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Abstract. This paper takes a computational learning theory approach to a problem of linear
systems identification. It is assumed that inputs are generated randomly from a known class con-
sisting of linear combinations of k sinusoidals. The output of the system is classified at some single
instant of time. The main result establishes that the number of samples needed for identification with
small error and high probability, independently from the distribution of inputs, scales polynomially
with n, the system dimension, and logarithmically with k.

Key words. linear systems identification, learning theory, VC dimension

AMS subject classifications. 68Q32, 68Q17, 93B30, 93C05

DOI. 10.1137/S0363012901384302

1. Introduction. Systems identification may be regarded as an instance of the
general problem of “learning” an unknown function. Computational learning the-
ory (CLT), which provides a theory for understanding the complexity of a learning
problem, can then be used to obtain new insight into identification; conversely, the
input/output maps associated to systems theory supply interesting new families of
classifiers to consider in CLT. The early paper by Ljung [16] already explored the
connection between CLT and identification. Independently, the papers [6, 7] had al-
ready developed learning theory complexity results for discrete-time linear systems
acting on finite-window data. However, continuous-time linear systems have not been
much explored from the CLT viewpoint. The immediate problem is that even for
finite-length inputs, the family of maps associated to a continuous-time linear system
is not “learnable” in the precise mathematical sense defined in probably approximately
correct (PAC) learning theory; for continuous-time systems, the Vapnik–Chervonenkis
(VC) dimension, which measures the learning rate, is infinite. This was proved in [23]
and, alternatively, can be derived by applying the discrete-time results from [6, 7]
at higher and higher sampling rates. However, if we have prior information on the
system we wish to learn, or if we are interested in less than the full input/output
map, we can ask if the identification problem becomes learnable in the CLT setting,
and if so, how many samples are needed. This is the issue motivating the work of this
paper.

In practice, it is not necessary or feasible to learn how a linear system classifies
every continuous-time input; it usually suffices to know how it acts on a sufficiently
rich class. In this paper we consider continuous-time systems acting on linear combi-
nations of k sinusoidals, which constitute a class of inputs used in assessing frequency
responses. The parameter k will then measure the richness of the class. To keep things
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as simple as possible, we focus our attention on two cases: (a) the map that gives the
sign of the output, observed at a single instant of time, namely, zero-one classifiers;
and (b) the full output observed at a single instant of time. For the learning theory
framework, we have opted for the cleanest setting. In the training stage, inputs are
generated randomly from our class of sinusoidals, and our object is to classify further
randomly drawn inputs correctly with high probability.

Variations on the above set-up, such as allowing selection of inputs (called active
learning) or modeling noise in the observations, can also be formulated. It is important
to emphasize that, in this work, we ignore observations at time instants other than the
last. This simplifies the problem and makes it easier to formulate our question in the
framework of learning theory. However, a full treatment of the identification question
in that framework will require further substantial research. One possibility is to see the
additional information afforded by data at intermediate instants as “side information”
available to the learner. In general, one expects side information to speed learning, so
our results here will bound any learning rates that incorporate it. However, quantify-
ing the advantage of side information in a general learning theory framework is a very
challenging problem. A preliminary study of how side information can affect learning
rates is carried out in [14, 15], in a simple model of learning intervals. One insight
of this study is that the side information advantage very much depends on the prob-
ability distributions assumed on the training data and the structure of the problem.
Because of this, the possibility of distribution free, model-independent side informa-
tion improvement in learning rates, based on general complexity measures such as VC
dimension, is not even clear; in any case, it is an open and difficult problem.

In summary, the system identification problem is posed as a noise-free paramet-
ric function identification problem with observations {(G1, S1), . . . , (Gn, Sn)}, where
G1, . . . , Gn are independent random variables defining the input as a linear combi-
nation of basis input functions ω = (ω1, . . . , ωk)

T and Si = sign(ΦΣ(Giω; 1)), where
sign z = 0 if z ≤ 0 and sign z = 1 if z > 0. Here Σ(u; t) is the output of the linear
system Σ = (A,B,C, x0) at time t when the input is u.

Our results show that the upper bound of samples needed to learn (i.e., identify)
Σ in the above setting with a small error and high probability, independently of
the distribution of Gi, scales logarithmically with the “bandwidth” k. The sample
bound is analogous to the discrete-time case, in which k appeared as the length
of the window employed. Also, we provide lower bounds on the number of samples
needed. Hence the results can also be seen as unlearnability results where the difficulty
arises from the richness of the input signals. Our second class of results concerns
systems, with additional assumptions, in which the full output is observed at some
time τ .

Our problem setting is selected so that it corresponds to the most standard learn-
ing scenario, which serves as the basic problem. In particular, our focus will be
on calculating certain complexity dimensions that determine the number of samples
needed to learn, given required accuracy and confidence. The CLT framework can
accommodate various learning paradigms, and they share a number of common fea-
tures. In particular, sample complexities are derived from complexity dimensions.
Hence, the complexity dimension estimates from the basic problem can be utilized
easily also in modified learning settings. We give more pointers to modified problems
in the next section.

For papers combining learning theoretic ideas to control theory, see [11, 9] and
references there as well as [12] for several results for nonlinear systems in discrete time.
The reader is referred to [19] for results that apply to a class of nonlinear continuous-
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time systems but which are formulated in terms of learning derivatives evaluated at
a particular instant (as opposed to time data).

This paper is organized in a top-down fashion. We give definitions and main
results in section 2, and in section 3 we state main upper and lower bounds for the
complexity dimensions. After that we concentrate on proving the results; central
techniques are discussed in section 4, and proofs are in sections 5 and 6. An example
of a class with VC dimension k is given in section 7.

2. Definitions and statement of main results. The simplest learning setting
is concept learning, in which there is some known concept class (e.g., “cars”) and some
target concept (e.g., “a sports car”) we wish to learn from a sequence of N randomly
chosen observations. Each observation is classified by some “oracle” that knows the
target concept. After N classified observations we are required to form an estimate
for the unknown target concept so that with high confidence, specified by parameter
δ, the misclassification probability for a future unseen sample is smaller than a given
level ε. The concept class is learnable if we can form an estimate that achieves
any given confidence level, δ, and misclassification accuracy, ε, by taking enough
observations. In this case, the number s(ε, δ) of observations needed to achieve the
confidence and misclassification levels is called the sample complexity. With this
definition, learnability is equivalent to the finiteness of the VC dimension, which
describes the “richness” of the concept class; VC dimension together with confidence
parameter δ and accuracy parameter ε determine the sample complexity s(ε, δ).

In the following subsections, we provide formal definitions, frame a linear system
learning problem, and state some main results.

2.1. VC dimension and fat-shattering dimension. We begin by defining
the key complexity dimension for this work.

Definition 2.1 (Vapnik–Chervonenkis dimension). The richness of the collec-
tion C can be measured by its Vapnik–Chervonenkis (VC) dimension introduced in
[20]. A set S = {x1, . . . , xn} ⊆ X is said to be shattered by C if, for every subset
B ⊆ S, there exists a set A ∈ C such that S∩A = B. The VC dimension of C, denoted
VC(C), equals the largest integer n such that there exists a set of cardinality n that is
shattered by C.

For example, in R
k the VC dimension of closed half-spaces through the origin is

k [22]. Thus, if VC(C) = d, C is not rich enough to distinguish all subsets of any
d+1 element set, but there is some d element set where subsets can be distinguished.
Proving exact values of the VC dimension is hard, and typically one looks for upper
and lower bounds for the VC dimension, as is also done in this paper.

For our purposes, it is more convenient to work with shattering in terms of di-
chotomies, i.e., Boolean-valued maps. We identify subsets of D with Boolean functions
φ : D → {0, 1}. Similarly, each set C ∈ C gives rise to a Boolean function on X, and
intersections C ∩ D are restrictions of functions to D. In this language, a subset
D ⊂ X is shattered by F := {φ; φ : X → {0, 1}} if every dichotomy on D is a
restriction to D of some φ ∈ F .

The VC dimension characterizes learnability of {0, 1}-valued functions, as formu-
lated in section 2.2. For learning real-valued functions we look for a generalization
of the VC dimension with similar properties. One such generalization is the pseudo-
dimension. Unfortunately, pseudodimension does not share the property the VC di-
mension has; there are learnable function classes with infinite pseudodimension; see
[21, p. 206] and [3].
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Definition 2.2 (pseudodimension with respect to a loss function). Given a class
of functions F : X → Y and a loss function L : Y × Y → [0, r], we introduce for each
f ∈ F the function

Af,L : X × Y × R → {0, 1}; (x, y, ρ) �→ sign(L(f(x), y) − ρ),(1)

and let AF,L denote all such Af,L with f ∈ F . The pseudodimension of F with
respect to the loss function L, PD[F , L], is defined as

PD[F , L] := VC(AF,L).

Next we define the fat-shattering dimension that corresponds to shattering with
fixed “margin” γ. Both the pseudodimension and the fat-shattering dimension can
be used to bound certain covering numbers, and in this sense they act like the VC
dimension. Moreover, the fat-shattering dimension gives upper and lower bounds for
covering numbers of function classes, and the finiteness of the fat-shattering dimension
can characterize learnability (see [1] and [2]).

Definition 2.3 (fat-shattering dimension). Let F be a set of real-valued func-
tions. We say that a set of points X is γ-shattered by F if there are real numbers rx
indexed by x ∈ X such that for all binary vectors bx indexed by X, there is a function
fb ∈ F satisfying

fb(x) ≥ rx + γ if bx = 1 and

fb(x) ≤ rx − γ otherwise.

The fat-shattering dimension fatγ(F) is a function from positive real numbers to in-
tegers which maps a value γ to the size of the largest fat-shattered set if it is finite or
infinity otherwise.

The shattering dimension when the margin γ equals 0 is called the pseudodimen-
sion, and it is denoted by PD(F). Clearly, for all γ > 0, fatγ(F) ≤ PD(F).

2.2. Learning. In this section we discuss the learning setting more formally,
beginning with a general introduction to classification problems. In section 2.3.1 we
also indicate briefly modified learning settings that can be relevant in control problems.

Assume that a set X, to be called the input space, is given together with a
collection C of mappings X → {0, 1}.1 Let W be the set of all sequences

w = (u1, φ(u1)), . . . , (us, φ(us))

over all s ≥ 1, (u1, . . . , us) ∈ Xs, and let φ ∈ C. An identifier is a map ψ : W → C.
The value of ψ on a sequence w above is denoted as ψw instead of ψ(w). The “error”
of ψ is the probability that ψ will misclassify a future sample. More formally, the
error of ψ with respect to a probability measure P on X, a φ ∈ C, and a sequence
(u1, . . . , us) ∈ Xs, is

Err(P, φ, u1, . . . , us) := P{u ∈ X; ψw(u) 	= φ(u)}.

1The set X is assumed to be either countable or a Euclidean space, and the maps in C are assumed
to be measurable. In addition, a mild regularity assumption called “permissibility” is needed so that
all sets appearing below are measurable; for further discussion on the topic, see an appendix in [17].
In our context the measurability assumptions are satisfied.
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The class C is said to be PAC learnable if there is some identifier ψ with the
following property: For each accuracy parameter ε > 0 and confidence parameter
δ > 0 there is some s so that, for every probability P and every φ ∈ C,

P s{(u1, . . . , us) ∈ Xs; Err(P, φ, u1, . . . , us) > ε} < δ,

where P s is the s-fold product of P . In the learnable case, the function s(ε, δ) which
provides the smallest s achieving for any positive ε and δ is called the sample com-
plexity. It can be proved that learnability is equivalent to the finiteness of the VC
dimension VC(C) of the class C. Moreover, for learning algorithms that classify the
observed samples correctly, the sample complexity is bounded by [18]

s(ε, δ) ≤ max

{
1

ε(1 −
√
ε)

(
2VC(C) ln

(
6

ε

)
+ ln

(
2

δ

))
,
4

ε
log2

(
2

δ

)}
.

In addition, there is a similar lower bound for the sample complexity.
Classification may be viewed as a problem of identifying systems with binary

outputs. More generally, we introduce a problem of identification for systems having
bounded outputs ([0, 1]-valued, for technical reasons) via an L1-error, following [4, 5]
(for similar statements with L2-error see [2]). Denote by F a class of mappings from
X to [0, 1].

By definition, an identifier is a mapping from ∪s∈N (X × [0, 1])
s

to [0, 1]X . Such
a map takes as data a sequence of labeled samples and produces a hypothesis. If h is
a [0, 1]-valued function defined on X and P is a probability measure over X × [0, 1],
we define the error of h with respect to P as

ErP(h) :=

∫
X×[0,1]

|h(u) − y| dP (u, y).

For ε > 0 and δ > 0 we say that an identifier ψ (ε, δ)-learns in the agnostic sense with
respect to F from s examples if, for all distributions P on X × [0, 1],

P s{w; ErP(ψw) ≥ inf
f∈F

ErP(f) + ε} < δ.

Similarly, for ε > 0 the function class F is said to be ε-agnostically learnable if there
is a function s0 : (0, 1) → N such that, for all 0 < δ < 1, there is an identifier ψ which
(ε, δ)-learns in the above sense with s0 samples. In addition, if the identifier always
chooses a hypothesis from F , we say that F is properly ε-agnostically learnable.

For learning [0, 1]-valued functions, a sample complexity result may be stated in
terms of the fat-shattering dimension. For ε > 0 and δ > 0 there is an identifier ψ
that properly (ε, δ)-learns in the agnostic sense with respect to F from [4, 5]

4

α2

(
6d

ln 2
ln

7

α

(
336e

α3 ln 2
ln

7

α

)
+ ln

8

δ

)
= O

(
1

α2

(
d log2 1

α
+ log

1

δ

))
samples, where 0 < α < ε/4 is chosen so that d = fatε/4−α(F) is finite. The quantity
fatγ(F) is called the fat-shattering dimension of the class F , and it measures the
richness of the class F with scale γ.

The sample complexity results show us that the difficulty of system identification
in the learning theoretic setting can be analyzed by studying various complexity di-
mensions, and deriving bounds on the complexity dimension is the main focus of this
paper.
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2.3. Linear systems. In the context of learning we discuss continuous-time
linear control systems

ẋ = Ax + Bu, x(0) = x0, y = Cx,(2)

where A, B, and C are n× n, n×m, and p× n real matrices, and the time interval
is [0,1]. We study sign-observations (see [13] for related work in control theory)

sign y(1) = (sign y1(1), . . . , sign yp(1))
T
,

where sign z = 0 if z ≤ 0, sign z = 1 if z > 0, and T stands for the transpose. For
scalar observations this is a classification problem; each output is classified as either
0 or 1. The value of the final time plays no role in the results and is taken to be 1 for
notational convenience.

Unlike the VC dimension associated to discrete-time linear systems [6, 12], the
VC dimension of the classification problem for continuous-time control systems is
unbounded [23], even when n = 1, and the identification problem is not learnable in
the sense discussed earlier. Therefore, we restrict the class of admissible controls in
order to achieve a bound for the VC dimension. We consider controls u = (u1, . . . , um)
such that u = Gω, where G is an m×k matrix that parameterizes the control. The set
of basis input functions Ω = {ω1, . . . , ωk} is fixed. The bounds for the VC dimension
or other complexity dimensions will depend on the properties of the set Ω.

For scalar inputs (i.e., m = 1) the VC dimension associated to the mapping from
inputs G to scalar sign-observations is bounded by k, which in fact can be very large
in applications.2 However, by considering band-limited controls a better bound can
be achieved. In this work we consider the set of basis input functions

Ω =
{
ω1, . . . , ωk; ω1, . . . , ωk linearly independent and

ωj = t�jeαjt sin(βjt) or ωj = t�jeαjt cos(βjt)(3)

with �j ∈ N, αj , βj ∈ R, j = 1, . . . , k
}
,

and let

�max = max{�1, . . . , �k}.(4)

The results in this paper hold with straightforward modifications if the basis input
functions ωj , j = 1, . . . , k, are, for example, linear combinations of functions of the
above form.

Definition 2.4 (sign system concept class, Cm,p). Order the set of basis input
functions Ω and denote ω = (ω1, . . . , ωk)

T . Let

XΩ = {Gω : [0, 1] → R
m; G ∈ R

mk},

and for each linear system Σ = (A,B,C, x0) of dimension n define the mapping
ΦΣ : XΩ → R

p by ΦΣ(Gω) = y(1), where y(1) is the solution of Σ with control
u = Gω. Similarly, we define the mapping for sign-observations as

SΣ : XΩ → {0, 1}p, Gω �→ sign(ΦΣ(Gω)).

2This bound is tight; we give an example of a function class Ω for which the associated VC
dimension is indeed k (see section 7).
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We call the class of above mappings the sign system concept class, Cm,p = {SΣ; Σ
linear system of dimension n}.

We formulate two theorems about bounding sample complexities as main results.
They are immediate corollaries of learning complexity bounds proved in this paper.

Theorem 2.5 (sample complexity for concept learning). For sign systems con-
cept class Cm,1 with scalar observations, i.e., p = 1, the sample complexity s(ε, δ) for
identifiers which agree with the observed sample can be bounded as

s(ε, δ) ≤ max

{
1

ε(1 −
√
ε)

(
2VC(Cm,1) ln

(
6

ε

)
+ ln

(
2

δ

))
,
4

ε
log2

(
2

δ

)}
,

where

VC(Cm,1) ≤ 2(2mn2 + 4n + 1) log2[8e(8mn2k(n + �max) + 1)(2nk + 2(1 + 2k)n)]

and �max is given by (4).
Sketch of proof. The VC dimension bound is based on the observation that, due

to the structure of the input, ΩΣ can be written as a function of the parameters of Σ
which is piecewise rational. (The parameterization is derived from the eigenstructure
of matrix A.) The complexity upper bound utilizes the Goldberg–Jerrum bound.
(Matching lower bounds are based on the notion of dual VC dimension and axis
shattering.)

In terms of n (the dimension of the state space) and k (the bandwidth), the upper
bound for the VC dimension is of the form O(n3 log2(nk)). The next section states
also a corresponding VC dimension lower bound, in terms of the bandwidth, of the
form O(log(k)), and, together with a lower bound for the sample complexity, this
provides an estimate for the number of samples needed in learning. In particular, in
a typical setting of fairly small system dimension n and large bandwidth k, the log k
bound is a clear improvement over the linear bound given by elementary analysis.

For learning [0, 1]-valued functions the role of the VC dimension is replaced by
other complexity dimensions such as the pseudodimension or the fat-shattering di-
mension that give upper bounds on sample complexities in the corresponding learn-
ing paradigms. In the setting of learning [0, 1]-valued functions we consider the time
interval [0, τ ], with τ > 1 in order to show the impact of the final time on the sample
complexity.

For the system

ẋ =Ax + Bu,(5)

y =Cx,

we can write CeAtB = [γ1, . . . , γm], where each γi is a linear combination of n func-
tions ξ1, . . . , ξn. Each ξi is of the form t�eat sin(bt) or t�eat cos(bt) with � ∈ {0, . . . ,
n−1} and a+ib an eigenvalue of A. Assume that A has a fixed Jordan block structure,
and let ak+ibk be an eigenvalue of A. We take α11, . . . , αnm, a1, b1, . . . , ar, br to be the
system parameters, where γi(t) =

∑n
j=1 αijξj(t) for i = 1, . . . ,m and a1, b1, . . . , ar, br

are n eigenvalue parameters. For example, the eigenvalue parameters for a real 4× 4
matrix A with eigenvalues a1 ± b1i, a2, and a3 would be a1, b1, a2, and a3. Similarly,
the eigenvalue parameters with purely complex eigenvalues a1±b1i and a2±b2i would
be a1, b1, a2, and b2, whereas real eigenvalue parameters would be listed as a1, a2, a3,
and a4.
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Let U ⊂ R
mk be a bounded set. Define a mapping F : λ × U → R such that

F (λ, u) = y(τ), where τ ≥ 1 and y(τ) is a solution of (5) with system parameters λ
and initial condition x(0) = 0.

Definition 2.6. Assume that the system ẋ = Ax + Bu, y = Cx, x(0) = 0
can be parameterized by λ ∈ R

n(m+1) as above and ‖λ‖∞ = max1≤i≤n(m+1) λi < 1.
Let F (λ, u) = y(τ) be the solution of (5) with system parameters λ and control u =
(u1, . . . , um) ∈ U = {u = (u1, . . . , um);

∫ τ

0
|ui(t)|dt ≤ M, i = 1, . . . ,m}. Denote

Bk
∞(c) := {x ∈ R

k; ‖x‖∞ < c} and define

FB = {F (λ, ·) : U → R; λ ∈ Bn(m+1)
∞ (1)}.

A suitable learning notion for the above function class FB is the proper agnostic
learning, defined formally in section 2.2. The related sample complexity result is as
follows.

Theorem 2.7 (sample complexity for proper agnostic learning). Let 1/4 > κ > 0
be an arbitrary real number; then the class FB, given in Definition 2.6, is properly
agnostically learnable from

O

(
1

ε2

(
fat(1/4−κ)ε(FB) log2 1

ε
+ log

1

δ

))
samples, where

fat(1/4−κ)ε(FB) ≤ (m + 1)n log2

⌊
n2mτneτkM

(1/4 − κ)ε

⌋
,

and M is a constant satisfying ∫ τ

0

|ui(τ − t)|dt ≤ kM

for all i = 1, . . . ,m. In the above, 
x� stands for the integer part of x. If the inputs
are of the form u = Gω, then also

fat(1/4−κ)ε(FB) ≤ 2(m + 4)n log2(8e(nmk4(n + �max) + 1)(2nk + 2(2k + 1)n)),

where �max is as given by (3) and (4).
Sketch of proof. The proof is developed around a Lipschitz bound on ΩΣ as a

function of unknown parameters, which gives the upper term in the fat-shattering
bound. The lower term in the bound is in turn a pseudodimension bound that can
be derived from an associated VC dimension bound.

2.3.1. Modified learning settings. In this paper we have opted for the stan-
dard setting in CLT in which inputs are random and observations are noiseless. How-
ever, CLT can accommodate various modified learning settings that typically share
common features with the standard setting.

A paradigm in which a learner can select the samples to be classified is called
active learning. The set of PAC learnable concept classes is not enlarged by active
learning but, in general, fewer training samples are needed (concept classes that are
“dense in themselves” make an exception) [8].

For dealing with the case of noisy observations the reader is referred to [21]. For
example, it is shown that learning a concept class with a “noisy oracle” (that makes
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a mistake with probability β < 1/2) to accuracy ε is the same as learning the same
concept class to an accuracy ε/(1 − 2β) with a perfect oracle.

Finally, we have considered the case in which only the final state output is ob-
served; i.e., observation is done only on a single instant of time. However, typically in
control applications observations are made at multiple time instances. If one wishes
to learn the mapping from inputs to final state outputs, but one can also see interme-
diate observations, can one learn faster by utilizing this additional information? This
has motivated further research by the authors on “learning with side information”
[14, 15]. The main problem is that in the control problem considered the samples
become dependent, which poses a challenge in the theory of learning.

3. Complexity dimensions; main upper and lower bounds.

3.1. Bounds. We begin by stating bounds in the easiest learning setting, i.e.,
classifying the final state observations as either 0 or 1.

Theorem 3.1 (VC dimension upper bound, p = 1). The VC dimension of the
sign system concept class Cm,1 with scalar observations can be bounded as

VC(Cm,1) ≤ 2(2mn2 + 4n + 1) log2[8e(8mn2k(n + �max) + 1)(2nk + 2(1 + 2k)n)],

where �max is given by (4).
In terms of n (the dimension of the state space) and k (the bandwidth) the upper

bound is of the form O(n3 log2(nk)).
All VC dimension upper bounds are based on the fact that input basis functions

satisfy a certain rationality condition. Remark 5.3 indicates how the bound is formed
when the input functions satisfy the more abstract rationality condition. In that
case the degrees of the polynomials and the number of polynomial evaluations are
different. However, in terms of n and k, the bound is of the same form. VC dimension
or pseudodimension bounds stated in this paper can be modified for the rationality
condition in the same way.

The lower bound for the VC dimension is in terms of n and k. It holds for linearly
independent, continuous basis input functions, and, compared to upper bounds, no
particular form of the functions is needed. The bound is obtained by imposing a
specific structure on control systems, and a lower bound for a restricted class of
control systems provides a lower bound for more general classes.

Theorem 3.2 (VC dimension lower bound, m = 1, p = 1).

VC(C1,1) ≥ max

{
m′

⌊
log2

⌊
k

m′

⌋⌋
,m′

}
,

where m′ = min{n, k}.
In terms of k the upper and the lower bound match up to a constant. For n and

k the lower bound is typically of the form O(n log2(k/n)). Note that if the system
dimension n is small compared to the bandwidth k, the VC dimension upper and
lower bounds in Theorems 3.1 and 3.2 become tighter, both being of the form c log2 k
(with different values of the constant c).

Extending the upper bounds to the case of vector-valued observations can be done
in various ways based on the result obtained for scalar observations. For example, we
may consider the p-dimensional output as bits representing a number in {0, . . . , 2p−1}
and introduce a loss function for each f ∈ Cm,p as L0-1,f (z, a) = L0-1(f(z), a) = 1,
when f(z) 	= a, and 0 otherwise. We define the VC dimension of the p-dimensional
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observation as the VC dimension of the above class of loss functions. Modifying the
argument used with scalar observations leads to a bound of the following form.

Theorem 3.3 (VC dimension upper bound).

VC(Cm,p) ≤ 2(2pmn2 + 4n + p)

× log2

[
8e
(
8mn2k(n + �max) + 1

)(
2p − 1 + 2p(2k + 1)n + 2nk

)]
,

where �max is given by (4).
Next we state the main result concerning learnability of the actual input/output

mapping, i.e., learning without taking the sign of the final state observation.
Definition 3.4 (control system concept class, Gp,L). Let F̃ = {ΦΣ : XΩ →

R
p; Σ linear system of dimension n}, and define the control system concept class as

Gp,L = AF̃,L
, where AF̃,L

is given by (1).

Methods for calculating upper bounds for the VC dimension readily extend to the
case of pseudodimension with respect to loss that preserves the rationality structure
of the output. A typical example is illustrated by the loss function,

L(z1, z2) = (z1 − z2)
2/(1 + (z1 − z2)

2),(6)

and the following result.
Theorem 3.5 (pseudodimension upper bound, p = 1).

PD(G1,L) ≤ 2
(
2mn2 + 4n + 1

)
log2[16e(8mn2k(n + �max) + 1)(2nk + 2(2k + 1)n)],

where the loss function L is given by (6) and �max is given by (4).
This differs from the corresponding VC dimension bound only by the maximum

degree of the polynomials, which is doubled. Extending this pseudodimension bound
for p-dimensional observations can be done naturally by modifying the loss function.
Lower bounds for the VC dimension are lower bounds for the pseudodimension as
such.

The next results summarize upper bounds for the fat-shattering dimension. We
begin by illustrating how the fat-shattering dimension can be bounded for Lipschitz
functions in certain cases.

Theorem 3.6 (fat-shattering bound). Let F (λ, u) : R
k × U → R be such that

F (·, u) is Lipschitz with constant L, i.e., |F (λ1, u) − F (λ2, u)| ≤ L‖λ1 − λ2‖ for all
u ∈ U . For any subset B ⊆ R

k, consider the following class of functions:

FB = {F (λ, ·) : U → R; λ ∈ B}.

Then

fatγ(FBk
∞(C)) ≤ k log2

⌊
CL

γ

⌋
,

fatγ(FB̄k
∞(C)) ≤ k log2

(
1 +

⌊
CL

γ

⌋)
,

fatγ(FB̄2,1
) ≤ k log2

(
C +

L

γ

)
,
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where

Bk
∞(C) = {x ∈ R

k; ‖x‖∞ = max
1≤i≤k

|xi| < C},

B̄k
∞(C) = {x ∈ R

k; ‖x‖∞ = max
1≤i≤k

|xi| ≤ C},

B̄k
2 (C) =

{
x ∈ R

k; ‖x‖2 =

√∑k

i=1
x2
i ≤ C

}
.

Theorem 3.7 (fat-shattering bound for a control system). Assume that the
system ẋ = Ax + Bu, y = Cx, x(0) = 0, can be parameterized by λ ∈ R

n(m+1) as
in Definition 2.6 and ‖λ‖∞ < 1. Let F (λ, u) = y(τ) be the solution with system
parameters λ and control u = (u1, . . . , um) ∈ U = {u = (u1, . . . , um);

∫ τ

0
|ui(t)|dt ≤

M, i = 1, . . . ,m}. Define

FB = {F (λ, ·) : U → R; λ ∈ Bk
∞(1)}.

Then

fatγ(FB) ≤ n(m + 1) log2

⌊
n2mτneτM

γ

⌋
.

4. Techniques for proving VC dimension results. Our main results are
based on the fact that the basis input functions satisfy a certain rationality condition.
In this section we first formulate this rationality condition, and then we summarize
existing results that are used in proving upper and lower bounds for the complexity
dimensions.

We recall briefly the control system setting. We study systems

ẋ = Ax + Bu, x(0) = x0, y = Cx,

u = Gω, and ωj ∈ Ω for j = 1, . . . , k,

with basis input functions

Ω =
{
ω1, . . . , ωk; ω1, . . . , ωk linearly independent and

ωj = t�jeαjt sin(βjt) or ωj = t�jeαjt cos(βjt)

with �j ∈ N, αj , βj ∈ R, j = 1, . . . , k
}
,

such that �max = max{�1, . . . , �k}.
Definition 4.1 (rationality condition (RAT)). Let n be a positive integer. We

say that a bounded function ω : [0, 1] → R satisfies the rationality condition relative
to the class of n-dimensional systems if there exist h polynomial functions f1, . . . , fh :
R

4 → R and 2γn rational functions rij�̃, i ∈ {1, 2}, j ∈ {1, . . . , γ}, and �̃ ∈ {1, . . . , n},
with no poles on subsets Sij�̃ of R

4, such that the following properties hold:

1. For each i ∈ {1, 2}, �̃ ∈ {1, . . . , n}, R
4 is a disjoint union of Si1�̃, . . . , Siγ�̃.

2. Each Sij�̃ can be defined in terms of a Boolean expression involving [f1 = 0],

. . . , [fh = 0], where we say that for functions f1, . . . , fh : R
4 → R, [fi = 0]

has value 1 if fi(x1, x2, x3, x4) = 0 and 0 otherwise.
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3. Let ri�̃ : R
4 → R, i ∈ {1, 2}, �̃ ∈ {1, . . . , n}, be defined as

ri�̃(v) =

⎧⎪⎪⎨⎪⎪⎩
ri1�̃(v) if v ∈ Si1�̃,
...

...

riγ�̃(v) if v ∈ Siγ�̃;

then for each a, b ∈ R, and for all �̃ ∈ {1, . . . , n},∫ 1

0

t�̃−1eat cos(bt)ω(t)dt = r1�̃(a, b, e
a cos b, ea sin b),∫ 1

0

t�̃−1eat sin(bt)ω(t)dt = r2�̃(a, b, e
a cos b, ea sin b).

We denote by dmax the maximum degree of any polynomial (i.e., f1, . . . , fh, nu-
merators and denominators of rij�̃’s) appearing in the rationality condition.

Remark 4.2. First, entries of eAt are functions of the form tseat cos(bt) and
tseat sin(bt). Solving (2) involves convolutions of eAt and the basis input functions
ωj , and we require those to be rational functions.

Example 4.3. Let ω(t) = sin(ct), with nonzero c. Then∫ 1

0

eat sin(bt)ω(t)dt =
1

2

∫ 1

0

eat cos((b− c)t)dt− 1

2

∫ 1

0

eat cos((b + c)t)dt.

After integration this can be split into cases with no poles yielding

∫ 1

0

eat sin(bt)ω(t)dt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p(a,b,ea cos b,ea sin b)

(a2+(b+c)2)(a2+(b−c)2) if f1 	= 0, f2 	= 0,

b−sin b cos b
2b if f1 = 0, f2 	= 0,

sin b cos b−b
2b if f1 	= 0, f2 = 0,

where f1(a, b, e
a sin b, ea cos b) = a2 + (b+ c)2, f2(a, b, e

a sin b, ea cos b) = a2 + (b− c)2,
and p(a, b, ea cos b, ea sin b) stands for the polynomial

−4abc + 4abcea cos b cos c− 2a2cea cos c sin b + 2b2cea cos c sin b

−2c3ea cos c sin b− 2a2bea cos b sin c− 2b3ea cos b sin c + 2bc2ea cos b sin c

+2a3ea sin b sin c + 2ab2ea sin b sin c + 2ac2ea sin b sin c.

Lemma 4.4. Each ωj ∈ Ω given by (3) satisfies the rationality condition. Further,
the maximum degree of polynomials in (RAT) is at most 4(n + �max), where �max is
given by (4).

Review of VC dimension techniques. In the context of control theory it
is sometimes easier to work with the dual VC dimension. Assume that a function
F : Λ ×X → {0, 1} is given. This induces two function classes

F := {F (λ, ·) : X → {0, 1}; λ ∈ Λ}

and

F∗ := {F (·, x) : Λ → {0, 1}; x ∈ X}.
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The complexity dimension VC(F∗) is called the dual VC dimension of F , and it is
related to VC(F) as follows [21]:

VC(F) ≥ 
log2 VC(F∗)�,(7)

where 
x� is the integer part of x.
A sharper estimate can be obtained if Λ can be written as a product Λ1×· · ·×Λn.

The following construction and result are due to DasGupta and Sontag [6]. We study
in particular those dichotomies that are defined on “rectangular” subsets of Λ. Let
L = L1 × · · · × Ln be a subset of Λ such that for each i, Li ⊂ Λi is nonempty. Given
any index 1 ≤ κ ≤ n, a κ-axis dichotomy on L is any function δ : L → {0, 1} which
depends only on the κth coordinate; i.e., there is some function φ : Lκ → {0, 1} so
that δ(λ1, . . . , λn) = φ(λκ) for all (λ1, . . . , λn) ∈ L. We say that a mapping is an axis
dichotomy if it is a κ-axis dichotomy for some κ. A rectangular set L is said to be
axis-shattered by F∗ if every axis dichotomy is a restriction to L of some function of
the form F (·, x) : Λ → {0, 1} for some x ∈ X.

Theorem 4.5 (axis-shattering bound [6]). If L = L1 × · · · × Ln ⊂ Λ can be
axis-shattered and each Li has cardinality ri > 0, then VC(F) ≥ 
log2(r1)� + · · · +

log2(rn)�.

Upper bounds for VC dimensions of concept classes that are obtained by evalu-
ating polynomial equalities and inequalities can be obtained in terms of the number
and degrees of the polynomials.

Theorem 4.6 (Goldberg–Jerrum bound [10]). Given a function F : Λ × X →
{0, 1} and the associated concept class F := {F (λ, ·) : X → {0, 1}; λ ∈ Λ}, suppose
that Λ = R

� and X = R
k. Let F be defined in terms of a Boolean formula involving

at most s polynomial equalities and inequalities in � + k variables, each polynomial
being of degree at most d in λ for all x ∈ R

k. Then, VC(F) ≤ 2� log2(8eds).
The Goldberg–Jerrum bound is based on a result showing that the number of

sign assignments {−1, 0, 1} to polynomials cannot grow too quickly.
Theorem 4.7 (see [10]). Suppose that f1, . . . , fm are polynomials of degree at

most d in n ≤ m variables. Then the number of distinct vectors

[sign f1(x), . . . , sign fm(x)] ∈ {−1, 0, 1}m

that can be generated by varying x over R
n is at most ((8edm) /n)

n
.

5. Proofs of VC dimension bounds.

5.1. An upper bound for the VC dimension with scalar observations.
We begin this section by proving Lemma 4.4 stating that the input basis functions
satisfy the rationality condition (RAT) and bounding the degrees of polynomials
appearing in (RAT). As a proposition we formalize how control systems can be pa-
rameterized. After that, as a lemma, we develop an upper bound for the VC di-
mension induced by the control system (2) with its initial state fixed to be zero.
Theorem 3.1 with an arbitrary initial condition is then a simple modification of the
argument.

Proof of Lemma 4.4. If ω(t) = t�eαt sin(βt) or ω(t) = t�eαt cos(βt) with � ≤ �max,
then in place of ∫ 1

0

t�̃eat sin(bt)ω(t)dt or

∫ 1

0

t�̃eat cos(bt)ω(t)dt,(8)
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by combining exponents and using sum formulae for sin and cos (see Example 4.3), it

is enough to study terms of the form
∫ 1

0
tk̃eãt sin(b̃t)dt or

∫ 1

0
tk̃eãt cos(b̃t)dt, where k̃ ∈

{0, . . . , n + �max − 1}. In fact, each expression in (8) is one of the following types:

1

2

(∫ 1

0

t�̃eãt cos ((b− β)t) dt−
∫ 1

0

t�̃eãt cos ((b + β)t) dt

)
,

1

2

(∫ 1

0

t�̃eãt cos ((b + β)t) dt +

∫ 1

0

t�̃eãt cos ((b− β)t) dt

)
,

1

2

(∫ 1

0

t�̃eãt sin ((b− β)t) dt−
∫ 1

0

t�̃eãt sin ((b + β)t) dt

)
,

1

2

(∫ 1

0

t�̃eãt sin ((b + β)t) dt +

∫ 1

0

t�̃eãt sin ((b− β)t) dt

)
,

where ã = a + α. Because for k̃ > 0∫ 1

0

tk̃eãt sin(b̃t)dt =
eã

ã2 + b̃2
(ã sin b̃− b̃ cos b̃)(9)

− k̃

ã2 + b̃2

∫ 1

0

tk̃−1eãt(ã sin(b̃t) − b̃ cos(b̃t))dt

and ∫ 1

0

eãt sin(b̃t)dt =
eã(ã sin b̃− b̃ cos b̃) + b̃

ã2 + b̃2
(10)

and similar formulae for
∫ 1

0
tk̃eãt cos(b̃t)dt hold, we see by induction that the numer-

ator of
∫ 1

0
tk̃eãt sin(b̃t)dt is a polynomial of ã, b̃, eã cos b̃, and eã sin b̃. By using sum

formulae for sin and cos, the previous expression is in turn a polynomial of a, b, ea cos b,
and ea sin b because ã = a+α and b̃ = b±β for some fixed α and β. By similar argu-
ments, the denominator is a polynomial of a and b. Note that, for example, eα equals
a constant times ea, so this process does not change the degrees of the polynomials.

Further, observe that the denominator of
∫ 1

0
t�̃eat sin(bt)ω(t)dt consists of at most

two products of variables a and b of the form ((a+α)2 +(b±β)2)�̃+�+1, and similarly
with the cos(bt) term. Let us index the basis input functions ω1, . . . , ωk so that ωκ

has parameters ακ and βκ. Hence the functions fi in (RAT), defining the subsets
without poles, can be taken as

{(a + ακ)2 + (b− βκ)2, (a + ακ)2 + (b + βκ)2 ; κ = 1, . . . , k}.

Furthermore, the sets Sij�̃ are as simple as

∪k
κ=1 {{(x1, x2, x3, x4); x1 = −ακ, x2 = −βκ} ∪ {(x1, x2, x3, x4); x1 = −ακ, x2 = βκ}}

and

R
4 \ ∪k

κ=1{{(x1, x2, x3, x4); x1 = −ακ, x2 = −βκ}
∪ {(x1, x2, x3, x4); x1 = −ακ, x2 = βκ}} .
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We turn to estimating the maximum degree of polynomials appearing in (RAT).
We already saw that functions fi are polynomials of degree 2. Equations (9) and (10)
show that the degree of numerator is not higher than the one of denominator. We
claim that ∫ 1

0

tk̃eãt
{

sin(b̃t)

cos(b̃t)
dt =

P (2(k̃ + 1))

(ã2 + b̃2)k̃+1
for k̃ = 0, 1, . . . ,

where P (2(k̃+1)) stands for some polynomial in ã, b̃, eã sin(b̃), and eã cos(b̃) of degree
2(k̃ + 1). Clearly, the claim is true for k̃ = 0 by (10), and the inductive argument
follows from (9). Assuming the claim is true for k̃ − 1, we get∫ 1

0

tk̃eãt sin(b̃t)dt

=
P (2)

ã2 + b̃2
− k̃ã

ã2 + b̃2

∫ 1

0

tk̃−1eãt sin(b̃t)dt +
k̃b̃

ã2 + b̃2

∫ 1

0

tk̃−1eãt cos(b̃t)dt

=
P (2)

ã2 + b̃2
− P (1)

(ã2 + b̃2)

P (2k̃)

(ã2 + b̃2)k̃
+

P (1)

(ã2 + b̃2)

P (2k̃)

(ã2 + b̃2)k̃

=
P (2)(ã2 + b̃2)k̃ − 2P (2k̃ + 1)

(ã2 + b̃2)k̃+1
=

P (2(k̃ + 1))

(ã2 + b̃2)k̃+1
,

and similarly for the cos(b̃t) term, concluding the proof of the claim. As a corollary
of the claim,∫ 1

0

t�̃eat sin(bt)ω(t)dt =
P (2(k̃ + 1))

(ã2 + (b + β)2)k̃+1
+

P (2(k̃ + 1))

(ã2 + (b− β)2)k̃+1
,

where k̃ = � + �̃ and ã = a + α.
Hence the maximum degree of denominators of expressions in (8) is 2(k̃ + 1) +

2(k̃ + 1) = 4(k̃ + 1) with k̃ ∈ {0, . . . , �max + n − 1}. Thus the maximum degree of
polynomials appearing in the (RAT) is 4(n + �max).

The next proposition indicates how control systems are parameterized and later
the concept or function classes associated to control systems are obtained by varying
the parameter vector.

Proposition 5.1. Denote the basis input functions by ω = (ω1, . . . , ωk)
T , assume

that each ωi, i = 1, . . . , k, satisfies the rationality condition (RAT), and let Λ =

R
2pn2m × R

4n × R
p. Then there exists a mapping H : Λ × R

mk → R
p (depending on

ω) such that for each Σ = (A,B,C, x0) there exists a λ ∈ Λ satisfying

ΦΣ(Gω) = H(λ,G) ∀ G ∈ R
mk.

Proof. Given a system Σ = (A,B,C, x0),

ΦΣ(u) = y(1) = CeAx0 + C

∫ 1

0

eA(1−t)Bu(t)dt.

By an argument based on the real Jordan form of eAt, the entries of eA(1−t) are

linear combinations of functions of the form t�̃eat cos(bt) and t�̃eat sin(bt), where
�̃ ∈ {0, . . . , n− 1} and a + ib is an eigenvalue of A. Hence we define the 2n func-
tions ξj(a, b, t) = tj−1eat cos(bt), ξn+j(a, b, t) = tj−1eat sin(bt) for j = 1, . . . , n.
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By the rationality condition (RAT), for all � = 1, . . . , 2n,∫ 1

0

ξ�(a, b, t)ωj(t)dt =
P̂�j(a, b, e

a cos b, ea sin b)

Q̂�j(a, b, ea cos b, ea sin b)

for all a, b ∈ R and where P̂�j and Q̂�j are piecewise polynomial expressions.
Let H(A,X, h,G) = (H1, . . . , Hp)

T , where for 1 ≤ κ ≤ p

Hκ(A,X, h,G) =

m∑
i=1

n∑
r=1

2n∑
�=1

αir�κ

k∑
j=1

gij
P̂�j(xr1, xr2, xr3, xr4)

Q̂�j(xr1, xr2, xr3, xr4)
+ hκ

and

A = (αir�κ) i=1,...,m
r=1,...,n
�=1,...,2n
κ=1,...,p

, X = (xrη)r=1,...,n
η=1,...,4

,

h = (h1, . . . , hp)
T, G = (gij)i=1,...,m

j=1,...,k
.

Next, we relate ΦΣ and H and we write

CeA(1−t)B =

⎡⎢⎣γ11 . . . γ1m

...
...

γp1 . . . γpm

⎤⎥⎦ .

We list the eigenvalues of A as ar + ibr for r = 1, . . . , n and let ξr�(t) = ξ�(ar, br, t)
for r = 1, . . . , n and � = 1, . . . , 2n. Then there exists some (αir�κ) such that

γκi(t) =

n∑
r=1

2n∑
�=1

αir�κξrκ(t).(11)

Let λ = (A,X, h), where A satisfies (11), X = (xrη), where xr1 = ar, xr2 =
br, xr3 = ear cos br and xr4 = ear sin br, and h = CeAx0. We claim that

H(λ,G) = y(1) = ΦΣ(Gω) ∀ G ∈ R
mk.

Note that the κth component of ΦΣ(Gω) is given by∫ 1

0

m∑
i=1

γκi(t)ui(t)dt + hκ

=

m∑
i=1

n∑
r=1

2n∑
�=1

αir�κ

∫ 1

0

ξr�(t)

k∑
j=1

gijωj(t)dt + hκ

=

m∑
i=1

n∑
r=1

2n∑
�=1

αir�κ

k∑
j=1

gij

∫ 1

0

ξ�(ar, br, t)ωj(t)dt + hκ

=

m∑
i=1

n∑
r=1

2n∑
�=1

αir�κ

k∑
j=1

gij
P̂�j(xr1, xr2, xr3, xr4)

Q̂�j(xr1, xr2, xr3, xr4)
+ hκ

= Hκ(A,X, h,G).
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Next we take p = 1 and study the VC dimension of the sign system concept class,
Cm,1, where each control parameterized by G gives rise to sign y(1).

Lemma 5.2. The sign system concept class Cm,1 with initial condition x(0) = 0
satisfies

VC(Cm,1) ≤ 2
(
2mn2 + 4n

)
log2[8e(8mn2k(n + �max) + 1)(2nk + 2(1 + 2k)n)],

where �max is given by (4).

Proof. By Proposition 5.1, y(1) = H(λ,G), where λ ∈ R
2mn2 × R

4n are consid-
ered as parameters. In fact, y(1) = P

Q , where P and Q denote piecewise polynomial
functions. As in the statement of Goldberg–Jerrum bounds, we have a function
F : Λ×R

mk → {0, 1} defined by F (λ,G) = signH(λ,G). The concept class associated
to the system identification problem is F := {F (λ, ·) : R

mk → {0, 1}; λ ∈ Λ}, where

Λ = R
2mn2+4n. Before applying the Goldberg–Jerrum bound, we need to determine

the possible degrees of P and Q with respect to the parameters.
The rationality condition implies that

max
i≤�≤n
1≤j≤k

{
deg(P̂�j),deg(Q̂�j)

}
≤ dmax.

Then

P̃i�

Q̃i�

=

k∑
j=1

gij
P̂�j

Q̂�j

,

so deg(Q̃i�) ≤ kdmax and deg(P̃i�) ≤ kdmax. Note here that we are calculating the
degree with respect to the system parameters, and the inputs gij do not contribute.
By continuing in a similar fashion and combining r-summation to the �-summation

in Proposition 5.1, we write Pi/Qi =
∑2n2

�=1 αi�P̃i�/Q̃i� to conclude that deg(Qi) ≤
2n2 deg(Q̃i�) = 2n2kdmax and deg(Pi) ≤ 2n2kdmax + 1. Finally, P/Q =

∑m
i=1 Pi/Qi

with deg(Q) ≤ m2n2kdmax and deg(P ) ≤ m2n2kdmax + 1.
Recall that with p = 1 and initial condition x(0) = 0, using the notation of

Proposition 5.1,

y(1) =
m∑
i=1

n∑
r=1

2n∑
�=1

αir�

k∑
j=1

gij

∫ 1

0

ξ�(xr1, xr2, t)ωj(t)dt.

The proof of Lemma 4.4 indicates that the denominator of
∫ 1

0
ξ�(xr1, xr2, t)ωj(t)dt

equals

((xr1 + αj)
2 + (xr2 + βj)

2)z�j ((xr1 + αj)
2 + (xr2 − βj)

2)z�j ,

where αj , βj are fixed parameters of the basis input function ωj and z�j ∈ N.
By carrying out the summations we get y(1) = P/Q, where Q consists of powers

of polynomials fij1, fij2 with

fij1(A,X, G) = (xi1 + αj)
2 + (xi2 + βj)

2,

fij2(A,X, G) = (xi1 + αj)
2 + (xi2 − βj)

2,

and i = 1, . . . , n, j = 1, . . . , k.
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Our final step before applying the Goldberg–Jerrum bound is finding out the
number of polynomial inequalities s needed in the Boolean formula and evaluating
the sign of the final state output. This is done by studying the number of different
P/Q expressions without poles.

An upper bound for different P/Q expressions without poles can be obtained by
applying Theorem 4.7 to 2nk polynomials fij1, fij2, i = 1, . . . , n and j = 1, . . . , k,
and viewing those as polynomials of 2n variables and each polynomial having degree
2. This gives the upper bound (16ek)2n.

However, a more specific bound can be obtained in this problem. Note that vary-
ing xi1 and xi2 we can make at most one of the 2k polynomials fij1, fij2, j = 1, . . . , k,
to be zero. For example, γ zeros among fij1, fij2, i = 1, . . . , n and j = 1, . . . , k, can be
obtained in (2k)γ

(
n
γ

)
ways, and the number of possible sign assignments is obtained

by summing over γ yielding

n∑
γ=0

(2k)γ
(
n

γ

)
= (1 + 2k)n.

Thus the number of P/Q expressions without poles is (1 + 2k)n, which gives rise to
2(1 + 2k)n polynomials.

Note that in order to write sign y(1) as a Boolean formula evaluating polynomial
inequalities and equalities one also has to include the 2nk polynomials fij1, fij2, i =
1, . . . , n, j = 1, . . . , k. Values of these polynomials determine which P/Q expression is
the valid one to determine sign y(1). The Boolean formula for sign y(1) can be given
as a truth table involving polynomial inequalities of 2nk fij1, fij2 expressions and
2(1 + 2k)n different P and Q expressions.

Using Lemma 4.4 for bound on dmax, we apply the Goldberg–Jerrum bound with
s = 2nk + 2(2k + 1)n, d = m2n2k4(n + �max) + 1, and � = 2mn2 + 4n.

A simple example of a piecewise polynomial function P/Q together with the
decision table for the final output is provided in the appendix.

Remark 5.3. The VC dimension bound is modified for the more abstract rational-
ity conditions as follows. Evaluating the sign of the output involves the evaluation of
2(8edmax2n

2kh/4n)4n + 2n2kh polynomials; 2n2kh evaluations are needed to find an
appropriate piece, and by Theorem 4.7 the maximum number of possible expressions
of the type P/Q is bounded by (8edmax2n

2kh/4n)4n. Applying the Goldberg–Jerrum
bound with s = 2(8edmax2n

2kh/4n)4n+2n2kh, d = m2n2kdmax+1, and � = 2mn2+4n
gives the result.

Proof of Theorem 3.1, the VC dimension upper bound, p = 1. By using the

previous notation, y = CeAx0 + C
∫ 1

0
eA(1−t)Bu(t)dt. Let x̃ = CeAx0. Then y =

x̃ + P/Q = (x̃Q + P )/Q = P̃ /Q. This has 2mn2 + 4n + 1 parameters and deg(P̃ ) ≤
m2n2kdmax + 1.

5.2. Lower bounds for the VC dimension. The lower bounds for the VC
dimension are developed for a single-input single-output system with initial state zero.
The control is

u =
k∑

j=1

gjωj : [0, 1] → R.

We derive lower bounds by fixing the structure of A, B, and C and using the dual
VC dimension and axis shattering following the ideas of DasGupta and Sontag [6].
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Lemmas 5.5, 5.6, and 5.7 given in this section together prove Theorem 3.2. These
lower bounds are very general; we just assume that the input functions are continuous
and linearly independent; thus no particular structure of input functions is required
as in the upper bounds.

To make the next proof cleaner we formulate a part of it as a separate proposition.
(The proposition is a standard fact and we omit the proof.)

Proposition 5.4. Let ωj : [0, 1] → R, j = 1, . . . , k, be continuous and linearly
independent. Then the functions

hj(λ) =

∫ 1

0

eλtωj(t)dt, j = 1, . . . , k,

are linearly independent.
Lemma 5.5 (lower bound 1). The sign system concept class C1,1 with scalar inputs

and scalar outputs satisfies

VC(C1,1) ≥ m′
⌊
log2

⌊
k

m′

⌋⌋
,

where m′ = min{n, k}.
Proof. Let ωj(t), j = 1, . . . , k, be continuous and linearly independent. Let A

have n distinct real eigenvalues −λ1, . . . ,−λn, and take B and C so that

CeA(1−t)B =

m′∑
i=1

eλit,

where m′ = min{n, k}. Then the final output of the system is

y(1) =

∫ 1

0

CeA(1−t)B

k∑
j=1

gjωj(t)dt =

m′∑
i=1

k∑
j=1

gj

∫ 1

0

eλitωj(t)dt.

Define hj(λ) =
∫ 1

0
eλtωj(t)dt. By Proposition 5.4 the hj ’s are linearly independent

and we can find λ1, . . . , λk such that the matrix⎡⎢⎣ h1(λ1) · · · hk(λ1)
...

...
h1(λk) · · · hk(λk)

⎤⎥⎦
has rank k.

The control system with sign-observations gives the mapping F : R
m′ × R

k →
{0, 1} by

(λ1, . . . , λm′ , g1, . . . , gk) �→ sign

⎡⎣ m′∑
i=1

k∑
j=1

gjhj(λi)

⎤⎦ .

We show that the mapping from parameters λ1, . . . , λm′ to {0, 1} can be axis-
shattered. Let L = {λ1, . . . , λk} be so that [hj(λi)]i,j has rank k. Denote by

L1, . . . , Lm′ disjoint subsets of L such that |Li| = 
k/m′�, and let M = L\{
⋃m′

i=1 Li}.
Next we want to interpolate in the points of L.
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Fix s, 1 ≤ s ≤ m′, and let φ : Ls → {0, 1} be any dichotomy. Next find g1, . . . , gk
such that

k∑
j=1

gjhj(λs) = φ(λs) ∀λs ∈ Ls,

k∑
j=1

gjhj(λ) = 0 ∀λ ∈ (L ∪M) \ Ls.

(12)

Let g∗1 , . . . g
∗
k satisfy (12). (A unique solution exists because [hj(λi)] has rank k.)

Then

F [λ1, . . . , λm′ , g∗1 , . . . , g
∗
k] = sign

⎡⎣ m′∑
i=1

k∑
j=1

g∗jhj(λi)

⎤⎦ = φ(λ),

when λ ∈ Ls and for all (λ1, . . . , λm′) ∈ L1 × · · · × Lm′ .

Let F̃ = {F (λ1, . . . , λm′ , ·) : R
k → {0, 1}; (λ1, . . . , λm′) ∈ R

m′}. By the axis-
shattering bound given in Theorem 4.5,

VC(F̃) ≥ m′
⌊
log2

⌊
k

m′

⌋⌋
,

and thus VC(C1,1) ≥ VC(F̃), where C1,1 is the control system concept class with
p = m = 1.

Lemma 5.6 (lower bound 2). If k ≤ n, then

VC(C1,1) ≥ k.

Proof. We make a small modification of the above argument. Assume that k ≤
n, and let A have n real eigenvalues λ1, . . . , λn. Next we take B and C so that
CeA(1−t)B =

∑n
i=1 e

λitβi, where (β1, . . . , βn, λ1, . . . , λn) are considered as system
parameters.

We study the mapping

(β1, . . . , βn, λ1, . . . , λn, g1, . . . , gk) �→ sign

⎡⎣ n∑
i=1

k∑
j=1

gjhj(λi)βi

⎤⎦
= sign

[
k∑

j=1

gj

n∑
i=1

hj(λi)βi︸ ︷︷ ︸
γj

]
= sign

⎡⎣ k∑
j=1

gjγj

⎤⎦ .

Given (γ1, . . . , γk), by linear independence of h1, . . . , hk, we can find λ1, . . . , λn, β1, . . . ,
βn such that

∑n
i=1 hj(λi)βi = γj , j = 1, . . . , k. But (γ1, . . . , γk) can be viewed as a

normal vector for a hyperplane through the origin in R
k, and the concept class as-

sociated to the mapping (g1, . . . , gk) �→ sign[
∑k

j=1 gjγj ] as (γ1, . . . , γk) varies has VC
dimension k. Hence VC(C1,1) ≥ k.

Lemma 5.7 (lower bound 3). If n ≤ k, then

VC(C1,1) ≥ n.
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Proof. Our construction for the control system is as in the previous proof, but
now we assume that n ≤ k, and we study

(β1, . . . , βn, λ1, . . . , λn, g1, . . . , gk) �→ sign

⎡⎣ n∑
i=1

k∑
j=1

gjhj(λi)βi

⎤⎦
= sign

[
n∑

i=1

k∑
j=1

gjhj(λi)︸ ︷︷ ︸
g̃i

βi

]
= sign

[
n∑

i=1

g̃iβi

]
,

and again by linear independence and the above hyperplane argument (now via first
transforming (g1, . . . , gk)) we can conclude that the above mapping has VC dimension
n. Thus VC(C1,1) ≥ n.

5.3. VC dimension upper bounds for p-dimensional outputs. We begin
by proving Theorem 3.3.

Proof of the VC dimension upper bound. We develop an upper bound based on the
bound for a scalar sign-observation. We have seen that under the rationality assump-
tion (RAT) the scalar output is a piecewise rational expression P/Q. In general, the
control system maps G to (sign(P1/Q1), . . . , sign(Pp/Qp))

T , which is understood as a
binary representation of a number in {0, 1, . . . , 2p−1}. Let f : R

mk → {0, . . . , 2p−1}
be the mapping given by the control system, and denote the class of all such mappings
by F . For each f ∈ F introduce a loss function L0-1,f (z, a) = L0-1(f(z), a) = 1, when
f(z) 	= a, and 0 otherwise. Define the class L0-1,F = {L0-1,f ; f ∈ F}.

In order to calculate the value of the output, after determining an appropriate
piece, one needs to know the truth values of the expressions P1 > 0, Q1 > 0, . . . , Pp >
0, and Qp > 0, where P ’s and Q’s are polynomials on inputs and parameters of the
control system. To evaluate the value of the loss function L0-1,f (z, a), one needs the
truth values of y = 0, y = 1, . . . , y = 2p − 2.

In the general case one needs 2nk + 2p(2k + 1)n + 2p − 1 truth values. As this
procedure evaluates only polynomials, we can use the Goldberg–Jerrum bound again.
The maximum degree of the polynomials is m2n2k4(n + �max) + 1, and the total
number of parameters is 2pn2m + 4n + p, where the last term comes from the initial
condition.

6. A fat-shattering bound. We begin this section by proving Theorems 3.6
and 3.7. As a corollary of Theorem 3.7 we prove the fat-shattering bound appearing
in Theorem 2.7 bounding the sample complexity for proper agnostic learning.

Proof of Theorem 3.6. For the first part of the proof we use a generic set B for
the parameters. Assume that we can γ-shatter a set of inputs {u1, . . . , ud} and there
exists {r1, . . . , rd} such that, for each assignment b ∈ {0, 1}d, there exists a λ ∈ B
such that

F (λ, ui) ≥ ri + γ if bi = 1, and

F (λ, ui) ≤ ri − γ otherwise.

We write λ ∼ µ if and only if the parameters λ and µ give the same assignment
for all {u1, . . . , ud}. Further, let Λ = {λ1, . . . , λ2d} be a collection of parameters
that shatter {u1, . . . , ud}, and let λi, λj ∈ Λ. Now λi 	∼ λj implies that there exist
u∗ ∈ {u1, . . . , ud} and r∗ ∈ {r1, . . . , rd} such that F (λi, u

∗) ≥ γ + r∗ and F (λj , u
∗) ≤
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γ − r∗, or vice versa. Hence 2γ ≤ |F (λi, u
∗) − F (λj , u

∗)| ≤ L‖λi − λj‖ and so
‖λi − λj‖ ≥ 2γ/L. That is, the set Λ of cardinality 2d is a 2γ/L-separated set in
B. Now the fat-shattering bounds follow by calculating 2γ/L-packing numbers for
different sets B.

If B = Bk
∞(C), the maximum possible cardinality for an ε-separated set is


2C/ε�k, and thus

2d ≤
⌊

2C

2γ/L

⌋k

=

⌊
CL

γ

⌋k

,

and solving for d yields d ≤ k log2
CL/γ�.
Similarly, if B = B̄k

∞(C), the maximum possible cardinality for an ε-separated

set is (1 + 
2C/ε�)k and by a similar argument we arrive at the bound d ≤ k log2(1 +

LC/γ�).

For B = B̄k
2 (C), let P (ε) be a collection of ε-separated sets in B̄k

2 (C), and let
|P (ε)| denote its cardinality. As all open balls with radius ε/2 with centers at ε-
separated points have to be disjoint and their union has to be inside a ball of radius
C+ε/2, we get that |P (ε)|α(k)(ε/2)k ≤ α(k)(C+ε/2)k, where α(k) = πk/2/Γ(k/2+1)

is the volume of a unit ball in R
k. Hence |P (ε)| ≤ (C + 2/ε)k and 2d ≤ (C + L/γ)

k
;

i.e., d ≤ k log2(C + L/γ).
Next we prove Theorem 3.7 by applying the Lipschitz bound to a control system.
Proof of Theorem 3.7. Our aim is to compute the Lipschitz constant associated

to the control system in Definition 2.6, and then we apply Theorem 3.6.
Denote the system parameters (α11, . . . , αnm, a1, b1, . . . , ar, br) by λ and assume

‖λ‖∞ < 1. Let

F (λ, u) = y(τ) =

∫ τ

0

m∑
i=1

n∑
�=1

αi�ξ�(t)ui(τ − t)dt.

Functions ξ1(t), . . . , ξn(t) are of the form ξ(t) = tceat sin(bt) or ξ(t) = tceat cos(bt),
where a + ib is an eigenvalue of A and c ∈ {0, . . . , n − 1}. Thus taking a partial
derivative with respect to a or b will increase the power of t by one and change the
trigonometric functions. Therefore,∣∣∣∣∂F (λ, u)

∂ακρ

∣∣∣∣ =

∣∣∣∣∂y(τ)

∂ακρ

∣∣∣∣ =

∣∣∣∣∣
m∑
i=1

n∑
�=1

d(i, �)

∫ τ

0

ξ�(t)ui(τ − t)dt

∣∣∣∣∣
≤ nm

∫ τ

0

|ξ�(t)ui(τ − t)| dt ≤ nmτn−1eτM,

because supt∈[0,τ ] |ξ�(t)| ≤ eττn and d(i, �) = ∂αij/∂ακρ = 1 if (i, �) = (κ, ρ) and zero
otherwise. Similarly we calculate∣∣∣∣∂F (λ, u)

∂aκ

∣∣∣∣ =

∣∣∣∣∂y(τ)

∂aκ

∣∣∣∣ ≤ nmτneτM and∣∣∣∣∂F (λ, u)

∂bκ

∣∣∣∣ =

∣∣∣∣∂y(τ)

∂bκ

∣∣∣∣ ≤ nmτneτM

as supt∈[0,τ ] |
∂ξ�(t)
∂κ

| ≤ eττn and supt∈[0,τ ] |
∂ξ�(t)
∂bκ

| ≤ eττn.

Now the Lipschitz constant can be taken to be L = n2meττnM as

|F (λ, u) − F (λ∗, u)| = |∇F · (λ− λ∗)| ≤ L‖λ− λ∗‖∞.
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The number of system parameters is at most nm+n = (m+1)n and we get the level
fat-shattering bound by applying Theorem 3.6 with space dimension n(m + 1) and
L = n2meττnM .

As a corollary, we combine the above result together with a pseudodimension
bound to prove the fat-shattering bound given in Theorem 2.7.

Corollary 6.1 (fat-shattering bound in Theorem 2.7). Assume that the system
ẋ = Ax + Bu, y = Cx, x(0) = 0, can be parameterized by λ ∈ R

n(m+1) as in
Definition 2.6 with ‖λ‖∞ < 1, and assume in addition that the control is given by
u = Gω, where the input basis functions ωj are in Ω given by (3). We denote the
corresponding control system class by

FB = {F (λ, ·) : U → R; λ ∈ B}.

Then

fatγ(FB) ≤ min

{
(m + 1)n log2

⌊
n2mτneτkM

γ

⌋
,

2(m + 4)n log2

(
8e
(
nmk4(n + �max) + 1

)(
2nk + 2(2k + 1)n

))
,

where �max is given by (3) and (4) and M is a constant satisfying∫ τ

0

|ui(τ − t)|dt ≤ kM

for all i = 1, . . . ,m.
Proof. The first part of the bound follows from Theorem 3.7 with kM in place

of M .
The remaining part of the bound comes from the pseudodimension bound. First

we derive the associated VC dimension bound. As we assumed that A has a fixed
Jordan block structure, every entry of eA(1−t) is a linear combination of n functions
ξ1(t), . . . , ξn(t). (That is, we do not need to consider all possible functions over differ-
ent Jordan block structures.) This implies that in the Goldberg–Jerrum argument of
section 5.1 we can take � = mn+4n, d = nmk4(n+�max)+1, and s = 2nk+2(2k+1)n.
Moreover, in that section the VC dimension bounds were derived for the time interval
[0, 1]. However, the upper bound depends on the number of system parameters and the
degrees of polynomials to be evaluated. Changing the time interval to [0, τ ] means just
that we replace the eigenvalue parameters (referring to the proof of Proposition 5.1)
a, b, ea cos b, ea sin b by aτ, bτ, eaτ cos bτ, eaτ sin bτ .

The above bound is also a bound for the pseudodimension. Observe that for
G = {g : X → R}, the pseudodimension can be defined as PD(G) = VC{Ind(x, y) =
sign(g(x) − y); g ∈ G}. Hence we want to study the VC dimension associated to
sign(y(τ) − z) = sign(P/Q−z) = sign(P̂ /Q), where P̂ = P −zQ has the same degree
as P with respect to the parameters. Here z is a new input, but the bound utilizing
Goldberg–Jerrum technique does not depend on the dimension of the inputs, and
hence the above VC dimension bound is also a bound for the pseudodimension. (Note
that here in the scale sensitive setting we do not apply the pseudodimension results
of section 5.3 using loss functions, as those rescaled the outputs.)

7. A class of systems with VC dimension k. For the control system (2) with

scalar control u(t) =
∑k

i=1 giωi(t) and unrestricted ω1, . . . , ωk, the standard half-space
argument gives an upper bound k. This bound is tight. We will give an example of a
single-input, single-output one-parameter family of control systems in dimension two
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that has VC dimension k, when the controls are of the form u(t) =
∑k

i=1 giωi(t) and
ωi(1 − t) = 1[2−i,2−i+2α], where α = −2(k + 1).

Consider a control system

ẋ1 = x2,

ẋ2 = −λ2x1 + u,(13)

y = −x1.

For time interval [0,1] and initial condition (x1, x2) = (0, 0), the output is given by

y(1) =
∫ 1

0
sin(λt)u(1 − t)dt.

Lemma 7.1. Controls {ω1, . . . , ωk} such that ωi(1 − t) = 1[2−i,2−i+2α], where
α = −2(k + 1), are shattered by the control system (13) with sign-observations.

Proof. Let T = {2−i, i = 1, . . . , k} and J ⊆ T . Define λJ = π
∑k

i=1 ai2
i, where

ai = 1 if 2−i 	∈ J and ai = 0 otherwise. Now if t = 2−�, then

λJ t = π

k∑
i=1

ai2
i−� = π

(
�−1∑
i=1

ai2
i−�

︸ ︷︷ ︸
1/2 c2

+a� +

k∑
i=�+1

ai2
i−�

︸ ︷︷ ︸
2c1

)
,

where c1 ∈ N and 0 ≤ c2 < 2.
Hence sin(λJ t) = sin(π(1/2 c2 + a�)). Note that if a� = 0, then 1/2 c2 + a� ∈

[0, 1− 2−�], and if a� = 1, then 1/2 c2 + a� ∈ [1, 2− 2−�]. Thus sin(π(1/2 c2 + a�)) ≥ 0
if a� = 0, and sin(π(1/2 c2 + a�)) ≤ 0 if a� = 1. Therefore, sin(λJ t) ≥ 0 ⇔ a� = 0
sin(λJ t) ≥ 0 ⇔ t ∈ J. Further,∫ 2−�+2α

2−�

sin(λJ t)dt ≥ 0 ⇔ a� = 0,

where α is taken so that

k∑
j=1

2j2α ≤ 2−(k+1).(14)

This ensures that when � ≤ k and t ∈ [2−�, 2−� + 2α], λJ t ∈ [0, π(1 − 2−� +∑k
j=1 2j2α)] ⊂ [0, π) if a� = 0 or similarly λJ t ∈ [π, 2π) if a� = 1. In (14) we can

take α = −2(k + 1) as
∑k

j=1 2j = 2k+1 − 2.

In this way the integrand in
∫ 2−�+2α

2−� sin(λJ t)dt is either positive or negative.
For S ⊆ {1, . . . , k}, let J = {2−i, i ∈ S}. For each ωi,∫ 1

0

sin(λJ t)ωi(1 − t)dt =

∫ 2−i+2α

2−i

sin(λJ t)dt > 0 ⇔ i ∈ S;

i.e., the set of controls {ω1, . . . , ωk} is shattered by the mapping

ωi �→ sign

[∫ 1

0

sin(λJ t)ωi(1 − t)dt

]
.

Appendix. An example of the Goldberg–Jerrum bound.
We begin this appendix with an informal discussion on the Goldberg–Jerrum

technique used to prove the VC dimension upper bounds in this paper.
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We want to write y(1) = P/Q, where P and Q are polynomials. Unfortunately,
the value of sign y(1) cannot be obtained by just evaluating P and Q since Q may
have zeros. Therefore, we need to write

y(1) =

⎧⎪⎪⎨⎪⎪⎩
P1/Q1 if f1 	= 0, . . . , fµ 	= 0,

...

Pγ/Qγ if f1 = 0, . . . , fµ 	= 0

so that after evaluating µ polynomials f1, . . . , fµ we can pick a definition Pi/Qi with-
out poles in a region defined by the µ polynomials. When y(1) is defined in this way,
sign y(1) can be easily expressed by a Boolean formula evaluating 2γ + µ polynomial
inequalities and equalities.

For simplicity we assume that p = 1 and the initial condition x(0) = 0. Then
using the notation of Proposition 5.1 we write

y(1) =
m∑
i=1

n∑
r=1

2n∑
�=1

αir�

k∑
j=1

gij

∫ 1

0

ξ�(xr1, xr2, t)ωj(t)dt,

and by the proof of Lemma 4.4∫ 1

0

ξ�(xr1, xr2, t)ωj(t)dt=
P�j

((xr1 +αj)2 + (xr2 +βj)2)
z�j ((xr1 +αj)2 + (xr2 − βj)2)

z�j ,

where P�j is some polynomial, z�j ∈ N, and ωj(t) = t�jeαjt sin(βjt) or ωj(t) =

t�jeαjt cos(βjt). Hence the denominator of
∑k

j=1 gij
∫ 1

0
ξ�(xr1, xr2, t)ωj(t)dt is(

(xr1 + α1)
2 + (xr2 + β1)

2
)z�1 (

(xr1 + α1)
2 + (xr2 − β1)

2
)z�1

× · · · ×
(
(xr1 + αk)

2 + (xr2 + βk)
2
)z�k (

(xr1 + αk)
2 + (xr2 − βk)

2
)z�k

.

By carrying out all summations y(1) = P/Q. The denominator Q consists of the
product

n∏
r=1

( (
(xr1 + α1)

2 + (xr2 + β1)
2
)∗ (

(xr1 + α1)
2 + (xr2 − β1)

2
)∗

× · · · ×
(
(xr1 + αk)

2 + (xr2 + βk)
2
)∗ (

(xr1 + αk)
2 + (xr2 − βk)

2
)∗ )

,

where ∗’s stand for some unspecified powers. Hence the zeros of Q are determined by
2nk polynomials fij1 = (xi1 +αj)

2 + (xi2 + βj)
2, fij2 = (xi1 +αj)

2 + (xi2 − βj)
2, and

i = 1, . . . , n, j = 1, . . . , k. The number of different sign assignments determining γ is
calculated as in the proof of Lemma 5.2.

Example. The purpose of the following example is to illustrate the function y =
P/Q used in the Goldberg–Jerrum technique together with the sequence of polynomial
evaluations involved and a table for the final output depending on the outcomes of
the polynomial evaluations.

Take m = 1, n = 2, k = 2, and assume that A has complex eigenvalues a ±
ib. Take basis input functions to be ω1(t) = et and ω2(t) = e2t. Then y(1) =∑2

l=1 αl

∑2
j=1 gj

∫ 1

0
ξl(t)ωj(t) dt, where ξ1(t) = eat sin(bt), ξ2(t) = eat cos(bt), α1, α2,

a, b, ea sin b, and ea cos b are system parameters and g1, g2 are input parameters.
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By using formulae∫ 1

0

eãt sin(b̃t) dt =
eã(ã sin b̃− b̃ cos b̃) + b̃

ã2 + b̃2
and∫ 1

0

eãt cos(b̃t) dt =
eã(ã cos b̃ + b̃ sin b̃) − ã

ã2 + b̃2
,

we calculate the integrals appearing in the rationality condition, and we call them
r11, r12, r21, and r22:∫ 1

0

ξ1(t)ω1(t) dt =

∫ 1

0

e(a+1)t sin(bt) dt =

{
r11 if (a + 1)2 + b2 	= 0,

0 if (a + 1)2 + b2 = 0,∫ 1

0

ξ1(t)ω2(t) dt =

{
r12 if (a + 2)2 + b2 	= 0,

0 if (a + 2)2 + b2 = 0,∫ 1

0

ξ2(t)ω1(t) dt =

{
r21 if (a + 1)2 + b2 	= 0,

1 if (a + 1)2 + b2 = 0,∫ 1

0

ξ2(t)ω2(t) dt =

{
r22 if (a + 2)2 + b2 	= 0,

1 if (a + 2)2 + b2 = 0.

The computation of sign y(1) = sign(
∑2

l=1 αl

∑2
j=1 gj

∫ 1

0
ξl(t)ωj(t) dt) is divided

into three cases:
• Case (a + 1)2 + b2 	= 0, (a + 2)2 + b2 	= 0:

sign y(1) = sign(α1g1r11 + α1g2r12 + α2g1r21 + α2g2r22) = sign

(
P1

Q1

)
.

• Case (a + 1)2 + b2 = 0, (a + 2)2 + b2 	= 0:

sign y(1) = sign(α1g2r12 + α2g1 + α2g2r22) = sign

(
P2

Q2

)
.

• Case (a + 1)2 + b2 	= 0, (a + 2)2 + b2 = 0:

sign y(1) = sign(α1g1r11 + α2g2r21 + α2g2) = sign

(
P3

Q3

)
.

Thus we have three different expressions of the form P
Q .

Next we form the Boolean formula, F = sign y(1), evaluating polynomials f1 =
(a + 1)2 + b2 = 0, f2 = (a + 2)2 + b2 = 0, Pi > 0, Qi > 0 for i ∈ {1, 2, 3}. In the
following table 1 means true and 0 means false for the above polynomial evaluation
(∗∗ = 1 or 0, i.e., extend the table).

f1 = 0 f2 = 0 P1 > 0 Q1 > 0 P2 > 0 Q2 > 0 P3 > 0 Q3 > 0 F
0 0 1 1 ∗∗ ∗∗ ∗∗ ∗∗ 1
0 0 1 0 ∗∗ ∗∗ ∗∗ ∗∗ 0
...

...
...

...
...

...
...

...
...

1 0 ∗∗ ∗∗ 1 1 ∗∗ ∗∗ 1
1 0 ∗∗ ∗∗ 1 0 ∗∗ ∗∗ 0
...

...
...

...
...

...
...

...
...

0 1 ∗∗ ∗∗ ∗∗ ∗∗ 0 0 1
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In this case (see the statement of Goldberg–Jerrum bounds), Λ = {α1, α2, a, b, e
a cos b,

ea sin b}, X = {g1, g2}, s = 8, d = 12, and l = 6.
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