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Abstract The multisite phosphorylation-dephosphorylation cycle is a motif repeat-
edly used in cell signaling. This motif itself can generate a variety of dynamic behaviors
like bistability and ultrasensitivity without direct positive feedbacks. In this paper,
we study the number of positive steady states of a general multisite phosphoryla-
tion–dephosphorylation cycle, and how the number of positive steady states varies by
changing the biological parameters. We show analytically that (1) for some parameter
ranges, there are at least n + 1 (if n is even) or n (if n is odd) steady states; (2) there
never are more than 2n − 1 steady states (in particular, this implies that for n = 2,
including single levels of MAPK cascades, there are at most three steady states);
(3) for parameters near the standard Michaelis–Menten quasi-steady state conditions,
there are at most n + 1 steady states; and (4) for parameters far from the standard
Michaelis–Menten quasi-steady state conditions, there is at most one steady state.

Keywords Futile cycles ·Bistability · Signaling pathways ·Biomolecular networks ·
Steady states

Mathematics Subject Classification (2000) 92C45

1 Introduction

A promising approach to handling the complexity of cell signaling pathways is to
decompose pathways into small motifs, and analyze the individual motifs. One partic-
ular motif that has attracted much attention in recent years is the cycle formed by two
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Fig. 1 A futile cycle of size n

or more inter-convertible forms of one protein. The protein, denoted here by S0, is ulti-
mately converted into a product, denoted here by Sn , through a cascade of “activation”
reactions triggered or facilitated by an enzyme E ; conversely, Sn is transformed back
(or “deactivated”) into the original S0, helped on by the action of a second enzyme F .
See Fig. 1.

Such structures, often called “futile cycles” (also called substrate cycles, enzymatic
cycles, or enzymatic inter-conversions, see [27]), serve as basic blocks in cellular
signaling pathways and have pivotal impact on the signaling dynamics. Futile cycles
underlie signaling processes such as GTPase cycles [10], bacterial two-component sys-
tems and phosphorelays [5,15] actin treadmilling [8], and glucose mobilization [19], as
well as metabolic control [25] and cell division and apoptosis [26] and cell-cycle check-
point control [20]. One very important instance is that of mitogen-activated protein
kinase (“MAPK”) cascades, which regulate primary cellular activities such as prolif-
eration, differentiation, and apoptosis [2,7,18,32] in eukaryotes from yeast to humans.

Mitogen-activated protein kinase cascades usually consist of three tiers of simi-
lar structures with multiple feedbacks [6,13,33]. Each individual level of the MAPK
cascades is a futile cycle as depicted in Fig. 1 with n = 2. Markevich et al.’s paper
[21] was the first to demonstrate the possibility of multistationarity at a single cascade
level, and motivated the need for analytical studies of the number of steady states.
Conradi et al. studied the existence of multistationarity in their paper [9], employing
algorithms based on Feinberg’s chemical reaction network theory (CRNT). (For more
details on CRNT, see [11,12].) The CRNT algorithm confirms multistationarity in a
single level of MAPK cascades, and provides a set of kinetic constants which can give
rise to multistationarity. However, the CRNT algorithm only tests for the existence of
multiple steady states, and does not provide information regarding the precise number
of steady states. See [3,4,17,22,23,28,30,31] for other work on multistationarity of
biological systems.

In [16], Gunawardena proposed a novel approach to the study of steady states of
futile cycles. His approach, which was focused in the question of determining the pro-
portion of maximally phosphorylated substrate, was developed under the simplifying
quasi-steady state assumption that substrate is in excess. Nonetheless, our study of
multistationarity uses in a key manner the basic formalism in [16], even for the case
when substrate is not in excess.

In Sect. 2, we state our basic assumptions regarding the model. The basic formal-
ism and background for the approach is provided in Sect. 3. The main focus of this
paper is on Sect. 4, where we derive various bounds on the number of steady states
of futile cycles of size n. The first result is a lower bound for the number of steady
states. Currently available results on lower bounds, as in [29], can only handle the case
when quasi-steady state assumptions are valid; we substantially extend these results
to the fully general case by means of a perturbation argument which allows one to
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get around these restricted assumptions. Another novel feature of our results in this
paper is the derivation of an upper bound of 2n − 1, valid for all kinetic constants.
Models in molecular cell biology are characterized by a high degree of uncertainly
in parameters, hence such results valid over the entire parameter space are of special
significance. However, when more information on the parameters is available, sharper
upper bounds can be obtained, see Theorems 4 and 5. We finally conclude our paper
in Sect. 5 with a conjecture of an n + 1 upper bound.

We remark that the results here do not address the stability of the steady states.
However, we see from simulations that the stable and unstable steady states tend
to alternate if ranked by the ratio of their steady state concentrations of the kinase
and the phosphatase. Complementary work dealing with the dynamical behavior of
futile cycles of size two is studied in [4,31]. In [31], we showed that the model exhibits
generic convergence to steady states but no more complicated behavior, at least within
restricted parameter ranges, while [4] showed a persistence property (no species tends
to be eliminated) for any possible parameter values. See [1] for a global convergence
result in the single-phosphorylation case.

2 Model assumptions

Before presenting mathematical details, let us first discuss the basic biochemical
assumptions that go into the model. In general, phosphorylation and dephosphorylation
can follow either a distributive or a processive mechanism. In the processive mecha-
nism, the kinase (phosphatase) facilitates two or more phosphorylations (dephosph-
orylations) before the final product is released, whereas in the distributive mechanism,
the kinase (phosphatase) facilitates at most one phosphorylation (dephosphorylation)
in each molecular encounter. In the case of n = 2, a futile cycle that follows the
processive mechanism can be represented by reactions as follows:

S0 + E ←→ E S0 ←→ E S1 −→ S2 + E

S2 + F ←→ F S2 ←→ F S1 −→ S0 + F;

and the distributive mechanism can be represented by reactions:

S0 + E ←→ E S0 −→ S1 + E ←→ E S1 −→ S2 + E

S2 + F ←→ F S2 −→ S1 + F ←→ F S1 −→ S0 + F.

Biological experiments have demonstrated that both dual phosphorylation and dephos-
phorylation in MAPK are distributive, see [6,13,33]. In their paper [9], Conradi et al.
showed mathematically that if either phosphorylation or dephosphorylation follows a
processive mechanism, the steady state will be unique, which, it is argued in [9], con-
tradicts experimental observations. We therefore assume that both phosphorylations
and dephosphorylations in the futile cycles follow the distributive mechanism.

Our structure of futile cycles in Fig. 1 also implicitly assumes a sequential instead of
a random mechanism. By a sequential mechanism, we mean that the kinase phosphory-
lates the substrates in a specific order, and the phosphatase works in the reversed order.
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A few kinases are known to be sequential, for example, the auto-phosphorylation of
FGF-receptor-1 kinase [14]. This assumption dramatically reduces the number of dif-
ferent phospho-forms and simplifies our analysis. In a special case when the kinetic
constants of each phosphorylation are the same and the kinetic constants of each
dephosphorylation are the same, the random mechanism can be easily included in the
sequential case.

To model the reactions, we assume mass action kinetics, which is standard in math-
ematical modeling of molecular events in biology.

3 Mathematical formalism

In this section, we set up a mathematical framework for studying the steady states of
futile cycles. Let us first write down all the elementary chemical reactions in Fig. 1:

S0 + E
kon0−→←−
koff0

E S0

kcat0→ S1 + E

...

Sn−1 + E
konn−1−→←−
koffn−1

E Sn−1

kcatn−1→ Sn + E

S1 + F
lon0−→←−
loff0

F S1

lcat0→ S0 + F

...

Sn + F
lonn−1−→←−
loffn−1

F Sn

lcatn−1→ Sn−1 + F

where kon0 , etc., are kinetic parameters for binding and unbinding, E S0 denotes the
complex consisting of the enzyme E and the substrate S0, and so forth. These reactions
can be modeled by 3n + 3 differential-algebraic equations according to mass action
kinetics:

ds0

dt
= −kon0 s0e + koff0

c0 + lcat0
d1,

dsi

dt
= −koni si e + koffi

ci + kcati−1
ci−1 − loni−1si f

+ loffi−1
di + lcati

di+1, i = 1, . . . , n − 1, (1)

dc j

dt
= kon j s j e − (koff j

+ kcat j
)c j , j = 0, . . . , n − 1,

ddk

dt
= lonk−1sk f − (loffk−1

+ lcatk−1
)dk, k = 1, . . . , n,
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On the number of steady states in a multiple futile cycle 33

together with the algebraic “conservation equations”:

Etot = e +
n−1∑

0

ci ,

Ftot = f +
n∑

1

di , (2)

Stot =
n∑

0

si +
n−1∑

0

ci +
n∑

1

di .

The variables s0, . . . , sn, c0, . . . , cn−1, d1, . . . , dn, e, f stand for the concentrations
of

S0, . . . , Sn, E S0, . . . , E Sn−1, F S1, . . . , F Sn, E, F

respectively. For each positive vector

κ = (kon0 , . . . , konn−1 , koff0
, . . . , koffn−1

, kcat0
, . . . , kcatn−1

,

lon0 , . . . , lonn−1 , loff0
, . . . , loffn−1

, lcat0
, . . . , lcatn−1

) ∈ R
6n+

(of “kinetic constants”) and each positive triple C = (Etot, Ftot, Stot), we have a
different system �(κ, C).

Let us write the coordinates of a vector x ∈ R
3n+3+ as:

x = (s0, . . . , sn, c0, . . . , cn−1, d1, . . . , dn, e, f ),

and define a mapping

� : R3n+3+ × R
6n+ × R

3+ −→ R
3n+3

with components �1, . . . , �3n+3 where the first 3n components are

�1(x, κ, C) = −kon0 s0e + koff0
c0 + lcat0

d1,

and so forth, listing the right hand sides of the Eq. (1), �3n+1 is

e +
n−1∑

0

ci − Etot,

and similarly for �3n+2 and �3n+3, we use the remaining equations in (2).
For each κ, C, let us define a set

Z(κ, C) = {x |�(x, κ, C) = 0}.
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34 L. Wang, E. D. Sontag

Observe that, by definition, given x ∈ R
3n+3+ , x is a positive steady state of �(κ, C)

if and only if x ∈ Z(κ, C). So, the mathematical statement of the central problem in
this paper is to count the number of elements in Z(κ, C). Our analysis will be greatly
simplified by the following preprocessing. Let us introduce a function

� : R3n+3+ × R
6n+ × R

3+ −→ R
3n+3

with components �1, . . . , �3n+3 defined as

�1 = �1 +�n+1,

�i = �i +�n+i +�2n+i−1 +�i−1, i = 2, . . . , n,

� j = � j , j = n + 1, . . . , 3n + 3.

It is easy to see that

Z(κ, C) = {x |�(x, κ, C) = 0},

but now the first 3n equations are:

�i = lcati−1
di − kcati−1

ci−1 = 0, i = 1, . . . , n,

�n+1+ j = kon j s j e − (koff j
+ kcat j

)c j = 0, j = 0, . . . , n − 1,

�2n+k = lonk−1 sk f − (loffk−1
+ lcatk−1

)dk = 0, k = 1, . . . , n,

and can be easily solved as:

si+1 = λi (e/ f )si , (3)

ci = esi

KMi

, (4)

di+1 = f si+1

L Mi

, (5)

where

λi = kcati
L Mi

KMi lcati

, KMi =
kcati
+ koffi

koni

, L Mi =
lcati
+ loffi

loni

, i = 0, . . . , n−1.

(6)
For each κ , we introduce three functions ϕκ

0 , ϕκ
1 , ϕκ

2 : R+ −→ R+ as follows:

ϕκ
0 (u) = 1+ λ0u + λ0λ1u2 + · · · + λ0 · · · λn−1un,

ϕκ
1 (u) = 1

KM0

+ λ0

KM1

u + · · · + λ0 · · · λn−2

KMn−1

un−1,

ϕκ
2 (u) = λ0

L M0

u + λ0λ1

L M1

u2 + · · · + λ0 · · · λn−1

L Mn−1

un .
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On the number of steady states in a multiple futile cycle 35

We may now write

n∑

0

si = s0

(
1+ λ0

(
e

f

)
+ λ0λ1

(
e

f

)2

+ · · · + λ0 · · · λn−1

(
e

f

)n
)

= s0ϕ
κ
0

(
e

f

)
,

n−1∑

0

ci = es0

(
1

KM0

+ λ0

KM1

(
e

f

)
+ · · · + λ0 · · · λn−2

KMn−1

(
e

f

)n−1
)

= es0ϕ
κ
1

(
e

f

)
, (7)

n∑

1

di = f s0

(
λ0

L M0

(
e

f

)
+ λ0λ1

L M1

(
e

f

)2

+ · · · + λ0 · · · λn−1

L Mn−1

(
e

f

)n
)

= f s0ϕ
κ
2

(
e

f

)
.

Although the equation � = 0 represents 3n + 3 equations with 3n + 3 unknowns,
next we will show that it can be reduced to two equations with two unknowns, which
have the same number of positive solutions as � = 0. Let us first define a set

S(κ, C) = {(u, v) ∈ R+ × R+ |Gκ,C
1 (u, v) = 0, Gκ,C

2 (u, v) = 0},

where Gκ,C
1 , Gκ,C

2 : R2+ −→ R are given by

Gκ,C
1 (u, v) = v

(
uϕκ

1 (u)− ϕκ
2 (u)Etot/Ftot

)− Etot/Ftot + u,

Gκ,C
2 (u, v) = ϕκ

0 (u)ϕκ
2 (u)v2 + (

ϕκ
0 (u)− Stotϕ

κ
2 (u)+ Ftotuϕκ

1 (u)

+ Ftotϕ
κ
2 (u)

)
v − Stot.

The precise statement is as follows:

Lemma 1 There exists a mapping δ : R
3n+3 −→ R

2 such that, for each κ, C, the
map δ restricted to Z(κ, C) is a bijection between the sets Z(κ, C) and S(κ, C).

Proof Let us define the mapping δ : R3n+3 −→ R
2 as δ(x) = (e/ f, s0), where

x = (s0, . . . , sn, c0, . . . , cn−1, d1, . . . , dn, e, f ).

If we can show that δ induces a bijection between Z(κ, C) and S(κ, C), we are done.
First, we claim that δ(Z(κ, C)) ⊆ S(κ, C). Pick any x ∈ Z(κ, C), we have that x

satisfies (3)–(5). Moreover, �3n+2(x, κ, C) = 0 yields

Etot = e + es0ϕ
κ
1

(
e

f

)
,
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and thus

e = Etot
1+ s0ϕ

κ
1 (e/ f )

. (8)

Using �3n+1(x, κ, C) = 0 and �3n+2(x, κ, C) = 0, we get:

Etot
Ftot
= e(1+ s0ϕ

κ
1 (e/ f ))

f (1+ s0ϕ
κ
2 (e/ f ))

, (9)

which is Gκ,C
1 (e/ f, s0) = 0 after multiplying by 1+s0ϕ

κ
2 (e/ f ) and rearranging terms.

To check that Gκ,C
2 (e/ f, s0) = 0, we start with �3n+3(x, κ, C) = 0, i.e.

Stot =
n∑

0

si +
n−1∑

0

ci +
n∑

1

di .

Using (7) and (8), this expression becomes

Stot = s0ϕ
κ
0

(
e

f

)
+ Etots0ϕ

κ
1 (e/ f )

1+ s0ϕ
κ
1 (e/ f )

+ Ftots0ϕ
κ
2 (e/ f )

1+ s0ϕ
κ
2 (e/ f )

= s0ϕ
κ
0

(
e

f

)
+ eFtots0ϕ

κ
1 (e/ f )

f (1+ s0ϕ
κ
2 (e/ f ))

+ Ftots0ϕ
κ
2 (e/ f )

1+ s0ϕ
κ
2 (e/ f )

,

where the last equality comes from (9).
After multiplying by 1+ s0ϕ

κ
2 (e/ f ), and simplifying, we get

ϕκ
0

(
e

f

)
ϕκ

2

(
e

f

)
s2

0 +
(

ϕκ
0

(
e

f

)
− Stotϕ

κ
2

(
e

f

)

+ e

f
Ftotϕ

κ
1

(
e

f

)
+ Ftotϕ

κ
2 (u)

)
s0 − Stot = 0,

that is, Gκ,C
2 (e/ f, s0) = 0. since both Gκ,C

1 (e/ f, s0) and Gκ,C
2 (e/ f, s0) are zero, δ(x) ∈

S(κ, C).
Next, we will show that S(κ, C) ⊆ δ(Z(κ, C)). For any y = (u, v) ∈ S(κ, C), let

the coordinates of x be defined as:

s0 = v, si+1 = λi usi , e = Etot
1+ s0ϕ

κ
1 (u)

, f = e

u
, ci = esi

KMi

, di+1= f si+1

L Mi

,

for i = 0, . . . , n − 1. It is easy to see that the vector x = (s0, . . . , sn, c0, . . . , cn−1,

d1, . . . , dn, e, f ) satisfies�1(x, κ, C) = 0, . . . , �3n+1(x, κ, C) = 0. If�3n+2(x, κ, C)

and �3n+3(x, κ, C) are also zero, then x is an element of Z(κ, C) with δ(x) = y.
Given the condition that Gκ,C

i (u, v) = 0 (i = 1, 2) and u = e/ f, v = s0, we have

Gκ,C
1 (e/ f, s0) = 0, and therefore (9) holds. Since
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On the number of steady states in a multiple futile cycle 37

e = Etot
1+ s0ϕ

κ
1 (e/ f )

in our construction, we have

Ftot = f (1+ s0ϕ
κ
2 (e/ f )) = f +

n∑

1

di .

To check �3n+3(x, κ, C) = 0, we use

Gκ,C
2 (e/ f, s0)

1+ s0ϕ
κ
2 (e/ f )

= 0,

as Gκ,C
2 (e/ f, s0) = 0 and 1+ s0ϕ

κ
2 (e/ f ) > 0. Applying (7)–(9), we have

n∑

0

si +
n−1∑

0

ci +
n∑

1

di

= s0ϕ
κ
0 (e/ f )+ eFtots0ϕ

κ
1 (e/ f )

f (1+ s0ϕ
κ
2 (e/ f ))

+ Ftots0ϕ
κ
2 (e/ f )

1+ s0ϕ
κ
2 (e/ f )

= Stot.

It remains for us to show that the map δ is one to one on Z(κ, C). Suppose that
δ(x1) = δ(x2) = (u, v), where

xi = (si
0, . . . , si

n, ci
0, . . . , ci

n−1, di
1, . . . , di

n, ei , f i ), i = 1, 2.

By the definition of δ, we know that s1
0 = s2

0 and e1/ f 1 = e2/ f 2. Therefore, s1
i = s2

i
for i = 0, . . . , n. Equation (8) gives

e1 = Etot
1+ vϕκ

1 (u)
= e2.

Thus, f 1 = f 2, and c1
i = c2

i , d1
i+1 = d2

i+1 for i = 0, . . . , n − 1 because of (3)–(5).
Therefore, x1 = x2, and δ is one to one. ��

The above lemma ensures that the two sets Z(κ, C) and S(κ, C) have the same num-
ber of elements. From now on, we will focus on S(κ, C), the set of positive solutions
of equations Gκ,C

1 (u, v) = 0, Gκ,C
2 (u, v) = 0, i.e.

Gκ,C
1 (u, v) = v

(
uϕκ

1 (u)− ϕκ
2 (u)Etot/Ftot

)− Etot/Ftot + u = 0, (10)

Gκ,C
2 (u, v) = ϕκ

0 (u)ϕκ
2 (u)v2 + (

ϕκ
0 (u)− Stotϕ

κ
2 (u)+ Ftotuϕκ

1 (u)

+Ftotϕ
κ
2 (u)

)
v − Stot = 0. (11)
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38 L. Wang, E. D. Sontag

4 Number of positive steady states

4.1 Lower bound on the number of positive steady states

One approach to solving (10) and (11) is to view Gκ,C
2 (u, v) as a quadratic polynomial

in v. Since Gκ,C
2 (u, 0) < 0, Eq. (11) has a unique positive root, namely

v =
−Hκ,C(u)+

√
Hκ,C(u)2 + 4Stotϕ

κ
0 (u)ϕκ

2 (u)

2ϕκ
0 (u)ϕκ

2 (u)
, (12)

where
Hκ,C(u) = ϕκ

0 (u)− Stotϕ
κ
2 (u)+ Ftotuϕκ

1 (u)+ Ftotϕ
κ
2 (u). (13)

Substituting this expression for v into (10), and multiplying by ϕκ
0 (u), we get

Fκ,C(u) : =
−H̃κ,C(u)+

√
H̃κ,C(u)2 + 4Stotϕ

κ
0 (u)ϕκ

2 (u)

2ϕκ
2 (u)

(
uϕκ

1 (u)− Etot
Ftot

ϕκ
2 (u)

)

− Etot
Ftot

ϕκ
0 (u)+ uϕκ

0 (u) = 0. (14)

So, any (u, v) ∈ S(κ, C) should satisfy (12) and (14). On the other hand, any positive
solution u of (14) (notice that ϕκ

0 (u) > 0) and v given by (12) (always positive) pro-
vide a positive a solution of (10) and (11), that is, (u, v) is an element in S(κ, C).
Therefore, the number of positive solutions of (10) and (11) is the same as the number
of positive solutions of (12) and (14). But v is uniquely determined by u in (12), which
further simplifies the problem to one equation (14) with one unknown u. Based on
this observation, we have:

Theorem 1 For each positive numbers Stot, γ , there exist ε0 > 0 and κ ∈ R
6n+ such

that the following property holds. Pick any Etot, Ftot such that

Ftot = Etot/γ < ε0Stot/γ, (15)

then the system �(κ, C) with C = (Etot, Ftot, Stot) has at least n + 1 (n) positive
steady states when n is even (odd).

Proof For each κ, γ, Stot, let us define two functions R+ × R+ −→ R as follows:

H̃κ,γ,Stot(ε, u) = Hκ,(εStot,εStot/γ,Stot)(u)

= ϕκ
0 (u)− Stotϕ

κ
2 (u)+ ε

Stot
γ

uϕκ
1 (u)+ ε

Stot
γ

ϕκ
2 (u), (16)
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On the number of steady states in a multiple futile cycle 39

and

F̃κ,γ,Stot(ε, u) = Fκ,(εStot,εStot/γ,Stot)(u)

=
−H̃κ,γ,Stot(ε, u)+

√
H̃κ,γ,Stot(ε, u)2 + 4Stotϕ

κ
0 (u)ϕκ

2 (u)

2ϕκ
2 (u)

× (
uϕκ

1 (u)− γ ϕκ
2 (u)

)− γ ϕκ
0 (u)+ uϕκ

0 (u). (17)

By Lemma 1 and the argument before this theorem, it is enough to show that there
exist ε0 > 0 and κ ∈ R

6n+ such that for all ε ∈ (0, ε0), the equation F̃κ,γ,Stot(ε, u) = 0
has at least n + 1 (n) positive solutions when n is even (odd). (Then, given Stot, γ ,
Etot, and Ftot satisfying (15), we let ε = Etot/Stot < ε0, and apply the result.)

A straightforward computation shows that when ε = 0,

F̃κ,γ,Stot(0, u) = Stot
(
uϕκ

1 (u)− γ ϕκ
2 (u)

)− γ ϕκ
0 (u)+ uϕκ

0 (u)

= λ0 · · · λn−1un+1 + λ0 · · · λn−2

×
(

1+ Stot
KMn−1

(1− γβn−1)− γ λn−1

)
un

+ · · · + λ0 · · · λi−2

(
1+ Stot

KMi−1

(1− γβi−1)− γ λi−1

)
ui

+ · · · +
(

1+ Stot
KM0

(1− γβ0)− γ λ0

)
u − γ, (18)

where the λi ’s and KMi ’s are defined as in (6), and βi = kcati
/ lcati

. The polynomial

F̃κ,γ,Stot(0, u) is of degree n + 1, so there are at most n + 1 positive roots. Notice
that u = 0 is not a root because F̃κ,γ,Stot(0, u) = −γ < 0, which also implies that
when n is odd, there can not be n + 1 positive roots. Now fix any Stot and γ . We will
construct a vector κ such that F̃κ,γ,Stot(0, u) has n + 1 distinct positive roots when n
is even.

Let us pick any n + 1 positive real numbers u1 < · · · < un+1, such that their
product is γ , and assume that

(u − u1) · · · (u − un+1) = un+1 + anun + · · · + a1u + a0, (19)

where a0 = −γ < 0 keeping in mind that ai ’s are given. Our goal is to find a vector
κ ∈ R

6n+ such that (18) and (19) are the same. For each i = 0, . . . , n − 1, we pick
λi = 1. Comparing the coefficients of ui+1 in (18) and (19), we have:

Stot
KMi

(1+ a0βi ) = ai+1 − a0 − 1. (20)
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Let us pick KMi > 0 such that
KMi
Stot

(ai+1 − a0 − 1)− 1 < 0, then take

βi =
KMi
Stot

(ai+1 − a0 − 1)− 1

a0
> 0

in order to satisfy (20). From the given

λ0, . . . , λn−1, KM0 , . . . , KMn−1 , β0, . . . , βn−1,

we will find a vector

κ = (kon0 , . . . , konn−1 , koff0
, . . . , koffn−1

, kcat0
, . . . , kcatn−1

,

lon0 , . . . , lonn−1 , loff0
, . . . , loffn−1

, lcat0
, . . . , lcatn−1

) ∈ R
6n+

such that βi = kcati
/ lcati

, i = 0, . . . , n − 1, and (6) holds. This vector κ will guar-

antee that F̃κ,γ,Stot(0, u) has n + 1 positive distinct roots. When n is odd, a similar
construction will give a vector κ such that F̃κ,γ,Stot(0, u) has n positive roots and one
negative root.

One construction of κ (given λi , KMi , βi , i = 0, . . . , n− 1) is as follows. For each
i = 0, . . . , n − 1, we start by defining:

L Mi =
λi KMi

βi
,

consistently with the definitions in (6). Then, we take

koni = 1, loni = 1,

and

koffi
=αi KMi , kcati

=(1− αi )KMi , lcati
= 1− αi

βi
KMi , loffi

=L Mi − lcati
,

where αi ∈ (0, 1) is chosen such that

loffi
= L Mi −

1− αi

βi
KMi > 0.

This κ satisfies βi = kcati
/ lcati

, i = 0, . . . , n − 1, and (6).
In order to apply the Implicit Function Theorem, we now view the functions defined

by formulas in (16) and (17) as defined also for ε ≤ 0, i.e. as functions R× R+ −→
R. It is easy to see that F̃κ,γ,Stot(ε, u) is C1 on R × R+ because the polynomial
under the square root sign in F̃κ,γ,Stot(ε, u) is never zero. On the other hand, since

F̃κ,γ,Stot(0, u) is a polynomial in u with distinct roots, ∂ F̃
κ,γ,Stot
∂u (0, ui ) �= 0. By the

123



On the number of steady states in a multiple futile cycle 41

Implicit Function Theorem, for each i = 1, . . . , n + 1, there exist open intervals Ei

containing 0, open intervals Ui containing ui , and a differentiable function

αi : Ei → Ui

such that αi (0) = ui , F̃κ,γ,Stot(ε, αi (ε)) = 0 for all ε ∈ Ei , and the images αi (Ei )’s
are non-overlapping. If we take

(0, ε0) :=
n+1⋂

1

Ei

⋂
(0,+∞),

then for any ε∈(0, ε0), we have {αi (ε)} as n+1 distinct positive roots of F̃κ,γ,Stot(ε, u).
The case when n is odd can be proved similarly. ��

The above theorem shows that when Etot/Stot is sufficiently small, it is always
possible for the futile cycle to have n + 1 (n) steady states when n is even (odd),
by choosing appropriate kinetic constants κ . We should notice that for arbitrary κ ,
the derivative of F̃ at each positive root may become zero, which breaks down the
perturbation argument. Here is an example to show that more conditions are needed:
with

n=2, λ0=1, λ1=3, γ =6, β0=β1=1/12, K0=1/8, K1=1/2, Stot = 5,

we have that

F̃κ,γ,Stot(0, u) = 3u3 − 12u2 + 15u − 6 = 3(u − 1)2(u − 2)

has a double root at u = 1. In this case, even for ε = 0.01, there is only one positive
root of F̃κ,γ,Stot(ε, u), see Fig. 2.

However, the following lemma provides a sufficient condition for ∂ F
κ,γ,Stot
∂u (0, ū) �=

0, for any positive ū such that F̃κ,γ,Stot(0, ū) = 0.

Lemma 2 For each positive numbers Stot, γ , and vector κ ∈ R
6n+ , if

Stot

∣∣∣∣∣
1− γβ j

KM j

∣∣∣∣∣ ≤
1

n
(21)

holds for all j = 1, · · · , n − 1, then ∂ F̃
κ,γ,Stot
∂u (0, ū) �= 0.

See Appendix for the proof.

Theorem 2 For each positive numbers Stot, γ , and vector κ ∈ R
6n+ satisfying condi-

tion (21), there exists ε1 > 0 such that for any Ftot, Etot satisfying Ftot = Etot/γ <

ε1Stot/γ , the number of positive steady states of system �(κ, C) is greater or equal
to the number of (positive) roots of F̃κ,γ,Stot(0, u).
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Fig. 2 The plot of the function
F̃κ,γ,Stot (0.01, u) on [0, 3].
There is a unique positive real
solution around u = 2.14, the
double root u = 1 of
F̃κ,γ,Stot (0, u) bifurcates to two
complex roots with non-zero
imaginary parts

Proof Suppose that F̃κ,γ,Stot(0, u) has m roots: ū1, . . . , ūm . Applying Lemma 2, we
have

∂ F̃κ,γ,Stot

∂u
(0, ūk) �= 0, k = 1, . . . , m.

By the perturbation arguments as in Theorem 1, we have that there exists ε1 > 0 such
that F̃κ,γ,Stot(ε, u) has at least m roots for all 0 < ε < ε1. ��

The above result depends heavily on a perturbation argument, which only works
when Etot/Stot is sufficiently small. In the next section, we will give an upper bound
of the number of steady states with no restrictions on Etot/Stot, and independent of
κ and C.

4.2 Upper bound on the number of steady states

Theorem 3 For each κ, C, the system �(κ, C) has at most 2n − 1 positive steady
states.

Proof An alternative approach to solving (10) and (11) is to first eliminate v from
(10) instead of from (11), i.e.

v = Etot/Ftot − u

uϕκ
1 (u)− (Etot/Ftot)ϕ

κ
2 (u)

:= A(u)

B(u)
, (22)
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when uϕκ
1 (u)−(Etot/Ftot)ϕ

κ
2 (u) �= 0. Then, we substitute (22) into (11), and multiply

by (uϕκ
1 (u)− (Etot/Ftot)ϕ

κ
2 (u))2 to get:

Pκ,C(u) : = ϕκ
0 ϕκ

2

(
Etot
Ftot
− u

)2

+ (
ϕκ

0 − Stotϕ
κ
2 + Ftotuϕκ

1 + Ftotϕ
κ
2

)

×
(

Etot
Ftot
− u

) (
uϕκ

1 −
Etot
Ftot

ϕκ
2

)
− Stot

(
uϕκ

1−
Etot
Ftot

ϕκ
2

)2

=0. (23)

Therefore, if uϕκ
1 (u) − (Etot/Ftot)ϕ

κ
2 (u) �= 0, the number of positive solutions of

(10) and (11) is no greater than the number of positive roots of Pκ,C(u).
In the special case when uϕκ

1 (u)− (Etot/Ftot)ϕ
κ
2 (u) = 0, by (10), we must have

u = Etot/Ftot, and thus ϕκ
1 (Etot/Ftot) = ϕκ

2 (Etot/Ftot). Substituting into (11), we
get a unique v defined as in (12) with u = Etot/Ftot. Since u = Etot/Ftot is a root
of Pκ,C(u), also in this case the number of positive solutions to (10) and (11) is no
greater than the number of positive roots of Pκ,C(u).

It is easy to see that Pκ,C(u) is divisible by u. Consider the polynomial Qκ,C(u) :=
Pκ,C(u)/u of degree 2n + 1. We will first show that Qκ,C(u) has no more than 2n
positive roots, then we will prove by contradiction that 2n distinct positive roots can
not be achieved.

It is easy to see that in the polynomial Qκ,C(u) the coefficient of u2n+1 is

(λ0 · · · λn−1)
2

L Mn−1

> 0,

and the constant term is

Etot
FtotKM0

> 0.

So the polynomial Qκ,C(u) has at least one negative root, and thus has no more than
2n positive roots.

Suppose that S(κ, C) has cardinality 2n, then Qκ,C(u) must have 2n distinct positive
roots, and each of them has multiplicity one. Let us denote the roots of Qκ,C(u) as
u1, . . . , u2n in ascending order, and the corresponding v’s given by (22) as v1, . . . , v2n .
We claim that none of them equals Etot/Ftot. If so, we would have ϕκ

1 (Etot/Ftot) =
ϕκ

2 (Etot/Ftot), and Etot/Ftot would be a double root of Qκ,C(u), contradiction.
Since Qκ,C(0) > 0, Qκ,C(u) is positive on intervals

I0 = (0, u1), I1 = (u2, u3), . . . , In−1 = (u2n−2, u2n−1), In = (u2n,∞),

and negative on intervals

J1 = (u1, u2), . . . , Jn = (u2n−1, u2n).
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As remarked earlier, ϕκ
1 (Etot/Ftot) �= ϕκ

2 (Etot/Ftot), the polynomial Qκ,C(u)

evaluated at Etot/Ftot is negative, and therefore, Etot/Ftot belongs to one of the
J intervals, say Js = (u2s−1, u2s), for some s ∈ {1, . . . , n}.

On the other hand, the denominator of v in (22), denoted as B(u), is a polynomial
of degree n and divisible by u. If B(u) has no positive root, then it does not change
sign on the positive axis of u. But v changes sign when u passes Etot/Ftot, thus v2s−1
and v2s have opposite signs, and one of (u2s−1, v2s−1) and (u2s, v2s) is not a solution
to (10) and (11), which contradicts the fact that both are in S(κ, C).

Otherwise, there exists a positive root ū of B(u) such that there is no other positive
root of B(u) between ū and Etot/Ftot. Plugging ū into Qκ,C(u), we see that Qκ,C(ū)

is always positive, therefore, ū belongs to one of the I intervals, say It = (u2t , u2t+1)

for some t ∈ {0, . . . , n}. There are two cases:

1. Etot/Ftot < ū. We have

u2s−1 < Etot/Ftot < u2t < ū.

Notice that v changes sign when u passes Etot/Ftot, so the corresponding v2s−1
and v2t have different signs, and either (u2s−1, v2s−1) /∈ S(κ, C) or (u2t , v2t ) /∈
S(κ, C), contradiction.

2. Etot/Ftot > ū. We have

ū < u2t+1 < Etot/Ftot < u2s .

Since v changes sign when u passes Etot/Ftot, so the corresponding v2t+1 and v2s

have different signs, and either (u2t+1, v2t+1) /∈ S(κ, C) or (u2s, v2s) /∈ S(κ, C),
contradiction.

Therefore, �(κ, C) has at most 2n − 1 steady states. ��

4.3 Fine-tuned upper bounds

In the previous section, we have seen that any (u, v) ∈ S(κ, C), u �= Etot/Ftot must
satisfy (22)–(23), but not all solutions of (22)–(23) are elements in S(κ, C). Suppose
that (u, v) is a solution of (22)–(23), it is in S(κ, C) if and only if u, v > 0. In some
special cases, for example, when the enzyme is in excess, or the substrate is in excess,
we could count the number of solutions of (22)–(23) which are not in S(κ, C) to get
a better upper bound.

The following is a standard result on continuity of roots; see for instance Lemma
A.4.1 in [24]:

Lemma 3 Let g(z) = zn+a1zn−1+· · ·+an be a polynomial of degree n and complex
coefficients having distinct roots

λ1, . . . , λq ,
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with multiplicities

n1 + · · · + nq = n,

respectively. Given any small enough δ > 0 there exists a ε > 0 so that, if

h(z) = zn + b1zn−1 + · · · + bn, |ai − bi | < ε for i = 1, . . . , n,

then h has precisely ni roots in Bδ(λi ) for each i = 1, . . . , q, where Bδ(λi ) is the
open ball in C centered at λi with radius δ.

Theorem 4 For each γ > 0 and κ ∈ R
6n+ such that ϕκ

1 (γ ) �= ϕκ
2 (γ ), and each

Stot > 0, there exists ε2 > 0 such that for all positive numbers Etot, Ftot satisfying
Ftot = Etot/γ < ε2Stot/γ , the system �(κ, C) has at most n + 1 positive steady
states.

Proof Let us define a function R+ × C −→ C as follows:

Q̃κ,γ,Stot(ε, u) = Qκ,(εStot,εStot/γ,Stot)(u),

and a set Bκ,γ,Stot(ε) consisting of the roots of Q̃κ,γ,Stot(ε, u) which are not pos-
itive or the corresponding v’s determined by u’s as in (22) are not positive. Since
Q̃κ,γ,Stot(ε, u) is a polynomial of degree 2n + 1, if we can show that there exists
ε2 > 0 such that for any ε ∈ (0, ε2), Q̃κ,γ,Stot(ε, u) has at least n roots counting
multiplicities that are in Bκ,γ,Stot(ε), then we are done.

In order to apply Lemma 3, we regard the function Q̃κ,γ,Stot as defined on R×C.
At ε = 0:

Q̃κ,γ,Stot(0, u)

=
[
ϕκ

0 ϕκ
2 (γ−u)2+(ϕκ

0−Stotϕ
κ
2 )(uϕκ

1−γ ϕκ
2 )(γ − u)−Stot(uϕκ

1 − γ ϕκ
2 )2

]/
u

= [
ϕκ

0 (γ − u)u(ϕκ
1 − ϕκ

2 )+ Stotu(uϕκ
1 − γ ϕκ

2 )(ϕκ
2 − ϕκ

1 )
] /

u

= (ϕκ
2 − ϕκ

1 )(uϕκ
0 + Stot(uϕκ

1 − γ ϕκ
2 )− γ ϕκ

0 )

= (ϕκ
2 − ϕκ

1 )F̃κ,γ,Stot(0, u)

Let us denote the distinct roots of Q̃κ,γ,Stot(0, u) as

u1, . . . , uq ,

with multiplicities

n1 + · · · + nq = 2n + 1,

and the roots of ϕκ
1 − ϕκ

2 as

u1, . . . , u p, p ≤ q,
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with multiplicities

m1 + · · · + m p = n, ni ≥ mi , for i = 1, . . . , p.

For each i = 1, . . . , p, if ui is real and positive, then there are two cases (ui �= γ as
ϕκ

1 (γ ) �= ϕκ
2 (γ )):

1. ui > γ . We have

uiϕ
κ
1 (ui )− γ ϕκ

2 (ui ) > γ (ϕκ
1 (ui )− ϕκ

2 (ui )) = 0.

2. ui < γ . We have

uiϕ
κ
1 (ui )− γ ϕκ

2 (ui ) < γ (ϕκ
1 (ui )− ϕκ

2 (ui )) = 0.

In both cases, uiϕ
κ
1 (ui )− γ ϕκ

2 (ui ) and γ − ui have opposite signs, i.e.

(uiϕ
κ
1 (ui )− γ ϕκ

2 (ui ))(γ − ui ) < 0.

Let us pick δ > 0 small enough such that the following conditions hold:

1. For all i = 1, . . . , p, if ui is not real, then Bδ(ui ) has no intersection with the real
axis.

2. For all i = 1, . . . , p, if ui is real and positive, the following inequality holds for
any real u ∈ Bδ(ui ):

(uϕκ
1 (u)− γ ϕκ

2 (u))(γ − u) < 0. (24)

3. For all i = 1, . . . , p, if ui is real and negative, then Bδ(ui ) has no intersection
with the imaginary axis.

4. Bδ(u j )
⋂

Bδ(uk) = ∅ for all j �= k = 1, . . . , q.

By Lemma 3, there exists ε2 > 0 such that for all ε ∈ (0, ε2), the polyno-
mial Q̃κ,γ,Stot(ε, u) has exactly nj roots in each Bδ(uj ), j = 1, . . . , q, denoted by
uk

j (ε), k = 1, . . . , n j .
We pick one such ε, and we claim that none of the roots in Bδ(ui ), i = 1, . . . , p

with the v defined as in (22) will be an element in S. If so, we are done, since there
are

∑p
1 ni ≥∑p

1 mi = n such roots of Q̃κ,γ,Stot(ε, u) which are in Bκ,γ,Stot(ε).
For each i = 1, . . . , p, there are two cases:

1. ui is not real. Then condition 1 guarantees that uk
i (ε) is not real for each k =

1, . . . , ni , and thus is in Bκ,γ,Stot(ε).
2. ui is real and positive. Pick any root uk

i (ε) ∈ Bδ(ui ), k = 1, . . . , ni , the corre-
sponding vk

i (ε) equals

γ − uk
i (ε)

uk
i (ε)ϕ

κ
1 (uk

i (ε))− γ ϕκ
2 (uk

i (ε))
< 0

followed from (24). So (uk
i (ε), v

k
i (ε)) /∈ S(κ, C), and uk

i (ε) ∈ Bκ,γ,Stot(ε).
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3. ui is real and negative. By condition 3, uk
i (ε) is not positive for all k = 1, . . . , ni .

��
The next theorem considers the case when enzyme is in excess:

Theorem 5 For each γ > 0, κ ∈ R
6n+ such that ϕκ

1 (γ ) �= ϕκ
2 (γ ), and each Etot > 0,

there exists ε3 > 0 such that for all positive numbers Ftot, Stot satisfying Ftot =
Etot/γ > Stot/(ε3γ ), the system �(κ, C) has at most one positive steady state.

Proof For each γ > 0, κ ∈ R
6n+ such that ϕκ

1 (γ ) �= ϕκ
2 (γ ), and each Etot > 0, we

define a function R+ × C −→ C as follows:

Q̄κ,γ,Etot(ε, u) = Qκ,(Etot,Etot/γ,εEtot)(u).

Let us define the set Cκ,γ,Etot(ε) as the set of roots of Q̄κ,γ,Etot(ε, u) which are not
positive or the corresponding v’s determined by u’s as in (22) are not positive. If we
can show that there exists ε3 > 0 such that for any ε ∈ (0, ε3) there is at most one
positive root of Q̄κ,γ,Etot(ε, u) that is not in Cκ,γ,Etot(ε), we are done.

In order to apply Lemma 3, we now view the function Q̄κ,γ,Etot as defined on
R× C. At ε = 0:

Q̄κ,γ,Etot(0, u) = (γ − u)

(
(γ − u) ϕκ

0 ϕκ
2 +

(
ϕκ

0 +
Etot
γ

uϕκ
1 +

Etot
γ

ϕκ
2

)

× (
uϕκ

1 − γ ϕκ
2

) ) /
u

: = (γ − u) Rκ,γ,Etot(u).

Let us denote the distinct roots of Q̄κ,γ,Etot(0, u) as

u1(= γ ), u2, . . . , uq ,

with multiplicities

n1 + · · · + nq = 2n + 1,

and u2, . . . , uq are the roots of Rκ,γ,Etot(u) other than γ .
Since ϕκ

1 (γ ) �= ϕκ
2 (γ ), Rκ,γ,Etot(u) is not divisible by u − γ , and thus n1 = 1.

For each i = 2, . . . , q, we have

(γ − ui ) ϕκ
0 (ui )ϕ

κ
2 (ui ) = −

(
ϕκ

0 (ui )+ Etot
γ

uiϕ
κ
1 (ui )+ Etot

γ
ϕκ

2 (ui )

)

× (
uiϕ

κ
1 (ui )− γ ϕκ

2 (ui )
)
.

If ui > 0, then ϕκ
0 (ui )ϕ

κ
2 (ui ) and ϕκ

0 (ui ) + Etot
γ

uiϕ
κ
1 (ui ) + Etot

γ
ϕκ

2 (ui ) are both
positive. Since uiϕ

κ
1 (ui )−γ ϕκ

2 (ui ) and γ −ui are non zero, uiϕ
κ
1 (ui )−γ ϕκ

2 (ui ) and
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γ − ui must have opposite signs, that is

(uiϕ
κ
1 (ui )− γ ϕκ

2 (ui ))(γ − ui ) < 0.

Let us pick δ > 0 small enough such that the following conditions hold for all i =
2, . . . , q:

1. If ui is not real, then Bδ(ui ) has no intersection with the real axis.
2. If ui is real and positive, then for any real u ∈ Bδ(ui ), the following inequality

holds:
(uϕκ

1 (u)− γ ϕκ
2 (u))(γ − u) < 0. (25)

3. If ui is real and negative, then Bδ(ui ) has no intersection with the imaginary axis.
4. Bδ(u j )

⋂
Bδ(uk) = ∅ for all i �= k = 2, . . . , q.

By Lemma 3, there exists ε3 > 0 such that for all ε ∈ (0, ε3), the polynomial
Q̄κ,γ,Etot(ε, u) has exactly n j roots in each Bδ(u j ), j = 1, . . . , q, denoted by uk

j (ε),

k = 1, . . . , n j .
We pick one such ε, and if we can show that all of the roots in Bδ(ui ), i = 2, . . . , q

are inCκ,γ,Etot(ε), then we are done, since the only roots that may not be inCκ,γ,Etot(ε)
are the roots in Bδ(u1), and there is one root in Bδ(u1).

For each i = 2, . . . , p, there are three cases:

1. ui is not real. Then condition 1 guarantees that uk
i (ε) is not real for all k =

1, . . . , ni .
2. ui is real and positive. Pick any root uk

i (ε), k = 1, . . . , ni , the corresponding vk
i (ε)

equals

γ − uk
i (ε)

uk
i (ε)ϕ

κ
1 (uk

i (ε))− γ ϕκ
2 (uk

i (ε))
< 0.

So, uk
i (ε) is in Cκ,γ,Etot(ε).

3. ui is real and negative. By condition 3, uk
i (ε) is not positive for all k = 1, . . . , ni .

��

5 Conclusions and discussion

Here we have set up a mathematical model for multisite phosphorylation-dephospho-
rylation cycles of size n, and studied the number of positive steady states based on
this model. We reformulated the question of number of positive steady states to ques-
tion of the number of positive roots of certain polynomials, through which we also
applied perturbation techniques. Our theoretical results depend on the assumption of
mass action kinetics and distributive sequential mechanism, which are customary in
the study of multisite phosphorylation and dephosphorylation.

An upper bound of 2n − 1 steady states is obtained for arbitrary parameter
combinations. Biologically, when the substrate concentration greatly exceeds that of
the enzyme, there are at most n + 1 (n) steady states if n is even (odd). And this
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upper bound can be achieved under proper kinetic conditions, see Theorem 1 for the
construction. On the other extreme, when the enzyme is in excess, there is a unique
steady state.

As a special case of n = 2, which can be applied to a single level of MAPK cas-
cades. Our results guarantees that there are no more than three steady states, consistent
with numerical simulations in [21].

We notice that there is an apparent gap between the upper bound 2n − 1 and the
upper bound of n+ 1 (n) if n is even (odd) when the substrate is in excess. If we think
the ratio Etot/Ftot as a parameter ε, then when ε � 1, there are at most n + 1 (n)
steady states when n is even (odd), which coincides with the largest possible lower
bound. When ε  1, there is a unique steady state. If the number of steady states
changes “continuously” with respect to ε, then we do not expect the number of steady
states to exceed n + 1 (n) if n is even (odd). So a natural conjecture would be that the
number of steady states never exceed n + 1 under any condition.

Acknowledgments We thank Jeremy Gunawardena for inspiring discussions, and the editor and reviewers
for their helpful comments.

Appendix

Proof of Lemma 2: Recall that (dropping the u’s in ϕκ
i , i = 0, 1, 2)

F̃κ,γ,Stot(0, u) = uϕκ
0 + Stot(uϕκ

1 − γ ϕκ
2 )− γ ϕκ

0 .

So

∂ F̃κ,γ,Stot

∂u
(0, u) = ϕκ

0 + Stot(uϕκ
1 − γ ϕκ

2 )′ − (γ − u)(ϕκ
0 )′.

Since F̃κ,γ,Stot(0, ū) = 0,

Stot(ūϕκ
1 − γ ϕκ

2 ) = (γ − ū)ϕκ
0 ,

that is,

γ − ū = Stot(ūϕκ
1 − γ ϕκ

2 )

ϕκ
0

.

Therefore,

∂ F̃κ,γ,Stot

∂u
(0, ū) = ϕκ

0 + Stot(uϕκ
1 − γ ϕκ

2 )′ − Stot(ūϕκ
1 − γ ϕκ

2 )

ϕκ
0

(ϕκ
0 )′

= ϕκ
0 +

Stot
ϕκ

0

(
ϕκ

0 (uϕκ
1 − γ ϕκ

2 )′ − (ūϕκ
1 − γ ϕκ

2 )(ϕκ
0 )′

)
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= ϕκ
0 +

Stot
ϕκ

0
((1+ λ0ū + λ0λ1ū2 + · · · + λ0 · · · λn−1ūn)

×
(

1

KM0

(1− γβ0)+ 2
λ0

KM1

(1− γβ1)ū + · · ·

+ n
λ0 · · · λn−2

KMn−1

(1− γβn−1)ū
n−1

)

−
(
λ0 + 2λ0λ1ū + · · · + nλ0 · · · λn−1ūn−1

)

×
(

1

KM0

(1− γβ0)ū + λ0

KM1

(1− γβ1)ū
2 + · · ·

+ λ0 · · · λn−2

KMn−1

(1− γβn−1)ū
n
)

= ϕκ
0 +

Stot
ϕκ

0

n∑

i=0

λ0 · · · λi−1ūi

×
⎛

⎝
n−1∑

j=0

( j + 1− i)
λ0 · · · λ j−1

KM j

(1− γβ j )ū
j

⎞

⎠

= 1

ϕκ
0

n∑

i=0

λ0 · · · λi−1ūi
n∑

j=0

λ0 · · · λ j−1ū j

+ Stot

n∑

i=0

λ0 · · · λi−1ūi

×
⎛

⎝
n−1∑

j=0

( j + 1− i)
λ0 · · · λ j−1

KM j

(1− γβ j )ū
j )

⎞

⎠

= 1

ϕκ
0

n∑

i=0

λ0 · · · λi−1ūi

⎛

⎝λ0 · · · λn−1ūn +
n−1∑

j=0

λ0 · · · λ j−1ū j

×
(

1+ Stot( j + 1− i)
1− γβ j

KM j

))
,

where the product λ0 · · · λ−1 is defined to be 1 for the convenience of notation.
Because of (21),

Stot

∣∣∣∣∣( j + 1− i)
1− γβ j

KM j

∣∣∣∣∣ ≤ 1,

so we have ∂ F̃
κ,γ,Stot
∂u (0, ū) > 0. ��
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