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ABSTRACT

This paper studies some problems appearing in the extension of the theory of linear
dynamical systems to the case in which parameters are taken from noncommutative
rings. Purely algebraic statements of some of the problems are also obtained.

Through systems defined by operator rings, the theory of linear systems over
rings may be applied to other areas of automata and control theory; several such
applications are outlined.

Introduction. The algebraic theory of linear constant systems with coefficients
over an arbitrary field has gone through major developments during the past
decade. A comprehensive account is given in Kalman, Falb and Arbib [9,
Chap. 10]. Since a considerable number of the results remain valid for the
case of commutative rings, it is natural to develop the theory in this direction.
A systematic study of the realization problem over commutative rings was
initiated by Rouchaleau [16] and Rouchaleau, Wyman and Kalman [17]. An
exposition may be found in FEilenberg [4, Chap. 16], or Sontag [21].

The situation with noncommutative rings is completely different, however,
essentially because the Cayley-Hamilton theorem fails to hold. Part B of the
present paper grew out of an effort to isolate the exact condition(s) for extending
the commutative theory. These conditions are further studied from a purely
algebraic viewpoint in Sontag [19] which may be viewed as a complement to
this work. Part C of the paper shows that the situation is not at all surprising
when viecwed in the context of automata theory and rational power series.

Why study systems over arbitrary rings? Various answers are possible. As
pointed out in the work of Rouchaleau, it is natural to study systems which
have integer parameters, because integers are more ‘“‘natural” for computers
than real numbers. Other reasons are the design of error-correcting codes, the
study of partial difference equations, and the consideration of certain systems
defined on groups, as indicated and developed in the case of codes in Johnston
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[7]. Another application, at least at the level of an analogy, is the global study of
time-varying control systems (Kamen [11]). Perhaps equally important is the
hope that the study and understanding of such linear systems may be eventually
useful for the formulation of more general, i.e., nonlinear, theories. It is also
of general scientific interest to know the ultimate limits of linear system theory.

An entirely different application is due to Kamen [10] (see also Newcomb
[13]), where discrete time systems appear not as the object of study for their own
sake but as a tool in the theory of certain infinite-dimensional continuous-time
systems from the point of view of distributions. The model presented in Part D
generalizes this approach. The examples given there should suffice to indicate
how the introduction of more or less sophisticated operator rings (even non-
commutative) can be useful in studying a broad class of systems which are
“essentially” finite-dimensional. A detailed discussion of the commutative case
will be given in Sontag [20], but the setup is introduced here in its full generality
along with a general realizability result. The rings considered in Part B play a
dominant role in this construction, but Part D can also be read independently
if the reader is willing to restrict himself to considering commutative rings
instead of arbitrary “.% .o/ rings”.

A different approach to systems which can be studied using rings of operators
is given by Wyman [24].

A. Preliminaries

Although no deep algebraic results will be used, it is assumed the reader
feels comfortable with the definitions and elementary properties of rings and
modules. A/l rings will be assumed associative and with a unit element, and all
modules unitary (i.e., 1 acts as the identity); unless otherwise stated, module
wiil stand for “left module” and homomorphisms will be written on the right;
for right modules they will be written on the left. If R is a ring, R" will denote
the free R-module in 1 generators, considered as a left module; consequently,
matrices will be written to the right of the (row) vectors in R" and the endo-
morphism ring End (R") will be identified with the matrix ring R"*" by expressing
transformations in the given basis.

Given an R-module M, <{g,, -, g.-x Will denote the (left) submodule
generated by the elements g,- -, g, of M. Let R’” denote the ring which
coincides with R as an abelian group but such that for all g, b the product ab
is defined to be equal to ba in R. Any left R-module is naturally a right R°?-
module and vice versa.

A subsemigroup T of the multiplicative semigroup of R is called a left
denominator set in Rif and only if for all rin R, ¢ in T, (i) Tr N Rt is nonempty,
and (i1) if either rt = 0 or #r = 0, then » = 0. For such a T one can construct
{as in Cohn [3, Chap. 0]) a ring containing R, the localization T~ 'R consisting
of all quotients ¢ 'r. Defining (:7'r)g: = (1g)~'(rg), a routine calculation
proves:

(0.1) If g: R— S is an injective ring homomorphism such that Tg con-
sists of units in S, there is a unique extension of g to an inclusion
6: T 'R—S.
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For an R-module M, denote by M ((x)) the sct of (truncated) Laurent series
in the indeterminate x, i.e., the set of all (formal) sums ) ., ax' for some
integer k and a; in M. (We will omit mention of k& when irrelevant.) We endow
R({x) with coefficientwise addition and with the (convolution) muitiplication
defined by

Sax)(Xbix)y =Y ext, where 0 = Y, ab;.

itj=k
Since the sum is clearly finite, R((x)) is a ring; it can also be seen as the localiza-
tion of the usual power series ring R[[x]] at {x", n e N}. Given an R-module M,
define the R((x))-module M ((x)) in the same way. Forany s = s(x) = Ya;x' # 0
in M((x)) define o(s): = min {k: a, # 0}, degs: = —0(8); @y Will be referred
to as the “coefficient of least order (in x)” and if se M[x™'] © M((x)), ay
will be also called the “leading coefficient (in x~')”". Both for notational con-
venience in Parts C and D and for historical reasons, we will usually take
x =z 1: then for example in Z((z™ ")), 0(2z+1) = —1, deg 2z+1) =1 and
a_, = 2, and the coefficient of least order of z~' + 5z % is 1. The units of R((x))
are the nonzero elements whose coefficient of least order is a unit in R. So if
peM[x '] and ge R[x"'] is a unit, then ¢~ 'p is a well-defined element of
M ((x)) and can be clearly calculated by the so-called “long division™ algorithm.
Observe that for any R-module M there exists a canonical inclusion M[z] —

M{((z™")), giving rise to an exact sequence of R[z]-modules

0.2) 0 — M[z] > M((z™") > Mz~ )/M[z] -0

with p the canonical projection. M((z~'))/M|z] can be identified with z7'M
{[z7'1}, the R-module of power series in =z~ " with zero constant term.

For the linear systems results, this paper is based upon Kalman [8], Kalman,
Arbib and Falb [9, Chap. 10], and Eilenberg [4, Chap. 16}: the first two
references treat the case of R a field and the third R a commutative ring. All
results which extend without restrictions to any R and are proved in an analogous
way will be quoted freely from the above. The Laurent series formalism used
here is borrowed from Wyman [23]. The reader should have no trouble in
translating the language in the previous references into the one used here.
Another useful source, especially for rationality, is Fliess [6].

We review briefly the fundamental notions. R will denote a ring, and U
and Y will stand in each case for the input and output modules; U will be finitely
generated (i.e., an image of some free module of finite rank R™) and Y will be
included in a free module R?. This covers most cases of interest, e.g., scalar
systems (when U = Y = R), and those in Part D. All of Section 1 holds without
any restrictions on Y and Section 2 holds without restrictions on U. Unless
otherwise specified, a fixed system of generators e,, -, e,, is implicitly assumed
for U (in other words, we really look at pairs (U, presentation of U)). We let
Q, T" denote the R[z]-modules U[z], z ' Y[[z™']].

A (discrete-time, constant, R-linear dynamical) system X consists of an
R-module X (the state space) and homomorphisms (F, G, ) where G: U — X,
F: X — X, and H: X — Y. The result of £ is the map /> U((z™")) = Y((z™ 1))
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given by Zul;"'r—»Zykfk, where y,: =3 o w;GF* " H. Then f is casily
seen to be an R((z™'))-homomorphism, s0 in particular f = f; given by the

composition (see (0.2)) Q — U((z” 1)) Y((z7') 51 is an R[z}-homo-
morphism. (Any such f defines a unique f, and f defines a unique f, so there are
no ambiguities.) Giving a system X is equivalent to giving an R[z]-module X
and R[z]-homomorphisms & and .# where zx: = xF, az"%: = aGF" and
XA ;=) xF"Hz™". See the suggested references for details. In fact, f/ = G
Denote by g;: = e;G the accessible generators of 2. Then the reachable part of
Xis X, =0Q% =g, ", 8, r) S X; since X, is F-stable, by restricting
everything to X, we get a subsystem X, of X,

We call X reachable in time k if the restriction of % to the R-submodule of
Q consisting of the polynomials of degree less than or equal to k — 1 is surjective.
It is observable in time k provided that xF'H = 0, i = 0,-- -, k, implies x = 0.
We call X reachable (observable) in bounded time if and only if it is reachable
(observable) in time k for some k. Finally, we call x € X controllable if there
exists k and w € Q, deg w < k, such that xF*+ % = 0. We call £ controllable
when every x € X is; for each x the condition can be restated as:

(0.3) There exist a;eR, i=1,--m, j=1,--- k=1, with xF* =
Zi,j aijgiFj-

Controllable in bounded time means that some k& as above can be found for £
independently of x.

Conversely, any R[z] -homomorphism f: Q — I" (for short, an I/O map)

can be factorized as Q rXf zr with X, : = Q/ker f, and &, 5 the induced
maps. Call the system Z, obtainzd from Xf, Y and S the canomcal realization
of f. In general, any ¥ such that f; = fis called a realization of f. The canonical
realization is characterized up to a unique isomorphism by the properties of
reachability and observability ; we have (Eilenberg [4, p. 419]):

(0.4) For any realization X of f there is a (unique) surjective R[z]-homo-
morphism ¢: (Xs), — X, such that Gyp = G,.

If f has some finite realization X (i.e., X% is finitely generated) f will be
called sequential; we have (Eilenberg [4, p. 413)):

(0.5) Assume that U is a free R-module and f is sequential. Then f has a
realization = with Xy ~ R", for some n.

When X is finitely generated, we call f canonically sequential.

By definition, any canonically sequential f is sequential. The converse,
although true for commutative rings, is not true in general. The rings which
satisfy the converse turn out to be precisely those over which much of the
standard lincar system theory remains valid. These rings can be equivalently
defined by a number of highly desirable system-theoretic properties, as we shall
sce. The property of observability in bounded time, on the other hand, is in a
certain sense dual to the facts discussed above.
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B. Discrete-Time R-Systems
(1) .# .o7/-Rings and Reachability.

(1.1) Definition. A ring R is called finitely accessible if and only if every
scquentialf Q — 1" is even canonically sequential. (We say, for simplicity, that
Ris F.</))

The following holds without any assumption on the ring R.

(1.2) LEMMA. X, is reachable in bounded time if and only if X, is finitely
generated.
Proof. If X, is reachable in time n, then ge<g,," ", & & F> ", &mF /R

for all g in X,. Conversely, if x, = Y"_ g, /i = 1,--- n, generate X,, then
Y, is reachable in time k: = max {deg o™, j=1,---,m h=1,---,n}. =

(1.3) Definition. Given an R-module M with an R-endomorphism F and
ge M, we say that g is recurrent for # when there is some integer k and a,,- - -
a;_, in R such that gF* = Y*Z) a,gF".

We omit mention of F if clear from the context.

E)

Observe that this definition corresponds to controllability of g in a system for
which G = g. An equivalent definition, via the natural R[z]-module structure
on M, is that some monic ¢ in R[z] annihilates the element g, or that {g .
is finitely generated over R. As X, = Y (g, g(.;» €ach g, being recurrent is a
sufficient condition for X, being finitely generated. Another sufficient condition
is controllability:

(1.4) LEMMA. [f each g, in X is controllable, then X, is controllable in
bounded time, and, in particulal Jfinitely generated.

Proof. Foreachh = 1,- -+, mwe have, as in (0.3), g, F* e {g,," - -, gnF*™ ' /.
If kK > k, for all 4, then ghF elg, g F* ' x for every h. Hence, by an
easy induction, each <g, gr,; and hence also X, is in {g,."" g FF 1 So X,
is controllable in time & and finitely generated. |

(1.5) LEMMA. Suppose in £ each g; is recurrent [controllable). Then each
accessible generator §; of X, is recurrent [controllablel.

Proof. By the definition of “accessible generator” and by (0.4), g, = g,
Clearly g;F/¢ = g/ for all j = 0. Hence any relation Y a8 F =0 is
mapped into Y ; ; a;8,F/ = 0. G

(1.6.) THEOREM. For any ring R the following are equivalent. (a) R is an
& o7 ring. (b) For every finitely generated R-module M and any F in End (M) any
finite set{g,, -, g} in M has a common recurrency. (¢) Same as (b) withm = 1.
(d) For any n and Fe R"™" any g in R" is recurrent. (e) %, is reachable in bounded
time for every finite R-system 2. (f) For every finite R-system X reachable states
are controllable. (g) Same as (f) with controllable in bounded time. (h) X, is
controllable for any sequential f. (i) Same as (h) in bounded time.

Proof. We shall prove (a) = (d) = (¢} = (b) = (e) = (g) = (f) = (i) =
(h) = (a).
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(a) == (d): Given F, g, define 2: = (F, G, H) by U: = R (as a left modulc),
Yi=R', X:=R" G: l—g, H: = ly. Fas given. Since X is observable,
X, is isomorphic to X,. So {g)piy = X, ~ Xy Since /g is sequential, by (a),
X ;g 1s finitely generated. So g is recurrent. A

(d) = (¢): Let @: R" — M by an R-epimorphism with go = g, and ¢F = Fg
for some Fe R™" ge R" neN. Then, a recurrency for g induces one for g,.

(c) = (b): Consider R™ as a bimodule and definc M: = R" ® ; M. Then
M is a finitely generated (left) R-module. Define g: = Y7, ¢, ® g, = M and
F: = 1. ® FeEnd (M). By (c), there exist & and ag.- - -, a_y. a, =11 R
such that

i=1

) aj( Y e ® g,—) £,
8 )

[
_Q
[\/]
o
®
gl

i

I
gl
D
&
(gl

Each term in parentheses on the last line must vanish. which proves (b).

(b) = (e): If each g, is recurrent, apply (1.2).

(¢) = (g): Given that X, is reachablc in time k. gF*e “g,, . g F* ' pfor
any ge X. So X, is controllable in time k.

(g) = (f): Trivial.

(f) = (i): Take a finite X realizing /. By (f) each g, is controllable. Apply
(1.5) and (1.4).

(i) = (h): Trivial.

(h) = (a): By (h) X is controliable. Applying (1.4) shows that X is finitely
generated. Hence fis canonically sequential. O

Remark. Alternative characterizations of .# .7 rings can be given in terms
of a Cayley-Hamilton type matrix condition as well as in terms of integral
extensions of R (sce Sontag [19, Theorem 1.3}]).

(2) # O Rings and Observability.
We begin by dualizing (1.6.¢).

(2.1) Definition. A ring R is finitely observable if and only if every finitely
generated and observable X is even observable in bounded time. (We say, for
simplicity, that R is & 0).

(2.2) Observation. For any R-modules, A, N and homomorphisms 7
M->M and H: M — N the following are cquivalent. (a) The descending
chain {(ioo ker T'Hj., has length k. (b) (ViZ§ ker T'H < ker T*H. (c)
(ViZd ker T'H is T-invariant.

(2.3) PROPOSITION. For any ring R the following are equivalent. (¢) R is
F 0. (b) For any finitely generated R-module M, any pe N, Fe End (M), and
H e Hom (M. R"), condition (2.2.a) holds for some k. {(¢) For any nc N. T c R**",
and I ¢ R"*', condition (2.2.a) holds for some k.
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Proof. Since (b) trivially implics (c), we prove (c) = (a) and (a) = (b).

(c) = (a): Given X = (F, G, H) observable (and finite), choose n and an
epimorphism ¢: R* » X with @F = T for some Te R If ¥ = RP, let &,
Jj = 1.+, p, be the composition of ¢ H with the projection on the jth coordinate.
Let k be the maximum of the lengths of the chains { ;¢ ker T, . Suppose
geXissuchthatgF'H = 0fori = 1,--+, k. Choose x ¢ R" with xp = g. Then
xTh; =0, i=1,--,k, j=1,---,p. 1t follows that gF"H =0 for every
i=1,2, . By observability of X, this implies g = 0. So X is observable in
time k.

(a) = (b): Given F, H as in the hypothesis, let M: = (2, ker F'H and
observe that M is F-invariant and M < ker H. Soif X: = /M and¢: R" - X
is the canonical projection, ¢ induces Fy, Hy with Fy = Fe and @Hy = H.
Define ¥: = (Fy, 0, Hy). Clearly X is an observable finite system, hence observ-
able in time k. So & then satisfies (2.2.a). O

The class of .Z € rings is very large, but except for the case of rings without
zero-divisors, the condition is quite independent of the #.o/-condition. From
the usual “duality” of linear system theory, it would be expected that a statement
such as “Ris an % .o/ ring if and only if R°? is an % € ring” would hold; it
can be proved however that just the “only if " part holds in general (Sontag [19,
Sections (3) and (4)}).

For all rings embeddable in a division ring the & in (2.2) exists and is in fact
bounded by the cardinality of any set of generators for M. Such rings are an
extremely simple example of “‘efiectively .# (" rings”. defined below.

(2.4) Definition. A ring R is called effectively F o/ (resp. .F 0) it given any
finite system X over R a bound on recachability time (resp. observability time)
exists and is effectively calculable.

It is of course implicit in the definition that R is itself effectively describable
and that *“‘given” means in terms of. say, matrices. For any X, fy = 0 if and
only if eJ-GFiH =0forj=1.---.mandalli > 0.1f Ris F C, it is enough to
check the condition for i = 1.--- k. If Ris .# ./, then there is a k such that
e;GF' for i > k is a combination of terms with / < k. So in any case we have

(2.5) PROPOSITION. f R is either effectively F.of or F 0, then the
equality of behavior of « pair of systems is decidable.

(2.6) Remark. The decidability question in (2.5) is by no means trivial. In
fact, it is intimately related to an outstanding open problem in the developing
theory of Lindenmayer systems, namely the so-called equivalence problem (see
Lindenmayer [12], Nielsen [14], Salomaa [18]).

The relation with the latter is obtained by giving a construction which
embeds Lindenmayer systems (essentially nonlinear objects) in discrete-time
R-systems.

Let X = !x,.--,x,} bc an alphabet. and X* the {rec monoid generated
by it. Define a product in the set (X*) by {ar - u,) (v, ) = (v -,
v vy, ). where w(ey, - - oL e, is the word obtained by replacing
cach occurrence of x; in w; by r;. This operation is clearly associative, and
admits the identity (x,.---, x,). We¢ denote the monoid so obtained by M.
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Choosing (and fixing) an arbitrary field k, we denote the corresponding monoid
algebra k[M] by R.

Now let §: X* — X* be an arbitrary monoid homomorphism, which we
shall write (exceptionally) on the left of its argument. Let 7 be in X*. We shall
interpret & as the production rule and 7 as the axiom of a Lindenmayer system.
Consider the R-system given by U = X = Y: = R, I{: = identity, F: = map
sending each 7 in R to r-(8(x,),- . 8x,)), and G: r+> r-(m, -, w). Then the
“impulse response” of the system, i.e., the sequence { GF'H}, is the sequence
((8'(m), -+, 8'(m)), i =0, 1,---}. Hence equivalence of Lindenmayer systems
corresponds to equal input/output behavior of the associated R-systems.

Finally, as a “bonus™ from the construction in the last paragraph, many
generalizations of Lindenmayer systems are immediate. For example, taking
k: = real numbers, systems with a convex combination of Gs as before would
correspond to only knowing a (finite) distribution of probabilities of axioms;
a similar stochastic interpretation would hold with respect to F. Quotients of
R, on the other hand, would correspond to certain cell configurations determin-
ing the extinction of the process.

C. Rationality
(3) Rational Power Series.

Let R be a ring, x an indeterminate and R((x)) as in Part A. A subset S of
R((x)) is called rationally closed if and only if the inverse of any invertible element
of S is again in S.

(3.1) Definition. The ring R*[(x)] of rational Laurent series in x over R is
the smallest rationally closed subring of R{(x)) containing R[x]. The subring
of R*¥[(x)] consisting of series s with o(s) = 0 (the ring of rational power series
in x) is denoted by R[(x)]; the subset of series s with o(s) > 1 (the *‘causal”
power series) is denoted by R_.[(x)].

(3.2) Remark. It is easy to verify that the definition of R[(x)] given here
coincides with the standard one as the smallest rationally closed subring of
R[[x}] including the polynomials. In any case, observe that s € R((x)) is rational
if and only if it may be expressed as products and sums of polynomials and
inverses of such combinations when the coefficients of least order are units in R.
In the case R is a commutative field, R*[(x)] reduces to R(x), the ficld of rational
functions.

The following is a particular case of a result due to Schiitzenberger (see
Eilenberg [4, Chap. 7, Theorem 5.1]; the result is true without the assumption
that R is commutative).

(3.3) If se R((z™")), then se R [(z ")) if and only if there is a sequential f
withU =Y = Rands = 1f.

We shall frequently identify any s as in (3.3) with the corresponding f.

If R is commutative terms can be regrouped and common denominators
chosen so that any rational power series is a quotient of two polynomials. This
property will give us yet another characterization of # o/ rings.
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(3.4) Definition. A series s € 27 'M[[z7']], M an R-module, is called elemen-
tary rational if it can be expressed in the form ¢~ 'p with ¢ € R[z] monic and
peM[z]

For such an s = ¢~ 'p, clearly deg ¢ < deg p. A standard argument shows
that s ez~ 'M|[[z"']] is elementary rational if and only if its coefficients satisfy
a monic recurrence relation. Equivalently, s is elementary rational if the
columns of its “Hankel matrix” generate a finitely generated R-module.

An input/output map f: Q — I with Y < RP gives rise to a matrix of series
with elements f;;: = e, fm; ez 'R[[z7']], where =;, j = 1,---, p indicates the
result of applying the coordinate maps for Y to the coefficients of a series in
=7'Y[[z7'1}. As in the commutative case, fis sequential if and only if each f;; is
rational.

By definition of the (quotient) R[z]-module structure on T', ge;fe Y[z] if
and only if ge;, f = 0 in ['. For the canonical realization, /= %# and J# is
injective, so that this last condition is equivalent to gg; = 0. Hence we have

(3.5) LEMMA. Let f: Q — [ be an inputfoutput map and q < R[z]. Then
q(e.f) is a polynomial if and only if q annihilates g; in X .

(3.6) THEOREM. For any ring R, the following are equivalent. (a) R is an
F .7 ring. (b) Any inputjoutput map f is sequential if and only if all f;; are elemen-
tary rational. (c) Same as (b), with a common denominator. (d) The set T of
monic polynomials in z is a left denominator set in R[z] and T Y(R[z)) can be
naturally identified with R¥[(z™)].

Proof. We shall prove (a) < (¢) and (¢) = (b) = (d) = (¢).

(a) < (c): For any polynomial ¢ in R[z], one has ge;fm; =0forj=1,---,p
if and only if ge; f = 0. By (3.5), this is equivalent to ¢ annihilating every g;, so
the equivalence of (a) and (b) in (1.6) gives the result.

(c) = (b): Trivial.

(b) = (d): If s in R*[(z™1)] is nonzero, let n = 0 be an integer such that
7" isin RJ(z™YH). By (3.3), =7"s = 1f for some sequential f; so, by (b), it is
elementary rational, say equal to ¢~ 'p with pin R[z], ¢ in T. Then s = ¢~ '(z"p).
In particular, for every nonzero p in R[z] and ¢ in T, pg~'isin R*¥(z"")). So
it follows that there exist p, in R[z] and ¢, in 7 such that pg~* = ¢7 'p,. Hence
¢,p = pigeTp N Rq. Thus T is a lefi-denominator set, and the inclusion of
R[z] in R*¥[(z™")] extends to an isomorphism as in (0.1).

(d) = (c): If f'is sequential, then each f}; is in R¥[(z™1]. Then (d) says that
each f;; is elementary rational. By Cohn [3, Exercise 0.3.2]—or by an argument
similar to our proof of (1.6.c)—all f;; can be written with a common denomina-
tor. =

(3.7) Remark. 1t clearly follows that T is a right denominator sct when
R°? is an .% .o/ ring. Since the property of being o7 is left-right independent
(Sontag [19, Section (4)]), it is perfectly possible that in a ring R every power
series in R*[(z~")] be expressible as ¢ ~'p while, for some, no representation of
the form pg ™" exists. In fact, R may even be a (non-commutative) left principal-
ideal domain, and still have this property. g
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(3.8) Remark. There is a natural generalization of the Fatou-type problems
which appear in the theory of systems over commutative integral domains (see
for instance FEilenberg [4, Chap. 16, Section 12}, Rouchaleau [16], Fliess [6]).
Assume that R is a left Noetherian ring with no zero divisors. Let K be any
division ring containing it (for example, its field of left fractions, which exists
because of the Noetherian condition). The result is

() Rliz7'Nn K[(z"H = Riz"H].

This is equivalent to the following. Let { 4;} be a sequence of m x p matrices
over R. In particular, they are matrices over K, and as such define a corre-
sponding input-output map. Assume that there is a realization over K, i.c.,
a triple of matrices (F, G. H), of appropriate dimensions, with entries in K,
such that 4, = GF"H for all n. Then (*) asserts that there are matrices F', G', H’
with entries in R (possibly of higher dimensions) such that A, = G'F""H’ for
all n. The utility of such a result lies in that the techniques involving determinants
(over K) of Hankel matrices become available (see Fliess [6, 11.1.d], and Artin
[1, Chap. 4] for determinants in the noncommutative case).

The proof of (%) is fairly straightforward. The inclusion of Rl(z" ") in the
left side is obvious. Take now s = Y a;z~'in R[[z™']] and suppose it is rational
over K. Being a division ring, K°7 is an % «7 ring. So there are an n and a right
recurrence

(%) a,= Y a,_k, forallh=n
u=1

with k, in K. Call M the (left) R-submodule of R" generated by the set of all
X; =(Q; @ip1s s Aianq), { =0, 1,---. By the Noetherian assumption, M
is finitely generated. In particular, there is an m with x, = Z,-<,,, r.x;. Then,
when 0 <j < n—1,

m-1

(x%x) Ay j = Z ridy .
i<o

Assuming that (***) is true for all j < r (where n < 1), we show it is also
true for j = . Indeed, by (+%), @prr = Yu Tmsr-iku = S (LiFilivi-u)hku = 2
ri (u @ivi—uky) = Yiriais,, as wanted. Then (s+#) is true for all j, and s is
elementary rational over R. So (*) holds.

Observe that the only property of K needed for the proof is that K°F is Z .o7.

D. Applications to Finitary Linear Systems
(4) Admissible Triples.

(4.1) Definition. Given a right B-module A, a B-endomorphism o of 4 is
called rranscendental (over B) if and only if no expression of the form b,»"+
b,_o" V4 + by, with all b, in B, b, # 0. acts as the zero map on A.

Observe that this implies that every & 0 acts as a non-zero map, i.e., that
A is a faithful B-module. The definition of transcendental is equivalent to
requiring that the smallest subring of End (A4) containing both B and « be in
fact (isomorphic to) the polynomial ring B[x].
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(4.2) Definition. Assume that 4, B, « are as in (4.1). The triple (4, B, «)
is called admissible if and only if the inclusion of B[~]into End (4) extends to an
inclusion of B*[(="")] into End (A).

In other words, admissible (4, B, x)'s correspond to the faithful B*[(«~')]-
modules. In practice, however, A, B, = are usually given, and it must be checked
whether « induces such a representation. In the case of the rings introduced in
Section B, the following is a useful criterion.

(4.3) LEMMA. If A, B, = are as in (4.1) and B is an F o/ ring, a necessary
and sufficient condition for admissibility of (A, B, «) is that all monic polynomials
5"+ b,_ " s by be bijections.

Proof. Necessity is clear, because monic polynomials are units in B*[(="")].

Sufficiency. Denote by i the inclusion of B[«] in End (A4). Then, by (0.1) and
Theorem (3.6), i extends to an inclusion of B*[(«™')] into End (A4). ]

The condition in (4.3) is intended to be interpreted as stating the existence
and uniqueness of solutions of equations (differential, difference, etc.). This is
precisely the sense in which we are interested in admissible triples.

When B is an algebraically closed field, a triple (4, B, «) is admissible if
and only if the spectrum of « (as an element of the B-algebra End (4)) is empty;
then for many cases we have a negative result. For example, if B = C, if Aisa
Banach space, and « is continuous, (4, B, «) can never be admissible (see Taylor
[22, Theorems 4.7-B, C and 5.2-B]).

Note also that (4.3) still holds if B“, instead of B, is & &7 (apply the left-
right dual of (0.1) and (3.7)). The lemma is not true, however, without some
% .o/ condition, and a counterexample can be constructed using for B a ring
of noncommutative polynomials.

The notion of admissibility can be made less restrictive, but it involves
increasing somewhat the complexity of the treatment. The generalization is
analogous to the replacement of differential by integral equations.

(4.4.) Definition. If (4, B, «) is admissible, a map /= 4 — A is called (strictly
causal) rational if it is (via the given inclusion) in B.[(x™1)]. A map f: A™ — A
is rational if and only if each coordinate map is.

The relation given by /in (4.4) can almost always be interpreted as a poly-
nomial (difference, differential, difference-differential,- - -) equation:

(4.5) PROPOSITION. Assume that (A, B, ) is admissible and that B‘F
is an F.o/ ring. Given m, p, consider an equation yQ = uP with P e B™*?[«],
Q e BP*?[x] and such that the leading coefficient of Q is a unit in B*”? and deg
Q > deg P. Then there is a unique solution y for each ue A™ which defines a
rational f: A™ — AP. Conversely, for any such f there are P, Q as before such that
uf =y if and only if yQ = uP; moreover, Q may be chosen as a scalar matrix.
These properties characterize % o7 rings.

Proof. If Q is invertible in BP*?, the equation is equivalent to y = uPQ ™',
with PO~ ! ¢ (B (=~ ")])™*” by the degree requirement, and hence corresponding
to an / as in (4.4). Conversely. if B°? is an % .<7 ring, any rational f* A™ — A"
can be written as Py~ ! with ¢ e B[~). using (3.6) and (3.7). C
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(4.6) Examples. We give a few examples of admissible triples, each corre-
sponding to a particular type of equation. They will be used later in the definition
of different kinds of systems.

(a) Difference equations. Let B be an arbitrary ring, 4: = B((z7')), a: = z.
The structure of a B*[(z~")]-module on A4 is the one given by right multiplication.
This kind of “standard” triple will be useful in the study of arbitrary triples.

(b) Differential equations. Let A: = C7 consist of all infinitely differentiable
functions /> R — R with support bounded to the left. Take B: = R and «; =
derivative operator. Given such a function, assume f(r) =0 for all 1 < 1.
From well-known theorems on ordinary differential equations, given real
numbers b, - -, b,_ ,, there is a unique g (also in 4) satisfying g + b, - L+
-~ +bog = fand g(r) = 0 for all ¢ < t,. This proves that (A, B, =) satisfies the
condition stated in (4.3).

The restriction of infinite differentiability which appears in this and the
other “continuous-time” examples is not at all essential, and can in fact be
replaced by local (Lebesgue) integrability. This involves relaxing the definition
of admissibility as indicated above.

(c) Delay-differential equations using generalized functions. Let A be the
algebra of real-valued distributions with support bounded to the left with
convolution product, B8: = R[§, ,---,8,] for a;,---,a,€R and «: = 8. (3, is
the Dirac distribution centered at a > 0). These systems were defined and studied
by Kamen [10]. Admissibility follows from his Theorem 1 and Proposition 4.

(d) Delay-differential equations again. Let 4: = C%, 0,1 = shift operator,
B: = R[o,,," ", 0,] and «: = derivation. Admissibility is a consequence of the
theory of delay-differential (or “hereditary”) systems by setting initial conditions
to zero on a conveniently chosen interval. This approach permits one to speak
of the “input at time ¢’ and obtain for systems explicit criteria for reachability.
etc. (see Section (7) below). Of course, it does not allow consideration of
irregular inputs as does (c). The setup can be extended to allow for more general
functional-differential equations.

(e) Delays. Let A: = {all continuous f: R —~ R with support bounded to
the left}, B: = Rand o: = l-second shift. Admissibility is easy. More generally,
x can be a time-varying delay.

(f) Certain “infinite-dimensional’ difference equations. Here let M be a faith-
ful right B-module, where B is an arbitrary ring. Denote A: = M({(z")), and
x: = z. Then A: = M((z™')) is naturally a B((z~"))-module. Moreover. 4 is a
faithful module. In fact, since M is a faithful B-module, b, # 0 implies the
existence of some m, € M such that myb; # 0. Hence if b =) iny bzt (with
b, # 0), then mb # 0. In particular, there is an inclusion of B¥[(x!")} into
End (A). So admissibility follows. This example and the next one will be discussed
further in Section (6).

(g) Certain “infinite-dimensional™ differential equations. Let X be a real (or
complex) Banach space, and B an algebra of linear bounded operators on X.
Define A as the additive group of all infinitely differentiable functions R — X
with support bounded to the left. Let « be the derivative operator. Asin example
(b). there is existence and uniqueness of solutions. So. if Bis an .# .2/ ring,
(A, B, «) is admissible.
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(h) Substitution. Assume that (4, B, «) is admissible, with B an & .« ring
and s an element of B.[(x~")] which is a unit in B*[(~~")]. A monic polynomial
in 57" with coeflicients in B is clearly an invertible element of B¥[(="H)]. It
follows that (4, B, s~ ') is also admissible. In the particular case of example (f),
s can be more arbitrary, i.e., not necessarily rational, but the same conclusion
follows.

(1) Variations on the abore. One possibility is to allow for esoteric time sets
(this might be useful in some studies of periodic behaviors). Another is to give
non-standard (in the sense of logic) models of the above: for example, a model
of (b) where there is an “infinitely differentiable’ impulse “‘function’; first-
order statements about (b) would then be true also for the non-standard model.
The use of “time-varying” operators for « (for example, ( f) (1}: = e 'f'(1), or an
arbitrary Volterra operator) is also allowed, provided that « commutes with
clements of B (e.g.. in (b)). Approaches formalized in terms of Mikusinski’s
operational calculus can also be given.

(5) Finitary Systems.

We shall need the following result due to Richard [15] (it is, of course,
trivial when B is commutative).

(8.1) For any ring B the restriction of the canonical isomorphism between
(BUx)"™" and B"*"((x)) gires a canonical isomorphism between (B*[(x)])"*" and

(Bn x n)*[(\)]

(5.2) Definition. Given an admissible triple (4, B, «), a (constant, linear,
finitary) (A, B, x)-system is a triple of matrices (F, G, H), where Fe B"*",
G = B™"" and /{ € B"*P . The input map L: A™ — A" is the group homomorphism
which assigns to each w ¢ A™ the unique solution x € A" of the system of equa-
tions xx = xF+wG. The result is LH: A™ — AP.

(8.3) Remark. The input map is well defined. By (5.1)
(B "y [(x~ 1] = (B*[(=~H])"*" < (End (4))"*" = End (A").

Since »/ — Fis a unit in (B"*"*[(x~ )], clearly 1. = G(«/ — F)™ " is well defined. _
Everything is set up so that we can state

(5.4) THEOREM. Consider a fixed admissible (A, B, «). Then the result
of any (A, B, x)-system is rational. Conversely, every rational map f: A™ — AP
can he realized as the result of such a system.

Proof. Observe that the faithfulness of the action of B[(x~")] on A4 implies
the equivalence of the given problem with that of the correspondence between
power series of the form Y., GF'Hx '"' (F. G, H being B-matrices) and
those in B (=~ 1)]™*P. Since the above power series correspond to discrete
B-systems with free state modules, (3.3) and (0.5) give the theorem. r

(5.5) Observation. Far from being an abstract result, the preceding allows
us to explicitly compute realizations, provided such a method exists for B. See,
for example, Rouchaleau [16] and Kamen [10].
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(5.6) Discussion. Various types of interpretations are possible. For the
most usual one, think of elements of A as defining the time-evolution of
inputs, ‘“states” and outputs. The elements of B would correspond to the
input-output functions of certain components, while «~' denotes the input-
output behavior of a fixed system X,. An (4, B, »)-system will then correspond
to a set of n copies of the basic system X, interconnected (and feeding back)
via adders and operators in B. The inputs act via similar connections, and
outputs are obtained by forming suitable combinations of the outputs of the
X,’s. Then (5.4) gives a characterization of the input-output behavior of the
composite system.

Via the same reasoning, the results in “minimal” realizations over B can
be used to find systems with equal input-output relations but requiring the
fewest possible number of copies of X,

Under this interpretation, for cxample, (4.6.a) corresponds to the usual
discrete-time systems over B, while (4.6.b) defines the linear continuous-time
systems used in control theory.

Example (4.6.h) allows ‘“‘hierarchical” considerations: once a system is
defined and optimized as above, it can be used as a “building block” for new,
more complex, systems. For “completely integrally closed”” domains it is possible
to give an algorithm to decide whether a given (A4, B, x)-system can be simulated
by using any number of components of a fixed type; this algorithm is a direct
application of the theory of partial realizations.

A different “‘hierarchical” reasoning is also possible, by iterating on B
instead of x. Indeed, assume that B is itself of the form C[(8~")], where (4. C.
B) is admissible. Then, once that an input-output map on B.[(x~')] has been
realized over B, the procedure can be iterated by realizing each of the entiies of
F, G, H over the ring C. The precise description of this process corresponds to
the theory of n-component linear systems, which we sketch below for the case
n = 2. Assume that =, 8 are two commuting C-endomorphisms of A, algebraic-
ally independent over C. A suitable definition of admissibility allows to embed

in End (A4) the ring of rational power serics in two variables. Now systems
correspond to equations of the type

Xyo = X F + X, + oG,
Xoff = X1 Fy + Xy Fy, + 000G,

Y = X, H, + X, H,

with w in A™, X, in 4", X, in 4% and all matrices over C. The realization theorem
(5.4) generalizes immediately, since the set of rational power series over Cin two
variables ™', 7! can be identified with B[(x~")]. where B = C[(8~")]. This
two-step realization procedure gives realizations of rather small dimensions.
An cxample of the above kind of system is given by the most general kind of
delay-differential systems, where « denotes differentiation and g is the delay.
Another example is given by two-dimensional filters, i.c., systems with “time
set” Z @ Z, where = and 8 correspond to the two possible shifts. -
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(6) Some Examples: “Cellular” Systems or Partial Difference Equations.

In this section we shall assume for simplicity that all systems considered

are scalar (i.e., m = p = 1). The interpretations can be easily extended to the
general case.

(6.1) E£xample. Let R be a ring and C a group. Denote by M, the set of all
functions C- » R, with the pointwise R-module structure. Let B: = R[C] be
the group ring of C over R. There is a natural action of B on M, given as
follows. If f: C— R and B =) rg, define f-b: = h, where h(g) = ¥, ¢
(xf)-re-1,. Applying b € B to the characteristic function of the identity of C, it
is clear that M, is a faithful B-module. The construction in example (4.6.f) is
then applicable, giving an admissible triple (4,, B, «).

We may interpret (6.1) as follows. Assume (F, G, H) is an (4,, B, «)-system.
Elements of M} denote the states of subsystems (or *cells”) indexed by elements
of C. All these subsystems have the same transition functions, and the next
stale of cach depends on the present states of those cells in a certain relative
position, weighted according to £. Inputs are simultancously applied, at each
instant. to every point in the pattern given by C. Each input has an effect over
cells in a fixed “neighborhood™ of subsystems, according to the form of G.
Outputs correspond to an assignment of values to each point of C as a function
of the states of the cells which lie in a certain neighborhood of the point. Thus
(6.1) models cellular automata with linear local transitions.

As a particular case, assume C: = Z and R: = R, the real numbers. Then
an element of M7 indicates an assignment of n-vectors to each cell of a doubly
infinite tape, and if we write B = R, x7'], then x, x " act as the right and left
shift on the tape. Elements of A} = (M,((z”™Y))" ~ M?((z™ ")) indicate the
temporal behavior of states.

The situation in (6.1) applies also to space-time discretizations of certain
kinds of linear partial differential equations. For an equation evolving in the
plane, one would choose C: = Z @ Z; for the 2-torus, C: = Z, ® Z, (for
different n’s), and so on.

(6.2) Example. Let R: = R, C: = Z, and let B, M| be as in (6.1). Define
My: = I%(Z), the set of all fin M, with S22 _ |nf}? < oo. It is again trivial to
verify faithfulness. The shifts are continuous operators, so (4.6.g) applics to
give an admissible triple (4,, B, «). An analogous construction holds for different
groups C.

This sctup applies to the case of space discretizations of partial differential
equations, as in Brockett and Willems [2]. The same comments as for (6.1)
apply here, with the only difference that the evolution now takes place in con-
tinuous-time,

(6.3) Example. Let R, C be defined as in (6.1), but restricted to the B-
submodule M, of M, consisting of the functions f: C — R which are zero
almost everywhere. Again (4.5.f) applies to give an admissible (45, B, ).

This :xample models the case in which at every instant only a finite number
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of cells are “‘active”, and where controls can be applied simultaneously at a
finite number of points only.

Observe that M is isomorphic to B (acting on itself by right multiplication).
So (A;, B, =)-systems correspond to B-systems, in the sense of Part B. The
study of partial difference equations via B-systems has been suggesied by
Johnston [7] and Wyman [24], among others.

(6.4) Observations. Assume C is finite in the previous examples. Then
M, = M;. Also, M| = M, for R = R. Moreover, M, can be identified with
R", where n is the cardinality of C, and the elements of B, as R-linear maps
M, — M, can be represented by nx n matrices over R. The present approach
allows one to exploit the algebraic structure of the ring B.

(6.5) Example. A simple and natural noncommutative example of B appears
when modelling the situation in which the contents of a cell ¢y, after being acted
upon by an element of B, are allowed to depend not only on previously stored
values in a “neighborhood” of ¢, but also on stored values in a fixed distin-
guished set of cells. For simplicity take G: = Z and distinguish the 0-th cell.
More precisely, this amounts to taking B as the R-algebra generated by (R[x,
x~ 1], =) where = € End (M,) is the projection on the 0-th coordinate. The same
setup is also useful in studying situations in which controls can only be applied
at certain points of a system, for example, systems defined by equations of the
type x(t+1) = (xF) () +(um) (1).

In all the cases in this section, the availability of a minimization algorithm
for B-systems would give realizations where the state spaces of the cell-
subsystems are smallest possible. In general, the advantages of the approach lie
in the reduction of problems (realization, reachability, observability, etc.) to the
corresponding problems for “finite-dimensional” discrete-time systems (which
in turn may be studied using the theory of group algebras). This general method.
rather than just the application of Theorem (5.4), is what should be stressed.

(7) Extensions.

Many notions (e.g., “invertibility”’) can be defined in the general context
of admissible triples and can be characterized as in the classical cases given
adequate restrictions on B. However, in order to allow consideration of time,
initial conditions, observability and other system-theoretic notions, the definition
of admissibility must be specialized in different ways. As an example, we sketch
the case of reachability.

Let the “time-set” T be an ordered group and k a field. Restrict admissible
triples to those for which 4 is a k[T}-submodule of kT and B[«] is a commutative
k-subalgebra of End,(A4), i.e., the operators are time-invariant.

A system (F, G, H) is (pointwise) reachable provided that for every x in k"
there exist w in A™ and 7 in T such that x = (wL) (1). It can be proved that the
system is reachable if and only if there exists no matrix ¥ in k" with GF*V =0
fork=0,---,n—1.

The above gives a unified and algebraic proof of the classical reachability
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criterion for both discrete and continuous time systems, where B = k. Moreover,
in the case that Bis a polynomial ring over &, the above criterion is equivalent to
a rank condition over &, and a new characterization of pointwise reachability is
obtained for (retarded) delay-differential systems.

As suggestions for further work, we might mention further specializations
allowing studies of other system-theoretic properties. Another interesting
possibility is that of generalizing the present framework to include bilinear
systems, where the map F is replaced by an affine map from 4™ into B"*".
This approach would permit the treatment of delay-differential bilinear systems
using the results on realization of rational power series on several non-commut-
ing variables given by Fliess ([5], [6]).

E. Conclusions

Some essential aspects of the extension of linear system theory to the case
of arbitrary coeflicient rings were studied, isolating in particular a class of
rings (F &) characterized by any of a number of properties which are well
known for the commutative case. Another class (# ) was also defined by
interchanging observability with reachability in the definitions. Algebraic
characterizations were obtained in both cases, with the purpose of comparing
them at a strictly algebraic level.

An approach to the use of system theory over rings as a tool for the study
of more general systems was presented in Part D. Observe that, for example,
(5.4) together with (4.6.b) and the discrete-time theory over R gives a rigorous
and completely algebraic theory for existence and uniqueness of realizations
of finite-dimensional constant continuous-time systems: the only nonalgebraic
component is involved in the proof of admissibility, and then no knowledge is
needed of the form of the solutions.
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