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A notion of local observability, which is natural in the 
context of nonlinear input/output regulation, is introduced. A 
simple characterization is provided, a comparison is made with 
other local nonlinear observability definitions, and its behavior 
under constant-rate sampling is analyzed. 
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1. Introduction 

Observability is a fundamental system-theoretic 
property which reflects the possibility of estimat- 
ing internal states on the basis of input/output 
data. In the context of nonlinear systems, various 
possible ways of formalizing this property give rise 
to different, nonequivalent, notions. These notions 
differ mainly in the choice of inputs used in testing 
observability (see for instance a discussion in the 
introduction to [lo]) or in the type of local behav- 
ior desired (see [5]). 

For continuous-time systems the fundamental 
global observability results are found in [13,14], 
where the necessary techniques are developed in 
the context of the minimal realization problem. 
Here we shall be interested more in focal observa- 
bility: intuitively, distinguishing states only from 
their neighbors. In that area, by far the most 
important work is that of Hermann and Krener in 
[5] (see [3] for related results), who introduced and 
compared various notions of local observability 
and obtained Lie-theoretic characterizations of 
some of these. The best results relate to ‘local 
weak observability’, which we shall review below. 
In what follows, we refer to this later concept 
simply as HK-observability. 

When dealing with problems of input/output 
stabilization [ll], where observation and control 
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alternate and a closed-loop design is Lyapunov 
stable, a notion of local observability somewhat 
different to those in [5] appears naturally. We shall 
call this notion L- (for Lyapunov) observability. We 
show below that the new notion can be char- 
acterized in a fashion analogous to that of HK-ob- 
servability, coinciding with it in the analytic case 
but admitting a somewhat nicer characterization in 
the general smooth case. Technically, the results 
elaborate on the material in [5]. 

Recent work of the author has concentrated on 
the study of the preservation of system-theoretic 
properties under sampling; see for instance [12,9]. 
We present a result along these lines regarding 
L-observability; in fact, this was one of the main 
motivations for studying L-observability in the 
first place. Note that the term ‘sampling’ is used 
here in the sense of digital control (constant-rate 
sampling) as opposed to the very different case of 
arbitrary (non-equispaced) piecewise constant con- 
trols as in [1,2], or [4]. Nonetheless, the techniques 
used in proving some of the statements are closely 
related to the later reference. 

2. Lyapunov observability 

The systems X to be considered are described 
by equations 

w =fb(t)7 r(d) (2.la) 
v(t)=h(x(t)), (2.lb) 

where states x(t) belong to a smooth (i.e. Cm) 
Hausdorff second countable connected n-dimen- 
sional manifold X, controls p take values in a 
subset U of a manifold I, and measurements y(t) 
take values in BP, for somep. The map h : X + SJ’ 
is smooth, and F, :=f( -, u) is a smooth vector 
field for each u E U. An analytic system is one for 
which h and all F,, are real-analytic. In Section 3, 
we shall need that the dynamics be smooth in p(t), 
more precisely: 

(2.2) f extends to a smooth map XX 4Y+ TX, 
int(U) is connected, and U E clos(int(U)). 
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A control (function) is a map 

p:[o, T]-+U 

which is measurable and essentially bounded; T = 
IpI is the length of p. 

The following notations will be used. Let u = 
(S , , . . . ,s,) be a sequence of positive real numbers, 
with T:=Cs,, and let u:=(u,,...,u,) be a se- 
quence of elements in U. Then u, is the control 
function p of length T defined as follows: 

p(t)=ui iftE [so+ a.- +si,s,+ a.. +si+,), 

i=O , . . . ,r (denoting s,, I= 0). The state x( 7) at 
time r E [0, T] corresponding to solving (2.la) with 
x(O) = 5 and control CL, is denoted by $[r, [, ~1; 
the corresponding output measurement 
h($[r, 5, ~1) is denoted by ~[r, 5, ~1. When r = T 
(= length of p) these are denoted just by $[[, ~1 
and q[[, ~1 respectively. 

For a system B as in (2.1), let 9 be the Lie 
algebra of vector fields generated by all the { Z$ u 
E U}, and let PO be the ideal of 9 generated by all 
the vector fields of the form F, - F, with u, u in U. 
The accessibility rank condition at x E X is the 
condition 

dimz(x) = n. (ARC) s 

The strong accessibility rank condition at x is the 
condition 

dimPa = n. @ARC) s 
(These are standard properties considered in non- 
linear control; details about the later can be found 
in [15].) 

The system X satisfies either of the above condi- 
tions if it holds for all x E X. For vector fields F 
and functions g we denote the Lie derivative Fg = 
(dg, F); in local coordinates, this is dg * F, where 
dg is the gradient of g. For a map 0: X + Br, d6’ 
denotes its differential (Jacobian in local coordi- 
nates). Hermann and Krener introduced d.%‘, the 
smallest B-vector space of one-forms that contains 
dh ,,...,dh, (hi:= i-th component of h) and is 
closed under Lie differentiation by elements of 9. 
In analogy to the discrete-time situation in [lo], we 
may call d.P the obseruation space of X. Its 
generators are the elements of the form 

d( C;;,, . * . F;,,hi), (2.3) 
for all possible sequences (u,, . . . , u,) in U’ and 
i=l ,.a., P* 
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The observability rank condition at x E X intro- 
duced in [5] is 

dim d.%?(x) = n. (ORC) .v 

Let W be a subset of X. The states [, [’ in W 
are indistinguishable inside W (denoted &Icc[‘) if 
the following property holds: given any T 2 0, and 
any control p of length T for which 

for all 0 s r I T, necessarily TJ[[,~] = q[[‘, ~1. 
(That is, 5 and .$’ cannot be distinguished by i/o 
experiments if trajectories are to stay in W.) De- 
note also I, := { .$’ s.t. .$Iw[‘). The following no- 
tion of (‘local weak’) observability at x E X was 
introduced in [5]: 

(HK-ohs), There exists a neighborhood W of x 
such that, for every open neighborhood VG W of 
x, Z,,(x) = (x}. 

The intuition behind this definition is that states 
close to x should be ‘instantaneously’ distinguisha- 
ble from x. As discussed in the introduction, we 
wish to study a somewhat different notion of local 
observability at x, more closely related to stabiliza- 
tion problems: 

(L-obs), For every neighborhood W of x, there 
exists a neighborhood VE W of x such that Z,,,.(x) 
n v= {x}. 

Note the difference in the quantifier order with 
the previous definition. Intuitively, this says that 
states close to x should be distinguishable from x 
without ‘large’ excursions. System-theoretically, 
such a property is of interest if we are trying to 
control Z to the state x using only output measure- 
ments, and such that the closed-loop system is 
Lyapunov stable; precise details about such ques- 
tions are provided in [ll]. Mathematically, one 
may expect that this requirement will be more 
natural than (HK-obs) when deailing with nonana- 
lytic systems, since no ‘instantaneous’ properties 
are involved. 

The relevant results of Hermann and Krener 
relating (HK-obs) and (ORC) can be summarized 
as follows ([5], Theorems 3.1, 3.11, and 3.12): 

(2.4) For any x, (ORC), * (HK-obs),V. 
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(2.5) (HK-obs), holds for all x q (ORC), is true 
on an open dense subset of X. 

Furthermore, if X satisfies the ARC and X is 
analytic then also: 

(2.6) (ORC), holds for all x a (HK-obs), holds 
for all x. 

For (L-obs), there is a characterization analo- 
gous to (2.6) but valid in the general smooth case: 

2.7. Theorem. If 1 satisfies the ARC, then the 
following statements are equivalent: 

(a) (L-obs), holds at all x; 
(b) (ORC),Y holds on an open dense subset of X. 

Note that (b) is in principle easier to check 
computationally than the satisfiability of (ORC), 
for all x. For instance, most natural examples of 
smooth nonanalytic systems (e.g. in the approxi- 
mation of switching discontinuities by a rapidly 
changing function) are piecewise analytic; in such a 
situation it is enough in order to check (b) to find 
a single point in each domain of analyticity where 
(ORC),V holds. For analytic systems, (b) is equiva- 
lent to (ORC) holding everywhere, but not so in 
the general case. The proof of Theorem 2.7 will 
follow from a few lemmas. 

2.8. Lemma. (HK-obs), a (L-obs),Y. 

Proof. Fix first a neighborhood W of x as in the 
definition of (HK-obs),. Now let W’ be any 
neighborhood of x. Let V be any open neighbor- 
hood of x contained in W~I W’. Thus, I,, n V is 
contained in I,. By (HK-obs),, I,(x) = {x}, so 
also I,,(x) n V= {x}, as wanted. 0 

2.9. Lemma. If X satisfies the ARC, then the fofollow- 
ing statements are equivalent: 

(i) (L-obs), holds everywhere; 
(ii) (L-obs), holds on a dense subset of X. 

Proof. Assume that the condition holds on the 
dense subset D of X; we must prove it holds 
everywhere. Pick then any x E X and any neigh- 
borhood W of x. By the ARC and Chow’s theorem 
(see [6]) there exists an open subset W’ of W such 
that every z E W’ is reachable from x by trajecto- 
ries staying inside W. Pick any z in D n W’. Since 

z E D, there is a neighborhood V’ G W of z such 
that Z&z) n V’ = {z}. And since z E W’, there is 
a control p of length T such that t#[~, x, ~1 E W 
for all 0 I 7 I T and +[x, cl]= z. By continuity of 
the map ([, 7) + c$[T, [, ~1, there exists a neigh: 
borhood V c W of x with the following properties: 

(i) +[ -, ~11 maps V into V’, and 
(ii) +[T, 5, II] E W for each [ E V and all 0 I +r 

s T. 
We claim that r,.,,(x)n V= {x), so that Vis as 

desired. Indeed, pick any 5 in V. Applying p to c 
results in a trajectory included in W and leading 
up to a state E’ in V’. But 5’ can be distinguished 
from z = +[x, p] without leaving W, say by a 
control $. Thus the concatenation of ~1 and CL’ 
distinguishes 5 from x without leaving W. 0 

2.10. Lemma. If (L-obs), holds on a dense subset of 
X, then also (ORC), holds on a dense (hence, open 
dense) set. 

Proof. Assume that (L-obs) holds on D. The argu- 
ment used in the proof of [5], Theorem 3.11, can 
be adapted to the present case almost without 
changes. We use the terminology from that refer- 
ence. Assume that there exists an open subset 
B G X where the ORC does not hold; without loss 
of generality we may assume that dim z(x) = k 
(constant) < n there. There is then an open subset 
WE B where the ‘strong indistinguishability rela- 
tion’ SI is regular, with equivalence classes being 
submanifolds of dimension n - k. Pick now any x 
in D n W and any neighborhood V G W of x. 
Since SI(x) is connected, there is a z in V which is 
strongly indistinguishable from x. If ~1 is any con- 
trol such that +[ -, x, ~1 and I+[ -, z, ~1 both remain 
in W, the existence of a quotient dynamics on 
X/S1 implies that ~[x, p]= ~[z, ~1. Thus z E 
I,(x) n V, contradicting (L-obs) at x. •I 

We can now complete the proof of Theorem 
2.7. That (a) implies (b) follows from Lemma 2.10. 
Conversely, assume that (b) holds. By (2.4), (HK- 
obs), holds on a dense set, so by Lemma 2.8 this is 
also true of (L-obs),. It then follows from Lemma 
2.9 that (L-obs), holds at all x, as desired. 0 

3. Sampled observability 

If d is a positive real and u = (u,, . . . , u,) E U’, 
consider the control p = u, obtained using (I - 6’ 
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= (6,. . . , 6) (r times); we call such a control a 
Q-sampled control, and denote it also by u;l. Note 
that its length is T = r8. If z = +[x, u;I] for some 
sequence u=(u,,..., u,.), then z is k-step &sam- 
pled reachable from x; the set of such states is 
denoted by A’,(x). See [12,9] for various results on 
sampled controllability; here we want to study a 
suitahle sampled (local) observability notion. 

For the rest of this paper, hypothesis (2.2) is 
assumed to hold for ail systems considered. 

Let W be a subset of X and pick any 6 > 0. By 
analogy with the previous section, we shall say 
that states 5, 4’ E W are a-indistinguishable inside 
W ([Ib[‘) if the following property holds: given 
any r > 0 and any b-sampled control p = u& of 
length T = r6 for which 

+[~,t,pl~ W and +[7,5’,~] E W 

for all 0 I r I T, necessarily q[[, CL]= q[[‘, ~1. We 
write I&(.$) *= (5’ s.t. EI$$‘}. We then have a 
notion of Lyapunov sampled observability at x E 
x: 

(L-s.obs), For every neighborhood W of x, there 
exists a real A > 0 such that, for each 0 < 6 < A 
there is a neighborhood Vg W of x such that 
$(x)n v= {x). 

Other definitions of local sampled observability 
are of course possible, even of a ‘Lyapunov’ type; 
the above one seems to be the easiest to work with. 
Also, a notion of ‘weak’ observability can be 
defined as for discrete-time systems in [8]: in that 
case both positive time and (ideal) negative time 
trajectories are allowed in testing indistinguishabil- 
ity. Another possibility is to make sampling peri- 
ods 8 to be uniformly bounded on compacts, in 
the style of the sampled controllability results 
mentioned earlier. 

It will be technically convenient to introduce a 
rank condition associated to sampled observabil- 
ity. If p’ , . . . , pk are (non-necessarily sampled) con- 
trols, let 

. (3.1) 

Consider now the following sampled observabil- 
ity rank condition at x: 

(s.ORC), There exist integers k > 0 and n,,. . . rnk 

> 0, a real A > 0, and sequences u’ E U”l, such 
that for each 0 < 6 <A the following condition 
holds: let pi := us,, a, := a”,; then 

rank d$““‘“‘( x) = n. (3.2) 
(See [7] for a related notion in the context of 
discrete-time systems with no controls.) 

3.3. Theorem. Assume that 2 satisfies the SARC. 
Then each of the following statements is equivalent 
to (a) and (b) in Theorem 2.7: 

(c) (L-s.obs), holds at all x; 
(d) (s.ORC), holds on an open dense subset of X. 

Since 1,(x) C Z;(x) for any W, 6, x, it is clear 
that (c) implies (a). That (b) implies (d) follows 
from: 

3.4. Lemma. (ORC), =$ (s.ORC),. 

This result will be established in Section 4. In a 
way totally analogous to that of Section 2, the 
Theorem will then follow from these two lemmas: 

3.5. Lemma. (s.ORC), = (L-sobs),. 

3.6. Lemma. If Z satisfies the SARC then the 
following are equivalent : 

(i) (L-s.obs), holds everywhere; 
(ii) (L-s.obs),V holds on a dense set. 

Proof of Lemma 3.5. This is basically the inverse 
function theorem. Pick any x in X, and let W be 
any neighborhood of x. Let the sequences ui be as 
in the definition of the (s.ORC),. The lengths of 
the corresponding controls pi are uniformly 
bounded by 6N, where N := max{ n,}; further they 
take values on a finite (hence compact) subset of 
U. It follows from continuity on controls and 
initial conditions that, for some A small enough, 
and for some neighborhood V’ c W of x, the 
trajectories +[. , & pi] remain in W whenever [ E 
V’, 0 I r I n,& and 0 I 6 I A.' Without loss of 
generality, A is small enough that 

rankd$““.“‘(x)=n forO<6<A. 

Pick any such 6. The map T+““‘~~ is thus, by the 
inverse function theorem, locally l-l at x. Let V 
be a neighborhood of x contained in V’ where this 
map is l-l. It follows that trajectories starting at 
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5 E V corresponding to the controls 1-1’ remain in 
W, and for each such E there is an i such that 
q[x, $1 Z v[[, $1. Thus IL(x) n V= {x}, as 
desired. •i 

Before establishing Lemma 3.6, we need the 
auxiliary result of Lemma 3.9 given below, on 
sampled controllability. This result plays for 
Lemma 3.6 a role analogous to that of Chow’s 
theorem for the proof of Lemma 2.9 in the previ- 
ous section. We shall state a somewhat stronger 
form than needed (cf. Remark 3.10). If r is a 
positive integer, and T > 0 is real, denote 

2%‘,(T):= {.=(s ,,..., s,)E~s.~. 

allsi>OandCsi=T}, (3.7) 

seen as a manifold of dimension r - 1. Further, for 
any fixed r, T as above, u E U’, and x E X, let @ 
be the map 
@:.%‘,(T)+X:a-+q5[x,u,]. (3.8) 

3.9. Lemma. Let x E X and let W be an open 
neighborhood of x. Assume given T and r as above, 
and a sequence (I E 9,(T) such that 

(a) +[T, x, ue] E Wfor each 7 I T, and 
(b) @ has full rank differential at u. 

Let t := +[x, uO]. Assume given a neighborhood r/l. 
G W of z. Then there are a neighborhood V, G W of 
x and a A > 0 such that, for each 0 < 6 < A, there is 
a b-sampled control p of length T = T( 8) such that 
z = +[x, p] and: 

(i) +[T, E, p] c Wfor all 7 I T( 8) and all E E Vy,, 
and 

Proof. (Sketch). This is a refinement of the result 
in Theorem 2.2 of [12], so only the idea is given 
here. That reference shows that, for each 6 small 
enough, there is a a-sampled control ~1 with z = 
$[x, ~1 satisfying (i), and further, p is close to u, in 
a suitable sense, uniformly with respect to 6. Let 
then V’ be any neighborhood of z whose closure is 
included in V,, and let V’V be the pre-image of V’ 
under the map $I[ ., u,], intersected with W. Thus, 

+[ v--, UJ G V’ G clos( V’) E r/l.. 

Picking if necessary a smaller A, (ii) is also satis- 
fied. q 

Proof of Lemma 3.6. Assume that (L-s.obs), holds 
for x E D dense. Pick any x E X and any neigh- 

borhood W of x. Since the SARC holds, there 
exist (I, T, r as in the previous lemma, so that (a) 
and (b) there hold. (This is a consequence of 
‘normal strong-or ‘fixed time’-accessibility’; see 
for instance [9], Lemma 2.2.) Further, since @ is an 
open map at u, we may assume that z =+[x, u,] is 
in the (dense) set D. Let V. := W, and apply the 
previous lemma to this data. Let vY,, A, be as in 
the conclusion of the lemma. Since z is in D, there 
is a A, and for each 0 < 6 < AL there is a neighbor- 
hood Vs of z in W such that IL(z) n Vs = (z}. Let 
A := m.in{ A,v, A,}, and pick any 0 I S I A and the 
corresponding S-sampled p as in Lemma 3.9. Let V 
be the preimage of Vs under +[a, ~1, intersected 
with vV. Thus, the b-sampled control ~1 sends x 
into z, and sends any .$ E V into some [’ E V,, 
with trajectories remaining in W. Concatening with 
a sampled control which distinguishes 5’ from z, it 
follows that Ih(x)n V= (x}, as desired. 0 

3.10. Remark. Lemma 3.6 admits a stronger ver- 
sion, which is of interest if the sampled observabil- 
ity rank condition holds uniformly on 6 over D. 
More precisely, assume that we require that the 
neighborhoods V in the definition of sampled 
observability at x can be choosen independently of 
6, for 0 < 6 I A. We then have an analogue of 
Lemma 3.6 for this stronger property. Indeed, the 
only change needed in the above proof is the 
choice Vz := this common neighborhood, instead of 
V. = W as above. Now all Vs are equal to V,, so 
the neighborhood V of x obtained at the end of 
the proof is again independent of 6. Thus the same 
type of uniform sampled observability holds at x. 
We leave as a topic for further research the clarifi- 
cation of the relation between this uniform notion 
and that developed in this paper. 

4. Proof of Lemma 3.4 

The proof will be a generalization of that in [4]. 
In that paper, the author establishes what can be 
interpreted as a non-controlled, non-constant-rate 
version of Lemma 3.4. Since the result is local, we 
work with coordinates in X = 9”. 

Assume then that (ORC), holds. Thus there is a 
finite set of control values {vi, i = 1,. . . ,k} such 
that (denoting c := I;I,,) the row vectors 

{dq, . . . Fj.~j(x),lIi,Ik,lIj~p,O_<rIq} 

(4.1) 
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span an n-dimensional space, for some 4 > 0. 
Equivalently, there exists an integer I and a se- 
quence of control values u = (u,, . . . , ur) such that, 
(with I;; = I;;,,) the rows 

1 dF;‘I . ..F.“hj(x),i,,O,Ci,<g,i~j~p} 

(4.2) 

span an n-dimensional space, for (the same) q > 0: 
the second statement follows from the first simply 
by taking I:= kq and considering the sequence 
(U r,. . . ,ur) obtained by repeating q times the se- 
quence (u,,..., ok). This second form will be used 
in what follows. 

Choose an ordering for the set of all I-vectors 
(i , , . . . , i,) of nonnegative integers i, such that Ci, 
I q, or equivalently, for all monomials of degree 
<q in I variables r,,..., t,. With this ordering, let 
act,,..., t,) be the row vector (say, with N col- 
umns) consisting of all the monomials 

.fiI . . . tf,/(i,! . . . i,!) (4.3) 

with Ci, 5 q. For each j = 1,. . . ,p, let Dj be the 
matrix whose rows are the n-vectors 

dF;‘I . . . F,‘vlj(X), 

listed with the above order for exponents (i,, . . . , i,). 
Consider the Taylor expansion of degree 4, 

dP’-~” (x)=A(t ,,..., t,)D+B(r ,,..., t,), (4.4) 

where the p by pN matrix A( t,, . . . , t,) is defined as 

/o(r I..... I,) 0 . . . 0 \ 
0 

A(r I...., t,)- I i 4h ,....I,) 

\ 0 0 . . . a(, ,,...,,, )I 

(4.5) 

D, 
DC : 

i I 

(4.6) 
DP 

and B(t,,..., t,) is a p by n matrix all whose 
entries bij( I,, . . . , t,) satisfy that 

b,j(t ,,...,~,)/ll(f,l...,~,)llq-,O 

as (4 )..., q-,0. (4.7) 

Choose positive integers { sij }, i = 1,. . . ,N, j = 
1 , . . . , I, such that the multivariable Vandermonde 
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matrix 

(4.8) 

has rank N. Thus the ( pN by pN) matrix 

(4.9) 

has rank pN. 
For each i = 1 ,. . . , N let ui be the sequence in 

U”g defined as follows: 

ni:=s,, + ... +si,, (4.10) 

ui:= (u, I... ,UI,UZ,...,UZ,...,U,,...,U,), (4.11) 

where uj is repeated sij times. Finally, let 

(4.12) 

and E(6) := the pN by n matrix with blocks of 
rows 

B(& ,,,..., as,), i= l,..., N. 

Note that the entries of E( 8) are 0(&q) and that 
C(6) = C. R(6), where R(6) is a diagonal matrix 
containing powers of 6 of degree at most q. 

Let uL denote the smallest singular value of a 
matrix L (i.e., uj is the smallest nonzero eigenvalue 
of L’L). Applying repeatedly the general fact that 
(for the Euclidean norm) llLzll> uLIIzII, we obtain, 
for 016s 1, 

IlC@)Dzll2 v,~~II~I (4.13) 

for all vectors z. Let (Y := ucu, > 0. Then, for all z, 

II( + E@)bll~ (a - ~-qll~GUI)~ql141~ 
(4.14) 

For S small enough, (Y - 6-qllE(6)ll > 0, and so 
C( S)D + E(6) has rank n. Thus there is a A > 0 
such that, whenever 0 < 6 < A, 

dv p’-~“N(x) = C(6)D + E(6) (4.15) 

has rank n, for pi := ub,, ui := Pa. This establishes 
the sampled ORC property, as desired. q 
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