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The Lattice of Minimal Realizations of Response Maps 
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Abstract. A lattice characterization is .given for the class of minimal-rank 
realizations of a linear response map  defined over a (commutative) 
Noetherian integral domain. As a corollary, it is proved that there are only 
finitely many nonisomorphic minimal-rank realizations of a response map 
over the integers, while for delay-differential systems these are classified by 
a lattice of subspaces of a finite-dimensional real vector space. 

1. Definitions and Notations 

The following notational conventions hold throughout the paper: 

R is a fixed (commutative) Noetherian integral domain, Q its quotient field. 

"Module" means R-module, "linear" means R-linear. 

For any module M, M'  is the module HomR(M,R);  
rank M: = dimo(M ® Q ). 

Definition 1.1. Let m,p be positive integers. A response map (over R) is an 
infinite sequence f=(At,AE, A3,...) of p X m matrices over R. The rank o f f  is the 
Q-rank of the (block) "behavior" or Hankel matrix 

-At 
A2 

L - / ( f ) :  = A 3 

A2 A3 

A3 Aa 

Aa A5 

. ° .  

° ° .  

. ° °  

° ° .  

Let f be an arbitrary but fixed response map of finite rank. 
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Definition 1.2. Y.--( F , G , H )  is a minimal-rank realization (over R )  o f f  iff X is 
a torsion-free R-rnodulewith rankX=rank f ,  F:X---~X, G:Rm--->X and H:X---~R p 
are linear, and A i = H F  i-  1G for all i. 

Note that, for any Y. as above, Z®Q:  = ( X ® Q , F ® Q , G ® Q , H ® Q )  is a 
minimal-rank realization (over Q) off,  when f is seen as a response map over Q. 
It follows from standard facts on realization theory over fields (see for instance 
Kalman, Falb and Arbib [1969, Ch. 10]) that rankf is the minimal possible value 
for rank Xz, for any realization of f. This justifies the above terminology. 

For each Z as in (1.2), Z': = ( X ' , F ' , H ' ,  G') is a minimal-rank realization of 
f ' :  = (A~,A~,A~ .... ). Dual systems ~' appear here for purely technical purposes, 
but they are of fundamental importance in studying questions of regulation 
(duality of reachability and observability); see Ching and Wyman [1978] and 
Sontag [1978] for further discussions of duality. 

Minimal-rank realizations of a fixed f form a category when morphisms 
T: ~]1--">'~2 are  defined as linear maps T : XI ~ X 2 with TG l = G2, TF 1 = FzT  , and 
H2T= H 1. Denote by 9]L~(f)  the set of isomorphism classes of minimal-rank 
factorizations off.  By a slight abuse of notation, Z will denote both a realization 
and its corresponding isomorphism class in 9]L~(f).  

2. Results 

The sets ~-YL@(f) are characterized in this section as lattices of submodules of 
finitely generated torsion modules. When R is a principal-ideal domain, a 
minimal-rank realization is free (i.e., X z = R "  for some n), so elements of 
6)E@(J) correspond to minimal-size matrix realizations (modulo changes of 
basis in Rn). Of particular applied interest are the cases R=integers and 
R =polynomial ring in one variable over the reals. The former corresponds to 
the modelling of linear systems in a digital device, where all parameters involved 
are necessarily integral. In this case, since a finitely generated torsion module is 
finite, one concludes from the results presented here that there are only finitely 
many nonisomorphic minimal realizations of any given f. On the contrary, when 
R is a polynomial ring such modules are always infinite (unless trivial), since 
they are finite-dimensional vector spaces. This case, exemplified in the next 
section, corresponds to the modelling of systems described by delay-differential 
equations; Theorem (2.5) gives a characterization of the (possibly infinite) class 
aYL @(f). Other rings of system-theoretic interest are described in Sontag [1976]. 

Lemma 2.1. Let T: Yq~Z 2 be a morphism. Then, 

(i) T : X1---> X 2 is one-to-one, and 

(ii) T is the unique morphism from E i to Z 2, 

Proof Consider T®Q:Z1®Q--->Y~2®Q. Since Y.I®Q and Y.2@Q are both 
minimal over the fieM Q, they are both canonical (= reachable and observable) 
realizations of the response f over Q. Thus (see Eilenberg [1974, Cor. XVI.5.7], 
where "minimal" means our "canonical") T® Q is a unique isomorphism. Since 
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both X/are torsion-free, X~ is included in X i® Q, i=  1,2, and T ® Q extends T. 
Thus T is one-to-one and unique also. []  

Corollary 2.2. 9E ~,( f )  is a partially-ordered set under: 

Z l < Z  2 iffthereisaT:Zl---)Z2. 

Let ~'/: eYL 6~(f)~631L~(f') : Y-~ E'. Then ~'/is an order-reversing map, and 
the pair (~/,~'f,) constitutes a Galois connection (Kurosh [1963, par. 51]) between 
the posets 6~ R ( f )  and 631"6 ~ ( f ' ) .  In other words, (i) Z < Z" for each Y., and (ii) 
E l < E 2 implies Y.~ ~< Z'l" Statement (i) follows from the existence of a canonical 
map X ~ X " : x  ~ evaluation at x. Statement (ii) follows from the fact that a 
linear map T:X1--.X: gives rise (by transposition) to T ' : X ~ X ~ ;  if T defines a 
morphism EI~Y.2, then T' induces a morphism 5 ~ Y , '  I. 

Notation 2.3. Zy is the canonical realization of f; Y/denotes (Zy,)'. 
By Eilenberg [1974, Theorem XVI.5.6], Z/is  the unique smallest element of 

6"Y'b~(f). Since YT' is smallest in 9 E ~ ( f ' )  and ('cy,'ry,) is a Galois connection, Y/ 
is the unique largest element of 6)]L6&(f): indeed, given any Y~ in ~IL~(f)  one 
has Y/in e)qL ~ ( f ' ) ,  so El, < E', thus concluding E ~< E" < (YT')' = El" 

Remark 2.4. For any Y. in 631L~(f), X z is finitely generated. This is immediate 
from Bourbaki [1965, VII.4.1, Corollary to Proposition 1]. 

Note that the above remark constitutes in particular a simple proof of the 
result in Rouchaleau, Wyman and Kalman [1972], Rouchaleau and Wyman 
[1975], that finite rank implies finite realizability over a Noetherian domain (for 
other proofs see Eilenberg [1974, Theorem XVI.12.1] and Sontag [1976, Appen- 
dix 1]). 

Theorem 2.5. The poser ~L .~ ( f )  is isomorphic to the lattice of L-invariant 
submodules of M, for some finitely generated torsion module M and linear 
L : M--->M. Conversely, any such lattice is of the form 63L~(f),  for some f.  

Proof. Let Y/=(XY, FfGY, Hf). For each E in eOL~(f), let T~ be the unique 
morphism from Y. to Z/. It follows from Lemma (2.1) that the assignment 
Z ~  T~(X:) is an order-preserving isomorphism between the poset 63L~(f) and 
the lattice of those F/-invariant submodules of X y which contain Tr.~(X/) 
(itself an F/-invariant submodule, since T~s is a morphism). This lattice is 
isomorphic to the lattice of Lf-invariant submodules of Mr, where Mr: = 
X f / T :  (Xr) and L,:M,--->M~ is the map induced canonically by F ]. Since 

f .J  j .J.f J 
rankXy=rankf=rankX,  it follows that M/ is a torsion module. Since X y is 
finitely generated by (2.4), M/is also finitely generated. 

Conversely, let M be a finitely generated torsion module and L:M--->M. 
There is then some integer p such that M can be expressed as RP/X,  with X a 
finitely generated module of rank p. Let F:RP--->R p be any linear map inducing 
L on RP/X ,  let G : R m - * x  be onto, for a suitable m, and let H:X--->R p be the 
inclusion map. Define A i :  = HF i- ~G, i = 1,2 . . . . .  An easy calculation shows that 
M--My and L =  Ly. 
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Remark 2.6. All of the above definitions and results can be extended trivially 
to the study of representations of power series in a finite number of variables 
(Fliess [1974]), applying thus to certain classes of nonlinear systems over rings. 

In this problem, a finite alphabet a i . . . . .  a s is given, and a "response map" 
consists of an assignment of a p by m matrix A w for each word w = a,..., a¢, r > 0. 
The Hankel matrix and rank are defined in a way analogous to (1.1) (see Fliess 
[1974]), and a realization of minimal rank is a Y .=(F  I . . . . .  F~,G,H), where the 
F i :X->X, G:R"--->X, and H:X--->R p are linear maps, X is torsion-free with 
r ankX=rankf ,  and Aw=HFq. . .FcG for each w = a i . . . a  i. For each response 
map f, ¢.9E ~,(.f) will now be represented by the lattice of th()se submodules of an 
M as in (2.5)jointly invariant under a finite set of linear maps L i :M-->M, 
i = 1 . . . .  ,s. We restricted our attention to linear systems for notational simplicity 
and because this appears to be the most interesting case in applications. 

3. Examples 

We illustrate the representation theorem (2.5) with three easy examples using 
R = R[o], the ring of polynomials in one variable with real coefficients. Systems 
over R can be interpreted via delay-differential systems, as explained by Kamen 
[1975, 1977]. An exposition of such facts is given in Sontag [1976]; the essential 
point consists in viewing the indeterminate o as representing a shift operator on 
time-functions. This will be clear from the examples below. 

We take r e = p = 2  in all examples; I will denote the 2 by 2 identity matrix. 

Example 3.1. Let 

f: = ( o i , 0 , 0  . . . .  ). 

In delay-differential terms, this corresponds to the completely decoupled in- 
pu t /ou tpu t  map, with two input and two output channels, 

{ y,(,)= .,(t-l) 
f~2(t) = u l ( t -  1)" 

Simply checking reachability and observability, it is clear that the canonical 
realization of f is Xy = (0, I, oi), with Xf = R 2. Since f = f ' ,  it follows that Xj, = Zj, 
and its dual is then ZY=(O, ol, I). The (unique) morphism T:EI---)Y.Y is multi- 
plication by o. Thus Ty.z(Xy) is the submodule trR z of X y = R  2. So My=R2/oR2;  
this is isomorphic to Euclidean 2-space R 2 via (e(t)),Q(o))b-->(P(O),Q(O)). 
Since the induced endomorphism L is zero, ¢YL~(f) is the set of all subspaces 
of R 2. 

Thus ~ e~(f )  consists of two elements (the zero subspace, and the entire 
space R 2) plus a projective line (i.e., the set of lines through the origin in the 
plane). More concretely, 5"7 corresponds to the zero subspace, E f to the plane, 
and for each line ~ there is a minimal-rank realization Zw defined as follows. 
Either ~ = (1, a ) =  set of multiples of some (unique) vector (1, a), or ~ = (0, I ) =  
line(x 1 =0). If ~ ( = ( 1 , a )  then the state-space X ~ o f  Zwis the submodule of R 2 



Lattice of Minimal Realizations of Response Maps Over Rings 173 

containing oR 2 whose image under the canonical map R 2--->R2 (evaluation at 0) 
is cV, i.e., X~c is generated by (1,a) and (0,a). When c~-=(0, l), X,cis generated 
by (o,0) and (0, l). In any of these cases, there are isomorphisms T: R2-->X,¢, so 
the systems Yw are (isomorphic to) the following systems with state-spaces R 2" 

o 0 
1 01 , [0  11 ) ~'(°' I) ~--" (0' [ 0 o 

and 

XO'a)=(0 ' [ -a°  0],[11 a 0]),o 

for each a in R. Translating into delay-differential terms, one concludes that the 
nonisomorphic two-dimensional realizations of (3.1) are represented by: 

~:: {Yci(t)=ui(t), yi(t)=xi(t-1), i=1,2 

~/:(Yci(t)=ui(t--1), yi(t)=xi(t), i=1,2 

Xl(t)=ul(t) Yl(t)=Xl(t--1) 
3~(°,1) : yc2(t)=u2(t_l) y2(t)=x2(t) 

Xl(t)=ul(t--1) Yl(t)'~Xl(t) 
X("a>: ~2(t) = - a u , ( t ) + u 2 ( t  ) y2(t)=axl(t)+x2(t -1) 

Example3.2. Let C be the matrix I 0 10 ]. In this example , 

f: =(oI, eC, oI, oC .... ). 

In delay-differential terms, f corresponds to an input/output equation 

))l(t) UI(t-- 1)--y2(/) 
Y2(t) ---- U2(t- l) --Yl (t) 

Proceeding as in the previous example, with X--R 2 one has 

X:= (C,I, oi), 

~/=(C,  oI, I). 

Thus My is again Euclidean 2-space R 2. But in the present example the induced 
map L is not zero, but a rotation. The only invariant lines ~ are now (1, 1) and 
(1, - 1). This corresponds to the two submodules of R 2 generated by (1, 1),(0,e) 
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and (1, - 1), (0, o) respectively. Thus, with X =  R 2 the only two other realizations 
are 

o , °1) °][1 
and 

o 1 0 ] )  °1[ o 

In delay-differential terms, this means that the possible minimal realizations are 
the following four, up to isomorphism: 

[ 21( t )=Xz( t )+ul ( t )  y l ( t ) = X l ( l -  1) 
y i= 22( t )=x l ( t )+u2( t  ) y 2 ( t ) = x 2 ( t - l )  

w = [ ~ ' ( t ) = x 2 ( t ) + u ' ( t - 1 )  y , ( 0 = x , ( 0  
/ ~(t )  = x, (0 + ~2(t- 1) y~(0 = x~(0 

2, (t) = x2(t ) + u 1 ( t -  l) 
Y'3 = 2 2 ( t ) = x l ( t ) _ u l ( t ) + u 2 ( t  ) 

2, (t) = x2(t ) + u, ( t -  1) 

~'4 = 21(0 = x, (t) + u 1 (t) + u2(t ) 

y,(t)=x,(t) 
y:( t )  = xl (t) + x : ( t -  l) 

y,(0=x,(0 
Y2(t) = - x, (t) + x 2 ( t -  1) 

Example 3.3. Denote 

A:=[oT1 o 1] 
and consider f: = (A,A,A ... .  ). In delay-differential terms, 

{ Y~(O= Ul(t- 1)+ u,(t)+u:(t- 1)-y,(t) 
Y2(O = u~(t) + u2(O-y2(t) 

With  Xf=R 2, Zy=(I,I ,A),  or in equations: 

21( t )=x l ( t )+u , ( t )  y l ( t ) = x l ( t - 1 ) + X l ( t ) + x 2 ( t - 1 )  

22( t )=x2(t )+u2(t )  y z ( t ) = x l ( t ) + X z ( t )  

Since clearly Zf,=(I,I ,A') ,  it follows that Y.f=(zj ,) '=(I,A,I) .  But T:Zf--->Z y 
defined by T = A  :RZ---->R 2 is an isomorphism, since detA = 1 =uni t  in R. Thus 
Mj=0,  so the lattice 9L6~( f )  is in this case trivial, consisting just of Zf ( f  
"splits", in the sense of Sontag [1978])• 
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