z(t) of Equation 4.
Also the dynamic responses of all systems consisting of several higher

order differential equations of the form Equation 4 can be simulated by
fixed systems of the form Equation 3 with a corresponding number of
feedbacks.
This result says more precisely that for any nth order

differential equation (Equation 4) there exists a (memory-
free) feedback function K: Rn 3 R ! R and a memory-free
readout function h: Rn ! R (which can both be chosen to be
smooth, in particular continuous) so that, for every external
input u(t),t � 0, and each solution z(t) of the forced system
(Equation 4), there is an input u0(t) with u0(t) [0 for all t � 1,
so that the solution x(t) ¼ hx1(t),. . .,xn(t)i of the fixed system
(Equation 3)

x9ðtÞ ¼ f ðxðtÞÞ þ gðxðtÞÞKðxðtÞ; uðtÞ þ u0ðtÞÞ; xð0Þ ¼ 0 ð5Þ

(for f: Rn ! Rn consisting of h f1,. . ., fni and g: Rn ! Rn

consisting of hg1,. . .gni) is such that

hðxðtÞÞ ¼ zðtÞ for all t � 1:

Note that the function u0(t), which is added to the input for t
, 1 (whereas u0(t)¼0 for t � 1), allows the system (Equation 3)
(and Equation 5) to simulate with a standardized initial
condition x(0) ¼ 0 for any solution of Equation 4 with
arbitrary initial conditions.
Theorem 1 implies that even if some fixed dynamical

system (Equation 3) from the class Sn has fading memory, a
suitable feedback K and readout function h will enable it to
carry out specific computations with persistent memory. In
fact, it can carry out any computation with persistent memory
that could possibly be carried out by any dynamical system
(Equation 4). To get a clear understanding of this universality
property, one should note that the feedback function K and
the readout function h depend only on the function G that
characterizes the simulated system (Equation 4), but not on
the external input u(t) or the particular solution z(t) of

PLoS Computational Biology | www.ploscompbiol.org January 2007 | Volume 3 | Issue 1 | e1650003

Feedback in Neural Circuits

Equation 4 that it simulates. Hence, Theorem 1 implies in
particular that any system (Equation 3) that belongs to the
class Sn has in conjunction with several feedbacks the
computational power of a universal Turing machine (see
[26] or [27] for relevant concepts from computation theory).
This follows from the fact that every Turing machine (hence
any conceivable digital computation, most of which require a
persistent memory) can be simulated by systems of equations
of the form Equation 4 (this was shown in [28] for the case
with continuous time, and in [29,30] for recurrent neural
networks with discrete time; see [31] for a review). But
possibly more relevant for applications to biological systems
is the fact that any fixed system (Equation 3) that belongs to
the class Sn is able to emulate any conceivable continuous
dynamic response to an input stream u(t) if it receives a
suitable feedback K(x(t),u(t)), where K can always be chosen to
be continuous. Hence one may argue that these systems
(Equation 3) are also universal for analog computing on time-
varying inputs.

The class Sn of dynamical systems become through feed-

back universal for analog computing subsumes systems of the
form

x9iðtÞ ¼ � kixiðtÞ þ r
Xn
j¼1

aij � xjðtÞ
 !

þ bi � vðtÞ ; i ¼ 1; . . . ; n ;

ð6Þ

for example, if the ki are pairwise different and aij¼ 0 for all
i,j, and all bi are nonzero. Fewer restrictions are needed if
more than one feedback to the system (Equation 6) can be
used. Systems of the form Equation 1 or Equation 2 are of a
slightly different form, since there the activation function r
(that has a bounded range) is applied to the term v(t). But
such systems (Equations 1 and 2) can still be universal for all
bounded analog responses of arbitrary dynamical systems
(Equation 4), which are arguably the only ones of interest in
a biological context. This follows from the fact that if the
external input u(t) of the system (Equation 4), as well as the
resulting solution z(t) and its derivatives z(i)t for i � n� 1, stay
within some bounded range, then the values of the feedback
v(t) that is needed for the simulation of Equation 4 by

Figure 1. Computational Architectures Considered in Theorems 1 and 2

(A) A fixed circuit C whose dynamics is described by the system (Equation 3).
(B) An arbitrary given nth order dynamical system (Equation 4) with external input u(t).
(C) If the input v(t) to circuit C is replaced by a suitable feedback K(x(t),u(t)), then this fixed circuit C can simulate the dynamic response z(t) of the
arbitrarily given system shown in B, for any input stream u(t).
(D) Arbitrary given FSM A with l state.
(E) A noisy fading-memory system with feedback can reliably reproduce the current state A(t) of the given FSM A, except for timepoints t shortly after A
has switched its state.
doi:10.1371/journal.pcbi.0020165.g001

PLoS Computational Biology | www.ploscompbiol.org January 2007 | Volume 3 | Issue 1 | e1650004

Feedback in Neural Circuits

Equation 3 will also stay within a bounded range. More
precisely, one has that:

For each constant c . 0 there is a constant C . 0 such that: for
every external input u(t),t � 0, and each solution z(t) of the forced
system (Equation 4) such that

juðtÞj � c and jzðiÞðtÞj � c for all i ¼ 0; :::; n� 1; for all t � 0

the input u0 can be picked so that the feedback

vðtÞ ¼ KðxðtÞ; uðtÞ þ u0ðtÞÞ t � 0

to Equation 1 or 2 satisfies:

jvðtÞj � C for all t � 0

Thus, if we know a priori that we will only deal with
solutions of the differential Equation 4 that are bounded by c,
and inputs are similarly bounded, we could also consider
instead of Equation 3 a system such as x9(t) ¼ f(x(t)) þ
g(x(t))r(v(t)) with f,g: Rn! Rn, where some bounded activation
function r: R! R (e.g., q � tanh(v), for a suitable constant q) is
applied to the term v(t) (as in Equation 2). The resulting
feedback term r(K(x(t),u(t)þ u0(t))) is then of a mathematical
form which is adequate for modeling feedback in neural
circuits.

The proof of Theorem 1 builds on results from control
theory. One important technique in nonlinear control is
feedback linearization ([32,33]). With this technique, a large class
of nonlinear dynamical systems can be transformed through
suitable feedback into a linear system (which is then much
easier to control). It should be pointed out that this feedback
linearization is not a standard linearization method that only
yields approximation results, but a method that yields an
exact transformation. More generally, one can show in
various cases that two dynamical systems, D1 and D2, are
feedback equivalent. The notion of ‘‘feedback equivalence’’ (see
Definition of Feedback Equivalence), which is in fact an
equivalence relation, expresses that two systems of differ-
ential equations can be transformed into each other through
application of a suitable feedback and a change of basis in the
state space. Such change of basis can be achieved through
readout functions h(x(t)) as considered in the claim of
Theorem 1. Thus, to show that a fixed system D1 has the
universality property that is specified in the claim of
Theorem 1, it suffices to show that D1 is feedback equivalent
to all systems of the form Equation 4. Known results about
feedback linearization (see [33], Lemma 5.3.5) imply that the
following linear system (Equation 7) is an example of a system
D1 (consisting of n differential equations) which has this
universality property:

x9ðtÞ ¼ AnxðtÞ þ bnvðtÞ ð7Þ

with

An :¼

0 1 0 . . . 0
0 0 1 . . . 0
..
. ..

. ..
. . .

. ..
.

0 0 0 . . . 1
0 0 0 . . . 0

0
BBBB@

1
CCCCA bn :¼

0
0
..
.

0
1

0
BBBB@

1
CCCCA:

It is in fact very easy to see that any system (Equation 4) can
be transformed into the system of Equation 7 with the help of
feedback: set x1(t)¼ z(t),xiþ1(t)¼ z(i) for i ¼ 1,. . .,n � 1, and use
the feedback v(t)¼ G(x(t))þ u(t) in Equation 7. To prove that
many other dynamical systems have the same universality

property as this system (Equation 7), it suffices to observe that
feedback equivalence preserves this universality property.
We define the class Sn in the claim of Theorem 1 as the class

of feedback linearizable systems, that is, the class of dynamical
systems (Equation 3) that are feedback equivalent to some
generic linear system. It can be proved (see Lemma in the
section Definition of the Class Sn) that every feedback
linearizable system (Equation 3) is also feedback equivalent
to Equation 7, and hence has the same universality property
as Equation 7.
We give in Definition of Class Sn a precise definition of the

class Sn in terms of feedback equivalence (which is formally
defined in Definition of Feedback Equivalence). We present
in Details of the Proof of Theorem 1 a formal proof of the
simulation result that is claimed in Theorem 1 (taking also
initial conditions into account). In addition we formulate in
the section A Characterization of Sn via Lie Brackets an
equivalent criterion for a system (Equation 3) to belong to the
class Sn, which can be more easily tested for concrete cases of
dynamical systems. This criterion makes use of the Lie
bracket formalism that is briefly reviewed in Lie Brackets.
Applications of this criterion to neural network equations are
discussed in Applications to Neural Network Equations. In
particular, we use this criterion to show that some dynamical
systems (Equation 6) that are defined by standard equations
for recurrent neural circuits belong to the class Sn. We also
show in Applications to Neural Network Equations that not
all systems of the form (Equation 6) belong to the class Sn,
rather it depends on the particular choice of parameters aij
and bi in Equation 6.
Theorem 1 implies that a generic neural circuit may become

through feedback a universal computational device, which
cannot only simulate any Turing machine, but also any
conceivable model for analog computing with bounded
dynamic responses. The ‘‘program’’ of such an arbitrary
simulated computing machine gets encapsulated in the static
functions K that characterize the memoryless computational
operations that are required from feedback units, and the
static readout functions h. Since these functions are static, i.e.,
time-invariant, and continuous, they provide suitable targets
for learning. More precisely, to train a generic neural circuit to
simulate the dynamic response of an arbitrary dynamical
system, it suffices to train—apart from readout neurons—a
few neurons within the circuit (or within some external loop)
to transform the vector x(t), which represents the current
firing activity of its neurons, and the current external input
u(t) into a suitable feedback value K(x(t),u(t)). This could, for
example, be carried out by training a suitable feedforward
neural network within the larger circuit, which can approx-
imate any continuous feedback function K [34]. Furthermore,
we will show in Applications to Generic Cortical Microcircuit
Models that these feedback functions K can in many bio-
logically relevant cases be chosen to be linear, so that it would
in principle suffice to train a single neuron to compute K.
It is known that the memory capacity of such a circuit is

reduced to some finite number of bits if these feedback
functions K are not learnt perfectly, or if there are other
sources of noise in the system. More generally, no analog
circuit with noise can simulate arbitrary Turing machines
[35]. But the subsequent Theorem 2 shows that fading-
memory systems with noise and imperfect feedback can still
achieve the maximal possible computational power within

PLoS Computational Biology | www.ploscompbiol.org January 2007 | Volume 3 | Issue 1 | e1650005

Feedback in Neural Circuits

this a priori limitation: they can simulate any given finite
state machine (FSM). Note that any Turing machine with
tapes of finite length is a special case of a FSM. Furthermore,
any existing digital computer is an FSM, hence the computa-
tional capability of FSMs is actually quite large.

To avoid the cumbersome mathematical difficulties that
arise when one analyses differential equations with noise, we
formulate and prove Theorem 2 on a more abstract level,
resorting to the notion of fading-memory filters with noise
(see Mathematical Definitions and Details to the Proof of
Theorem 2). We assume here that the input–output behavior
of those dynamical systems with noise, for which we want to
determine the computational impact of (imprecise) state
feedback, can be modeled by fading-memory filters with
additive noise on their output. The assumption that the
amplitude of this noise is bounded is a necessary assumption
according to [36]. We refer to [4,5,37] for further discussions
of the relationship between models for neural circuits and
fading-memory filters. In particular it was shown in [37] that
every time-invariant fading-memory filter can be approxi-
mated by models for neural circuits, provided that these
models reflect the empirically found diversity of time
constants of neurons and synapses.

Theorem 2. Feedback allows linear and nonlinear fading-memory
systems, even in the presence of additive noise with bounded amplitude,
to employ for real-time processing of time-varying inputs the
computational capability and nonfading states of any given FSM (see
Figure 1D–1E).

A precise formalization of this result is formulated as
Theorem 5 in Precise Statement of Theorem 2, and a formal
proof of Theorem 5 is given in Proof of the Precise Statement
of Theorem 2. The external input u(t) can in this case be
injected directly into the fading-memory system, so that the
feedback K(x(t)) depends only on the internal state x(t) (see
Figure 1E). One essential ingredient of the proof is a method
for making sure that noise does not get amplified through
feedback: the functions K that provide feedback values K(x(t))
can be chosen in such a way that they cancel the impact of
imprecision in the values K(x(s)) for immediately preceding
time steps s , t.

Applications to Generic Cortical Microcircuit Models
We examine in this section computational aspects of

feedback in recurrent circuits of spiking neurons that are
based on data from cortical microcircuits. The dynamics of
these circuits is substantially more complex than the
dynamics of circuits described by Equation 6, since it is
based on action potentials (spikes) rather than on firing rates.
Hence one can expect at best that the temporal dynamics of
firing rates in these circuits of spiking neuron is qualitatively
similar to that of circuits described by Equation 6.

The preceding theoretical results imply that it is possible
for dynamical systems to carry out computations with
persistent memory without acquiring all the computational
disadvantages of the chaotic regime, where the memory
capacity of the system is dominated by noise. Feedback units
can create selective ‘‘loopholes’’ into the fading-memory
dynamics of a dissipative system that can only be activated by
specific patterns in the input or circuit dynamics. In this way
the potential content of persistent memory can be controlled
by feedback units that have been trained to recognize such
patterns. This feedback may arise from a few neurons within

the circuit, or from neurons within a larger feedback loop.
The task to approximate a suitable feedback function K is less
difficult than it may appear on first sight, since it suffices in
many cases to approximate a linear feedback function. The
reason is that sufficiently large generic cortical microcircuit
models have an inherent kernel property [8], in the sense of
machine learning [38]. This means that a large reservoir of
diverse nonlinear responses to current and recent input
patterns is automatically produced within the recurrent
circuit. In particular, nonlinear combinations of variables
a,b,c,. . . (that may result from the circuit input or internal
activity) are automatically computed at internal nodes of the
circuit. Consequently, numerous low-degree polynomials in
these variables a,b,c,. . . can be approximated by linear
combinations of outputs of neurons from the recurrent
circuit. An example of this effect is demonstrated in Figure
2G, where it is shown that the product of firing rates r3(t) and
r4(t) and of two independently varying afferent spike train
inputs can be approximated quite well by a linear readout
neuron. The kernel property of biologically realistic cortical
microcircuit models is apparently supported by the fact that
these circuits have many additional nonlinearities in addition
to those that appear in Equations 1, 2, and 6.
One formal difference between neurons in the mean field

model (Equation 6) and more realistic models for spiking
neurons is that the input to a neuron of the latter type
consists of postsynaptic potentials, rather than of firing rates.
Hence the time-varying input x(t) to a readout neuron is in
this section not a vector of time-varying firing rates, but a
smoothed version of the spike trains of all presynaptic
neurons. This smoothing is achieved through application of a
linear filter with an exponentially decaying kernel, whose
time constant of 30 ms models time constants of receptors
and postsynaptic membrane of a readout neuron in a
qualitative fashion. Thus, if w is a vector of synaptic weights,
then w � x(t) models the impact of the firing activity of
presynaptic neurons on the membrane potential of a readout
neuron.
We refer in the following to those neurons where the

weights of synaptic connections from neurons within the
circuit are adapted for a specific computational task (rather
than chosen randomly from distributions that are based on
biological data, as for all other synapses in the circuit) as
readout neurons. The output of a readout neuron was modeled
in most of our simulations simply by a weighted sum w � x(t) of
the previously described vector x(t). Such output can be
interpreted as the time-varying firing rate of a readout
neuron. However, we show in Figure 2 that these readout
neurons can (with a moderate loss in performance) also be
modeled by spiking neurons, exactly like the other neurons in
the simulated circuit. This demonstrates that not only those
circuits that receive feedback from external readout neurons,
but also generic recurrent circuits in which a few neurons
have been trained for a specific task, acquire computational
capabilities for real-time processing that are not restricted to
computations with fading memory.
Theorem 2 suggests that the training of a few of its neurons

enables generic neural circuits to employ persistent internal
states for state-dependent processing of online input streams.
Previous models for nonfading memory in neural circuits
[13,39–41] proposed that it is implemented through low-
dimensional attractors in the circuit dynamics. These

PLoS Computational Biology | www.ploscompbiol.org January 2007 | Volume 3 | Issue 1 | e1650006

Feedback in Neural Circuits

attractors tend to freeze or to entrain the whole state of the
circuit, and thereby shut it off from the online input stream
(although independent local attractors could emerge in local
subcircuits under some conditions [40]). In contrast, the
generation of nonfading memory through a few trained
neurons does not entail that the dynamics of the circuit be
dominated by their persistent memory states. For example,
when a readout neuron gives during some time interval a
constant feedback K(x(t)) ¼ c, this only constrains the circuit
state x(t) to remain in the sub-manifold fx: K(x) ¼ cg of its
high-dimensional state space. This sub-manifold is in general
high-dimensional. In particular, if K(x) is a linear function w �
x, which often suffices as we will show; the dimensionality of

the sub-manifold fx: K(x)¼ cg differs from the dimension of
the full state space only by 1. Hence several such sub-
manifolds have in general a high-dimensional intersection,
and their intersection still leaves sufficiently many degrees of
freedom for the circuit state x(t) to also absorb continuously
new information from online input streams. These sub-
manifolds are in general not attractors in a strict mathemat-
ical sense. Rather, their effective attraction property (or
noise-robustness) results from the subsequently described
training process (‘‘teacher forcing’’). This training process
produces weights w which have the property that the
resulting feedback w � x̃ðtÞ moves on a trajectory of circuit

Figure 2. State-Dependent Real-Time Processing of Four Independent Input Streams in a Generic Cortical Microcircuit Model

(A) Four input streams, each consisting of eight spike trains generated by Poisson processes with randomly varying rates ri(t),i¼ 1,. . .4, rates plotted in
(B); all rates are given in Hz. The four input streams and the feedback were injected into disjoint sets of neurons in the circuit.
(C) Resulting firing activity of 100 out of the 600 I&F neurons in the circuit. Spikes from inhibitory neurons marked in red.
(D) Target activation times of the high-dimensional attractor (blue shading), spike trains of two of the eight I&F neurons that were trained to create the
high-dimensional attractor by sending their output spike trains back into the circuit, and average firing rate of all eight neurons (lower trace).
(E,F) Performance of linear readouts that were trained to switch their real-time computation task depending on the current state of the high-
dimensional attractor: output 2 � r3(t) instead of r3(t) if the high-dimensional attractor is on (E), output r3(t)þ r4(t) instead of j r3(t) – r4(t) j if the high-
dimensional attractor is on (F).
(G) Performance of linear readout that was trained to output r3(t) � r4(t), showing that another linear readout from the same circuit can simultaneously
carry out nonlinear computations that are invariant to the current state of the high-dimensional attractor.
doi:10.1371/journal.pcbi.0020165.g002

PLoS Computational Biology | www.ploscompbiol.org January 2007 | Volume 3 | Issue 1 | e1650007

Feedback in Neural Circuits

states that goes through states x̃(t) in the neighborhood of the
sub-manifold fx: K(x)¼ cg, closer to this sub-manifold.

We simulated generic cortical microcircuit models consist-
ing of 600 integrate-and-fire (I&F) neurons (for Figures 2 and
3), and circuits consisting of 600 Hodgkin–Huxley (HH)
neurons (for Figure 4), in either case with a rather high level
of noise that reflects experimental data on the high
conductance state in vivo [42]. These circuits were not

constructed for any particular computational task. In
particular, sparse synaptic connectivity between neurons
was generated (with a biologically realistic bias towards short
connections) by a probabilistic rule. Synaptic parameters
were chosen randomly from distributions that depend on the
type of pre- and postsynaptic neurons (in accordance with
empirical data from [43,44]). More precisely, we used bio-
logically realistic models for dynamic synapses whose

Figure 3. Representation of Time for Behaviorally Relevant Timespans in a Generic Cortical Microcircuit Model

(A) Afferent circuit input, consisting of a cue in one channel (red) and random spikes (freshly drawn for each trial) in the other channels.
(B) Response of 100 neurons from the same circuit as in Figure 2, which has here two coexisting high-dimensional attractors. The autonomously
generated periodic bursts with a periodic frequency of about 8 Hz are not related to the task, and readouts were trained to become invariant to them.
(C,D) Feedback from two linear readouts that were simultaneously trained to create and control two high-dimensional attractors. One of them was
trained to decay in 400 ms (C), and the other in 600 ms (D) (scale in nA is the average current injected by feedback into a randomly chosen subset of
neurons in the circuit).
(E) Response of the same neurons as in (B), for the same circuit input, but with feedback from a different linear readout that was trained to create a
high-dimensional attractor that increases its activity and reaches a plateau of 600 ms after the occurrence of the cue in the input stream.
(F) Feedback from the linear readout that creates this continuous high-dimensional attractor.
doi:10.1371/journal.pcbi.0020165.g003

PLoS Computational Biology | www.ploscompbiol.org January 2007 | Volume 3 | Issue 1 | e1650008

Feedback in Neural Circuits

Figure 4. A Model for Analog Real-Time Computation on External and Internal Variables in a Generic Cortical Microcircuit (Consisting of 600

Conductance-Based HH Neurons)

(A,B) Two input streams as in Figure 2.
(B) Their firing rates r1(t),r2(t).
(C) Resulting firing activity of 100 neurons in the circuit.
(D) Performance of a neural integrator, generated by feedback from a linear readout that was trained to output at any time t an approximation CA(t) of
the integral

R t

0ðr1ðsÞ � r2ðsÞÞds over the difference of both input rates. Feedback values were injected as input currents into a randomly chosen subset
of neurons in the circuit. Scale in nA shows average strength of feedback currents, also in (H).
(E) Performance of linear readout that was trained to output 0 as long as CA(t) stayed below 0.83 nA, and to output r2(t) once CA(t) had crossed this
threshold, as long as CA(t) stayed above 0.66 nA (i.e., in this test run during the shaded time periods).
(F) Performance of linear readout trained to output r1(t) � CA(t), i.e., a combination of external and internal variables, at any time t (both r1 and CA
normalized into the range [0,1]).
(G) Response of a randomly chosen neuron in the circuit for ten repetitions of the same experiment (with input spike trains generated by Poisson
processes with the same time course of firing rates), showing biologically realistic trial-to-trial variability.
(H) Activity traces of a continuous attractor as in (D), but in eight different trials for eight different fixed values of r1 and r2 (shown on the right).
doi:10.1371/journal.pcbi.0020165.g004

PLoS Computational Biology | www.ploscompbiol.org January 2007 | Volume 3 | Issue 1 | e1650009

Feedback in Neural Circuits

individual mixture of paired-pulse depression and facilitation
(depending on the type of pre- and postsynaptic neuron) was
based on these data. It has previously been shown in [6,8] that
the presence of such dynamic synapses extends the timespan
of the inherent fading memory of the circuit. However the
computational tasks that are considered in this paper require,
apart from a nonfading memory, only a fading memory with a
rather short timespan (to make the estimation of the current
firing rate of input spike trains feasible). Therefore, the
biologically more realistic dynamic synapses could be
replaced in this model by simple static synapses, without a
change in the performance of the circuit for the subsequently
considered tasks. All details of the simulated microcircuit
models can be found in Details of the Cortical Microcircuit
Models. Details of the subsequently discussed computer
experiments are given in the sections Technical Details of
Figure 5, Technical Details of Figure 2, and Technical Details
of Figure 3.
We tested three different types of computational tasks for

generic neural circuits with feedback. The same neural circuit
can be used for each task, only the organization of input and
output streams needs to be chosen individually (see Figure 5).
The following procedure was applied to train readout
neurons, i.e., to adjust the weights of synaptic connections
from neurons in the circuit to readout neurons for specific
computational tasks (while leaving all other parameters of the
generic microcircuit model unchanged): 1) first those readout
neurons were trained that provide feedback, then the other
readout neurons; 2) during the training of readout neurons
that provide feedback, their actual feedback was replaced by a
noisy version of their target output (‘‘teacher forcing’’); 3) each
readout neuron was trained by linear regression to output at
any time t a particular target value f(t). Linear regression was
applied to a set of datapoints of the form hx(t),f(t)i for many
timepoints t, where x(t) is a smoothed version of the spike
trains of presynaptic neurons (as defined before).
Note that teacher forcing, with noisy versions of target

feedback values, trains these readouts to correct errors
resulting from imprecision in their preceding feedback
(rather than amplifying errors). This training procedure is
responsible for the robustness of the dynamics of the resulting
closed-loop circuits, in particular for the ‘‘attractor’’ proper-
ties of the effectively resulting high-dimensional attractors.
In our first computer experiment, readout neurons were

trained to turn a high-dimensional attractor on or off (Figure
2D), in response to bursts in two of the four independent
input spike trains. More precisely, eight neurons were trained
to represent in their firing activity at any time the
information: in which of the input streams, 1 or 2, had a
burst most recently occurred? If it had occurred most
recently in stream 1, they were trained to fire at 40 Hz, and
if a burst had occurred most recently in input stream 2, they
were trained not to fire. Hence these neurons were required
to represent the nonfading state of a simple FSM, demon-
strating in an example the computational capabilities
predicted by Theorem 2. Figure 2G demonstrates that the
circuit retains its kernel property in spite of the feedback
injected into the circuit by these readouts. But beyond the
emulation of a simple FSM, the resulting generic cortical
microcircuit is able to combine information stored in the
current state of the FSM with new information from the
online circuit input. For example, Figure 2E shows that other

Figure 5. Organization of Input and Output Streams for the Three

Computational Tasks Considered in the Computer Simulations

Each input stream consisted of multiple spike trains that provided
synaptic inputs to individually chosen subsets of neurons in the recurrent
circuit (which is indicated by a gray rectangle).
(A,C) Input streams consisted of multiple Poisson spike trains with a time-
varying firing rate ri(t).
(B) Input consisted of a burst (‘‘cue’’) in one spike train (which marks the
beginning of a time interval) and independent Poisson spike train
(‘‘noise’’) in the other input channels.
(A–C) The actual outputs of the readouts (that were trained individually
for each computational task) is shown in Figures 2–4.
doi:10.1371/journal.pcbi.0020165.g005

PLoS Computational Biology | www.ploscompbiol.org January 2007 | Volume 3 | Issue 1 | e1650010

Feedback in Neural Circuits

readouts from the same circuit can be trained to amplify
their response to specific inputs if the high-dimensional
attractor is in the ‘‘on’’ state. Readouts can also be trained to
change the function that they compute if the high-dimen-
sional attractor is in the on state (Figure 2F). This provides an
example for an online reconfigurable circuit. The readout
neurons that provide feedback had been modeled in this
computer simulation like the other neurons in the circuit: by
I&F neurons with in vivo–like background noise. Hence they
can be viewed equivalently as neurons within an otherwise
generic circuit.

Another difficult problem in computational neuroscience
is to explain how neural circuits can implement a parametric
memory, i.e., how they can hold and update an analog value
that may represent, for example, an intended eye position
that a neural integrator computes from a sequence of eye-
movement commands [45], an estimate of elapsed time [9], or
accumulated sensory evidence [14]. Various designs have been
proposed for parametric memory in recurrent circuits, where
continuous attractors (also referred to as line attractors) hold
and update an analog value. But these approaches are
inherently brittle [41], and have problems in dealing with
high noise or online circuit inputs. On the other hand, Figure
3 shows that dedicated circuit constructions are not
necessary, since feedback from readout neurons in generic
cortical microcircuits models can also create high-dimen-
sional attractors that hold and update an analog value for
behaviorally relevant timespans. In fact, due to the high-
dimensional character of the resulting high-dimensional
attractors, two such analog values can be stored and updated
independently (Figure 3C and 3D), even within a fairly small
circuit. In this example, the readouts that provide feedback
were simply trained to increase or reduce their feedback at
each timepoint. Note that the resulting circuit activity is
qualitatively consistent with recordings from neurons in
cortex and striatum during reward expectation [10–12]. A
similar ramp-like rise and fall of activity as shown in Figure
3C, 3D, and 3F has also been recorded in neurons of posterior
parietal cortex of the macaque in experiments where the
monkey had been trained to classify the duration of elapsed
time [9]. The high dimensionality of the continuous attractors
in this model makes it feasible to constrain the circuit state to
stay simultaneously in more than one continuous attractor,
thereby making it in principle possible to encode complex
movement plans that require specific temporal relationships
between individual motor commands.

Our model for parametric memory in cortical circuits is
consistent with high noise: Figure 4G shows the typical trial-
to-trial variability of a neuron in our simulated circuit of HH
neurons with in vivo–like background noise. It qualitatively
matches the ‘‘wide diversity of neural firing drift patterns in
individual fish at all states of tuning’’ that was observed in the
horizontal occulomotor neural integrator in goldfish [15],
and the large trial-to-trial variability of neurons in prefrontal
cortex of monkeys reported in [10]. In addition, this model is
consistent with the surprising plasticity that has been
observed even in quite specialized neural integrators [15],
since continuous attractors can be created or modified in this
model by changing just a few synaptic weights of neurons that
are immediately involved. It does not require the presence of
long-lasting postsynaptic potentials, NMDA receptors, or
other specialized details of biological neurons or synapses,

although their inclusion in the model is likely to provide
additional temporal stability [13]. Rather it points to
complementary organizational mechanisms on the circuit
level, which are likely to enhance the controllability and
robustness of continuous attractors in neural circuits. The
robustness of this learning-based model can be traced back to
the fact that readout neurons can be trained to correct
undesired circuit responses resulting from errors in their
previous feedback. Furthermore, such error correction is not
restricted to linear computational operations, since the
previously demonstrated kernel property of these generic
circuits allows even linear neurons to implement complex
nonlinear control strategies through their feedback. As an
example, we demonstrate in Figure 4 that even under
biologically realistic high-noise conditions a linear readout
can be trained to update a continuous attractor (Figure 4D),
to filter out input activity during certain time intervals
independent of the current state of the continuous attractor
(Figure 4E), or to combine the time-varying analog variable
encoded by the current state CA(t) of the continuous attractor
with a time-varying variable r1(t) that is delivered by an online
spike input. Hence, intention-based information processing
[16] and other tasks that involve a merging of external inputs
and internal state information can be implemented in this
way. Figure 4C shows that a high-dimensional attractor need
not entrain the firing activity of neurons in a drastic way,
since it just restricts the high-dimensional–circuit dynamics
x(t) to a slightly lower dimensional manifold of circuit states
x(t) that satisfy w � x(t)¼ f(t) for the current target output f(t)
of the corresponding linear readout. On the other hand,
Figure 4E shows that the activity level CA(t) of the high-
dimensional attractor can nevertheless be detected by other
linear readouts, and can simultaneously be combined in a
nonlinear manner with a time-varying variable r2(t) from one
afferent circuit input stream, while remaining invariant to
the other afferent input stream.
Finally, the same generic circuit also provides a model for

the integration of evidence for decision making that is
compatible with in vivo–like high noise conditions. Figure 4H
depicts the timecourse of the same neural integrator as in
Figure 4D, but here for the case where the rates r1,r2 of the
two input streams assume in eight trials eight different
constant values after the first 100 ms (while assuming a
common value of 65 Hz during the first 100 ms). The resulting
timecourse of the continuous attractor is qualitatively similar
to the meandering path towards a decision threshold that has
been recorded from neurons in area LIP where firing rates
represent temporally integrated evidence concerning the
dominating direction of random dot movements (see Figure
4A in [14]).

Discussion

We have presented a theoretically founded model for real-
time computations on complex input streams with persistent
internal states in generic cortical microcircuits. This model
does not require a handcrafted circuit structure or bio-
logically unrealistic assumptions such as symmetric weight
distributions, static synapses that do not exhibit pair-pulsed
depression or facilitation, or neuron models with low levels of
noise that are not consistent with data on in vivo conditions.
Our model only requires the assumption that adaptive

PLoS Computational Biology | www.ploscompbiol.org January 2007 | Volume 3 | Issue 1 | e1650011

Feedback in Neural Circuits

procedures (synaptic plasticity) in generic neural circuits can
approximate linear regression. Furthermore, in contrast to
classical learning paradigms for attractor neural networks, it
is here not required that a large fraction of synaptic
parameters in the circuit are changed when a new computa-
tional task is introduced or a new item is stored in working
memory. Rather, it suffices if those neurons that provide the
circuit output and a few neurons that provide feedback are
subject to synaptic plasticity. Such minimal circuit modifica-
tions have the advantage that thereby created attractors of
the circuit dynamics are high-dimensional. We have shown
that the circuit state can simultaneously be in several of such
high-dimensional attractors, and still retain sufficiently many
degrees of freedom to absorb and process new information
from online input streams. In particular, we have shown in
Figures 2 and 4 how bottom-up processing can be reconfig-
ured dependent on discrete internal states (implemented
through high-dimensional attractors) by turning certain
input channels on or off, and by changing the computational
operations that are applied to input variables. Furthermore
we have shown in Figure 4 that analog variables, which are
extracted from an online input stream, can be combined in
real-time computations with analog variables that are stored
in high-dimensional continuous attractors. This provides in
particular a model for the implementation of intention-based
information processing [16] in cortical microcircuits.

It remains open how learning signals can induce neurons in
a biological organism to compute specific linear feedback
functions. But at least we have reduced this problem to the
feasibility of perceptron-like learning (or more abstractly: to
linear regression) for single neurons. Subsequent research
will have to determine whether these learning requirements
(which can be partially reduced to spike-timing dependent
plasticity [46]) can be justified on the basis of results on
unsupervised learning and reinforcement learning [47] in
biological organisms.

Whereas it was previously already known that one can
construct specific circuits that have universal computational
capabilities for real-time computing on analog input streams,
Theorems 1 and 2 of this article imply that a large variety of
dynamical systems (in particular generic cortical micro-
circuits) can acquire through feedback such universal
capabilities for computations that map time-varying inputs
to time-varying outputs. It should be noted that these
universal computational capabilities differ from the well-
known but much weaker universal approximation property
of feedforward neural networks (see [34]), since not only the
static output of an arbitrary continuous static function is
approximated, but also the dynamic response of arbitrary
differential equations of higher-order to time-varying inputs.

The theoretical results of this article also provide an
explanation for the astounding computational capability and
flexibility of echo state networks [17]. In addition they can be
used to analyze computational aspects of feedback in other
biological dynamical systems besides neural circuits. Several
such systems, for example, genetic regulatory networks, are
known to implement complex maps from time-varying input
streams (e.g., external signals) onto time-varying outputs (e.g.,
transcription rates). But little is known about the way in which
these maps are implemented. Whereas feedback in biological
dynamical systems is usually only analyzed and modeled from
the perspective of control, we propose that an analysis of its

computational aspects is likely to yield a better understanding
of the computational capabilities of such systems.

Materials and Methods

Mathematical definitions, details to the proof of Theorem 1, and
examples. Definition of feedback equivalence. We recall that a smooth
mapping is one for which derivatives of all orders exist (infinite
differentiability), and that a diffeomorphism T: T: Rn ! Rn is a smooth
mapping for which there exists a well-defined smooth inverse T�1: Rn

! Rn.
Definition (see [33], Definition 5.3.1). Two n-dimensional systems x9

¼ f(x) þ g(x)v and x9 ¼ ~f ðxÞ þ ~gðxÞv (with smooth vector fields
f ¼ h f1; . . . ; fni; g ¼ hg1; . . . ; gni; ~f ¼ h ~f 1; . . . ; ~f ni; ~g ¼ h~g1; . . . ; ~gniÞare
called feedback equivalent (over the state space Rn) if there exists 1) a
diffeomorphism T: Rn! Rn, and 2) smooth maps a,b:Rn! R with b(x)
6¼ 0 for all x 2 Rn, such that, for each x 2 Rn

T�ðxÞðf ðxÞ þ gðxÞaðxÞÞ ¼ ~f ðTðxÞÞ

and

bðxÞT�ðxÞgðxÞ ¼ ~gðTðxÞÞ

(where T* denotes the Jacobian of T).
Definition of the class Sn. Recall that a linear system x9 ¼ Ax þ bu is

controllable if it is possible to drive any state x0 to any other state x1
using an input (see [33], Definition 3.1.6). Controllability is a generic
property of systems, and amounts to the requirement that the matrix
(b,Ab,. . .,An�1b) has full rank, where n is the dimension of the system
(see [33], Theorem 2). Note that the linear system (Equation 7)
satisfies this requirement, and hence is controllable.

We take Sn to be the class of n-dimensional systems (Equation 3)
that are (globally) feedback linearizable, that is to say, the systems
(Equation 3) for which there exists some linear controllable system
that is feedback equivalent to Equation 3 (see [33], Definition 5.3.2).

An n-dimensional system is feedback linearizable if and only if it is
feedback-equivalent to the system (Equation 7) (see [33], Lemma
5.3.5). Therefore, we have the following:

Lemma: A system (Equation 3), with smooth vector fields f¼ hf1,. . .,fni and
g¼hg1,. . .,gni belongs to Sn if and only if there exists a diffeomorphism T: Rn!
Rn and two smooth maps a,b: Rn! R, with b(x) 6¼ 0 for all x 2 Rn, such that,
for each x 2 Rn:

T�ðxÞ f ðxÞ ¼ AnTðxÞ �
aðxÞ
bðxÞbn ð8Þ

and

bðxÞT � ðxÞgðxÞ ¼ bn; ð9Þ

where T* denotes the Jacobian of T and

An :¼

0 1 0 . . . 0
0 0 1 . . . 0
..
. ..

. ..
. . .

. ..
.

0 0 0 . . . 1
0 0 0 . . . 0

0
BBBB@

1
CCCCA bn :¼

0
0
..
.

0
1

0
BBBB@

1
CCCCA:

An interpretation of the property given in the above Lemma, that
will be used in the proof of Theorem 1 in the section Details to the
Proof of Theorem 1, is as follows (see [33], Chapter 5, for more
discussion): For each input l(t) and each solution z(t) of

zðnÞ ¼ l;

the vector function x(t)¼ T�1(Z(t)) satisfies Equation 3 with the input
v(t) ¼ a(x(t)) þ b(x(t))l(t), where

ZðtÞ ¼ ðzðtÞ; z9ðtÞ; z 99ðtÞ; . . . ; zðn�1ÞðtÞÞ

Details to the proof of Theorem 1. In this section, we prove the
simulation result that is claimed in Theorem 1.

Take any system (Equation 3) in Sn and any system (Equation 4) to
be simulated. Using T,a,b as in the Lemma in section Definition of the
Class Sn that characterizes the class Sn, we define:

Kðx;wÞ :¼ aðxÞ þ bðxÞ½GðTðxÞÞ þ w�

and we let h(x) be the first coordinate of T(x). In the special case
where Equation 3 describes the dynamics of a circuit according to
Equation 6, a is a linear function, b is a constant, and T is an
invertible linear map from Rn to Rn.

PLoS Computational Biology | www.ploscompbiol.org January 2007 | Volume 3 | Issue 1 | e1650012

Feedback in Neural Circuits

Next, pick an external input u(t),t � 0, and a solution z(t) of the
forced system (Equation 4).

From the interpretation of feedback linearization given earlier (in
the last part of Definition of the Class Sn), it follows that for any
inputs u(t) and u0(t) (in particular, one could take u0 [0), and each
solution z(t) of

zðnÞðtÞ ¼ GðzðtÞ; z9ðtÞ; z 99ðtÞ; . . . ; zðn�1ÞðtÞÞ þ uðtÞ þ u0ðtÞ

(that is, we use l(t) ¼ G(z(t),z9(t),z 99(t),. . .,z(n�1)(t)) þ u(t) þ u0(t) as the
input to z(n)¼ l), the vector function x(t)¼T�1(Z(t)) satisfies Equation
3 with input

vðtÞ ¼ aðxðtÞÞ þ bðxðtÞÞlðtÞ ¼ KðxðtÞ; uðtÞ þ u0ðtÞÞ :

Furthermore, Z(t)¼T(x(t)) means that z(t)¼ h(x(t)), as required for the
notion of simulation.

This almost proves the simulation result, except for the fact that
there is no reason for the initial value x(0)¼T�1(Z(0)) to be zero, since
z(t) is an arbitrary trajectory. This is where the input u0 plays a role.
Let n :¼T(0). We will show that, given any solution z(t) and any input
u(t), there is some input u0(t), with u0(t) [0 for all t � 1, so that the
solution of

yðnÞðtÞ ¼ GðyðtÞ; y9ðtÞ; y 99ðtÞ; . . . ; yðn�1ÞðtÞÞ þ uðtÞ þ u0ðtÞ ð10Þ

with y(0)¼ n has the property that y(t)¼ z(t) for all t � 1. (Where z(t) is
the desired trajectory to be simulated, with u0 [0.) Then letting x(t)¼
T�1(Y(t)) instead of T�1(Z(t)) means that x(0) and still h(x(t))¼ y(t)¼ z(t)
for all t � 1.

Consider now an arbitrary solution z(t) of Equation 4 and let f be
the vector with entries

fiþ1 :¼ zðiÞð1Þ; i ¼ 0; :::; n� 1

We next pick a scalar differentiable function u such that u(i)(0)¼ niþ1
and u(i)(1)¼ niþ1 for i¼ 0,. . .,n� 1. (It is easy to see that such functions
exist. For example, one may simply consider the linear system p9 ¼
Anpþ bnq with states p and input q. This is a completely controllable
linear system (cf. [33] Chapter 3), so we just pick an input q(t) that
steers n into f, and finally let u(t) be the first coordinate of p(t). Now
we let

u0ðtÞ :¼ uðnÞðtÞ � GðuðtÞ; :::;uðn�1ÞðtÞÞ � uðtÞ

for t , 1, and u0(t) [0 for t � 1, and claim that the solution of
Equation 10 with y(0)¼ n has the property that y(t)¼ z(t) for all t � 1.
Since u(t)þ u0(t)¼ u(t) for all t � 1, we only need to show that y(i)(1)¼
z(i)(1) for every i ¼ 0,. . .,n � 1. To see this, in turn, and using
uniqueness of solutions of differential equations, it is enough to show
that y(t):¼ u(t) satisfies

uðnÞðtÞ ¼ GðuðtÞ;u9ðtÞ;u 99ðtÞ; . . . ;uðn�1ÞðtÞÞ þ uðtÞ

on the interval [0,1] and has derivatives at t ¼ 0 as specified by the
vector n. But this is indeed true by construction.

Finally, we remark that if j u(t) j � c and j z(i) j (t) � c for all t � 0,
then x(t) ¼ T�1(Z(t)) is bounded in norm by a constant that only
depends on c (since T�1 is continuous, by definition of diffeo-
morphism), and the numbers bi: ¼ z(i)(1) are also bounded by a
constant that depends only on c, so K(x(t),u(t) þ u0(t)) also is.

Corollary 3. Analogous results can be shown for the simulation of systems
consisting of any number k of higher order differential equations as in Equation
4. In this case fixed systems of first-order differential equations of a form as in
Equation 3, but with k memoryless feedback functions K1,. . .Kk that depend on
the simulated higher-order system, can be shown to be able to simulate the
dynamic response of arbitrary higher-order systems of differential equations.

Lie brackets. The study of controllability and other properties of
nonlinear systems is based upon the use of Lie bracket formalism and
theory ([33], Chapter 4). We need this formalism to show in the
section Application to Neural Network Equations that the class Sn
includes some neural networks of the form Equation 6. For any two
vector fields f and g,

½f ; g� ¼ g � f � f � g

denotes the Lie bracket of f and g. Recall that the Lie bracket of two
vector fields is a vector field that characterizes the effective direction
of movement obtained by performing this ‘‘commutator’’ motion:
follow the vector field f for t time steps, then g for t time steps, then f
backward in time for t time steps, and finally g backward in time for t
time steps, for small t . 0. To be more precise, denote formally by etf

the flow associated to f, and similarly for g. Consider the following
curve, for any initial state x0:

cðtÞ :¼ e�
ffiffi
t
p

ge�
ffiffi
t
p

f e
ffiffi
t
p

g e
ffiffi
t
p

f x0 :

Applying repeatedly this expansion:

etf x0 ¼ xð0Þ þ tx9ð0Þ þ t2

2
x 99ð0Þ þ oðt2Þ

¼ x0 þ tf ðx0Þ þ
t2

2
f�ðx0Þf ðx0Þ þ oðt2Þ

(and similarly for g), we obtain that

e�
ffiffi
t
p

g e�
ffiffi
t
p

f e
ffiffi
t
p

g e
ffiffi
t
p

f x0 ¼ et½f ;g�x0 þ oðtÞ

as t ! 0, from which it follows that c9(0)¼ [f,g](x0), which means that
the direction of [f,g] is followed when performing the commutator
motions. Using the possible noncommutativity of the vector fields,
one generates in this manner genuinely new directions of movement
in addition to those provided by the linear combinations of f and g.
Well-known examples are provided by the Lie bracket of two
rotations around orthogonal axes, which is a rotation around the
remaining axis (see for example [33], page 150), or the motions
involved in parking an automobile (see for example [33], Example
4.3.13).

Iterations of Lie brackets play a key role. Let us introduce, for any
given vector field f, the operator adf, which maps vector fields into
vector fields by means of the formula adf(g): ¼ [f,g]. Iterations of the
operator adf are defined in the obvious way: ad0

f ðgÞ ¼ g and
adkþ1

f ðgÞ ¼ adf ðadk
f ðgÞÞ.

It is also useful to consider an operator Lf that acts on scalar
functions. We use the notation Lfu, for any (smooth) vector field f and
(smooth) function u, to denote the Lie derivative of u along f, that is,
ru � f. The function Lfu, which is again smooth, is nothing more than
the directional derivative of the function u in the direction of the vector
field f, in the sense of elementary calculus. One can also consider
iterated applications of the operator Lf.

A characterization of Sn via lie brackets. With these notations, we are
ready to present a Lie geometric characterization of the class Sn. The
next theorem follows by combining the proofs of Proposition 5.3.9
and of Theorem 15 in [33] (with 0 ¼ X ¼ Rn in the notations of that
text).

Theorem 4. The system x9¼ f(x)þ g(x)v is globally feedback linearizable if
and only if there exists a smooth function

u : R n ! R

having everywhere nonzero gradient and satisfying the following
properties: 1) for each x 2 Rn, the vectors gðxÞ; adf gðxÞ; . . . ; adn�1

f gðxÞ are
linearly independent; 2) for each x 2 Rn and each j ¼0,. . .,n � 2,
ruðxÞ � adj

f gðxÞ ¼ 0; 3) the map x 7!ðuðxÞ;Lf uðxÞ; . . . ;Ln�1
f uðxÞÞ is a

bijection Rn ! Rn.
Observe that the conditions amount to the existence of a well-

behaved solution u of a set of first-order linear partial differential
equations. Existence of a solution of this form is not trivial to verify.
To study solvability, in control theory one considers the following
conditions:

(LI) The set of vector fields fgðxÞ; adf gðxÞ; . . . ; adn�1
f gðxÞg is

linearly independent.
(INV) The distribution generated by fg; adf g; . . . ; adn�2

f gg is invol-
utive.

This last condition means that the Lie bracket of any two of the
vector fields adi

f g, for i 2 f0,. . .,n� 2g, should be, for each x, a linear
combination of these same n � 1 vectors.

One then has the following result (see Theorem 15 in [33]), which is
a consequence of Frobenius’ Theorem in partial differential equation
theory: A system satisfies both conditions (LI) and (INV) at a state x if and
only if it is feedback linearizable in some open set containing x. This provides
a useful and complete characterization of local feedback lineariz-
ability, and in particular a necessary condition for global feedback
linearizability. In examples, often these conditions lead one to a
globally defined solution, see, e.g., example 5.3.10 in [33]).

Application to neural network equations. Let us now show with the help
of Theorem 4 that the class Sn includes some fading-memory systems
of the form Equation 6. Indeed, consider any system as follows:

x9 ¼ �diagðk1; :::; knÞxþ bv ð11Þ

where the ki 6¼ kj for each i 6¼ j are all positive, diag(k1,...,kn) is the
resulting diagonal matrix, and the column vector b¼ col(b1,. . .,bn) has
nonzero entries: bi 6¼ 0 for all i. (Such a system, which has the form
Equation 6 with u(Ax) [0, consists of n first-order linear differential

PLoS Computational Biology | www.ploscompbiol.org January 2007 | Volume 3 | Issue 1 | e1650013

Feedback in Neural Circuits

equations in parallel, and is obviously fading-memory.) It is easy to
see that, up to signs (�1)i, we have

adi
f gðxÞ ¼ colðki

1b1; . . . ;ki
nbnÞ

for i . 0, and the linear independence of gðxÞ; adf gðxÞ; . . . ; adn�1
f gðxÞ

follows from the fact that these constant vectors form a Vander-
monde matrix. Then we can pick u(x) as a linear map x! ax, where a
is any vector in Rn that is orthogonal to all of the vectors

colðki
1b1; . . . ;ki

nbnÞ ; i ¼ 0; 1; . . . ; n� 2 :

The map x 7!ðuðxÞ;Lf uðxÞ; . . . ;Ln�1
f uðxÞÞ is represented then also by

a Vandermonde matrix, so it is a bijection. Hence, conditions 1)�3) of
Theorem 4 are satisfied, which implies that the system (Equation 11)
belongs to the class Sn.

As a further example, we now consider the following system, which
also has the general form of the neural network Equation 6:

x9
1ðtÞ ¼ �k1x1ðtÞ þ rðx2ðtÞ þ ax3ðtÞÞ
x9
2ðtÞ ¼ �k2x2ðtÞ þ rðx2ðtÞ þ x3ðtÞÞ

x9
3ðtÞ ¼ �k3x3ðtÞ þ vðtÞ

where u is a scalar function, smooth but otherwise arbitrary for now,
and a as well as the ki are constants, also arbitrary for now. We will
analyze this example using the Lie formalism described in the section
Lie Brackets. The system has the form x9¼ f(x)þ g(x)v, with n¼3, and f
and g are the following vector fields:

f ¼
�k1x1 þ rðx2 þ ax3Þ
�k2x2 þ rðx2 þ x3Þ

�k3x3

0
@

1
A ; g ¼

0
0
1

0
@

1
A :

Note that the Jacobian g* of g is identically zero, which simplifies the
computation of Lie brackets. We calculate adfg(x)¼ [f,g](x)¼�f*(x)g(x)
and [g,adfg] ¼ (adfg)*(x)g(x) as follows:

adf gðxÞ ¼
� ar9ðx2 þ ax3Þ
�r9ðx2 þ x3Þ

k3

0
@

1
A :

½g; adf g� ¼
� a2r 99ðx2 þ ax3Þ
�r 99ðx2 þ x3Þ

0

0
@

1
A

The involutivity condition says that the set of vector fields fg,adf gg
should be involutive, which means that [g,adf g](x) should be in the
span of g(x) and adf g(x) for all x. Let us evaluate g,adf g,[g,adf g] at the
particular points for which x3 ¼ 0, so that we obtain, respectively,
three vectors v1,v2,v3 that depend on x2 only:

v1ðx2Þ ¼
0
0
1

0
@

1
A ; v2ðx2Þ ¼

� ar9ðx2Þ
�r9ðx2Þ

k3

0
@

1
A :

v3ðx2Þ ¼
� a2r 99ðx2Þ
�r 99ðx2Þ

0

0
@

1
A

If [g,adf g](x) is in the span of g(x) and adf g(x) for all vectors x, then, in
particular, v3(x2) must belong to the span of v1(x2) and v2(x2) for all x2.
This means that there is, for each x2, a scalar r(x2) such that

a2r 99ðx2Þ ¼ arðx2Þr9ðx2Þ;r 99ðx2Þ ¼ rðx2Þr9ðx2Þ

If a 6¼ 0, it follows that u 99(x2)¼ au 99(x2) for all x2. So, if also a 6¼ 1, we
conclude that u 99(x2) must vanish for all x2. Thus, the system in our
example (assuming a =2 f0,1g) is feedback linearizable only if u is a
linear function.

On the other hand, consider now the cases a¼0 or a¼ 1. Then, the
involutivity condition becomes the requirement that there should
exist a scalar function r such that

r 99ðx2 þ x3Þ ¼ rðxÞr9ðx2 þ x3Þ; r 99ðx2 þ x3Þ ¼ rðxÞr9ðx2 þ x3Þ;

which can be achieved provided only that the function u9 is
everywhere nonzero (which is true if u is, for example, a standard
sigmoidal function), simply by taking r(x) ¼ u 99(x2 þ x3) / u9(x2 þ x3).
The linear independence condition amounts to showing that the set
of vectors fg,adf g,ad2f gg is linearly independent. Computing the
determinant of the matrix that has these vectors as columns, when a¼
0 we obtain �u9(x2)[u9(x2 þ x3)]

2, which is everywhere nonzero,

provided that we again assume that u has an everywhere nonzero
derivative. Thus, the Lie-theoretic conditions for feedback lineariza-
tion are satisfied, for any choice of ki, when a¼0. In the case a¼1, the
same computation gives a determinant of k1� k2)[u9(x2þ x3)]

2, so the
Lie-theoretic conditions for feedback linearization are satisfied, for
any choice of ki such that k1 6¼ k2.

Mathematical definitions and details to the proof of Theorem 2.
Fading-memory filters. A map (or filter) F from input to output streams
is defined to have fading memory if its current output at time t depends
(up to some precision e) only on values of the input u during some
finite time interval [t – T,t]. (We use in this section boldface letters to
denote input streams, because they typically have a dimension larger
than 1.) In formulas: F has fading memory if there exists for every e .
0 some d . 0 and T . 0 so that j (Fu)(t)� (Fũ)(t) j, e for any t 2 R and
any input functions u,ũ with jj u(s)� ũ(s) jj , d for all s 2[t�T,t]. This
is a characteristic property of all filters that can be approximated by
an integral over the input stream u, or more generally by Volterra or
Wiener series. Note that nontrivial Turing machines and FSMs cannot
be approximated by filters with fading memory, since they require a
persistent memory.

Finite state machines. The deterministic finite state machine (FSM), also
referred to as deterministic finite automaton, is a standard model for
a digital computer, or more generally for any realistic computational
device that operates in discrete time with a discrete set of inputs and
internal states [26]. One assumes that an FSM is at any time in one of
some finite number l of states, and that it receives at any (discrete)
time step one input symbol from some alphabet fs1,. . .,skg that may
consist of any finite number k of symbols. Its ‘‘program’’ may consist
of any transition function TR:fs1,. . .,skg3 f1,. . .,lg ! f1,. . .,lg, where
TR(si,j9)¼ j denotes the new internal state j which the FSM assumes at
the next time step after processing input symbol si in state j9.

Precise statement of Theorem 2. We consider here a slight variation of
the FSM model, which is more adequate for systems that operate in
continuous time and receive analog inputs (for example, trains of
spikes in continuous time). We assume that the raw input is some
arbitrary n-dimensional input stream u (i.e., u(t) 2 Rn for every t 2 Rn).
Furthermore we assume that there exist pattern detectors F1,. . .,Fk
that report the occurrence of spatio–temporal patterns in the input
stream u from k different classes C1,. . .,Ck. In the case where the input
u consists of spike trains, these classes could consist, for example, of
particular patterns of firing rates, of particular spike patterns, or of
particular correlation patterns among some of the input spike trains.
It was shown in [5] that readouts from generic neural microcircuit
models can easily be trained to approximate the role of such pattern
detectors F1,. . .,Fk. We assume that the detection of a pattern from
class Ci by pattern detector Fi affects the state of the FSM according
to its transition function TR in a way that corresponds to the
presentation of input symbol si in the discrete-time version: if j9 was
its preceding state, then it changes now within some finite switching
time to state j ¼ TR(si,j9).

To make an implementation of such FSM by a noisy system
feasible, we assume that the pattern detectors (F1u)(t),. . .,(Fku)(t)
always assume values �0, except during a switching episode. During a
switching episode, exactly one of the pattern detectors (Fiu)(t)
assumes values .0. We assume that this (Fiu(t) reaches values �1
during this switching episode. We also assume that the length of each
switching episode (i.e., the time during which some (Fiu(t) assumes
values .0) is bounded from above by some constant d, and that the
temporal distance between the beginnings of any two different
switching episodes is at least Dþ3d9 (where D is the assumed temporal
delay of the feedback in the circuit). To avoid that the subsequent
construction is based on unrealistic assumptions, we allow that each
pattern detector Fi is replaced by some arbitrary filter F̂ i so that
ðF̂ iuÞðtÞ is a continuous function of time (with values in some
arbitrary bounded range [�B,B]) with jðF̂ iuÞðtÞ � ðFiuÞðtÞj � 1

4 for any
input stream u that is considered.

The informal statement of Theorem 2 is made precise by the
subsequent Theorem 5 (see Figure 6 for an illustration). It exhibits a
simple construction method whereby fading-memory filters with
additive noise of bounded amplitude can be composed into a closed
loop system C that emulates an arbitrary given FSM in a noise-robust
manner. The resulting system C can be embedded into any other
fading-memory system, which receives the outputs CL – Ĥj(t) of C as
additional inputs. In this way, any given fading-memory system can
integrate the computational capability and nonfading states of the
FSM that is emulated by C into its own real-time computation on
time-varying input streams u.

An essential aspect of the proof of Theorem 5 is that suitable
fading-memory filters Hj can prevent in the closed loop the
accumulation of errors through feedback, even if the ideal fading-

PLoS Computational Biology | www.ploscompbiol.org January 2007 | Volume 3 | Issue 1 | e1650014

Feedback in Neural Circuits

memory filters Hj are subsequently replaced by imperfect approx-
imations Ĥj. One just has to construct the ideal fading-memory filters
Hj in such a way that they take into account that their previous
outputs, which have been fed back into the system C, may have been
corrupted by additive noise. As long as this additive noise of bounded
amplitude has not been amplified in the closed loop, the filters Hj can
still recover which of the finitely many states of the emulated FSM A
was represented by that noise-corrupted feedback.

From the perspective of neural circuit models, it is of interest to
note that the construction of the system C can be replaced by an
adaptive procedure, whereby readouts from generic cortical micro-
circuit models are trained to approximate the target filters Hj.
General approximation results [4,5,37] imply that if the neural circuit
is sufficiently large and contains sufficiently diverse components (for
example, dynamic synapses with slightly different parameter values),
then the actual outputs Ĥj of these readouts can approximate the
target filters Hj uniformly up to any given maximal error e . 0.
Theorem 5 guarantees that the resulting neural circuit model with
these (imperfectly) trained readouts can in the closed loop emulate
the given FSM A in a reliable manner, provided that the neural circuit
model is sufficiently large and diverse so that its readout can achieve
an approximation error e not larger than 1/4.

Theorem 5. One can construct for any given FSM A, some time-invariant
fading-memory filters H1,. . .,Hl with the property that any approximating filters
Ĥ1,. . .,Ĥl with jHj � Ĥj j � 1/4 provide in the closed loop with delay D (see
Figure 6) outputs CL � Ĥ1,. . .,CL � Ĥl that simulate the FSM A in the
following sense:

If [t1,t2] is some arbitrary time interval between switching episodes of the
FSM A with noise-free pattern detectors (F1u)(t),. . .,(Fku)(t) during which A is
in state j, then the outputs CL � Ĥi(t) of the approximating filters Ĥi in the
closed loop with noisy pattern detectors ðF̂1uÞðtÞ; . . . ; ðF̂kuÞðtÞ satisfy CL �
Ĥj(t) � 3/4 and CL� Ĥj*(t) � 1/4 for all j* 6¼ j and all t 2 [t1,t2].

Proof of the precise statement of Theorem 2. We present here a proof of
Theorem 5 (see Precise Statement of Theorem 2 section above),
which provides a formally precise version of Theorem 2.

To prove that the given FSM A can be implemented in a noise-
robust fashion, we construct suitable time-invariant fading-memory
filters H1,. . .,Hl. They receive as inputs the time-varying functions
ðF̂1uÞðtÞ; . . . ; ðF̂kuÞðtÞ. In addition, they receive in the open-loop
inputs v1(t),. . .,v1(t), where each vj(t) will be replaced by a delayed
version of the output of Hj (or Ĥj) in the closed loop (see Figure 6).
The filters Hj will be defined in such a way that Hj(t) � 1 signals in the
closed loop that the FSM A is at time t in state j. To make this
implementation noise-robust, we make sure that even if one replaces
the filters Hj by noisy approximations Ĥj, which satisfy in the open
loop j Hj(t) � Ĥj(t) j � ¼ (for all t 2 R and any time-varying inputs
ðF̂1uÞðtÞ; . . . ; ðF̂kuÞðtÞ and v1(t),. . .,vl(t)), then the closed-loop version of
such imperfect approximations Ĥj simulates the FSM A in such a way
that Ĥj(t) � 1 =

3 implies that A is in state j at time t.
Let D be the time delay in the feedback for the closed loop. We now

define the target outputs H1(t),. . .,Hl(t) (for the open-loop version,
where the Hj receive in addition to ðF̂1uÞðtÞ; . . . ; ðF̂kuÞðtÞ some
arbitrary time-varying variables v1(t),. . .,v1(t) with values in [�1,2] as
inputs). We define the target outputs of H1,. . .,Hl as a stationary
transformation of the time-varying inputs vj(t) and of the outputs of
the following two other types of time invariant fading-memory filters:
(i) fiðtÞ :¼ maxfðF̂ iuÞðsÞ : t� D� d � s � tg for i ¼ 1,. . .,k; (ii) vj(t � 2d)
for j¼ 1,. . .,l. We will show below in Lemma 6 and Lemma 7 that both
of these functions of time can be viewed as outputs of time-invariant
fading-memory filters that receive as inputs the time-varying
functions ðF̂ iuÞðtÞ (for some arbitrary input stream u) and vj(t). On
the basis of these two Lemmata, it is clear that the Hj are time-
invariant fading-memory filters if one can define H1(t),. . .,Hl(t) as
(static) continuous functions of the variables vj(t) and the outputs of
the filters (i) and (ii). In the following we sometimes refer to H1,. . .,Hl
as static functions of input vectors (f1(t),. . .,fk(t)v1(t),. . .,vl(t),v1(t �
2d),. . .,vl(t�2d)) from Rkþ2l, and sometimes as filters with time-varying
inputs F̂ iu and vj (if we view the filters (i) and (ii) as being part of the
computation of Hj). To define such functions Hj(t), we first define for
each j 2 f1,. . .,lg two disjoint closed and bounded sets Sj,0,Sj,1 2 Rkþ2l,
and we set Hj(x)¼ 0 for x 2 Sj,0 and Hj(x)¼ 1 for x 2 Sj,1. Since the sets
Sj,0 and Sj,1 will have positive distance (i.e., inffjj x�y jj: x 2Sj,0 and y 2
Sj,1g . 0), it follows from standard arguments of analysis that the
definition of Hj can be continued outside of Sj,0,Sj,1 to yield a
continuous function from Rkþ2l into R.

To define the sets Sj,0,Sj,1, we consider the following two types of
conditions:

(Aj) There exist i 2f1,. . .,kg and j9 2f1,. . .,lg so that TR(i,j9)¼ j, fi(t) �
1 =

3 and fi9(t) �¼ for all i9 6¼ i, vj9(t� 2d) � 1 =

3 and vj*(t� 2d) �¼ for all
j* 6¼ j9.

(Bj)fi(t) � ¼ for i ¼ 1,. . .,k, vj(t) � 1 =

3 and vj*(t) � ¼ for all j* 6¼ j.
We say that a vector (f1(t),. . .,fk(t),v1(t),. . .,vl(t),v1(t� 2d),. . .,vl(t� 2d))

2[�B,B]k 3 [�1,2]2l belongs to set Sj,1 if the conditions Aj or Bj apply,
and to set Sj,0 if there exists some j* 6¼ j so that the conditions Aj* or Bj*
apply.

It follows immediately from the definition of the sets Sj,0 and Sj,1
that they are closed and bounded. One can also verify immediately
that for any j,j9 2 f1,. . .,lg the 2 conditions Aj and Bj9 can never be
simultaneously satisfied (for any values of the variables fi(t),vj(t),vj(t �
2d)). In addition the conditions Aj and Aj9 (Bj and Bj9) can never be
simultaneously satisfied for any j 6¼ j9. This implies that the sets Sj,0
and Sj,1 are disjoint for each j 2 f1,. . .,lg.

We define for each j 2 f1,. . .,lg a continuous function Hj: Rkþ2l !
[0,1] by setting

HjðxÞ :¼
1; if distðx; Sj;0Þ

� distðSj;0; Sj;1Þ
distðx; Sj;0Þ=distðSj;0; Sj;1Þ; otherwise;

8<
:

where dist(x,S):¼ inffjj x� y jj: y 2 Sg for any set S 2 Rkþ2l. It is then
obvious that Hj is a continuous function from Rkþ2l into [0,1] with
Hj(x)¼0 for all x 2 Sj,0 and Hj(x)¼1 for all x 2 Sj,1. These functions Hj
will prevent the amplification of noise in the closed loop, since they
assume outputs 1 or 0 in all relevant situations, even if their inputs
deviate by up to ¼ from their ‘‘ideal’’ values.

We consider some arbitrary imprecise and/or noisy versions Ĥj of
these filters Ĥj (with inputs ðF̂1uÞðtÞ; . . . ; ðF̂kuÞðtÞ and additional
inputs v1(t),. . .,vl(t) whose output differs at any time t by at most ¼
from that of Hj (of course in the closed loop these deviations could be
accumulated and amplified to values .¼). We want to show that for
any such Ĥ1,. . .,Ĥl the closed loop version of the circuit implements
the given FSM A. As initial condition we assume that the given FSM A
is in state 1 for t � 0, and consequently also that Ĥ1(t) � 1 =

3 and Ĥj(t) �
¼ for j ¼ 2,. . .,l, as well as fi(t) � ¼ for all t � 0 and i ¼ 1,. . .,k.

We will now prove the claim of Theorem 5 for arbitrary time
intervals [t1,t2] outside of switching episodes. We assume without loss
of generality that t2 marks the beginning of the next switching
episode [t2,t3] for some t3 . t2 with j t3 � t2 j � d. Furthermore we
assume that either t1 ¼ 0 (Case 1), or t1 is the endpoint of the
preceding switching episode [t0,t1] with j t1 � t0 j � d (Case 2). The
formal proof is carried out by induction on the number of preceding
switching episodes (and Case 2 represents the induction step). In both
cases one just needs to analyze the outputs of the previously defined
filters ĤjðtÞ in the case where some of their inputs are delayed
feedbacks of their previous outputs.

Case 1: t1¼ 0. We prove by a nested induction on m 2 N that CL�
Ĥ1(t) � 1 =

3 and CL� Ĥj(t) �¼ for all j . 1 holds for all t 2 [m � D,(mþ1)
� D) \[t1,t2]. Since by assumption no switching episode occurs during
[t1,t2], one has fi(t) � ¼ for i ¼ 1,. . .,k and for all t 2 [t1,t2]. Further-
more, by our assumption on the initial condition of the FSM A (for m
¼ 0), or by the induction hypothesis of the nested induction (for m .
0), we can assume that the variables vj(t) of the open loop have now
been assigned in the closed loop the values CL – Ĥj(t� D); therefore,
they are �1 =

3 for j¼ 1 and �¼ for all j . 1. Hence condition B1 in the
definition of the sets Sj,0,Sj,1 applies, and the current circuit input is
therefore in S1,1. Thus H1¼1 and Hj¼0 for j . 1, which implies Ĥ1 �

Figure 6. Emulation of an FSM by a Noisy Fading-Memory System with

Feedback According to Theorem 5

(A) Underlying open-loop system with noisy pattern detectors F̂1, . . ., F̂k

and suitable fading-memory readouts Ĥ1, . . ., Ĥl (which may also be
subject to noise).
(B) Resulting noise-robust emulation of an arbitrary given FSM by adding
feedback to the system in (A). The same readouts as in (A) (denoted CL�
Ĥj(t) in the closed loop) now encode the current state of the simulated
FSM.
doi:10.1371/journal.pcbi.0020165.g006

PLoS Computational Biology | www.ploscompbiol.org January 2007 | Volume 3 | Issue 1 | e1650015

Feedback in Neural Circuits

1 =

3 and Ĥj �¼ for j . 1 in the open loop, hence CL� Ĥ1(t) � 1 =

3 and CL
� Ĥj(t) � ¼ for j . 1 in the closed loop (since vj(t)¼ CL� Ĥj(t�D) in
the closed loop).

Case 2: t1 is the endpoint of a preceding switching episode [t0,t1].
Assume that ðF̂ iuÞðtÞ is the (approximating) pattern detector that
assumes a value �3 =

4 during the preceding switching episode [t0,t1],
while ðF̂ i9uÞðtÞ � 1

4 for all i9 6¼ i during [t0,t1]. Let t9 2[t0,t1] be the first
timepoint where ðF̂ iuÞðtÞ reaches a value �3 =

4. Then fi(t) � 3 =

4 and fi*(t)
�¼ for all i* 6¼ i and for all t 2 [t9,t9þDþ d] (by the definition of the
filters fi(t)). Furthermore, one has by the induction hypothesis that for
the state j9 in which the FSM A was before the switching episode [t0,t1]
that CL� Ĥj9(t�D� 2d � 3 =

4 and CL� Ĥj*(t�D�2d) �¼ for all j* 6¼ j9
and all t 2 [t9,t9 þ Dþ 2d]. We exploit here that t0 � t9 � t1 � t0 þ d,
hence t0 � D � 2d � t � D � 2d � t0 for all t 2 [t9,t9 þ D þ d].
Furthermore, we have assumed that the minimal distance between
the beginnings of switching episodes is D þ 3d. Therefore, the
considered range [t0 � D � 2d,t0] for t � D � 2d is contained in the
preceding time interval before the switching episode [t0,t1] to which
the induction hypothesis applies.

The previously listed conclusions imply that for t 2 [t9,t9 þ D þ d]
the current input to the open loop lies in the set Sj,1 for j ¼ TR(i,j9),
hence Hj ¼ 1 and Ĥj � 3 =

4, while Hj* ¼ 0 and Ĥj* � ¼ for all other j*.
But if one chooses as inputs v1(t),. . .,vl(t) to the open loop just those
values which the circuit receives in the closed loop, one gets CL� Ĥj(t)
� 3 =

4 and CL � Ĥj*(t) � ¼ for all j* 6¼ j and all t 2 [t9,t9 þ D þ d], in
particular for all t 2[t1,t1þ D].

One can then prove by a nested induction on m 2 N like in Case 1
that the outputs CL� Ĥj*(t) for j

*¼ 1,. . .,l have the desired values for t
2[t1 þ mD,t1 þ (m þ 1) � D]\ [t1,t2]. The preceding argument provides
the verification of the claim for the initial step m ¼ 0 of this nested
induction.

To complete the proof of Theorem 5, it only remains to verify the
following two simple facts about time-invariant fading-memory
filters.

Lemma 6. Assume that F̂ i is some arbitrary time-invariant fading-memory
filter, and D,d are arbitrary positive constants. Then the map that assigns to an
input stream u the function fiðtÞ :¼ maxfðF̂ iuÞðsÞ : t� D� d � s � tg is
also a time-invariant fading-memory filter.

Proof of Lemma 6: Assume some e . 0 is given. Fix d9 and T . 0 so
that jðF̂ iuÞðsÞ � ðF̂ ivÞðsÞj, e for all s 2 [t � D� d,t] and all u,v with jj
u(s) � v(s) jj , d9 for all s 2 [t � D� d � T,t].

Then jmaxf(F̂iu)(s): t�D� d � s � tg�maxf(F̂iv)(s): t�D� d � s �
tgj , e.

Lemma 7. The filter that maps for some arbitrary fixed d . 0 the function
u(t) onto the function u(t � 2d) is time-invariant and has fading memory.

Proof of Lemma 7 follows immediately from the definitions
(choose T � 2d in the condition for fading memory).

This completes the proof of Theorem 5, which shows that any given
FSM can be reliably implemented by fading-memory filters with
feedback even in the presence of noise.

Remark. In the application of this theory to cortical microcircuit
models, we train readouts from such circuits to simultaneously assume
the role of the pattern detectors F̂1; . . . ; F̂k, which become active if
some pattern occurs in the input stream that may trigger a state
change of the simulated FSM A, and the role of the fading-memory
filters Ĥ1,. . .,Ĥl, which create high-dimensional attractors of the
circuit dynamics that represent the current state of the FSM A.

Details of the cortical microcircuit models. We complement in this
section the general description of the simulated cortical microcircuit
models from the section Applications to Generic Cortical Micro-
circuit Models, providing in particular all missing data that are
needed to reproduce our simulation results. The original code that
was used for these simulations is online available at http://www.lsm.
tugraz.at/research/index.html.

Each circuit consisted of 600 neurons, which were placed on the
integer grid points of a 5 3 5 3 24 grid. Twenty percent of these
neurons were randomly chosen to be inhibitory. The probability of a
synaptic connection from neuron a to neuron b (as well as that of a
synaptic connection from neuron b to neuron a) was defined as C �
exp(�D2(a,b)/k2), where D(a,b) is the Euclidean distance between
neurons a and b, and k is a parameter that controls both the average
number of connections and the average distance between neurons
that are synaptically connected (we set k¼ 3.). Depending on whether
the pre- or postsynaptic neuron was excitatory (E) or inhibitory (I),
the value of C was set according to [44] to 0.3 (EE), 0.2 (EI), 0.4 (IE), 0.1
(II), yielding an average of 10,900 synapses for the chosen circuit size.
External inputs and feedbacks from readouts were connected to
populations of neurons in the circuit with randomly chosen
connection strengths.

I&F neurons. A standard leaky I&F neuron model was used, where
the membrane potential Vm of a neuron is given by:

sm
dVm

dt
¼ �ðVm � VrestingÞ þ Rm � ðIsyn þ Iinject þ InoiseÞ ð12Þ

where tm is the membrane time constant (30 ms), which subsumes the
time constants of synaptic receptors as well as the time constant of
the neuron membrane. Other parameters are: absolute refractory
period 3 ms (excitatory neurons), 2 ms (inhibitory neurons); threshold
15 mV (for a resting membrane potential Vresting, assumed to be 0),
reset voltage drawn uniformly from the interval [13.8 mV, 14.5 mV]
for each neuron; input resistance Rm, 1 MX, constant nonspecific
background current Iinject uniformly drawn from the interval [13.8
mV, 14.5 mV] for each neuron; input resistance Rm, 1 MX, constant
nonspecific background current Iinject uniformly drawn from the
interval [13.5 nA, 14.5 nA] for each neuron; additional time-varying
noise input current Inoise drawn every 5 ms from a Gaussian
distribution with mean 0; and SD chosen randomly for each neuron
from the uniform distribution over the interval [4.0 nA, 5.0 nA]. For
each simulation, the initial condition of each I&F neuron, i.e., its
membrane voltage at time t ¼ 0, was drawn randomly (uniform
distribution) from the interval [13.5 mV, 14.9 mV]. Finally, Isyn(t) is the
sum of input currents supplied by the explicitly modeled synapses.

HH neurons: We used single-compartment HH neuron models
with passive and active properties modeled according to [48,49]. The
membrane potential was modeled by

Cm
dV
dt
¼ �glðV � ElÞ � INa � IKd � IM �

1
a
Inoise � Isyn ; ð13Þ

where Cm¼ 1lF/cm2 is the specific membrane capacitance, gL¼ 0.045
mS/cm2 is the leak conductance density, EL ¼ �80 mV is the leak
reversal potential, and Isyn(t) is the input current supplied by
explicitly modeled synapses (see the definition below). The membrane
area a of the neuron was set to be 34,636 lm2 as in [48]. The term
Inoise(t) (see the precise definition below) models smaller background
input currents from a large number of more distal neurons, causing a
depolarization of the membrane potential and a lower input
resistance commonly referred to as ‘‘high conductance state’’ (for a
review see [42]).

In accordance with experimental data on neocortical and hippo-
campal pyramidal neurons ([50–53]) the active currents in the HH
neuron model comprise a voltage dependent Naþ current INa ([54])
and a delayed rectifier Kþ current IKd ([54]). For excitatory neurons, a
noninactivating Kþ current IM ([55]) responsible for spike frequency
adaption was included in the model.

The voltage-dependent Naþ current was modeled by:

INa ¼ �gNam
3hðV � ENaÞ

dm
dt
¼ amðVÞð1� mÞ � bmðVÞm

dh
dt
¼ ahðVÞð1� hÞ � bhðVÞh

am ¼
�0:32ðV � VT � 13Þ

exp½�ðV � VT � 13Þ=4� � 1

bm ¼
0:28ðV � VT � 40Þ

exp½ðV � VT � 40Þ=5� � 1

ah ¼ 0:128 exp½�ðV � VT � VS � 17Þ=18�

bh ¼
4

1þ exp½�ðV � VT � VS � 40Þ=5�

where VT¼�63 mV, and the inactivation was shifted by 10 mV toward
hyperpolarized values (VS¼ 10 mV) to reflect the voltage dependence
of Naþ currents in neocortical pyramidal cells [56]. The peak
conductance densities for the INa current was chosen to be 500 pS/
lm2.

The delayed rectifier Kþ current was modeled by:

IKd ¼ �gKdn
4ðV � EKÞ

dn
dt
¼ anðVÞð1� nÞ � bnðVÞn

an ¼
�0:032ðV � VT � 15Þ

exp½�ðV � VT � 15Þ=5� � 1

PLoS Computational Biology | www.ploscompbiol.org January 2007 | Volume 3 | Issue 1 | e1650016

Feedback in Neural Circuits

bn ¼ 0:5 exp½�ðV � VT � 10Þ=40�

The peak conductance densities for the IKd current was chosen to be
100 pS/lm2.

The noninactivating Kþ current was modeled by:

IM ¼ �gMnðV � EKÞ

dn
dt
¼ anðVÞð1� nÞ � bnðVÞn

an ¼
0:0001ðV þ 30Þ

1� exp½�ðV þ 30Þ=9�

bn ¼
�0:0001ðV þ 30Þ
1� exp½ðV þ 30Þ=9�

The peak conductance density for the IM current was chosen to be 5
pS/lm2.

For each simulation, the initial condition of each neuron, i.e., the
membrane voltage at time t ¼ 0, was drawn randomly (uniform
distribution) from the interval [�70, �60] mV.

The total synaptic background current, Inoise(t), was a sum of two
independent currents:

InoiseðtÞ ¼ geðtÞðV � EeÞ þ giðtÞðV � EiÞ;

where ge(t) and gi(t) are time-dependent excitatory and inhibitory
conductances. The values of respective reversal potentials were Ee¼ 0
mV and Ei¼�75 mV mV.

The conductances ge(t) and gi(t) were modeled according to [48] as a
one-variable stochastic process similar to an Ornstein�Uhlenbeck
process:

dgeðtÞ
dt
¼ � 1

se
½geðtÞ � ge0� þ

ffiffiffiffiffi
De
p

v1ðtÞ

dgiðtÞ
dt
¼ � 1

si
½giðtÞ � gi0� þ

ffiffiffiffiffi
Di
p

v2ðtÞ

where ge0¼ 0.012 lS and gi0¼ 0.057 lS are average conductances, se¼
2.7 ms and se¼ 10.5 ms are time constants, De¼ 0.0067 lS2/s and Di¼
0.0083 lS2/s are noise-diffusion constants, v1(t) and v2(t) are Gaussian
white noise of zero mean and unit standard deviation.

Since these stochastic processes are Gaussian, they can be
integrated by an exact update rule:

geðtþ DtÞ ¼ ge0 þ ½geðtÞ � ge0�expð�Dt=seÞ þ AeN1ð0; 1Þ

geðtþ DtÞ ¼ ge0 þ ½giðtÞ � gi0�expð�Dt=siÞ þ AiN2ð0; 1Þ

where N1(0,1) and N2(0,1) are normal random numbers (zero mean,
unit SD) and Ae and Ai are amplitude coefficients, given by:

Ae ¼

ffi
De se
2
½1� expð�2Dt

se
Þ�

s

Ai ¼

ffi
Di si
2
½1� expð�2Dt

si
Þ�

s
:

According to [48], this model captures the spectral and amplitude
characteristics of the input conductances of a detailed biophysical
model of a neocortical pyramidal cell that was matched to intra-
cellular recordings in cat parietal cortex in vivo. Furthermore, the
ratio of the average contributions of excitatory and inhibitory
background conductances was chosen to be five in accordance with
experimental studies during sensory responses [57–59]. The max-
imum conductances of the synapses were chosen from a Gaussian
distribution with a SD of 70% of its mean (with negative values
replaced by values chosen from an uniform distribution between 0
and two times the mean).

We modeled the (short-term) dynamics of synapses according to
the model proposed in [43], with the synaptic parameters U (use), D
(time constant for depression), and F (time constant for facilitation)
randomly chosen from Gaussian distributions that model empirically
found data for such connections (see in Methods, Details of the
Cortical Microcircuit Models). This model predicts the amplitude Ak
of the EPSC for the kth spike in a spike train with interspike intervals
D1,D2,Dk�1 through the equations

Ak ¼ w � uk � Rk

uk ¼ U þ uk�1ð1� UÞexpð�Dk�1=FÞ

Rk ¼ 1þ ðRk�1 � uk�1Rk�1 � 1Þexpð�Dk�1=DÞ

with hidden dynamic variables u 2 [0,1] and R 2 [0,1], whose initial
values for the first spike are u1 ¼ U and R1 ¼ 1 (see [60] for a
justification of this version of the equations, which corrects a small
error in [43]).

The postsynaptic current for the kth spike in a presynaptic spike
train that had been generated at time tk, is modeled for t � tk þ D
(where D is the transmission delay) by Ak exp(�(t� tk�D)/ss) with ss¼3
ms (ss ¼ 6 ms) for excitatory (inhibitory) synapses. The transmission
delays D between neurons were chosen uniformly to be 1.5 ms for EE-
connections, and 0.8 ms for the other connections. The total synaptic
input current isyn(t) was modeled by the sum of these currents for all
synapses onto a neuron.

Synaptic parameters. Depending on whether a and b were
excitatory (E) or inhibitory (I), the mean values of the three
parameters U,D,F (with D,F expressed in seconds, s) were chosen
according to [44] to be .5, 1.1, .05 (EE), .05, .125, 1.2 (EI), .25, .7, .02 (IE),
.32, .144, .06 (II). The SD of each of these parameters was chosen to be
50% of its mean. The mean of the scaling parameter w (in nA) was
chosen to be 70 (EE), 150 (EI), �47 (IE), �47 (II). The SD of the
parameter w was chosen to be 70% of its mean and was drawn from a
gamma distribution. In the case of input synapses, the parameter w
had a value of 70 nA if projecting onto a excitatory neuron and�47
nA if projecting onto an inhibitory neuron.

The synaptic weights w of readout neurons were computed by
linear regression to minimize the mean squared error (w � x(t) – f(t))2

with regard to a specific target output function f(t) (which is described
for each case in the text or figure legends) for a series of randomly
generated time-varying circuit input streams u(t) of length up to 1 s.
Up to 200 such time-varying input streams u(t) were used for training,
amounting to at most 200 s of simulated biological time for training
the readouts.

The performance of trained readouts was evaluated by measuring
the correlation between w � x(t) and the target function f(t) during
separate testing episodes where the circuit received new input
streams u(t) (that were generated by the same random process as the
training inputs).

All simulations were carried out with the software package CSIM
[61], which is freely available from http://www.lsm.tugraz.at. It uses a
Cþþ-kernel with Matlab interfaces for input generation and data
analysis. As simulation time step, we chose 0.5 ms.

Technical details of Figure 5. Four randomly generated test input
streams, each consisting of eight spike trains (see Figure 5A), were
injected into four disjoint (but interconnected) subsets of 53 53 5¼
125 neurons in the circuit consisting of 600 neurons. Feedbacks from
readouts were injected into the remaining 100 neurons of the circuit.
The set of 100 neurons for which the firing activity is shown in Figure
5C contained 20 neurons from each of the resulting five subsets of the
circuit.

Generation of input streams for training and testing. The time-varying
firing rate ri(t) of the eight Poisson spike trains that represented input
stream i was chosen as follows. The baseline firing rate for streams 1
and 2 (see the lower half of Figure 5A) was chosen to be 5 Hz, with
randomly distributed bursts of 120 Hz for 50 ms. The rates for the
Poisson processes that generated the spike trains for input streams 3
and 4 were periodically drawn randomly from the two options 30 Hz
and 90 Hz. The actual firing rates (i.e., spike counts within a 30-ms
window) resulting from this procedure are plotted in Figure 5B.

To demonstrate that readouts that send feedback into the circuit
can just as well represent neurons within the circuit, we had chosen
the readout neurons that send feedback to be I&F neurons with noise,
like the other neurons in the circuit. Each of them received synaptic
inputs from a slightly different randomly chosen subset of neurons
within the circuit. Furthermore, the signs of weights of these synaptic
connections were restricted to be positive (negative) for excitatory
(inhibitory) presynaptic neurons.

The eight readout neurons that provided feedback were trained to
represent in their firing activity at any time the information in which
of input streams 1 or 2 a burst had most recently occurred. If it
occurred most recently in input stream 1, they were trained to fire at
40 Hz, and they were trained not to fire whenever a burst had
occurred most recently in input stream 2. The training time was 200 s
(of simulated biological time). After training, their output was correct
86% of the time (average over 50 s of input streams, counting the
high-dimensional attractor as being in the on state if the average
firing rate of the eight readout neurons was above 34 Hz). It was
possible to train these readout neurons to acquire such persistent

PLoS Computational Biology | www.ploscompbiol.org January 2007 | Volume 3 | Issue 1 | e1650017

Feedback in Neural Circuits

firing behavior, although they only received input from a circuit with
fading memory, because they were actually trained to acquire the
following behavior: fire whenever the rate in input stream 1 becomes
higher than 30 Hz, or if one can detect in the current state x(t) of the
circuit traces of recent high feedback values, provided the rate of
input stream 2 stayed below 30 Hz. Obviously this definition of the
learning target for readout neurons only requires a fading memory of
the circuit.

The readouts for the other three tasks achieved in 50 tests for new
inputs over 1 s (that had been generated by the same distribution as
the training inputs, see the preceding description) showed the
following average performance: task of panel E: mean correlation:

0.85, task of panel F: mean correlation: 0.63, task of panel G: mean
correlation: 0.86.

Technical details of Figure 2. The same circuit as for Figure 5 was
used. First, two linear readouts with feedback were simultaneously
trained to become highly active after the occurrence of the cue in the
spike input, and then to linearly reduce their activity, but each within
a different timespan (400 ms versus 600 ms). Their feedback into the
circuit consisted of two time-varying analog values (representing
time-varying firing rates of two populations of neurons), which were
both injected (with randomly chosen amplitudes) into the same
subset of 350 neurons in the circuit. Their weights w were trained by
linear regression for a total training time of 120 s (of simulated
biological time), consisting of 120 runs of length 1 s with randomly

Figure 7. Evaluation of the Dependence of the Performance of the Circuit in Figure 4 on the Feedback Strength (i.e., on the Mean Amplitude of Current

Injection from the Readout Back into Neurons in the Circuit)

For each feedback strength that was evaluated, the readouts were trained and tested for this feedback strength as for the preceding experiments. Error
bars in (B–D) denote standard error. These control experiments show that the feedback is essential for the performance of the circuit.
doi:10.1371/journal.pcbi.0020165.g007

PLoS Computational Biology | www.ploscompbiol.org January 2007 | Volume 3 | Issue 1 | e1650018

Feedback in Neural Circuits

generated input cues (a burst at 200 Hz for 50 ms) and noise inputs
(five spike trains at 10 Hz).

Technical details of Figure 3. Time-varying firing rates for the two
input streams (each consisting of eight Poisson spike trains) were
drawn randomly from values between 10 Hz and 90 Hz. The 16 spike
trains from the two input streams, as well as feedback from trained
readouts were injected into randomly chosen subsets of neurons. In
contrast to the experiment for Figure 3, these circuit inputs were not
injected into spatially concentrated clusters of neurons, but to a
sparsely distributed subset of neurons scattered throughout the
three-dimensional circuit. As a consequence, the firing activity CA(t)
of the high-dimensional attractor (see Figure 3D) cannot be readily
detected from the spike raster in Figure 3C. Both the linear readout
that sends feedback, and subsequently the other two linear readouts
(whose output for a test input to the circuit is shown in Figure 3E and
3F), were trained by linear regression during 140 s of simulated
biological time.

Average performance of linear readouts on 100 new test inputs of
length 700 ms (that had been generated from the same distribution as
the training inputs) was—task of panel D, mean correlation: 0.82; task
of panel E, mean correlation: 0.71; task of panel F, mean correlation:
0.79.

Control experiments (see Figure 7) show that the feedback is

essential for the performance of the circuit for these computational
tasks.

Acknowledgments

Comments from Wulfram Gerstner, Stefan Haeusler, Herbert Jaeger,
Konrad Koerding, Henry Markram, Gordon Pipa, Misha Tsodyks, and
Tony Zador are gratefully acknowledged. Our computer simulations
used software written by Thomas Natschlaeger, Stefan Haeusler, and
Michael Pfeiffer.

Author contributions. WM conceived and designed the experi-
ments. PJ performed the experiments. WM and EDS analyzed the
data. WM contributed reagents/materials/analysis tools. WM and EDS
wrote the paper.

Funding. This research was partially supported by the Austrian
Science Fund FWF grants S9102-N04 and P17229-N04, and PASCAL
project IST2002–506778 of the European Union. The work of EDS
was partially supported by US National Science Foundation grants
DMS-0504557 and DMS-0614371.

Competing interests. The authors have declared that no competing
interests exist.

References
1. Douglas RJ, Koch C, Mahowald M, Martin K, Suarez H (1995) Recurrent

excitation in neocortical circuits. Science 269: 981–985.
2. Grossberg S (2003) How does the cerebral cortex work? Development,

learning, attention, and 3D vision by laminar circuits of visual cortex.
Behav Cogn Neurosci Rev 2: 47–76.

3. Buonomano DV, Merzenich MM (1995) Temporal information transformed
into a spatial code by a neural network with realistic properties. Science
267: 1028–1030.

4. Maass W, Sontag ED (2000) Neural systems as nonlinear filters. Neural
Computation 12: 1743–1772.

5. Maass W, Natschläger T, Markram H (2002) Real-time computing without
stable states: A new framework for neural computation based on
perturbations. Neural Computation 14: 2531–2560.

6. Häusler S, Maass W (2007) A statistical analysis of information processing
properties of lamina-specific cortical microcircuit models. Cerebral
Cortex: epub. Available: http://www.igi.tugraz.at/maass/psfiles/162.pdf. Ac-
cessed 1 December 2006.

7. Destexhe A, Marder E (2004) Plasticity in single neuron and circuit
computations. Nature 431: 789–795.

8. Maass W, Natschläger T, Markram H (2004) Fading memory and kernel
properties of generic cortical microcircuit models. J Physiol (Paris) 98: 315–
330.

9. Leon MI, Shadlen MN (2003) Representation of time by neurons in the
posterior parietal cortex of the macaque. Neuron 38: 317–322.

10. Hikosaka K, Watanabe M (2000) Delay activity of orbital and lateral
prefrontal neurons of the monkey varying with different rewards. Cerebral
Cortex 10: 263–267.

11. Tremblay L, Schultz W (2000) Modifications of reward expectation–related
neuronal activity during learning in primate orbitofrontal cortex. J
Neurophysiol 83: 1877–1885.

12. Schultz W, Tremblay L, Hollerman JR (2003) Changes in behavior-related
neuronal activity in the striatum during learning. Trends Neurosci 26: 321–
328.

13. Wang XJ (2001) Synaptic reverberation underlying mnemonic persistent
activity. Trends Neurosci 24: 455–463.

14. Mazurek ME, Roitman JD, Ditterich J, Shadlen MN (2003) A role for neural
integrators in perceptual decision making. Cerebral Cortex 13: 1257–1269.

15. Major G, Baker R, Aksay E, Mensh B, Seung HS, et al. (2004) Plasticity and
tuning by visual feedback of the stability of a neural integrator. Proc Natl
Acad Sci U S A 101: 7739–7744.

16. Shadlen MN, Gold JI (2005) The neurophysiology of decision-making as a
window on cognition. In Gazzaniga MS, editor. The cognitive neurosciences.
3rd edition. Cambridge (Massachusetts): MIT Press. pp. 1229–1241.

17. Jäger H, Haas H (2004) Harnessing nonlinearity: Predicting chaotic systems
and saving energy in wireless communication. Science 304: 78–80.

18. Joshi P, Maass W (2005) Movement generation with circuits of spiking
neurons. Neural Computation 17: 1715–1738.

19. White EL (1989) Cortical circuits. Boston: Birkhaeuser. 223 p.
20. Sporns O, Kötter R (2004) Motifs in brain networks. PLoS Biol 2(11): 1910–

1918.
21. Rieke R, Warland D, van Steveninck RRD, Bialek W (1997) SPIKES:

Exploring the neural code. Cambridge (Massachusetts): MIT Press. 416 p.
22. Cowan JD (1968) Statistical mechanics of neural nets. In Caianiello ER,

editor. Neural networks. Berlin: Springer. pp. 181–188.
23. Cohen MA, Grossberg S (1983) Absolute stability of global pattern

formation and parallel memory storage by competitive neural networks.
IEEE Trans Sys Man Cyber 13: 815–826.

24. Hopfield JJ (1984) Neurons with graded response have collective computa-
tional properties like those of two-state neurons. Proc Natl Acad Sci U S A
81: 3088–3092.

25. Dayan P, Abbott LF (2001) Theoretical neuroscience: Computational and
mathematical modeling of neural systems. Cambridge (Massachusetts): MIT
Press.

26. Savage JE (1998) Models of computation: Exploring the power of
computing. Reading (Massachusetts): Addison-Wesley. 698 p.

27. Maass W, Markram H (2006) Theory of the computational function of
microcircuit dynamics. In Grillner S, Graybiel AM, editors. The interface
between neurons and global brain function. Dahlem Workshop Report 93.
Cambridge (Masschusetts): MIT Press. pp. 371–390.

28. Branicky MS (1995) Universal computation and other capabilities of hybrid
and continuous dynamical systems. Theor Comput Sci 138: 67–100.

29. Siegelmann H, Sontag ED (1994) Analog computation via neural networks.
Theor Comput Sci 131: 331–360.

30. Siegelmann H, Sontag ED (1995) On the computational power of neural
nets. J Comput Syst Sci 50: 132–150.

31. Orponen P (1997) A survey of continuous-time computation theory. In Du
DZ, Ko KI, editors. Advances in algorithms, languages, and complexity.
Berlin: Kluwer/Springer. pp. 9–224.

32. Slotine JJE, Li W (1991) Applied nonlinear control. Upper Saddle River
(New Jersey): Prentice Hall. 352 p.

33. Sontag ED (1999) Mathematical control theory. Berlin: Springer-Verlag.
531 p.

34. Haykin S (1999) Neural networks: A comprehensive foundation. 2nd
edition. Upper Saddle River (New Jersey): Prentice Hall. 842 p.

35. Maass W, Orponen P (1998) On the effect of analog noise in discrete-time
analog computations. Neural Computation 10: 1071–1095.

36. Maass W, Sontag E (1999) Analog neural nets with Gaussian or other
common noise distribution cannot recognize arbitrary regular languages.
Neural Computation 11: 771–782.

37. Maass W, Markram H (2004) On the computational power of recurrent
circuits of spiking neurons. J Comput Syst Sci 69: 593–616.

38. Schölkopf B, Smola AJ (2002) Learning with kernels. Cambridge (Massa-
chusetts): MIT Press.

39. Hopfield JJ (1982) Neural networks and physical systems with emergent
collective computational abilities. Proc Natl Acad Sci U S A 79: 2554–2558.

40. Amit DJ, Brunel N (1997) Model of global spontaneous activity and local
structured activity during delay periods in the cerebral cortex. Cerebral
Cortex 7: 237–252.

41. Brody CD, Romo R, Kepecs A (2003) Basic mechanisms for graded
persistent activity: Discrete attractors, continuous attractors, and dynamic
representations. Curr Opin Neurobiol 13: 204–211.

42. Destexhe A, Rudolph M, Pare D (2003) The high-conductance state of
neocortical neurons in vivo. Nat Rev Neurosci 4: 739–751.

43. MarkramH,WangY,TsodyksM (1998)Differential signaling via the sameaxon
of neocortical pyramidal neurons. Proc Natl Acad Sci U S A 95: 5323–5328.

44. Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity
of GABAergic interneurons and synapses in the neocortex. Science 287:
273–278.

45. Major G, Baker R, Aksay E, Seung HS, Tank DW (2004) Plasticity and tuning
of the time course of analog persistent firing in a neural integrator. Proc
Natl Acad Sci U S A 101: 7745–7750.

46. Legenstein RA, Näger C, Maass W (2005) What can a neuron learn with
spike-timing–dependent plasticity? Neural Computation 17: 2337–2382.

47. Wickens J, Kötter R (1998) Cellular models of reinforcement. In Houk JC,

PLoS Computational Biology | www.ploscompbiol.org January 2007 | Volume 3 | Issue 1 | e1650019

Feedback in Neural Circuits

Davis JL, Beiser DG, editors. Models of information processing in the basal
ganglia. Cambridge (Massachusetts): MIT Press.

48. Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ (2001) Fluctuating
synaptic conductances recreate in vivo–like activity in neocortical neurons.
Neuroscience 107: 13–24.

49. Destexhe A, Pare D (1999) Impact of network activity on the integrative
properties of neocortical pyramidal neurons in vivo. J. Neurophysiol 81:
1531–1547.

50. Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) Kþ channel
regulation of signal propagation in dendrites of hippocampal pyramidal
neurons. Nature 387: 869–875.

51. Magee JC, Johnston D (1995) Characterization of single voltage–gated Naþ
and Ca2þ channels in apical dendrites of rat CA1 pyramidal neurons. J
Physiol 487 (Part 1): 67–90.

52. Magee J, Hoffman D, Colbert C, Johnston D (1998) Electrical and calcium
signaling in dendrites of hippocampal pyramidal neurons. Annu Rev
Physiol 60: 327–346.

53. Stuart GJ, Sakmann B (1994) Active propagation of somatic action
potentials into neocortical pyramidal cell dendrites. Nature 367: 69–72.

54. Traub RD, Miles R (1991) Neuronal networks of the hippocampus.
Cambridge (United Kingdom): Cambridge University Press. 301 p.

55. Mainen ZT, Joerges J, Huguenard JR, Sejnowski TJ (1995) A model of spike
initiation in neocortical pyramidal neurons. Neuron 15: 1427–1439.

56. Huguenard JR, Hamill OP, Prince DA (1988) Developmental changes in Naþ

conductances in rat neocortical neurons: Appearance of a slowly
inactivating component. J Neurophysiol 59: 778–795.

57. Anderson J, Lampl I, Reichova I, Carandini M, Ferster D (2000) Stimulus
dependence of two-state fluctuations of membrane potential in cat visual
cortex. Nature Neuroscience 3: 617–621.

58. Borg-Graham LJ, Monier C, Fregnac Y (1998) Visual input evokes transient
and strong shunting inhibition in visual cortical neurons. Nature 393: 369–
373.

59. Hirsch JA, Alonso JM, Reid RC, Martinez LM (1998) Synaptic integration in
striate cortical simple cells. J Neurosci 18: 9517–9528.

60. Maass W, Markram H (2002) Synapses as dynamic memory buffers. Neural
Networks 15: 155–161.

61. Natschläger T, Markram H, Maass W (2003) Computer models and analysis
tools for neural microcircuits. In Kötter R, editor. Neuroscience databases.
A practical guide. Boston: Kluwer. pp. 123–138.

62. Legenstein RA, Maass W (2007) Edge of chaos and prediction of computa-
tional performance for neural microcircuit models. Neural Networks. In
press.

PLoS Computational Biology | www.ploscompbiol.org January 2007 | Volume 3 | Issue 1 | e1650020

Feedback in Neural Circuits

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

