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Abstract

We provide an explicit KL stability or input-to-state stability (ISS) estimate for a sampled-data nonlinear system in
terms of the KL estimate for the corresponding discrete-time system and a K function describing inter-sample growth.
It is quite obvious that a uniform inter-sample growth condition, plus an ISS property for the exact discrete-time model of
a closed-loop system, implies uniform ISS of the sampled-data nonlinear system. Our results serve to quantify these facts
by means of comparison functions. Our results can be used as an alternative to prove and extend results in [1] or extend
some results in [4] to a class of nonlinear systems. Finally, the formulas we establish can be used as a tool for some other
problems which we indicate. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

There is a strong motivation for the investigation of
sampled-data systems due to the prevalence of com-
puter controlled systems (see [4–6]). Moreover, very
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often linear theory does not su�ce and we need to deal
with nonlinear sampled-data systems (see [3,9,10]).
Although the topic is very old there does not appear to
be a comprehensive theory even for analysis of proper-
ties of sampled-data nonlinear systems. For instance,
Lp stability properties of linear sampled-data systems
were completely characterized recently in [4], whereas
such a characterization is still lacking for nonlinear
sampled-data systems.
The ideas of “sampling”, which are related to

Poincare maps, can be used to analyze properties
of continuous-time systems (see [1,2,16,24,18,21]).
Recently, a Lyapunov-type theorem was proved in
[1] to show uniform local asymptotic stability of
time-varying nonlinear systems by using a Lyapunov
function whose value decreases along the solutions
only at sampling instants. This result was used in
[2,16] to prove several new results on averaging of
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nonlinear systems. A generalization of the stability
result from [1] was presented in [24] where it was
shown that global asymptotic stability of the averaged
system implies semi-global-practical stability of the
original nonlinear system.
An important method in stability and ISS analy-

sis of continuous-time systems is based on the use
class-KL and class-K functions (for classical re-
sults on KL functions see [11, pp. 135–139] or [8,
pp. 7–8 and 95–101]; for new results on KL func-
tions see [20]; for ISS see [19]). We give precise
de�nitions of these functions in the preliminaries
section. By using this method, de�nitions and often
some proofs are simpli�ed and more obvious (for in-
stance, see [12, Section 5:3] or [8,18,19]). However,
the theory that would allow the use of class-KL
and class-K functions in the context of sampled-data
nonlinear systems seems to be lacking.
It is the purpose of this paper to relate discrete-time

and sampled-dataKL stability or ISS estimates. The
explicit formulas that we present are a tool which al-
lows us to prove new results as well as provide alterna-
tive proofs for some old results. A consequence of the
established bounds is that stability or ISS of the exact
discrete-time model of the system implies the same
(equivalent) property of the sampled-data model, un-
der a uniform inter-sample growth condition. Some of
our results generalize the result on L∞ stability of lin-
ear systems in [4] to a class of nonlinear systems. It is
possible to use our method as an alternative to prove
results of [1]. Moreover, in Section 4 we generalize
the main result of [1] to cover the ISS property. The
formulas we establish provide the last technical step
in the proof of the main result in [15] where we pre-
sented conditions which guarantee that the controller
that globally stabilizes an approximate discrete-time
model of the plant also semi-globally practically sta-
bilizes the sampled-data system. Also, the results in
[13,17] can be alternatively proved using the results
of our paper and the approach in [15]. We introduce a
new property of class-KL functions (the UIB prop-
erty, de�ned below), that is very useful when relat-
ing discrete-time and sampled-data estimates. Finally,
we prove a comparison theorem for discrete-time sys-
tems based on the use of an auxiliary scalar di�eren-
tial equation. We emphasize that our results hold for
a large class of nonlinear systems and for arbitrary
�xed sampling periods (this is not a fast sampling
result).
As an example of the relationship we obtain, sup-

pose that there exist r s; r b ¿ 0, �∈KL and 
̃∈K∞,

such that: (1) the discrete-time model satis�es the
estimate

|x(k0)|6r s ⇒ |x(k)|6�(|x(k0)|; k − k0); k¿k0¿0;

where k; k0 ∈N; and (2) the inter-sample behavior is
characterized in the following way:

∀t0¿0; |x(t0)|6r b ⇒|x(t)|6
̃(|x(t0)|);
t ∈ [t0; t0 + T ];

where T ¿ 0 is the sampling period. Then the
sampled-data model satis�es the bound

|x(t0)|6rx ⇒ |x(t)|6 ��(|x(t0)|; t − t0); t¿t0¿0;
where rx :=min{
̃−1(r s); 
̃−1 ◦ �−10 (r b)}; �0(s) =
�(s; 0) (it is safe to assume that �0 ∈K∞, see Remark
1 below) and �� is as follows: If 
̃(�(
̃(s); �))∈KL
satis�es a property that we precisely de�ne later
(uniform incremental boundedness), then

��(s; �) :=max
{

̃(s)eT−�; P
̃

(
�
(

̃(s);

�
T

))}
;

where P¿ 0. Otherwise, we show that in general
��(s; �)∈KL can be constructed as:

��(s; �) :=max
{

̃(s)eT−�;

4 max
�∈[0;�]

2−� 
̃
(
�
(

̃(s);

�− �
T

))}
:

Similar formulas are derived for ISS and also under
stronger hypotheses we obtain global estimates.
The paper is organized as follows. In Section 2

we introduce the class of systems we consider and
present de�nitions and notation. In Sections 3 and 4
we present, respectively, main results and applications
of main results. A summary is given in the last sec-
tion. An important technical lemma is proved in the
appendix.

2. Preliminaries

We concentrate on the class of nonlinear sampled-
data systems (see, for example [9]). The model given
below represents a continuous-time plant (Sct) con-
trolled in a closed-loop by a digital controller (Sdt),
the two being interconnected via the sampler (S) and
the zero-order hold (H). The system is described by
the equations

Sct: ẋ1(t) = f1(t; x1(t); ỹ 2(t); d1(t)); t¿0; t ∈R;
y1(t) = h1(x1(t));
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S: y1(k) = y1(kT ); k¿0; k ∈N;
Sdt: x2(k + 1) = f2(k; y1(k); x2(k); d2(k));

y2(k) = h2(x2(k); y1(k));

H : ỹ 2(t) = y2(k); t ∈ [kT; (k + 1)T [: (1)

where T ¿ 0 is a �xed sampling period. The follow-
ing notation is used: x1 ∈Rn1 ; y1 ∈Rp1 and x2 ∈Rn2 ;
y2 ∈Rp2 represent, respectively, the states and out-
puts of the plant and controller; d1 ∈Rs1 ; d2 ∈Rs2
are exogenous disturbances. The vector disturbance is
denoted as d(t) = (dT1 (t) d

T
2 (k))

T; t ∈ [kT; (k + 1)T [,
where d1 is measurable and essentially bounded
and d2 is bounded, and its in�nity norm ‖d‖∞ =
ess supt¿0 |d1(t)|+supk¿0 |d2(k)|. It is assumed that
h1(0) = 0; h2(0; 0) = 0 and all of the functions are
continuous.
A function 
 :R¿0 → R¿0 is of class-G (
∈G) if

it is continuous, zero at zero and nondecreasing. It is
of class-K if it is of class-G and strictly increasing.
It is of class-K∞ if it is of class-K and is un-
bounded. A continuous function � :R¿0 × R¿0 →
R¿0 is of class-KL if �(·; �) is of class-K for
each �¿0 and �(s; ·) is monotonically decreas-
ing to zero for each s¿ 0 (not all papers assume
monotonicity as a property of KL functions).
A class-KL function �(s; �) is called exponen-
tial if �(s; �)6Kse−c�; K ¿ 0; c¿ 0. We introduce
a new property which plays an important role in
relating discrete-time and sampled-data stability
estimates: A class-KL function �(s; �) is called
uniformly incrementally bounded (UIB) if there ex-
ists a number P¿ 0 such that �(s; �)6P�(s; � + 1);
∀s¿0; ∀�∈N. Note that since �∈KL we actually
have P¿ 1. For instance, given positive numbers
B; � and �(s; �) = Bse−��, then �∈KL is UIB and
P = e�. The following lemma, whose proof is given
in the appendix, and the corollary are two of the most
important properties of UIB class-KL functions that
we use in the sequel:

Lemma 1. Given an arbitrary class-KL function
�(s; �); there exists a class-KL function �̃(s; �);
which is UIB; such that �(s; �)6�̃(s; �); ∀s¿0;
∀�¿0. More precisely; we can always take
�̃(s; �) := max

�∈[0;�]
2−��(s; �− �) (2)

and P = 2.

The proof of the corollary below follows immedi-
ately by induction:

Corollary 1. Given an arbitrary UIB function
�(s; �)∈KL and any integer l¿0; we have that

�(s; �)6Pl�(s; �+ l); ∀�∈N; s¿0:

System (1) is considered on the time interval t¿0
for continuous-time part of the system and k¿0 for
discrete-time part of the system. Let x1(0); x2(0) be
speci�ed. We choose the state of the sampled-data
system xsd(t) at time t to be (see also [4]):

xsd(t) := (xT1 (t) h1(x1(kT )) x
T
2 (k))

T;

t ∈ [kT; (k + 1)T [; k ∈N: (3)

Our choice is motivated by the fact that having xsd(t0)
we can compute all signals in the system forward in
time. Indeed, suppose that for some t1 ∈ [kT; (k+1)T [
we know xsd(t1); d[t1;∞). Then we can solve the fol-
lowing equations in order:

y1(k) = h1(x1(kT ));

y2(k) = h2(x2(k); y1(k));

ỹ 2(t) = y2(k); t ∈ [t1; (k + 1)T ];
ẋ1(t) = f1(t; x1(t); ỹ 2(t); d1(t));

x1(t1); d1[t1; (k + 1)T ];

x2(k + 1) = f2(k; h1(x1(kT )); x2(k); d2(k));

x2(k); d2(k); (4)

to obtain the value of xsd(t); t ∈ [t1; (k+1)T ], assum-
ing no �nite escape time within this interval. By re-
peating similar calculations over successive sampling
intervals we can �nd xsd(t); ∀t¿t1, which shows that
xsd(t) is an appropriate choice for the state of the sys-
tem. Moreover, xsd(t) is, in a sense, a minimal choice
since dropping either x1(t1), h1(x1(kT )) or x2(k) from
the de�nition of xsd(t1) proves insu�cient to compute
all variables for t¿t1.
The sampled-data system (1) is time-varying even

without explicit dependence of f1 and f2 on t and
k, respectively (since trajectories starting at x(t0) =
x∗; t0=kT do not coincide in general with trajectories
starting at x(t1)= x∗; t1 6= kT ) and we investigate the
following properties:

De�nition 1. System (1) is called
(1) uniformly locally asymptotically stable

(ULAS) (uniformly globally asymptotically stable
(UGAS)) if there exist �∈KL, and rx ¿ 0 (there
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exists �∈KL) such that for any t0¿0 the following
holds:

|xsd(t0)|6rx (∀xsd(t0)∈Rn)⇒
|xsd(t)|6�(|xsd(t0)|; t − t0); ∀t¿t0; (5)

(2) uniformly locally exponentially stable (ULES)
if it is ULAS with an exponential estimate �(s; �) =
Bse−��; �; B¿ 0; uniformly globally exponentially
stable (UGES) if it is UGAS with an exponential
estimate �,
(3) uniformly locally input-to-state stable (ULISS)

(uniformly input-to-state stable (UISS)) if there exist
�∈KL, 
∈K and rx; rd ¿ 0 (there exist �∈KL
and 
∈K) such that for any t0¿0 the following
holds:

|xsd(t0)|6rx;
‖d‖∞6rd (∀xsd(t0)∈Rn; ‖d‖∞¡∞)⇒
|xsd(t)|6�(|xsd(t0)|; t − t0) + 
(‖d‖∞); ∀t¿t0:

(6)

Remark 1. We note that �0(s) := �(s; 0) can be
assumed to belong to class-K∞ since necessarily
�(s; 0)¿s; ∀s6rx (just take t = t0 and ‖d‖∞ = 0).

We will also consider the behavior of (1) at
sampling instants only xsd(kT )=xsd(k). If there are no
disturbances, the exact discrete-time model of (1) is
obtained by integrating the plant equations over one
sampling interval. If there are some disturbances it
is standard to assume that they are constant over
sampling intervals. We do not necessarily take this
approach in the sequel and we refer to the exact
discrete-time model for (1) meaning the discrete-time
model whose solutions coincide at sampling instants
kT with solutions of (1) for the same initial states
and inputs. We remark that if the plant and con-
troller equations in (1) are time invariant, the exact
discrete-time model is time invariant. For the stabil-
ity properties of the exact discrete-time model of (1)
we use De�nition 1 where t and t0 are, respectively,
replaced by k and k0, where k; k0 ∈N.
Before we present main results we note that

in [9] the “state” vector xrsd(t) = (xT1 (t) x
T
2 (k))

T;
t ∈ [kT; (k + 1)T [ was used to prove a stability result
for (1). We show below that the discrepancy with
(3) is not important for the stability or ISS analysis.
Denote xsd(kT ) = xsd(k) and xrsd(kT ) = x

r
sd(k).

Lemma 2. Consider system (1). The following
statements are equivalent:
(1) There exist �∈KL and 
∈K∞ such that

∀xsd(0)∈Rn1×p1×n2 ;
‖d‖∞¡∞ ⇒
|xsd(k)|6�(|xsd(k0)|; k − k0) + 
(‖d‖∞);

∀k¿k0¿0:
(2) There exist �r ∈KL and 
r ∈K∞ such that

∀xrsd(0)∈Rn1×n2 ;
‖d‖∞¡∞ ⇒

|xrsd(k)|6�r(|xrsd(k0)|; k) + 
r(‖d‖∞);

∀k¿k0¿0:

Proof. The norm of a vector x = (x1 : : : xn)T in
this proof is taken as |x| =∑

i |xi|. By assumption
h1 is continuous and zero at zero and hence it is
K-bounded; that is, there exists 
h1 ∈K∞ such that
|h1(x1)|6
h1 (|x1|). Both cases follow by direct com-
putations and the relationship between the estimates is:
1 ⇒ 2: Given � and 
 we compute �r(s; �) =

�(s+ 
h1 (s); �), 
r(s) = 
(s).
2 ⇒ 1: Given �r and 
r we compute �(s; �) =

�r(s; �) + 
h1 (2�r(s; �)), 
(s) = 
r(s) + 
h1 (2
r(s)).
By equivalence of norms, we can write the result

for any other norm.

From Lemma 2 it follows that to conclude
discrete-time stability or ISS of the whole system, we
can use only part of the state vector. A straightforward
consequence of the proof of Lemma 2 is

Corollary 2. Consider system (1) and suppose that
there exists Kh1¿ 0 such that

|h1(x1)|6Kh1 |x1|; ∀x1: (7)

Then if one of the conditions in Lemma 2 holds with
an exponential class-KL function; then the other
condition also holds with an exponential class-KL
function.

Local versions of Lemma 2 and Corollary 2 can
be easily formulated and details are omitted. Note
that besides exponential convergence of xrsd at sam-
pling instants we need also condition (7) to guarantee
exponential convergence of xsd at sampling instants.

Remark 2. In the sequel we use the discrete-time
KL estimates on xsd to state main results. However,
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by exploiting respectively Lemma 2 and Corollary 2
we can restate the results on asymptotic stability and
exponential stability using the discrete-time estimates
on the vector xrsd. These statements are omitted for
space reasons.

The following de�nition is used in statements of
our results.

De�nition 2. Given a sampling period T ¿ 0, we
say that the solutions of (1) are uniformly bounded
over T (UBT) if there exist numbers r b ¿ 0 and
r b1 ¿ 0 and class-K∞ functions 
̃; 
̃1 such that given
any t0¿0, |xsd(t0)|6r b and disturbance d(t) such
that ‖d‖∞6r b1 , the solution of system (1) exists on
[t0; t0 + T ] and satis�es the bound

|xsd(t)|6
̃(|xsd(t0)|) + 
̃1(‖d‖∞); t ∈ [t0; t0 + T ]:
(8)

If the given bounds hold for all x(t0) (and for all
disturbances such that ‖d‖∞¡∞) then we say that
the solutions are uniformly globally bounded over T
(UGBT). Also, in the second case if the function 
̃
above can be over bounded by a linear function, we say
that the solutions are linearly uniformly bounded over
T (LUBT) or linearly uniformly globally bounded
over T (LUGBT).

When there are no disturbances we understand that

̃1, r1 and ‖d‖∞ are omitted from the above de�ni-
tion. This form of De�nition 2 is used when we state
stability results. The following two su�cient condi-
tions for UBT and UGBT follow directly from conti-
nuity of solutions and can be easily proved using the
same proof technique as in Theorems 2:5 and 2:6 in
[11] (see also Lemma 1 in [1]):

Lemma 3. Suppose that there exist k1; R¿ 0 and

i ∈K∞; i = 1; : : : ; 5 such that if

R¿max{|x1|; |x2|; |ỹ 2|; |h1(x1)|; |d1|; |d|2};
then f1 and f2 in (1) satisfy

|f1(t; x1; ỹ 2; d1)|
6k1|x1|+ 
1(|ỹ 2|) + 
2(|d1|); ∀t¿0;

|f2(k; h1(x1); x2; d2)|
6
3(|x2|) + 
4(|h1(x1)|) + 
5(|d2|); ∀k¿0:

(9)

Then given any T ¿ 0 the solutions of (1) are UBT.

Lemma 4. Suppose that f1 and f2 in (1) satisfy (9)
for all x1; x2 and all d1; d2. Then given any T ¿ 0 the
solutions of (1) are UGBT.

3. Main results

We present below conditions that guarantee ULAS,
UGAS, ULES, UGES, ULISS and UISS property
for the sampled-data system. Moreover, we give the
explicit formulas for computing the sampled-data
KL estimates using such estimates for the discrete-
time system, and the class-K∞ functions given in
De�nition 2.

Theorem 1 (sampled-data ULAS ⇔ discrete-time
ULAS + UBT). The sampled-data system (1) is
ULAS if and only if the following conditions hold:
(1) the discrete-time model is ULAS;
(2) the solutions are UBT.
In particular; if there exist r s; r b ¿ 0; �∈KL

and 
̃∈K∞; such that

(DT -ULAS) |xsd(k0)|6r s ⇒
|xsd(k)|6�(|xsd(k0)|; k − k0);

k¿k0¿0;

(UBT ) ∀t0¿0; |xsd(t0)|6r b ⇒
|xsd(t)|6
̃(|xsd(t0)|); t ∈ [t0; t0 + T ];

(10)

then

(SD-ULAS) |xsd(t0)|6rx ⇒
|xsd(t)|6 ��(|xsd(t0)|; t − t0);

∀t¿t0¿0; (11)

where ��∈KL is given by
(1) when �̂(s; �) := 
̃(�(
̃(s); �)) is UIB with P¿ 1;

we can take
��(s; �) = max

{

̃(s)eT−�; P2�̂

(
s;
�
T

)}
; (12)

(2) in general we can take

��(s; �) = max
{

̃(s)eT−�; 4 max

�∈[0;�]
2−��̂

(
s;
�− �
T

)}

(13)

and rx=min{
̃−1(r s); 
̃−1◦�−10 (r b)}; �0(s)=�(s; 0);
�0 ∈K∞.

Proof. Necessity is obvious and we address only suf-
�ciency.
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The proof is constructive and we show that
(10) implies (11) with (12) or (13). Let rx =
min{
̃−1(r s); 
̃−1 ◦ �−10 (r b)}, where �0(s) = �(s; 0)
is a class-K∞ function. Note that 
̃(s)¿s; �0(s)¿s
so rx6min{r s; �−10 (r b)}6min{�0(r s); r b}.
With this choice for rx ¿ 0, the following holds:

given any t0¿0 and N ∈N such that t0 ∈ [NT; (N +
1)T [, we have

|xsd(t0)|6rx ⇒ |xsd(t)|6
̃(|xsd(t0)|);
∀t ∈ [t0; (N + 1)T ]: (14)

From (14) and the �rst condition in (10) we have

|xsd(t0)|6rx ⇒ |xsd(N + 1)|6min{r s; �−10 (r b)}
⇒ |xsd(k)|6min{�0(r s); r b};

∀k¿N + 1: (15)

The UBT property implies then that if |xsd(t0)|6rx
then xsd(t) exists and is bounded for all t¿t0. We con-
sider below only initial states such that |xsd(t0)|6rx.
Also, since eT−�¿1; ∀�6T , we can write using

(14)

|xsd(t)|6 
̃(|xsd(t0)|)
6 
̃(|xsd(t0)|)eT−(t−t0);
=: �1(s; t − t0); ∀t ∈ [t0; (N + 1)T ]: (16)

On the other hand, we can also write

|xsd(t)|6
̃(|xsd(k + N + 1)|);
t ∈ [(N + 1 + k)T; (N + 2 + k)T ]; k¿0:

Then given any t0¿0 and N ∈N such that t0 ∈ [NT;
(N +1)T [, from ULAS of the discrete-time model we
have that for any k¿0 and t ∈ [(N + 1 + k)T; (N +
2 + k)T [ the following holds:

|xsd(t)|6 
̃(�(|xsd(N + 1)|; k))
6 
̃(�(
̃(|xsd(t0)|); k))
=: �̂(|xsd(t0)|; k): (17)

If �̂ is UIB class-KL function (see Corollary 1), we
can write

|xsd(t)|6 �̂(|xsd(t0)|; k)
6 P2�̂(|xsd(t0)|; k + 2);
t ∈ [(N + 1 + k)T; (N + 2 + k)T [; k¿0:

(18)

Now note that with the above de�ned t0; N; t we have
(t− t0)=T ¡ ((N +2+ k)T −NT )=T = k +2; ∀k¿0
and since �̂ is class-KL, we can rewrite (18)

|xsd(t)|6 P2�̂(|xsd(t0)|; k + 2)

¡P2�̂
(
|xsd(t0)|; t − t0T

)

=: �2(|xsd(t0)|; t − t0); t¿(N + 1)T: (19)

Introduce a new class-KL function ��:

��(s; �) :=max{�1(s; �); �2(s; �)}
and from (16) and (19) we can write

|xsd(t0)|6rx ⇒ |xsd(t)|6 ��(|xsd(t0)|; t − t0); t¿t0;

where t0¿0 is arbitrary.
If �̂ is not UIB, we majorize it using Lemma 1 with

a UIB class-KL function �̃ (P = 2 in this case):

�̃ = max
�∈[0;�]

2−�
̃
(
�
(

̃(s);

�− �
T

))
;

and repeat all the calculations, which completes the
proof.

Remark 3. We note that the above proof may be
carried out without resorting to the UIB property.
Indeed, what we really need in the proof is that given
an arbitrary class-KL function �(s; �), we can �nd
another class-KL function �1(s; �) such that

�(s; �)6�1(s; �+ 2); ∀s; �¿0:
Another way to see that we can �nd such �1 in
addition to using Lemma 1 and Corollary 1 is to
use Lemma 8 of [18] which states that given any
�∈KL, we can always �nd u; v∈K∞ such that

�(s; �)6u(s)v(e−�); ∀s¿0; �¿0:
Also, using Corollary 10 in [18] we can always �nd
v1; v2 ∈K∞ such that v(cd)6v1(c)v2(d); ∀c; d¿0,
which implies

v(e−�) = v(e2e−�−2)6v1(e2)v2(e−�−2):

We de�ne �1(s; �) := u(s)v1(e2)v2(e−�) and it follows
that �(s; �)6�1(s; �+ 2); ∀s; �¿0.
We presented the UIB property for the following

reasons: it allowed us to obtain more explicit formulas
which relate the original � with its UIB over bound �1;
the construction we just showed may lead to a more
conservative �1 when compared to the approach we
took in the paper; UIB is a new property of class-KL
functions which seems to be of interest in its own right.
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Note that formula (13) in Theorem 1 holds in
general. In the results to follow, instead of stating
separately formulas forKL functions depending on
whether �̂ is UIB or not, we only state the formulas
that hold in general. The changes in statements when
�̂ is UIB are obvious. The following three results are
proved in a similar manner and proofs are omitted.

Theorem 2 (sampled-data UGAS ⇔ discrete-time
UGAS + UGBT). The sampled-data system (1) is
UGAS if and only if:
(1) the discrete-time model is UGAS;
(2) the solutions of (1) are UGBT.
In particular; if there exist �∈KL and 
̃∈K∞;

such that

(DT -UGAS) |xsd(k)|6�(|xsd(k0)|; k − k0);
k¿k0¿0; ∀xsd(k0);

(UGBT ) |xsd(t)|6
̃(|xsd(t0)|); ∀t0¿0;
t ∈ [t0; t0 + T ]; ∀xsd(t0); (20)

then; ∀xsd(t0)
(SD-UGAS) |xsd(t)|6 ��(|xsd(t0)|; t − t0);

∀t¿t0¿0; (21)

where ��∈KL is given by (13).

Theorem 3 (discrete-timeULES+LUBT⇔ sampled-
data ULES). The sampled-data system is ULES if
and only if
(1) the discrete-time model is ULES;
(2) the solutions of (1) are LUBT.
In particular; if there exist r s; r b ¿ 0; B¿ 0; �¿ 0

such that

(DT -ULES) |xsd(k0)|6r s ⇒
|xsd(k)|6Be−�(k−k0)|xsd(k0)|;

k¿k0¿0;

(LUBT ) ∀t0¿0; |xsd(t0)|6r b ⇒
|xsd(t)|6K̃ |xsd(t0)|; t ∈ [t0; t0 + T ];

(22)

then

(SD-ULES) |xsd(t0)|6rx ⇒
|xsd(t)|6Ke(−�(t−t0))=T |xsd(t0)|;

∀t¿t0¿0;
where K := K̃

2
e2�B; rx :=min{r s=K̃ ; r b=K̃B}.

Theorem 4 (discrete-time UGES+LUGBT⇔ sam-
pled-data UGES). The sampled-data system is UGES
if and only if
(1) the discrete-time model is UGES;
(2) the solutions of (1) are UGBT.
In particular; if there exist B¿ 0; �¿ 0 such that

(DT -UGES) |xsd(k)|6Be−�(k−k0)|xsd(k0)|;
k¿k0¿0; ∀xsd(k0);

(LUGBT ) |xsd(t)|6K̃ |xsd(t0)|; t ∈ [t0; t0 + T ];
∀t0¿0; ∀xsd(t0); (23)

then; ∀xsd(t0)
(SD-UGES) |xsd(t)|6Ke(−�(t−t0))=T |xsd(t0)|;

∀t¿t0¿0;
where K := K̃

2
e2�B.

Remark 4. Under the conditions of Lemma 3 (re-
spectively, Lemma 4), namely a sector bound on
f, it can be shown that if |h2(x2; y1)|6
h2 (|x|) then
the solutions of (1) are UBT (respectively, GUBT)
with 
̃(s) ˙ 
h2 (s). Hence, if 
h2 is locally (or glob-
ally) linearly bounded, 
̃ is also locally (globally)
linearly bounded and exponential convergence of xsd
at sampling instants implies ULES (UGES) of the
sampled-data system. Without the liner bound on

h2 , and therefore on 
̃, it is not clear whether ULES
(UGES) of the discrete-time model implies ULES
(UGES) of the sampled-data model.

Using a proof similar to that of Theorem 1, we can
prove the following two results:

Theorem 5 (sampled-data ULISS ⇔ discrete-time
ULISS + UBT). The sampled-data system (1) is
ULISS if and only if the following conditions hold:
(1) the discrete-time model is ULISS; and
(2) the solutions are UBT.
In particular; if there exist r s; r s1 ; r

b; r b1 ¿ 0; �∈
KL and 
̃; 
̃1; 
1 ∈K∞; such that

(DT -ULISS) |xsd(k0)|6r s ‖d‖∞6r s1 ⇒
|xsd(k)|6�(|xsd(k0)|; k − k0)
+
1(‖d‖∞); k¿k0¿0;

(UBT ) ∀t0¿0; |xsd(t0)|6r b ‖d‖∞6r b1 ⇒
|xsd(t)|6
̃(|xsd(t0)|) + 
̃1(‖d‖∞);

t ∈ [t0; t0 + T ]; (24)
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then

(SD-ULISS) |xsd(t0)|6rx; ‖d‖∞6rd ⇒
|xsd(t)|6 ��(|xsd(t0)|; t − t0)

+
d(‖d‖∞);

∀t¿t0¿0; (25)

where we can take

��(s; �) :=max
{

̃(s)eT−�; 4 max

�∈[0;�]
2−�
̃

×
(
4�

(
2
̃(s);

�− �
T

))}
;


d(s) := 
̃(4�(2
̃1(s); 0)) + 
̃(2
1(s)) + 
̃1(s);

rx :=max
{

̃−1

(
(1− �)r s

2

)
;


̃−1
(
�−10

(
(1− �)r b

2

))}
;

rd :=min
{

̃−11

(
�r s

2

)
; 
−11

(
�r b

2

)
; r b1 ; r

s
1

}
(26)

and � is an arbitrary number 0¡�¡ 1.

We note that there is some freedom in choosing
rx and rd in (26) since we can choose the number �.
Hence, we can decrease (increase) rx while increasing
(decreasing) rd.

Theorem 6 (sampled-data UISS⇔ discrete-time
UISS+UGBT). The sampled-data system (1) is
UISS if and only if the following conditions hold:
(1) the discrete-time model is UISS; and
(2) the solutions are UGBT.
In particular; if there exist �∈KL and 
̃; 
̃1;


1 ∈K∞; such that for ‖d‖∞¡∞ we have

(DT -UISS) |xsd(k)|6�(|xsd(k0)|; k − k0)
+ 
1(‖d‖∞); k¿k0¿0; ∀xsd(k0);

(UGBT ) |xsd(t)|6
̃(|xsd(t0)|) + 
̃1(‖d‖∞);

t ∈ [t0; t0 + T ]; ∀t0¿0; ∀xsd(t0);
(27)

then; ∀xsd(t0); ‖d‖∞¡∞ we have

(SD-UISS) |xsd(t)|6 ��(|xsd(t0)|; t − t0)
+ 
d(‖d‖∞); ∀t¿t0¿0; (28)

where ��∈KL and 
d ∈K∞ are given in (26).

4. Applications of main results

In this section we show how our results can be
applied to some problems. We indicate some results
from the literature that either become corollaries of
our results or for which our method provides an
alternative proof.

4.1. Relations between discrete-time stability and
sampled-data ISS

As a �rst illustration of the utility of our results we
consider the relationship between the stability and ISS
properties of the sampled-data system. The classical
approach to this problem is to use an appropriate con-
verse stability theorem and some assumptions which
are then exploited to show the robustness, that is an
appropriate ISS property (see Theorem 6:1 in [11]).
We are not aware of any converse stability theorems
for sampled-data systems. However, such theorems
are available for discrete-time systems, see [14,7].
Our results allow us to exploit the following impli-
cations in proving UISS or ULISS of sampled-data
systems:

discrete-time stability + assumptions

⇒ discrete-time ULISS (UISS) + UBT

⇒ sampled-data ULISS(UISS);

the last implication being proved in the previous sec-
tion. In this way, classical results on total stability
(ULISS) of discrete-time systems, together with our
results, give total stability results for the sampled-data
systems.
As a simple illustration of this approach we provide

conditions that guarantee that discrete-time UGES
implies sampled-data UISS. The result is based
on the converse Lyapunov theorem for UGES of
time-invariant discrete-time systems in [14]. A con-
verse theorem for ULAS of time-varying discrete-time
systems in [7] can be used in a similar way to
show ULISS of sampled-data systems. For another
result on discrete-time ULISS (total stability) see
Theorem 2:3:7 in [22, pp. 98].
Suppose that the exact discrete-time model of the

system (1) is time invariant:

x(k + 1) = Fe(x(k); d[k]) (29)

where Fe(0; 0) = 0 and d[k] := {d(t); t ∈ [kT; (k +
1)T ]}. We take the norm of d[k] to be the supremum
of d(t) over [kT; (k + 1)T ]. If d[k] = {d(k)}; d(k) =
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const: then we obtain the more familiar discrete-time
model

x(k + 1) = F∗
e (x(k); d(k)):

Lemma 5. Suppose that Fe is globally Lipschitz for
d[k] ≡ 0 and there exists Kd¿ 0 such that

|Fe(x; d[k])− Fe(x; 0)|6Kd|d[k]|;
∀x; |d[k]|¡∞; ∀k¿0:

Under these conditions; if (29) with d[k] ≡ 0; ∀k¿0
is GES; then the discrete-time model (29) is ISS.

Proof. From the converse Lyapunov theorem in [14]
for global exponential stability, we know that if

x(k + 1) = Fe(x(k); 0)

is GES, then we can �nd a Lyapunov function V (x),
such that

V (0) = 0;

V (x)¿|x|; ∀x∈Rn;
∃L1¿ 0; |V (x)− V (x1)|6L1|x − x1|; ∀x; x1 ∈Rn;

V (Fe(x(k); 0))− V (x(k))
6(�− 1)V (x(k)); ∀x(k)∈Rn; �∈ ]0; 1[: (30)

We add and subtract V (Fe(x(k); d[k])) to the last con-
dition and can write

V (Fe(x(k); d[k]))− V (x(k))
6(�− 1)V (x(k)) + V (Fe(x(k); d[k]))
−V (Fe(x(k); 0)); ∀x(k)∈Rn; |d[k]|¡∞

and using the second condition we obtain

V (Fe(x(k); d[k]))− V (x(k))
6(�− 1)V (x(k)) + L1|Fe(x(k); d[k])
−Fe(x(k); 0)|; ∀x(k)∈Rn; |d[k]|¡∞:

Finally, de�neVk+1 :=V (Fe(x(k); d[k]); Vk :=V (x(k))
and from the conditions of theorem we have

Vk+16�Vk + L1Kd‖d‖∞; ∀x∈Rn; ‖d‖∞¡∞:
Using the discrete Gronwall lemma [23, pp. 9] we
obtain:

|x(k)|6 L1�k |x(0)|+ 1− �
k

1− � L1Kd‖d‖∞

6 L1�k |x(0)|+ L1Kd
1− � ‖d‖∞; ∀x(0); ∀d∈L∞

which establishes the UISS of the discrete-time system
(29).

A simple consequence of Theorem 6 is:

Corollary 3. If the conditions of Lemma 5 are
satis�ed and the solutions are UGBT; then the
sampled-data system (1) is UISS.

In the case of linear systems controlled with lin-
ear controllers, we can easily see that the conditions
of Corollary 3 are always satis�ed and we recover
Theorem 5 in [6] on L∞ stability of sampled-data lin-
ear systems.

4.2. A test for ISS of time-varying systems

As a second application of our results we note that
they can be used as an alternative to prove Theorem
1 in [1] (see also [24]), where a new Lyapunov-type
theorem was presented to test ULAS of time-varying
nonlinear systems given by

ẋ(t) = f(t; x(t)) (31)

by using an appropriate “discrete-time” condition. By
using our approach we can prove the following gen-
eralized result on ULISS (UISS):

Theorem 7. Consider the system

ẋ(t) = f(t; x(t); d(t)) (32)

and suppose that there exists Td¿ 0 such that the
following conditions hold:
(1)There exist 
̃; 
̃1 ∈K∞ and r b ¿ 0; r b1 ¿ 0 such

that for any t0 ∈R; |x(t0)|6r b; ‖d‖∞6r b1 the solu-
tions of (32) exist on [t0; t0 + Td] and satisfy

|x(t)|6
̃(|x(t0)|) + 
̃1(‖d‖∞); t ∈ [t0; t0 + Td]:
(33)

(2) There exist r s; r s1¿ 0; �∈KL and 
∈K∞
and a positive number Td¿ 0 such that for any
(x(t0); t0; d(t)) such that |x(t0)|6r s; ‖d‖∞6r s1 there
exists an increasing sequence {ti}∞i=0 with ti → +∞
as i → ∞ and ti+1 − ti6Td;∀i¿0 such that
|x(ti)|6�(|x(t0)|; ti − t0) + 
(‖d‖∞); i¿0: (34)

Then the time-varying system (32) is ULISS.
Moreover; if all the assumptions hold globally; sys-
tem (32) is UISS.
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Proof. We show that there exist r ¿ 0; r1¿ 0 and
�∗ ∈KL; 
∗ ∈K∞ such that for arbitrary t0¿0 and
|x(t0)|6r; ‖d‖∞6r1 we have

∀t0¿0; |x(t0)|6r; ‖d‖∞6r1 ⇒
|x(t0 + kTd)|6�∗(|x(t0)|; k) + 
∗(‖d‖∞); k¿0

(35)

and once this is established, the proof follows from
Theorem 5.
Introduce

r := max
{

̃−1

(
(1− �)r s

2

)
;


̃−1
(
�−10

(
(1− �)r b

2

))}
;

r1 :=min
{

̃−11

(
�r s

2

)
; 
−11

(
�r b

2

)
; r b1 ; r

s
1

}
;

where � is an arbitrary number 0¡�¡ 1. Using the
same argument as in Theorem 5 it can be shown that
|x(t0)|6r; ‖d‖∞6r1 imply |x(ti)|6min{�0(r s); r b};
∀i, and using (33), we conclude that the solutions
exist and satisfy the inequalities (33) and (34), re-
spectively, for all t0¿0 and ∀i¿0.
Consider an arbitrary t0¿0, |x(t0)|6r and

‖d‖∞6r1. Consider the corresponding sequence
{ti}∞i=0 and introduce a subsequence {tik}∞k=0 such that
ti0 = t0 and tik :=max{ti: t0 + (k − 1)Td6ti6t0 +
kTd}; k¿1, for which we can write for all k¿1:
|x(t0 + kTd)|6
̃(|x(tik )|) + 
̃1(‖d‖∞)

6
̃(�(|x(t0)|; tik − t0) + 
(‖d‖∞)) + 
̃1(‖d‖∞)

6
̃(2�(|x(t0)|; tik − t0))
+
̃(2
(‖d‖∞)) + 
̃1(‖d‖∞): (36)

Since tik − t06(k − 1)Td;∀k¿0 and �∈KL, we
have that

�(|x(t0)|; tik − t0)6�(|x(t0)|; (k − 1)Td); ∀k¿0:
(37)

We introduce �1(s; �) := �(s; Td�) using Lemma 1 we
�nd �̃1 ∈KL such that �1(s; �)6�̃1(s; �)62�̃(s; �+
1). Hence, we can write that


̃(2�1(|x(t0)|; k − 1))6
̃(2�̃1(|x(t0)|; k − 1))
6
̃(4�̃1(|x(t0)|; k));

which, together with (36) and (37), proves (35) with
�∗(s; �) := 
̃(4�̃1(s; �)); 


∗(s) := 
̃(2
(s)) + 
̃1(s).

Theorem 1 in [1] is a corollary of Theorem 7 when
d(t) ≡ 0. Indeed, Lemma 1 in [1] follows from Lem-
mas 3 and 4 with d(t) ≡ 0. Moreover, the existence
of a positive de�nite, decrescent Lyapunov function
which decreases at sampling instants along the solu-
tions of (31) (see Theorem 1 in [1]) implies the ex-
istence of a class-KL function satisfying the second
condition of Theorem 7 (more precisely (35) holds
with ‖d‖∞=0) as we show below. The result is inter-
esting since we obtain a discrete-time KL estimate
by using a KL function obtained from an auxiliary
continuous-time di�erential equation.

Theorem 8. Let V :Rn → R¿0 and suppose that

V (k + 1)− V (k)6− �(V (k)); V (k0) = V0;

(38)

where �∈K is de�ned on [0; b[; b¿ 0. Then there
exists �∈KL such that for any 06V0¡b we have

V (k)6�(V0; k − k0); ∀k¿k0: (39)

More speci�cally; the solution of the auxiliary scalar
di�erential equation 4

ẏ =−�(y); y(t0) = y0 (40)

is class-KL in initial condition and elapsed time;
i.e. we can write 06y0¡b ⇒ y(t) = �1(y0; t − t0);
where �1 ∈KL and we can take �(s; �) := �1(s; �).

Proof. We introduce a variable t ∈R and de�ne
y(t) :=V (k) + (t − k)(V (k + 1) − V (k)); t ∈ [k; k +
1]; k¿0. Note that 06y(k) = V (k); k¿0 and y(t)
is a continuous function of “time” t. Moreover, it is
absolutely continuous in t (in fact, piecewise linear)
and we can write for almost all t:

d
dt
y(t) = V (k + 1)− V (k); t ∈ [k; k + 1]; k¿0

6−�(V (k)); t ∈ [k; k + 1]; k¿0
6−�(y(t)): (41)

Let v(t) = �(v0; t) be the (unique) solution of v̇ =
−�(v); v(t0) = v0. It is shown in Lemma 6:1 in [19]
that �∈KL. By standard comparison theorems (see

4 It can be assumed without loss of generality that � is locally
Lipschitz since if it is not we can always �nd a locally Lips-
chitz class-K function �1 de�ned on [0; b[ such that −�(s)6−
�1(s); s∈ [0; b[. Hence, we can assume uniqueness of solutions of
the scalar di�erential equation (40).
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for instance [11, Theorem 1:10:2]) we have for y0=v0
that

y(t)6v(t) = �(y0; t − t0); ∀t¿t0;

which implies using V (k) = y(k) with t = k; t0 =
k0; y0 = V0 that

V (k)6�(V0; k − k0); k¿k0

and this completes the proof.

4.3. On practical stability

As we indicated, our results require the knowledge
of stability or ISS properties of the exact discrete-time
model. The exact discrete-time model of (1) is di�-
cult to obtain in general and especially when d1(t) 6=
0. However, it is often possible to conclude about
stability properties of the exact model by using an
approximate discrete-time model, such as Euler ap-
proximation. For instance, the results of [15] draw
conclusions about stability for a family of exact
discrete-time control systems based on stability and
other properties assumed for a family of approxi-
mate discrete-time control systems. The family of
exact discrete-time control systems is shown to be
practically stable. Thus, the stability bounds involve
positive o�sets like

|x(k0)|6r ⇒ |x(k)|6�(|x(k0)|; k − k0) + R;
k¿k0¿0: (42)

While we have not explicitly stated results with o�sets
here, they can be handled in the same way that distur-
bances are handled. In particular, under the condition
(42) and UBT (in fact, an o�set is now allowed in
the UBT de�nition) and if R is su�ciently small we
can show that there exists ��∈KL and rx; �R¿ 0 such
that the solutions of the sampled-data system satisfy

|x(t0)|6rx ⇒ |x(t)|6�(|x(t0)|; t − t0) + �R;

t¿t0¿0:

(The proof of this result is the same as that of
Theorem 5.) Hence, our results provide the last
technical step in proving (practical) stability of a
sampled-data system in the following way: approx-
imate discrete-time model stability + assumptions
⇒ exact discrete-time model (practical) stability ⇒
sampled-data model (practical) stability.

5. Summary

We presented formulas that relate KL stabil-
ity and ISS estimates between the discrete-time and
sampled-data models for a large class of systems.
The estimates are very important in the analysis of
sampled-data nonlinear systems and they allowed
us to recover or generalize some results from the
literature. We showed that ULISS (total stability)
and UISS results for the sampled-data system can
be deduced from the corresponding results for the
discrete-time model. A new result on ULISS and
UISS for time-varying nonlinear systems also follows
from our approach. A new property ofKL functions
was presented and used to prove the results.

Appendix

Proof of Lemma 1. Let �̃(s; �) be given by (2). This
function satis�es the UIB property with P = 2:

�̃(s; �) = max
�∈[0;�]

2−��(s; �− �)

= max
R∈[1;�+1]

2−(R−1)�(s; �− (R− 1))

= 2 max
R∈[1;�+1]

2−R�(s; �+ 1− R)

6 2 max
�∈[0;�+1]

2−��(s; �+ 1− �)

= 2�̃(s; �+ 1):

We also have

�̃(s; �)¿2−��(s; �− �)
∣∣∣
�=0

= �(s; �): (A.1)

Now we show that �̃ is a class-KL function.

K property. Since �∈KL, for arbitrary �¿0,
�̃(·; �) is continuous and we have �̃(0; �) = 0.
For arbitrary �xed �, consider s2¿s1¿0. Since
�∈KL, for arbitrary � and �∈ [0; �] we have that
2−��(s2; � − �)¿ 2−��(s1; � − �) which implies
�̃(s2; �)¿�̃(s1; �).

L property. Given arbitrary �xed s¿ 0, consider
�2¿�1. Introduce � := �2−�1¿ 0. Then we can write

�̃(s; �2) = max
�∈[0;�2]

2−��(s; �2 − �)

= max
{
max
�∈[0;�]

2−��(s; �2 − �);
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max
�∈[�;�1+�]

2−�2−(�−�)�(s; �1 − (�− �))
}

= max
{
max
�∈[0;�]

2−��(s; �2 − �);

max
h∈[0;�1]

2−�2−h�(s; �1 − h)
}

=: max{�1(s; �2); 2−��̃(s; �1)}: (A.2)

Obviously we have that 2−��̃(s; �1)¡�̃(s; �1). More-
over, by considering cases 06�6�=2 and �=2¡�6�
we can write

�1(s; �2) = max
{
max

�∈[0;�=2]
2−��(s; �2 − �);

max
�∈[�=2;�]

2−��(s; �2 − �)
}

6max{�(s; �1 + �=2); 2−�=2�(s; �1)} (A.3)

and using (A.1) and the fact that �∈KL we
can write �(s; �1 + �=2)¡�(s; �1)6�̃(s; �1) and
2−�=2�(s; �1)¡�(s; �1)6�̃(s; �1), which shows that
�̃(s; �2)¡�̃(s; �1).
Finally we show that for arbitrary s¿0 we have that

lim�→∞ �̃(s; �) = 0. If we take the two cases �6�=2
and �¿�=2, we have

�̃(s; �)6max
{
�
(
s;
�
2

)
; 2−�=2�(s; 0)

}

and the conclusion follows by letting �→∞. This
shows that �̃∈KL, which completes the proof.
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