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Abstract
A significant challenge in the field of biomedicine is the development of methods to integrate the
multitude of dispersed data sets into comprehensive frameworks to be used to generate optimal
clinical decisions. Recent technological advances in single cell analysis allow for high-dimensional
molecular characterization of cells and populations, but to date, few mathematical models have
attempted to integrate measurements from the single cell scale with other types of longitudinal
data. Here, we present a framework that actionizes static outputs from a machine learning model
and leverages these as measurements of state variables in a dynamic model of treatment response.
We apply this framework to breast cancer cells to integrate single cell transcriptomic data with
longitudinal bulk cell population (bulk time course) data. We demonstrate that the explicit
inclusion of the phenotypic composition estimate, derived from single cell RNA-sequencing data
(scRNA-seq), improves accuracy in the prediction of new treatments with a concordance
correlation coefficient (CCC) of 0.92 compared to a prediction accuracy of CCC = 0.64 when
fitting on longitudinal bulk cell population data alone. To our knowledge, this is the first work that
explicitly integrates single cell clonally-resolved transcriptome datasets with bulk time-course data
to jointly calibrate a mathematical model of drug resistance dynamics. We anticipate this approach
to be a first step that demonstrates the feasibility of incorporating multiple data types into
mathematical models to develop optimized treatment regimens from data.

1. Introduction

The development of resistance to chemotherapy is a
major cause of treatment failure in cancer. Intratu-
moral heterogeneity and phenotypic plasticity play
significant roles in therapeutic resistance [1, 2] and
individual cell measurements such as flow and mass
cytometry [3] and single cell RNA-sequencing data

of doxorubicin after pulse-treatment (scRNA-seq) [4]
have been used to capture and analyze this cell vari-
ability [5–8]. Although these assays destructive nature
can limit the time resolution of data acquisition,
snapshot information alone has provided immense
insight to the field: illuminating novel molecular
insight about distinct subpopulations [9], developing
detailed hypothesis about population structure [10],
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and even demonstrating the ability to predict clin-
ical outcomes [1]. However, outside of the field of
differentiation [11], most information gleamed from
‘omics’ data sets have not been directly linked to
growth and treatment response dynamics of the bulk
cell population—which are critical to understanding
the dynamics of cancer progression.

Longitudinal bulk cell population data in cancer
have been used to calibrate mathematical models
of heterogeneous subpopulations [10, 12, 13] of
cancer cells. These models describe cancer cells
dynamically growing and responding to drug with
differential growth rates and drug sensitivities.
Knowledge of these model parameters have enabled
the theoretical optimization of treatment protocols
[14–16], and have been applied to prolong tumor
control in both mice [10] and patients [12, 17].
Critical to the success of these modeling endeavors
is the ability to identify and validate critical model
parameters from available data [18]. Identifiable
and practical models are necessarily limited in their
capacity to explain biological complexity based on
the availability and feasibility of longitudinal data,
which is often limited to total tumor volume or total
cell number in time. While complex relationships
between distinct cell subpopulations is critical to
some responses [9], the ability to track the relevant
subpopulations longitudinally for model calibration
and parameter estimation remains a challenge [19].

One way to resolve this challenge would be to work
with both types of data and use them jointly to inform
the calibration of a dynamic model. In this study,
we sought to develop a flexible framework for inte-
grating informatics outputs from high-throughput
single-cell resolution data with bulk time-course data
to demonstrate the feasibility of utilizing multimodal
data sources in mathematical oncology. The integra-
tion of single cell data into a mathematical modeling
framework has been successfully employed in the field
of differentiation by quantifying the changing propor-
tion of cells in distinct cell states over time [11]. This
approach is more complex in cancer, where the effects
of exponential growth and death due to drug exposure
results in changes in phenotypic composition that
may be independent of directed transitions between
cell states. To better understand these dynamics, we
collect bulk time-course data throughout treatment
with chemotherapy doxorubicin. We combine this
with snapshots of lineage-traced scRNA-seq data and
build a classifier to estimate phenotypic composi-
tion, via the proportion of sensitive and resistant cells,
at distinct time points during treatment response.
Despite differences in data acquisition, time resolu-
tion, and data uncertainty, we demonstrate that these
two measurement sources can be used to estimate cell
number in time and phenotypic composition in time,
which can be compared to their corresponding model
outputs. To account for different time resolutions in
the measurement sources, we develop an integrated

calibration scheme to incorporate both data types.
We validate the model results by demonstrating that
they can accurately predict the response dynamics
to new treatment regimens. We propose this frame-
work as a crucial next step towards combining tumor
composition information with bulk time-course data
to improve prediction and optimization of treatment
outcomes.

2. Results

2.1. Utilizing a model of sensitive and resistant
subpopulations to describe and optimize drug
response dynamics
To describe and predict the dynamics of cancer cells
in response to treatment, we chose to use a mathe-
matical model that describes sensitive and resistant
cell subpopulations growing, dying, and transition-
ing from the sensitive, S, to resistant, R, state as a
direct result of treatment [15]. This model was chosen
because it represents a relatively simple phenomeno-
logical model of two subpopulations differing in their
degree of drug sensitivity, that accounts for the ability
of cells to transition directly from sensitive to resis-
tant phenotypes following drug exposure, as has been
observed in cancer cell systems [20].

∂S

∂t
= rSS

(
1 − S + R

K

)
− αu (t) S − dSu (t) S

∂R

∂t
= rRR

(
1 − S + R

K

)
+ αu (t) S − dRu (t) R

(1)
In this model (figure 1(A)), sensitive and resistant
cells grow via a logistic growth hypothesis at their
own intrinsic growth rates (rS and rR) and a joint
carrying capacity (K), which will vary based on the
experimental scenario: either taking the value of KN

for the carrying capacity of the cells in the bulk time
course experiment or Kφ for the carrying capacity
of the cells in the scRNA-seq experiment [table 1,
supp. table S1 (https://stacks.iop.org/PB/18/016001/
mmedia)]. Sensitive and resistant cells are killed by
the drug at a rate of dS and dR respectively, that is
proportional to the number of cells in each subpopu-
lation and the effective dose, u(t), following the log-
kill hypothesis. By definition, we set dS > dR such
that sensitive cells will be more susceptible to death
due to treatment than resistant cells. Treatment drives
cells from the sensitive subpopulation into the resis-
tant subpopulation at a rate α, which is linearly pro-
portional to the number of sensitive cells present
and u(t).

To incorporate time-dependent effects of a treat-
ment on the cell population, we make a simple
assumption about the pharmacokinetics of pulsed
drug treatments, assuming exponential decay of the
effective dose, u(t), of the drug, as has been shown by
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Figure 1. Mathematical model of treatment-induced resistance and its implications. (a) Sketch of the model structure
(equation (1)). The model describes sensitive and resistant subpopulations growing exponentially at independent growth rates. In
response to treatment, sensitive and resistant cells are killed by the drug. The exposure to drug drives sensitive cells into the
resistant phenotype. (B) Example trajectory of model predicted total cell number in time for a constant dose (black) and a pulsed
dose (blue) for the case where there is no drug-induced resistance (α= 0), indicating that the optimal treatment is the constant
dose. (C) Example trajectory of model predicted total cell number in time for a constant dose (black) and a pulsed dose (blue) for
the case where the drug does induce resistance (α > 0), indicating that in this case the optimal treatment is a pulsed treatment.
(D) Schematic of experimental set-up using time-resolved fluorescence microscopy to measure the number of MDA-MB-231 GFP
labeled breast cancer cells in response to doxorubicin concentrations ranging from 0–200 nM treated for 24 h and then allowed to
recover in growth media. (E) Estimated effective dose dynamics (u(t)) of the various pulse-treatments of doxorubicin. (F)
Measured number of cells in time, colored by drug concentration as in (B), from six replicate wells. Error bars represent 95%
confidence intervals around the mean cell number at each time point. Images were converted to cell number estimates every 4 h.
Time of monitoring ranged from 1 week (168 h) for the untreated control to ∼2.5 weeks (469 h) for the 200 nM dose.

others in greater detail [21, 22].

u (t) = k1Cdrug e−k2t , (2)

where Cdrug is the concentration of doxorubicin in
nM, k1 is a scaling factor used to non-dimensionalize
the effective dose, and k2 is an estimated rate of decay
of the effect of doxorubicin pulse-treatment on breast
cancer cells. The effective dose decays over a time
scale consistent with experimental measurements of
doxorubicin fluorescence dynamics in vitro [21, 22].

Previous work has demonstrated the theoret-
ical implications of treatment-induced resistance
(α in our model) on determining optimal treat-
ment regimens [15]. Simulations from our model
(equation (1)) also revealed the importance of the
degree of drug-induced resistance (α) in treatment
optimization. We simulated a resistance-preserving
therapy (i.e., α = 0), and found that a constant
dosing regimen optimizes tumor control (black line
figure 1(B)), leading to a lower maximum tumor

cell number than the pulsed treatment (blue line
figure 1(B)), whereas for a resistance-inducing ther-
apy (i.e., α> 0) a pulsed treatment regimen (blue line
figure 1(C)) reduced tumor cell number over time.

We employ an experimental in vitro model
system of MDA-MB-231 triple negative breast can-
cer cells exposed to the chemotherapeutic doxoru-
bicin. By applying a range of 24 h pulse treatments
(figure 1(D)), we can estimate the effective dose (u(t))
for each treatment (figure 1(E)) and measure the total
cell number over time using time-lapsed microscopy
on the 6 replicate wells for each dose (figure 1(F)) (see
section 4.2). The mean and 95% confidence intervals
of cell number in time are shown in figure 1(F). The
measurements of total cell number in time acquired
experimentally can be compared directly to the model
predicted cell number in time. However, while we may
not feasibly be able to measure the resistant and sen-
sitive cell number longitudinally, we will demonstrate
how we can estimate the ‘phenotypic composition’;
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Table 1. Description of model parameters to describe resistance dynamics. Descriptions of the parameters either from measured data
(data), fit of the model to the N(t) (fit from N(t)) or φ(t) (fit from φ(t)), the model assumptions (fixed), or predicted from the
parameter estimation from the fitted model (predicted). We fit for six free parameters in the calibration scheme, as listed by the first four
rows of the table.

Parameter Description Units Determination

N(t) Total cell number over time, Number of Directly measured
and predicted by the model cells measured directly

φ(t) Phenotypic composition: the fraction of sensitive Cell fraction Estimated from
cells over time, estimated from scRNA-seq data classifier output from

and predicted by the model scRNA-seq data
rS, rR Growth rate of sensitive and resistant h−1 Fit from N(t) &

cell subpopulations φ(t) data
α Drug-induced rate of transition nM−1 hour−1 Fit from N(t) &

from sensitive to resistant state φ(t) data
dS, dR Death rate of sensitive and resistant dR < dS nM−1 hour−1 Fit from N(t) &

cell populations due to drug, φ(t) data
φ0 Initial proportion of sensitive cells Number of Fit from N(t) &

cells φ(t) data
KN Carrying capacity for the longitudinal treatment to Number of Fit from N(t)

experiment performed in a 96 well plate cells untreated
measure N(t) control

Kφ Carrying capacity of the scRNA-seq experiment Number of Fixed
t performed in a 10 cm dish to measure φ(t) cells

k1 Scaling factor to non-dimensionalize nM−1 Fixed
concentration in nM of doxorubicin

k2 Estimated rate of decay of effect hour−1 Fixed
of doxorubicin after pulse-treatment

the proportion of cells in the sensitive state φS(t) (or
simply φ(t)), throughout treatment response using
lineage-traced transcriptomic data. Model outputs of
N(t) and φ(t) can be used directly to compare to
measurements of cell number in time and pheno-
typic composition in time following a drug treatment
(supp figure S1). A full description of the parameters
in the modeling workflow are described in table 1, and
their values and confidence intervals are listed in supp
table S1.

2.2. Integrated modeling workflow for estimating
the phenotypic composition from scRNA-seq data
The combined experimental-computational work-
flow (figure 2) starts by tagging individual cells with
unique barcodes that are integrated into the genome
and expressed as sgRNA’s; this COLBERT cell barcod-
ing platform has been described previously [23]. The
barcode-labeled cell population is expanded to gener-
ate the naïve population for these studies (305 unique
barcodes represents 305 clonal subpopulations). Cells
are then treated with doxorubicin (LD95, 550 nM)
for 48 h and allowed to recover; scRNA-seq is per-
formed prior to treatment and from two parallel repli-
cates after the population had regrown following the
pulse treatment, corresponding to seven and ten week
post-treatment timepoints.

The transcribed barcode sequence indicating lin-
eage identity is measured alongside other tran-
scripts in scRNA-seq in each cell. Cells from the
pre-treatment time point whose lineage abundance
increased by any amount after treatment were des-
ignated as ‘resistant’, and cells whose lineage abun-
dance decreased by more than 5% were designated as

‘sensitive’ (figure 3(A)). These thresholds were chosen

because they represent the tail ends of the distribu-

tion of cells with changes in lineage abundance, and

therefore were assumed to be most likely to be in a

phenotypically drug-sensitive or drug-resistant state

at pre-treatment. This training set consisting of 47

resistant and 768 sensitive cells and their expression

levels of 20 645 genes (figures 2 and 3(A)) was used to

build a classifier capable of predicting whether a newly

observed cell of unknown identity (figure 3(B)) is

more likely to be in a resistant or sensitive state based

on its gene expression levels alone. See section 4.4.1

for full description of building of the classifier. The

type of classifier was chosen by comparing the accu-

racy of classification of labeled cells, using five-fold

cross validation on the pre-treatment training set, for

two types of classifiers: principal component analy-

sis (PCA) with k-nearest neighbors (KNN) and lin-

ear support vector machine (linear SVM) (supp figure

S2). These two methods were chosen because both

methods return not only estimates of a cells most

likely class, but also the gene weightings used to make

this estimate, making the results interpretable in the

context of differential gene expression analysis. The

linear SVM classifier model was shown to be most

accurate (supp figure S2(D)) and was used going for-

ward to classify all of the remaining cells based on

their gene expression levels alone, and UMAPs were

used to visualize the high-dimensional cell transcrip-

tomes (figure 3(C)). The PCA+KNN classifier gen-

erated similar results in terms of estimates of φ(t)

(supp figure S3). One of the advantages of using lin-
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Figure 2. Schematic of the workflow for identifying model parameters from data. At t = 0 weeks prior to treatment, individual
cells are tagged with a unique, heritable, expressed COLBERT barcode. Cells are treated with a pulse treatment of doxorubicin and
allowed to recover from treatment, at which time the barcode abundance is quantified. Lineages whose barcode abundance
increased from pre- to post-treatment are assumed to have been in a phenotypic state at t = 0 wks that conferred them more
resistant to drug than cells whose barcodes significantly decreased in abundance after treatment. Samples of the population were
taken before and from parallel replicates sampled at two different time points after treatment for scRNA-seq. The transcriptomes
in the pre-treatment samples of the cells are assigned resistant or sensitive if they fall on the extreme tails of this distribution and
are used as the labeled training set. Using the gene-cell matrix and labeled class identities of sensitive or resistant from the
pre-treatment time point only, a classifier is built using linear SVM to distinguish between sensitive and resistant cells. The
classifier is applied to the remainder of transcriptomes of the cells, resulting in a prediction for each cell as either sensitive or
resistant. These machine learning outputs are made actionable as state variables by using them to quantify the proportion of
sensitive cells (φ(t)) at the three time points. This is combined with separate experiments of longitudinal treatment response
dynamics (N(t)) of the bulk population of the same cell type, and both serve as measured data to be compared to model predicted
outputs for parameter estimation.

ear SVM as a classifier is that we can examine the
highest weighted genes in the classifier to reveal new
mechanistic insights into the phenotypes relevant to
functional treatment resistance. Although this is not
the focus of this manuscript, our results comparing
expression levels for specific genes associated with
resistance can be found in supp figure S4. A goal
of future work is to further investigate mechanistic
underpinnings behind how these genes might drive
resistance and find targets for these genes to identify
novel therapeutic combination strategies.

For each of the data sets from the three time
points, the estimates of the class of each cell were
used to quantify the proportion of cells labeled as sen-
sitive (φ(t)) (figures 2 and 3(G)). This phenotypic
composition estimate at three time points can then
be combined with bulk time-course data from drug
treatments at different concentrations, compared to
corresponding model outputs, and serve to calibrate
the mathematical model of drug-induced resistance
(figure 2, supp figure S1).

2.3. Integrating estimates of phenotypic
composition with longitudinal treatment
response data is necessary for identifiable model
calibration

To utilize all possible pieces of information available

about the treatment response of this experimental

system, we sought to develop an integrated model cal-

ibration scheme that is capable of integrating infor-

mation from multimodal data sources. Here, we

expect there to be a trade-off between goodness-of-

fit in each of the two data sources: (1) from lon-

gitudinal population data, N(t), sampled at a high

temporal resolution and for a number of doses, and

(2) machine learning outputs that estimate the phe-

notypic compositionφ(t) at three distinct time points

before and after treatment. For the following dual-

objective function, we weight by the number of data

points in order to assign equal weight to the cell

number and phenotypic composition measurement

sources. We use a weighted, non-linear, least squares
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Figure 3. Functional read-out of changes in lineage abundance allows mapping of phenotypes to transcriptome. (A) Distribution
of changes in lineage abundance from pre- to post-treatment indicates separation of lineages whose cells survive and proliferate
and those that are more likely to have been killed by the drug treatment. (B) Lineage-abundance guided training set of sensitive
(S, green) and resistant (R, red) cells visualized using UMAP projections. (C) Cells of unknown drug sensitivity identity are
estimated as sensitive (pink) or resistant (olive green) based on their transcriptome using a linear SVM classifier. (D) Cells from
pre-treatment (t = 0 wks) labeled as and estimated as sensitive and resistant. (E) Cells from t = 7 wks post-treatment estimated as
sensitive and resistant. (F) Cells from t = 7 wks post-treatment estimated as sensitive and resistant. (G) Proportion of cells that
are classified as sensitive (green) and resistant (red) at each time point.

as the simplest possible calibration method:

J (θ) =
1

nφ

nφ∑
j=1

(
φ̂j − φj (θ, u)

)
σ2
φj

2

+
1

nN

ndoses∑
k=1

nN∑
i=1

(
N̂i,k − Ni

(
θ, ui,k

))
σ2

Ni,k

2

(3)

where nφ(t) is the number of φ(t) time points, φj is the
experimentally estimated φ at time point j, φ(θ, uj) is
the model predicted φ for a given effective dose u at
time j, σ2

φj is the variance in the measurement of φ at
time j, nN(t) is the number of total N(t) time points,
ndoses is the number of different doses applied, nN(t)k

is the number of time points in the kth dose, Ni,k is the

measured number of cells at the ith time point for the
kth dose, N(θ, u) is the model predicted number of
cells at time i for the kth effective dose, and σ2

N is the
variance in the measurement of N at time i for the kth
dose. The resulting objective function J(θ), minimizes
the sum of the squared error in the φ(t) and N(t) data
compared to the model predicted φ(t) and N(t). The
errors are weighted by the experimentally observed
uncertainty in those estimates and normalized by the
number of φ(t) and N(t) data points.

Using the effective dose regimens (figure 1(E)) and
treatment response data (figure 1(F)) we calibrate the
model using three of the selected doses-the untreated
control (0 nM), the 50 nM dose, and the 100 nM

dose. The remaining treatments will be used for vali-
dation. The results of the integrated parameter esti-
mation from the N(t) data from these three doses
and the φ(t) data from the three scRNA-seq time
points, are shown in figure 4. We compare the model
fit to the experimental N(t) data (figure 4(A)) and the
phenotypic composition estimates (figure 4(B)). The
overall goodness of fit between the mean cell num-
ber data and the model estimated cell number over
time is shown in figure 4(C), with a concordance cor-
relation coefficient (CCC) of 0.94. In order to com-
pare methods, we also performed the calibration with
only the longitudinal (N(t)) data to obtain a param-
eter set estimated without the additional informa-
tion provided by the phenotypic composition (supp
figure S5). We note that the goodness of fit in N(t)
for the model calibrated only to N(t) is higher (supp
figure S5(C), CCC = 0.97) than the integrated fit
(figure 4(C), CCC = 0.94). The trade-off in good-
ness of fit in N(t) for the integrated calibration allows
for an improvement in fit to phenotypic composition
(figure 4(B), versus supp. figure S5(B)).

In the model development process, we tested that
each of the parameters was sensitive to the relevant
model outputs, in this case (1) the time to reach
two times the initial cell number and (2) the pheno-
typic composition at this time, for a range of doxoru-
bicin doses. Results from the global sensitivity analysis
(see section 4.4.3) revealed that all parameters are
globally sensitive (i.e. contribute to least 5% of the
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Figure 4. Integrated model calibration incorporating both measurement sources. (A) Calibration results for longitudinal N(t)
data from the four doses (0, 50, and 100 nM) used for calibration. (B) Calibration results for phenotypic composition (φ(t)). (C)
Measured cell number N(t) versus model calibrated cell number, yielding a concordance in N(t) of CCC = 0.94.

overall value) in at least one of the model outputs
for at least one of the drug doses (supp figure S6),
except for the carrying capacities (KN and Kφ) of
the two experimental systems. We used this analy-
sis to inform our decision to set the carrying capac-
ities from separate experiments (supp figure S7) and
literature [24] and to fit all six remaining unknown
parameters. In order to ensure the identifiability of
the remaining model parameters (table 1), we demon-
strated the structural identifiability of the system (see
section 4.4.5) under the assumption of perfect data.
To test for practical identifiability and obtain confi-
dence intervals on our parameter estimates, we used
bootstrapping with replacement to generate synthetic
data sets and repeatedly fit for model parameters
[25, 26] (supp figure S8, supp figure S9, table S1).

2.4. Model validation using functional isolation
of ‘sensitive’ and ‘resistant’ cells predicted from
classifier
Because we rely on the machine learning classi-
fier of cell phenotypes from transcriptomic data,
we sought to validate our classifier model experi-
mentally to ensure that cells labeled as ‘resistant’
and ‘sensitive’ were exhibiting these expected pheno-
types. Our mathematical model assumes that sensi-
tive cells proliferate more rapidly than resistant cells
(i.e. exhibit a higher growth rate) and that resistant
cells are capable of higher survival rates in response to
doxorubicin treatment. To test these attributes func-
tionally, we used the COLBERT barcoding system
[23] to identify one of each lineage from the pre-
treatment sample that was labeled as sensitive or resis-
tant based on their changes in lineage abundance. The
COLBERT recall system enables fluorescence acti-
vated cell sorting (FACS) isolation of specific lin-
eages from the replicate pre-treatment population by
transfection with a gene circuit to activate lineage-
specific reporter expression [23] (figure 5(A)). Once
isolated, cells were sorted into single cell clones for
functional analysis of growth dynamics and drug
sensitivity. Cells from the isolated sensitive lineage
grow more quickly than the isolated resistant lineage
(figure 5(B)), with overall growth rates of gS = 0.011
and gR = 0.005 per hour respectively (supp figure

S10). Drug sensitivity was assessed by dosing cells at
400 nM and 2.5 μM for 48 h and immediately quan-
tifying cell viability via a live-dead assay. The resistant
lineage had higher percent viability at both doxoru-
bicin concentrations, with a statistically significant
difference in viability at the higher dose (figure 5(C)).

2.5. Multimodal data sources can be leveraged to
predict response dynamics to new drug
concentration
A key advantage of leveraging multimodal data
sources for parameter estimation is that we can use
them to make predictions about the response dynam-
ics to new treatment regimens. We validate the model
predictions, obtained from running the model for-
ward with the integrated calibration parameter set
with input effective doses described in figure 1(E) for
the four remaining pulse treatment of doxorubicin
that were not used to calibrate the model. The model
predictions compared to the experimental measure-
ments are shown for doses of 25 nM (figure 5(D))
and 75 nM (figure 5(E)) and 150 nM (figure 5(F))
and 200 nM (figure 5(G)). We evaluated the over-
all accuracy in all the model predictions over all
four not-previously-observed doses and see that we
are able to predict the treatment response with rea-
sonable accuracy (figure 5(H)) with an overall CCC
of 0.92 for each model predicted and measured cell
number (N(t)) in time. When we compare this to
the prediction accuracy of the calibration performed
without the phenotypic composition data, we get an
overall predictive accuracy of CCC= 0.64 (figure 5(I),
supp figure S11), indicating the improvement in pre-
dictive capabilities with insight of the phenotypic
dynamics. These results demonstrate the improved
predictive capacity of an integrated modeling frame-
work, in which molecular data from scRNA-seq dur-
ing treatment response improves our ability to predict
response to new treatments.

3. Discussion

Recent technological advances have enabled unprece-
dented, high-throughput single-cell molecular level
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Figure 5. Combined model validation via lineage isolation and prediction of treatment response. (A) UMAP visualization of
classified sensitive and resistant cells at the pre-treatment time point, with cells from an isolated sensitive lineage (AA170) in
bright green, and an isolated resistant lineage (AA161) in hot pink. (B) Growth rates of the 12 replicate wells of each isolated
lineage reveal that the resistant lineage grows significantly more slowly than the sensitive lineage (p = 2.7 × 10−6), as is predicted
from the model parameters where rS > rR. (C) Functional testing of the drug sensitivity of each lineage indicates that the cells
from resistant lineage (AA161, pink) have a higher resistance, measured by cell viability at 48 h, at both 400 nM and 2.5 μM doses
of doxorubicin, with p-values of p = 0.1942 and p = 0.0023, respectively. (D) Prediction of treatment response at 25 nM, (E)
75 nM, (F) 150 nM, and (G) 200 nM from the integrated calibration. The mean measured cell number in time and 95%
confidence interval from six replicate wells are shown for each treatment response. (H) Scatterplot of model predicted N(t) from
the integrated calibration versus experimental N(t) data for all four new treatment conditions with an overall CCC = 0.92. (I)
Scatterplot of model predicted N(t) from longitudinal data calibration alone versus experimental N(t) data for all four new
treatment conditions with an overall CCC = 0.64.

insight of intratumor heterogeneity [27, 28]. The
ability to precisely quantify intratumor heterogene-
ity [1], and illuminate key subpopulations involved
in response to treatment [9], has the potential to
improve both prognostic and therapeutics for cancer
treatment. These genomic and transcriptomic data
sets can direct the choice of specific cancer drugs and
illuminate novel resistance pathways, as well as pro-
vide a prognostic marker for patients who receive it.
Simultaneously, the role of mathematical modeling in
oncology has been widely recognized [29] and utilized
to improve both our understanding of the dynamic
mechanisms of drug response [10, 30, 31] as well as
to develop approaches to guide the design of adap-
tive patient-specific treatment plans [12, 17, 18, 32,
33]. However, connecting the wealth of ‘omics’ data
at the molecular level with temporal dynamics used to
calibrate mathematical models for adaptive therapies
remains a major challenge in the field.

Recognizing the critical roles of heterogeneity in
cancer dynamics, mathematical models of tumor pro-
gression often include distinct subpopulations, such
as cancer stem cells [12, 34, 35], or drug resistant and
sensitive subpopulations [15, 16, 19, 36]. However,
despite these models being calibrated to observed
experimental or clinical data, the underlying pheno-
typic composition that these model calibrations sug-
gest cannot easily be validated, since the degree of
resistance or stemness of a cancer cell population in
time is not easily measured longitudinally via a single
biomarker. A few studies utilizing multimodal imag-
ing modalities have harnessed the ability to quan-
tify different aspects of tumor composition—such as

vasculature, necrosis, and cellularity, to develop an
integrated model calibration of multiple tumor sys-
tem components [37, 38]. However, this integrated,
multimodal approach has not explicitly included data
on the composition of heterogeneous subpopulations
taken from separate ‘omics’ datasets for direct calibra-
tion of a dynamical systems model.

Here, we introduce an experimental-
computational framework for utilizing transcrip-
tomic and bulk time course data to parameterize
a dynamic model of treatment response in cancer.
We demonstrate the applicability of this framework
when applied to clonally-resolved scRNA-seq data
combined with bulk time course treatment response
data from a cancer cell line and assess the ability of
the model to predict treatment response dynamics.
To this end, we developed a machine learning clas-
sifier built upon clonal abundance quantification
which estimates the class identity of an individual
cell based on its transcriptome. The output of the
classifier enabled us to assign values related to the
state variables in the dynamic model: the proportion
of cells in the sensitive or resistant phenotypic state
at each time point. We combined these estimates
of phenotypic composition with population-level
treatment response data to calibrate a mathematical
model of drug-resistance dynamics. We validated
our machine learning classifier by isolating cells from
lineages labeled as sensitive or resistant and testing
them functionally in growth and treatment response
assays. We showed that the presence of multiple
measurement sources of data allows us to more
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accurately predict the effect of new drug treatments
on the cell population.

The power of mathematical models in oncology,
especially those calibrated to real data, is that we
can use them to learn about the underlying system
behavior to inform decision-making [39, 40]. High-
throughput single cell transcriptomics or other types
of high throughput snapshot data can give an abun-
dance of information about the heterogeneity and
potential mechanisms of resistance of cell popula-
tions [9, 41]. However, the ability to use this infor-
mation beyond hypothesis generation [10], but to
actually inform model calibrations, is still lacking. In
this work, we leverage a high-throughput ‘omics’ data
set, taken at just a few snapshots of time, to esti-
mate the phenotypic composition and demonstrate
one way to include this data alongside longitudinal
data for model calibration. We by no means claim
that this is the only way to integrated multimodal
data sources in oncology, and present this work as an
example of one such plausible way, in hopes that it
will prompt further investigation into how to incor-
porate experimental and clinical data from a variety
of measurement sources and scales into mathematical
modeling frameworks, ideally incorporating multiple
‘omics’ data sets in future expanding work.

The functional characterization of single cells via
changes in lineage abundance post-treatment enabled
us to identify cells that group together based on
response to treatment. While unsupervised cluster-
ing of cells by their transcriptomes can enable iden-
tification of novel cell states, these cell states are not
necessarily relevant to drug-tolerance. Once can see
this quite simply in scRNA-seq pipelines as failure to
remove cell cycle genes from the analysis reveals that
cells will often cluster by cell cycle state [42], leading
them to be commonly regressed out if they are not rel-
evant to the biological question of interest. However,
we cannot regress out other unknown phenotypic
subpopulations, and thus these are what can emerge
from unsupervised clustering algorithms. While these
can provide novel insight about population structure,
they may not be what is relevant to driving changes
in treatment response behavior. Thus, the ability to
read-out lineage identities represents a novel func-
tional component that enables us to zoom in at the
right phenotypic state-space relevant to our question-
what cells are more capable of surviving treatment
and which are more sensitive to treatment, and what
is driving these changes? Because we used a classifier
that can output gene loadings most relevant to the
separation of sensitive and resistant cells, we can look
at the differences in the gene expression patterns and
propose potential novel interactions and biomarkers.
In this manuscript, we only demonstrate the feasibil-
ity of this endeavor; further mechanistic insight into
the role of key genes and their related pathways in
drug response will be a subject of future work.

We acknowledge that the modeling framework
describe here has a number of limitations. In the
dynamic model calibrated to the two data types, we
make a number of assumptions in order for the model
parameters to remain identifiable. First, we assume
that the sensitive and resistant cells do not affect each
other’s growth rates directly, with intrinsic growth
rates (rS and rR) independent of population compo-
sition. This does not take into account recent work
in non-small cell lung cancer that has demonstrated
that resistant cell growth rate was suppressed in the
presence of sensitive cells, implying a persister-like
phenotype of resistant cells [43]. Additionally, we do
not explicitly model the reverse phenotypic transition
from the resistant to the sensitive state as this would
introduce an additional parameter and render param-
eter estimation more difficult. However, we note that
a relaxation towards increased sensitivity can occur
in the model as its written due to the higher growth
rate of sensitive cells in the absence of treatment. In
the classifier model, we acknowledge the limitation of
making continuous, high-dimensional, gene expres-
sion vectors into a single binary classification scheme
of sensitive and resistant. In reality, cells likely exist
on a drug sensitivity spectrum, with a distribution of
cells in different regions. This makes the definition
of ‘sensitive’ and ‘resistant’ cells, which we defined
via a threshold change in lineage abundance, some-
what arbitrary. We intended to overcome these lim-
itations by validating the predictions of the dynamic
model to new drug treatments and by functional char-
acterization via isolation and functional testing of the
cell phenotypes. Because of the destructive nature of
scRNA-seq assays, we were not able to sample the cell
population while it was depleted significantly due to
drug, rendering the predicted drop in proportion of
sensitive cells to lack validation. In future work, we
intend to design a study with a lower dose and higher
initial cell number, so that the population can be sam-
pled at this critical intermediate time point, and used
for either calibration or validation.

While scRNA-seq has limitations in the clinical
setting due to its high cost, in experimental settings
barcode labeling fits flexibly into existing scRNA-seq
workflows and can add a critical functional compo-
nent to the phenotypic read-out, as we show in this
work. In the clinical setting, other types of approaches
to learn more about cancer cell composition are
being employed in the era of precision medicine.
From radiomics to genomics, it is becoming increas-
ingly common for patients to have access to high-
throughput measurements, or at least some insight
into their mutational burden at certain time points.
This information may be integrated into the clinical
or tumor board’s decision-making process [44].

We suggest that the general approach presented
here could be applied to integrate available types
of data in different experimental or clinical settings,
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potentially with the model used here or with dif-
ferent models aimed at addressing a relevant ques-
tion. While transcriptomic and longitudinal data have
been used together in a number of studies, this is the
first work to our knowledge that allows for explicit
parameter estimation using these two measurement
sources of varying time resolutions. This work repre-
sents one example of the opportunities for synergy of
machine learning with dynamic modeling to integrate
multimodal datasets and open up new approaches to
describe, predict, and ultimately optimize treatment
response in cancer.

4. Methods

4.1. Experimental model and subject details
4.1.1. Cell culture
The human breast cancer cell line MDA-MB-
231(ATCC) was used throughout this study. Cells
were maintained in Dulbecco’s Modified Eagle
Medium (Gibco) and supplemented with 1%
Penicillin-Streptomycin (Gibco) and 10% fetal
bovine serum (Gibco) under standard culture
conditions (5% CO2, 37 ◦C).

A subline of the MDA-MB-231 breast cancer
cell line was engineered to constitutively express
enhanced green fluorescent protein (EGFP) with a
nuclear localization signal (NLS). Genomic integra-
tion of the EGFP expression cassette was accom-
plished through the sleeping beauty transposon
system [45]. The EGFP-NLS sequence was
obtained as a gBlock from IDT and cloned into
the optimized sleeping beauty transfer vector con-
taining the EGFP-NLS expression cassette and the
pCMV(CAT)T7-SB100 plasmid containing the
sleeping beauty transposase was co-transfected into
a MDA-MB-231 cell population using Lipofec-
tamine 2000. mCMV(CAT)T7-SB100 was a gift from
Zsuzsanna Izsvak (Addgene plasmid #34879) [46].
GFP+ cells were collected by fluorescence activated
cell sorting. MDA-MB-231 cells are maintained in
DMEM (Gibco), 10% fetal bovine serum (Gibco) and
200 μg ml−1 G418 (Caisson Labs). Cells were seeded
into the center 60 wells of a 96 well plate (Trueline) at
about 2000 cells per well. During the monitoring and
treatment, plates were kept in the Incucyte Zoom,
a combined incubator and time-lapsed microscope.
Cells were fed fresh media every 2–3 days for up to 5
weeks. HEK293T cells were cultured in DMEM with
GlutaMAX supplemented with 10% FBS, 4.5 g l−1 D-
glucose, 110 mg l−1 sodium pyruvate, streptomycin
(100 ug ml−1) and penicillin (100 units/ml).

4.2. Longitudinal treatment response data
The EGFP-labeled subline of MDA-MB-231 breast
cancer cells were used for longitudinal treatment
response. Cells were passaged into the center 60 wells
of 96 well plates at a density of about 2000 cells
per well. Two days later, cells were treated with a

24 h pulse-treatment of doxorubicin at concentra-
tions ranging from 0–200 nM (0 nM, 25 nM, 50 nM,
75 nM, 100 nM, 150 nM, 200 nM), with 6 repli-
cate wells of each dose. Dosed media was applied to
cells and treatment response was monitored using the
Incucyte. After 24 h, the dosed media was replaced
with normal media and monitoring continued. Cells
were fed fresh media every 2–3 days for the duration
of the monitoring period (up to 2.5 weeks).

4.3. Integration, expression, and capture of
COLBERT barcodes
4.3.1. Lentiviral assembly
Lentiviral assembly was performed using Lipofec-
tamine 2000 (ThermoFisher). Prior to transfection
0.25 × 106 HEK293T cells were plated in each well
of a 6 well. 48 h following plating, each well was
transfected with 1.5 ug PsPax2 (Addgene # 12260),
0.4 ug VSV-G (Addgene # 14888), 3 ug CROPSseq-
BFP-WPRE-TS-hU6-N20 and 9 uL of Lipofectamine
2000 in 150 ul of Opti-mem (Thermo Fisher). Media
was replaced with fresh growth medium after 18 h
of transfection. Media containing viral particles was
collected at 48 and 72 h, centrifuged for 5 min and
passed through a 45 uM (PES) low protein binding
filter. Virus was concentrated for 1 h at 4000 g in a
Vivaspin (Sartorius) filtration column then aliquoted
and stored at −80 for later use.

4.3.2. Barcode labeling
MDA-MB-231 cells were transduced with the
Cropseq-BFP-WPRE-TS-hU6-N20 lentivirus in
growth media with 1 μg ml−1 polybrene. After 48
h of incubation, 1000 BFP+ cells were isolated by
FACS to establish a population with initial diversity
of ∼1000 unique barcodes. To reduce the likelihood
that two viral particles enter a single cell, the lentivi-
ral transduction multiplicity of infection was kept
below 0.1.

4.3.3. Drug treatment of barcoded cells for
scRNA-seq and recovery
Barcode labeled MDA-MB-231 cells (5 replicate wells)
were treated with doxorubicin (550 nM) for 48 h in
growth media, washed and replaced with fresh growth
media. Surviving cells were maintained in growth
media and passaged up serially from 0.1 × 106 to
20 × 106 cells.

4.3.4. scRNA-seq
Cryopreserved samples from drug-naïve and two
samples of doxorubicin-treated cells frozen at 7 and
10 weeks post-treatment were harvested, sorted by
FACS to collect the BFP+population. Cells were
loaded into wells of a Chromium A Chip, and
libraries were prepared using the 10XGenomics 3’
single cell gene expression (v2) protocol. Paired end
sequencing of the libraries was conducted using a
NovaSeq 6000 with an S1 chip (100 cycles) according
to the manufacturer’s instructions (Illumina).
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4.3.5. Plasmid assembly for isolation of lineages
After selecting the lineages of interest for isolation, an
array of barcodes was assembled as described in [23].
Briefly, oligonucleotide pairs for the barcode of inter-
est were ordered with specific overlapping sequences
to both direct assembly of barcode array and integra-
tion into the plasmid for isolation. The barcode arrays
were ligated, and gel purified to proceed with only a
fully assembled array in cloning. The fully assembled
barcode array was cloned into the BbsI site with stan-
dard restriction digest cloning. This double stranded
barcode array was inserted into a plasmid backbone
upstream of a minimal core promotor (miniCMV)
and sfGFP to generate the recall plasmid. This was
repeated with individual barcodes of interest.

4.3.6. Recall of isolated sensitive and resistant
clones by COLBERT
Barcoded MDA-MB-231 cells were seeded in 6 well
plates and transfected using Lipofectamine 3000
(ThermoFisher) with 225 ng dCas9-VPR-Slim and
275 ng recall plasmid per well. Forty eight hours after
transfection, GFP+ cells were single cell sorted by
FACS into a 96 well plate and spun for 1 min at 1000 g.
Sorted cells were expanded until 80% confluency and
passaged into a single well of a 48 well plate. Upon first
passage following sort, 1/6 of the cells or ∼5000 live
cells were resuspended in a PCR reaction mix to con-
firm lineage identity through PCR amplification and
subsequent Sanger sequencing of barcode region.

4.3.7. Alignment to reference genome
The GTF file included with cellranger’s GRCh38 3.0.0
reference was modified to create a ‘pre-mRNA’ GTF
file so that pre-mRNAs would be included as counts
in the later analysis. Cellranger’s (v3.0.2) mkref com-
mand was then used to create a pre-mRNA reference
from the GTF file and a genome FASTA file from the
GRCh38 3.0.0 reference. FASTQ files of the scRNA-
seq libraries were then aligned to the new pre-mRNA
reference using the cellranger count command, pro-
ducing gene expression matrices. The matrices for
the different samples were concatenated into a single
matrix using the cellranger aggr command with nor-
malization turned off, so that the raw counts would
remain unchanged at this point.

4.3.8. Filtering and normalization
The filtered matrices produced by cellranger were
loaded into scanpy (v1.4.4) [47]. Cells were anno-
tated by sample and lineage membership. Only cells
meeting the following requirements were retained for
further analysis: (a) a minimum of 10 000 and max-
imum of 80 000 transcript counts, (b) a maximum
of 20% of counts attributed to mitochondrial genes,
and (c) a minimum of 3000 genes detected. Genes
detected in fewer than 20 cells were removed. Nor-
malization was conducted based on the recommen-
dations from multiple studies that compared several
normalization techniques against each other [42, 48,

49]. In brief, three steps were performed: (a) pre-
liminary clustering of cells by constructing a nearest
network graph and using scanpy’s implementation of
Leiden community detection [50], (b) calculating size
factors using the R package scran [51], and (c) divid-
ing counts by the respective size factor assigned to
each cell. Normalized counts were then transformed
by adding a pseudocount of 1 and taking the natural
log.

4.3.9. Regressing out cell cycle expression
signatures
Using a list of genes known to be associated with dif-
ferent cell cycle phases [52], cells were assigned S-
phase and G2M-phase scores. The difference between
the G2M and S phase scores were regressed out using
scanpy’s regress_out function.

4.4. Quantification and statistical analysis
4.4.1. Machine learning of cell phenotypes
The machine learning classifier of sensitive and resis-
tant cell phenotypes was built from the normalized,
pre-processed single cell gene expression matrix with
lineage identities. For the cells in the pre-treatment
sample, the lineage abundance at the pre-treatment
time point (proportion of cells in each lineage) was
calculated and compared to the lineage abundance
from the combined post-treatment time points (7 and
10 week samples). If the lineage was not observed
in the post-treatment time points, the lineage abun-
dance post-treatment was assigned a zero. The change
in lineage abundance (% post − % pre) was found
for each lineage in the pre-treatment time point
(see supp. figure S3(A)). Based on this change in
lineage abundance distribution, only cells on the
pronounced tails of the distribution were used for
classification, since these extremes were most likely
to exhibit characteristics that made them signifi-
cantly more or less likely to survive drug treatment.
Cells from the pre-treatment timepoint whose lineage
abundance increased post-treatment were labeled as
resistant. Cells whose lineage abundance decreased by
more than 5% were labeled as sensitive in the pre-
treatment time point. These thresholds for calling a
cell from the pre-treatment time point sensitive or
resistant were determined based on the assumption
that these cells with pronounced changes in lineage
abundance represented more pronounced differences
in initial drug-sensitivity phenotypes. Because drug
sensitivity is not binary, but is more likely to exist on
a spectrum, this threshold can in theory be shifted to
encompass a wider range of phenotypes considered
‘sensitive’ and ‘resistant’.

The current threshold resulted in 815 cells and
their corresponding 20 645 normalized gene expres-
sion levels being used to form the training set
gene-cell matrix containing a cell’s gene expression
vector and corresponding identity. This gene-cell
matrix was then used to build a classifier capable of
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predicting the identity of new cells based on an indi-
vidual gene expression vector. A linear support vec-
tor machine and a principal component with KNN
were both tested as possible classifiers because of the
interpretability of the output of the classifiers in terms
of gene loadings. Cross validation was performed on
models built using both types of classifiers, and the
average accuracy and area under the curve (AUC)
of the receiver operating characteristic (ROC) curve
were evaluated for each training-test set combina-
tion (supp figures S2(C) and (D)). The linear SVM
method was found to be more accurate. The ROC
curves for the full training set were used to determine
an optimal probability score threshold for calling a
cell sensitive or resistant (supp figures S2 (A) and (B)).
While many appeared to be reasonable, we chose a
threshold value of P(resistant) = 0.9 as our cut-off for
calling a cell resistant in the linear SVM model, as this
generated a realistic proportion of cells in each class
at the pre-treatment time point, as we do not expect
a large proportion of the naïve cancer cell line to be
resistant.

The linear SVM classifier was built using python’s
sklearn package svm function, with the gene-cell
matrix as the input, and trained on the labels from
the pre-treatment training set, as were all downstream
analyses of the classifier’s outputs. The principal com-
ponent classifier + KNN (PCA + KNN) was built
using python’s sklearn package PCA function with the
same inputs. However, for PCA + KNN, both the
number of principal components used in the clas-
sifier, and the number of nearest neighbors used to
predict a cell’s class based on the class of the k cells
its closest to, needed to be optimized. This was done
using the five-fold CV training and testing sets and
coordinate optimization was then used to iteratively
find the optimal number of both nearest neighbors
(k) and number of principal components (n) for cor-
rectly identifying the class of each cell. Coordinate
optimization works by essentially iteratively optimiz-
ing the two variables of interest, here k and n, until
they no longer change values. In this case, we first set
the number of principal components to a single value
and iterated through a range of nearest neighbors to
find the number which gave the highest mean AUC
over all 5 folds of cross validation (supp figure 12(C)).
Once the optimal number of neighbors was found for
that number of principal components, the number of
neighbors was set to that value and the optimal num-
ber of principal components was varied over a range
of values, and again the highest mean AUC over all
5 folds of cross validation was found (supp. figure
S12(D)). Then we set the number of neighbors to this
value and repeated the search for the optimal number
of principal components. This process was repeated
until the optimal number of neighbors and number
of principal components no longer changed with each
iteration. The percent of variance explained by each

PC was recorded (supp figure S12(A)) and the cumu-
lative variance (supp. figure S12(B)). The entire clas-
sification and output results were performed for PCA
+ KNN and results are in the supplement, visualized
in the space of PC1 and PC2 (supp. figure S3).

4.4.2. Model of drug resistance dynamics
The mathematical model of drug-induced resistance,
in which treatment exposure directly induced phe-
notypic transitions into the resistant cell state, was
introduced in [15]. Their original model described
sensitive cells (S) and resistant cells (R) independently
growing according to logistic growth and indepen-
dently dying due to drug treatment (u(t)) via a log-kill
hypothesis. The model includes an explicit role for the
transition of sensitive cells into resistant cells via a rate
of drug-induced resistance (α) which is modeled as a
linear function of treatment u(t). Additionally, their
full model included additional terms of spontaneous,
treatment-independent resistance (ε) proportional to
the number of sensitive cells present, as well as a resen-
sitization term (γ) describing treatment-independent
transition from the resistant to the sensitive cell state.

∂S

∂t
= rSS

(
1 − S + R

K

)
− (ε+ αu (t))

× S − dsu (t) S + γR

∂R

∂t
= rRR

(
1 − S + R

K

)
+ (ε+ αu (t))

× S − dRu (t) R − γR

In order to have the best possible chance of identify-
ing these model parameters from data, we simplified
the original model. We assume that the treatment-
independent transition into the resistant state (ε) and
the resensitization (γ) are negligible, yielding the fol-
lowing system of equations.

∂S

∂t
= rSS

(
1 − S + R

K

)
− αu (t) S − dsu (t) S

∂R

∂t
= rRR

(
1 − S + R

K

)
+ αu (t) S − dRu (t) R

where rS and rR are the sensitive and resistant subpop-
ulation growth rates and dS and dR are the sensitive
and resistant subpopulation death rates, assumed to
be linearly proportional to the effective dose (u(t)).
We assume that the sensitive cells grow faster than the
resistant cells so that rs > rr, as is consistent with the
mechanism of action of cytotoxic therapies targeting
rapidly proliferating cells [15, 53]. We assume dS > dR

as sensitive cells should die more quickly in response
to drug than resistant cells, by definition. We mod-
eled the effect of the pulse-treatments as single pulses
of u(t) whose maximum is given by the concentration
of doxorubicin and whose effectiveness in time decays
exponentially.

u (t) = k1Cdrug ek2t
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The constants k1 and k2 were chosen so that u(t) is
scaled between 0 and 5 and so that the effective dose
decays over a time scale consistent with experimen-
tal observations of doxorubicin fluorescent dynam-
ics in vitro [21, 22]. Numerical simulations of the
forward model for a given treatment regimen were
implemented in MATLAB using the backward Euler
method.

4.4.3. Sensitivity analysis of model parameters
As part of the model development process, we per-
formed a sensitivity analysis to assess the effect of
individual model parameters on the model output.
Although there are a number of choices to use for
model outputs, we chose to capture the broad drug
response of the population using the time to reach
two times the initial cell number, which we call tcrit,
and the phenotypic composition φ(t = tcrit) at that
time, as we expect these are two outputs we would fea-
sibly observe in an experimental setting, as the time
to population rebound and the phenotype observable
via scRNA-seq or some other phenotypic characteri-
zation. We first performed a global sensitivity analysis
on the set of parameter bounds that were well outside
the parameter ranges of the calibrated parameters and
their associated errors. The results of the sensitivity
analysis will reveal the most important parameters of
the system, causing the greatest variation in outputs.
This exercise should identify any model parameters
that the model is insensitive to, and therefore may
present opportunities to simplify the model to cap-
ture the same dynamics while reducing uncertainty
by eliminating the number of free parameters to be
fit. A Sobol’s global sensitivity method is applied,
which is a method that utilizes the analysis of vari-
ance (ANOVA) decomposition to define its sensitivity
indices [54]. As a global method, random sampling is
performed twice over the parameter space of the eight
parameters (six free, two carrying capacities), with
the number of parameters by N simulations matri-
ces denoted by X and Z. The bounds of the global
sensitivity analysis were chosen to be well outside of
the 95% confidence intervals around each best fitting
parameter from the profile likelihood analysis. The
total effects are then calculated using the following:

S̄u =
1

2Nσ2

Nsamps∑
j=1

(
f
(
xj

)
− f

(
zu

j , x−u
j

))2

where σ2 is the variance of the outputs from the
first set of N random samples computed from eval-
uating over all xj in X, and the function evalua-
tions of f(xj) and f(zj, xj

−u) are the outputs (tcrit or
φ(t = tcrit)) of the model at parameter values xj com-
pared to the function evaluated at parameter values zj

for one parameter, and xj for all the remaining param-
eters. The total effects were calculated for each param-
eter value for outputs of both critical time (tcrit) and
phenotypic composition (φ(t = tcrit)) for four doses

ranging from 0 to 500 nM. Large sensitivity indices
between parameters and model outputs character-
istics indicate that small changes in the parameter
values will result in large variations in the output
behavior. For this investigation, to ensure the conver-
gences of the indices, a base simulation size of N =

5000 is chosen, resulting in (5000 × 2 × 4 doses ×
2 outputs × 8 parameters = 640 000) simulations
to generate the indices. For this study, only the total
effects of the model outputs of tcrit and φ(t = tcrit) are
reported (supp. figures S5(A) and (B)). Specifically,
the critical time and phenotypic composition at crit-
ical time is recorded for each random simulation and
each dose, and per the Sobol method, the total effects
indices derived from the variances of these outputs is
calculated, which account for variations in individ-
ual parameters as well as additional effects resulting
from the combined variation of parameters. A sen-
sitivity cut-off of 0.05 is used, indicating parameters
that cause less than 5% of the total variation of that
model output.

To perform a local sensitivity analysis, we varied
each parameter independently from the best fitting
parameter set. To perturb each parameter, we chose
a high parameter value of two times its optimal value,
and a low parameter value of half its optimal value.
We used these high and low parameter values, hold-
ing all other parameters constant, and ran the for-
ward model and recorded the response over a range
of doxorubicin doses from 0–200 nM, for both the
effect in critical time (tcrit) and phenotypic compo-
sition at critical time (φ(t = tcrit)). For each inde-
pendent parameter perturbation, we computed a high
and low sensitivity score for the ith parameter, for the
two model outputs (tcrit or φ(t = tcrit)) as:

S+i =

ndoses∑
j=1

(
fj

(
xopt

)
− fj

(
xhigh

))2

S−i =

ndoses∑
j=1

(
fj

(
xopt

)
− fj

(
xhigh

))2

which is the sum-squared difference between the out-
put values (tcrit or φ(t = tcrit)) for each jth dose
in the range of doses, for both the high and low
parameter sets, for each ith parameter. The sum of
the high and low sensitivity scores for each parame-
ter were than ranked for the two outputs of tcrit and
(φ(t = tcrit)) (supp. figures S5(C)–(F)). This anal-
ysis reveals the most important parameter in driv-
ing changes in output behavior of the model locally
around the best fitting parameters.

4.4.4. Model fitting with multiple measurement
sources
To perform model fitting, we used two sources
of measurement data: cell number in time (N(t))
in response to the pulsed doxorubicin treatments,
and estimates of the phenotypic composition, φ(t),
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at three time points total (before and two post-
treatment). The data were collected in two sepa-
rate experimental settings, with two different carrying
capacities, which we refer to as KN and Kφ. The lon-
gitudinal cell number data was recorded in 96 well
plates, resulting in a different carrying capacity than
the lineage-traced single cell RNA sequencing exper-
iment in which the population was expanded out to
a 15 cm dish due to the need for large cell numbers
for running on the 10× Genomics system. The carry-
ing capacity of the longitudinal data, KN , was found
by fitting the untreated control to a logistic growth
model and allowing both the effective growth rate of
the total population (geff) and KN to be fit to the data
(see supp. figure S6).

∂N

∂t
= geffN

(
1 − N

KN

)

We set this carrying capacity in the model going
forward for fitting the longitudinal data. For the
carrying capacity of the single cell RNA sequencing
experiment, Kφ, we used Thermo-Fisher published
‘Useful Numbers for Cell Culture’ as an estimate [24],
where the manufacturer cites the number of cells at
confluency of 20 million cells. Going forward, we fit
the remaining 6 parameters of θ = [φ0, rS, rR, α,
dS, dR] where these represent: the initial fraction of
sensitive cells prior to treatment, the sensitive cell
growth rate, the resistant cell growth rate, the rate of
drug-induced resistance, the sensitive cell death rate,
and the resistant cell death rate, respectively. All six
parameters were found to be globally sensitive in one
or more of the treatment conditions when looking at
either tcrit or φ(t = tcrit), and so we decided it was
reasonable to try to fit them all from the observed
data.

To estimate the model parameters θ, we used both
measurement sources N(t) and φ(t) and compared
them to their corresponding model outputs. The data
were fitted using a weighted-sum-of-squares-residual
function described below:

J(θ) =
1

nφ

nφ∑
j=1

(
φ̂j − φj (θ, u)

)
σ2
φj

2

+
1

nN

ndoses∑
k=1

nN∑
i=1

(
N̂i,k − Ni

(
θ, ui,k

))
σ2

Ni,k

2

(3)

For the N(t) data, the uncertainty in the data (σ2
N )

at each time point was quantified using the standard
deviation of the cell number over the six replicate
wells. For the uncertainty in the φ(t) estimates due to
sampling a subset of cells from a population of 20 mil-
lion cells, we compute the Bernoulli sample variance
of

σ2
φ =

φ(1 − φ)

n

where n is the number of Bernoulli samples (n= 3115,
5251, and 4857 cells in each time point respectively)
at each of the three time points. Therefore, the max-
imum expected sample variance is at φ = 0.5 and
n = 3115, meaning we expect the estimate of the sam-
pleφon average to be off by less than 1% from the true
mean. However, this is given a true prevalence. This
true prevalence is dependent on where the threshold
for calling a cell sensitive or resistant is chosen to be,
with any values between 0 and 1 technically possible.
For this reason, we added an uncertainty term of tech-
nical noise σtech = 0.01 to this estimate. In reality, the
magnitude of the uncertainty in the φ(t) is not nec-
essarily known, so we had to estimate a reasonable
measurement uncertainty of this magnitude.

In this experimental set up, we have significantly
higher time and dose resolution in our N(t) data
(472 data points) compared to our φ(t) data (3
data points), and thus chose to include normaliza-
tion terms in our objective function (equation (3))
to account for the different resolutions of the data
N(t) and φ(t) data, and to effectively weight them
equally. Because the data come from distinct measure-
ment sources, the robust quantification of compara-
tive uncertainty is not known a priori, as we do not
intuitively know whether or not the φ(t) estimates
from scRNA-seq are inherently more or less reliable
than the longitudinal population size data.

We use the lsqnonlin function in MATLAB to
search for a set of parameters, θ, that minimizes J(θ).
This set of parameter values was used to make pre-
dictions of new doses and also used for the local
sensitivity analysis. Additionally, we also performed
the calibration without the φ(t) data to compare the
goodness of fit and accuracy of a more ‘traditional’
method. The following objective function was used
for the fitting on longitudinal data only, essentially
identical to the integrated calibration just without the
φ(t) data.

J (θ) =
1

nN

ndoses∑
k=1

nN∑
i=1

(
N̂i,k − Ni

(
θ, ui,k

))
σ2

Ni,k

2

4.4.5. Structural identifiability of model
parameters
We will demonstrate the structural identifiability of
the individual model parameters using the differen-
tial algebra approach. Structural identifiability of a
model and its parameters from a set of measurable
outputs tells us that in theory, given perfect data,
it is possible to uniquely identify model parameters.
Structural identifiability is a pre-requisite for practi-
cal identifiability of model parameters from observed
data. We start by presenting the non-dimensionalized
model and measurement equations, assuming we can
measure both N(t) and φ(t).

∂S

∂t
= (1 − (S + R)) S − αu(t)S − dsu (t) S
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∂R

∂t
= pR (1 − (S + R)) R + αu(t)S − dRu (t) R

N(t) = S(t) + R(t)

φ(t) =
S(t)

S (t) + R(t)

We assume all parameters are non-negative and
0 < pr < 1 represents the relative growth rate of the
resistant population with respect to the sensitive pop-
ulation scaled by the carrying capacity, and pr < 1
assumes that resistant cells grow more slowly than
sensitive cells. In work by Greene et al [14], they
demonstrate that, if they assume dr = 0, i.e. resistant
cells are not killed by drug, and that the initial state
of the population is completely comprised of sensitive
cells (i.e. N0 = S0), than the remaining parameters are
uniquely identifiable from observations of total cell
number alone.

We would like to extend this analysis by deter-
mining the identifiability of a new experimental sys-
tem in which not only can N(t) = S(t) + R(t) be
observed, but so also can the fraction of cells in each
state over time, here denoted as φ(t). Under these cir-
cumstances, we want to test the identifiability of the
model which now allows for a net-positive death rate
due to drug, dR, and can have any composition of
initial sensitive and resistant cells.

We follow the same arguments outlined in [14],
along with the complete explanation of the approach
with illustrative examples, for the case of multi-
ple outputs from [55]. We start by formulating the
dynamical system relevant to our in vitro experimen-
tal system. Of note, even though we separately mea-
sure N(t) and φ(t) at discrete time points, since this
analysis is for structural identifiability and assumes
perfect, noise-free data, we will transform the observ-
able outputs of N(t) and φ(t) into:

S(t) = φ(t)N(t)

R(t) = (1 − φ (t))N(t)

Treatment is initiated at time t = 0, at which we
make no assumptions about the composition of the
population such that S(0) = S0, R(0) = R0. Here
0 < S0 + R0 < 1 We note this is due to the
non-dimensionalization in which we now track the
proportion of confluent cells i.e. S(t) = S′(t)

K and

R(t) = R′(t)
K (see [14]) for additional details. We can

now formulate our system in input/output form as:

ẋ (t) = f (x (t)) + u (t) g (x (t))

x(0) = x0

where f and g are:

f (x) =

(
(1 − (x1 + x2)) x1

pr (1 − (x1 + x2)) x2

)

g(x) =

(
− (α+ ds) x1

αx1 − drx2

)

and x(t) = (S(t), R(t)). As is standard in control the-
ory, the output is denoted by the variable y which in
this work corresponds to S(t) and R(t) obtained from
the transformations of the measured variables N(t)
and φ(t)

y1 (t) = h1 (x (t)) = x1(t)

y2 (t) = h2 (x (t)) = x2(t)

A system in this form is said to be uniquely
structurally identifiable if the map (p, u(t) ) →
(x

(
t, p

)
, u(t)) is injective [55–57], where p is the vec-

tor of parameters to be identified. In this instance p =

(S0, R0, ds, dr , α, pr), the initial states and the param-
eters. Local identifiability and non-identifiability
correspond to the map being finite-to-one and
infinite-to-one, respectively. Our objective is then
to demonstrate unique structural identifiability for
model system and hence recover all parameter values
p from the assumption of perfect, noise-free data.

To analyze identifiability, we utilize results appear-
ing in [14, 55], where a differential-geometric per-
spective is used. For the structural identifiability, we
hypothesize that we have perfect (hence noise-free)
input–output data is available of the form of y1 and
y2 and its derivatives on any interval of time. We then,
for example, make measurements of:

y1 (0) = h1 (x1(0))

.
y1 (0) =

∂

∂t

∣∣∣∣
t=0

h1(x1(t))

y2 (0) = h2 (x2(0))

.
y2 (0) =

∂

∂t

∣∣∣∣
t=0

h2(x2(t))

We can relate their values to the unknown parameter
values p. If there exists inputs u(t) such that the above
system of equations may be solved for p, the system
is identifiable. The right-hand sides of the above the
equation for x(t) may be computed in terms of the Lie
derivatives of the vector fields f and g. The Lie differ-
entiation LxH of a function H by a vector field X is
given by:

LxH (x) = ∇H(x) · X(x)

Iterated Lie derivatives are well-defined, and
should be interpreted as the function composi-
tion, so that for example LyLxH (x) = Ly(LxH) and
L2

xH (x) = Lx(LxH).
Defining observable quantities at the zero-time

derivatives of the generalized output y = h(x):
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Y (x0, U) =
∂k

∂tk

∣∣∣∣
t=0

h(x (t))

where U ∈ Rk is the value of the control u(t)
and its derivatives evaluated at t = 0 : U =

(u (0) , u′ (0) , . . . uk−1 (0)). The initial conditions x0

appear due to evaluation at t = 0. The observation
space is then defined as the span of the Y (x0, U)
elements:

F1 = spanR{Y
(
x0|U

)
∈ Rk, k � 0}

We also defined the span of iterated Lie derivatives
with respect to the output vector fields f (x) and g(x):

F2 := spanR

{
Li1, . . . Likhj(x0)| (i1, . . . ik)

∈ {g, f }k, k � 0, j ∈ {1, 2}
}

As is outlined in [55, 58] proved that F1 = F2, so that
the iterated Lie derivatives F2 may be considered as the
set of ‘elementary observables’. Hence, identifiability
may be formulated in terms of the reconstruction of
parameters p from elements in F2. Parameters p are
then identifiable if the map

p →
{

Li1, . . . Likhj(x0)| (i1 . . . ik)

∈ {g, f }k, k � 0, j j ∈ {1, 2}
}

Is one-to-one. For the remainder of this analysis, we
investigate the mapping defined here, because if one
can reconstruct the values of p from the elemen-
tary observables (evaluated at the initial state), we
can uniquely identify the parameters. This enables
us to find the Lie derivatives for the two outputs
h1(x) and h2(x), which will be found in terms of
the parameters p and x1 and x2. Then we can recall
the evaluation at t = 0 given by x0 = (S0, R0), and
our ability to observe these at t = 0 allows us to
set x1 = S0 and x2 = R0 and isolate the parame-
ter p recursively from the observables and the Lie
derivatives.

Using the input–output system written in terms
of f and g we can write the following Lie derivatives:

Lf h1 = (1 − x1 − x2) x1

Lf h2 = pr (1 − x1 − x2) x2

Lgh1 = (α+ ds) x1

Lgh2 = αx1 − drx2

Lf Lg h2 = αx1 (1 − x1 − x2) − drprx2(1 − x1 − x2)

Recursively solving using x0 = (S0, R0) to find the
parameters p:

S0 = h1 (x0)

R0 = h2 (x0)

pr =
Lf h2

R0(1 − S0 − R0)

dr =
1

R0(1 − pr)

(
Lf Lgh2

1 − S0 − R0
− Lg h2

)

α =
Lgh2 + drR0

S0

ds =
Lg h1

S0
− α

Since F1 = F2, all of the above Lie derivatives are
observable via appropriate treatment protocols. Thus
by incorporating knowledge of φ(t), all parameters
in system 1 are structurally identifiable. This repre-
sents an improvement over the identifiability with
N(t) alone as a measurable output and allows us to
introduce a non-zero dR parameter, which we have
reason to believe based on experimental evidence, is
the more biologically relevant scenario.
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Supplementary Table S1. Estimated parameter values from the integrated model fit 
(using N(t) and phi(t) and using N(t) only. The first six parameters are calibrated to data, 
the last four are set (and thus are the same for both calibration schemes). Confidence 
intervals from fit parameters are estimated using bootstrapping parameter estimates.  
 

 
Supplementary Figure S1. Measured and model predicted outputs to be used for 
parameter estimation from observed data A. Observed estimated fraction of sensitive 
cells (green) and resistant cells (red) from scRNAseq classifier at three time points 𝜙(t). 
B. Model predicted output of sensitive cell fraction dynamics (green) and resistant cell 
fraction dynamics (red) for an example parameter set. C. Observed number of tumor cells 



in time for pulse treatments of doxorubicin at 0, 50, and 100 nM, the doses used for model 
calibration. D. Model predicted output of total cell number in time for a single pulse 
treatment simulated from the model and an arbitrary example parameter set. 
 
 
 
 

 
Supplementary Figure S2. Comparison of classifiers for estimating sensitive and 
resistant cells. A. ROC curve from PCA + KNN classifier B. ROC curve from Linear SVM 
classifier C. AUC from ROC curve for each of 5 folds cross validation data sets D. 
Accuracy of classification of the testing set data in each fold of cross validation reveals 
Linear SVM is consistently more accurate than PCA + KNN  



 
Supplementary Figure S3. Single cell transcriptomes from each time point 
projected into principal component space and classified using nearest neighbors 
A. Lineage-abundance guided “labeled” cells projected into principal component space 
separate along components (PC1 and PC2 shown here for visual effect). B. Unknown 
cells are projected into the principal component space of the labeled cells. C. Remaining 
cells from t=0 projected onto labeled cells in PC space and estimated as sensitive (olive) 
or resistant (green). D. Cells from t=7 weeks projected alongside labeled cells. E. Cells 
from t=10 weeks projected alongside labeled cells. F. Proportion of cells in each time point 
that are estimated or labeled as sensitive (green), or resistant (red).   



 
Supplementary Figure S4. Differential Gene Expression Analysis Provide Molecular Insight 
into Drug Resistance Interactions A. UMAP projection of single cell transcriptomes colored by 
time point B. Single cells colored by sensitive and resistant cell labels visualized via UMAP 
projections indicates drug sensitivity phenotypes cluster together, but not exclusively by the 
apparent UMAP clustering n C. Heat map of the top 50 gene weights in the Linear SVM, 
comparing the average expression across the sensitive and resistant cell groups in the three time 
points. The colorbar is scaled within each gene (row).  D. UMAP projections of cells colored by 
expression level of ESAM indicates high expression of UBE2S is associated with sensitivity. G. 
UMAP projections of cells colored by expression level of SOX4 indicates that low expression of 
SOX4 is associated with sensitivity. I. UMAP projections of cells colored by expression level of 
IL11 indicates that high expression of IL11 is associated with sensitivity. 

 
Supplementary Figure S5. Model calibration using only N(t) data. A. Calibration results for 
longitudinal N(t) data from the four doses (0, 50, and 100 nM) used for calibration B. Comparison of 
model fit to estimates of phenotypic composition (𝜙(t)). This information was not used for calibration, 
hence why the error is extremely large. C. Measured cell number N(t) verses model calibrated cell 
number, yielding a concordance in N(t) of CCC = 0.975.  
 



 
Supplementary Figure S6. Sensitivity Analysis of Model Parameters Reveals All 
Parameters are Locally and Globally Sensitive Under Treatment. A. Sobol’s total 
effects of each parameter globally on critical time for 0,75, 200, and 500 nM pulse 
treatments reveals that all fit parameters are above the threshold of sensitivity for at least 
one of those doses (the parameter contributes at least 5% to the critical time for at least 
one of the doxorubicin concentrations). B. Sobol’s total effects of each parameter globally 
on sensitive cell fraction for 0, 75, 200 and 500 nM pulse treatments reveals that most fit 
parameters are above the threshold of sensitivity for at least one of the doses. The 
carrying capacity of the single cell RNA sequencing experiment (K2) is the only parameter 
that is not above the threshold for any sensitivity analysis output or dose, and for this 
reason supports our decision to set that carrying capacity from a literature value (the 
expected number of 231 cells at confluence in a 10 cm dish, which the cells were 
expanded up to). C. An example of the model predicted critical time as a function of 
doxorubicin concentration, taken from the selected parameter set in red in Fig 5A. Critical 
time is chosen as an output for model sensitivity because it evaluates treatment response 
and drug sensitivity in of a cell population:drug concentration combination without biasing 
for response dynamics that might vary from system to system, and because it is most 
relevant to what we experimentally are able to observe (i.e. the cells rebounded to 2 times 
their initial cell number on this day). D. An example of the model predicted sensitive cell 
fraction at the critical time as a function of doxorubicin concentration, again for the 
selected parameter set in red in Fig 5A. This was chosen again because of its relevance 
to experimental workflows, as the time at which the population rebounds to 2 the seeding 
population might be a good time at which we could perform an experimental analysis of 
the tumor cell composition (i.e. scRNAseq). E. Local sensitivity in critical time produced 
by varying the selected parameter set by 50% above and below its value and recording 
the resulting change in critical time trajectory over a doxorubicin range of 0 to 500 nM. F. 
Local sensitivity in sensitive cell fraction at critical time produced by again varying the 
selected parameter set by 50% above and below its value and recording the resulting 
change in sensitive cell fraction over a doxorubicin range of 0 to 500 nM.  



 
Supplementary Figure S7. Fit to untreated control to find carrying capacity (KN) of 
MDA-MB- 231 cells in a 96 well plate. 
 

 
Supplementary Figure S8. Visualization of the distribution of parameter estimates 
in the bootstrapped parameter set for the integrated calibration (from N(t) and f(t)). 
For each parameter, the 2.5th and 97.5th percentiles were found from 100 simulated data 
sets to construct the 95% confidence intervals around each parameter value.  
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Supplementary Figure S9. Visualization of the distribution of parameter estimates 
in the bootstrapped parameter set for calibration from N(t) data only. For each 
parameter, the 2.5th and 97.5th percentiles were found from 100 simulated data sets to 
construct the 95% confidence intervals around each parameter value. It is evident that 
the growth rate parameter is not identifiable as it doesn’t change from the initial guess. 
This is likely due to insufficient data for the N(t) calibration scheme to fit to the 6 free 
parameters of interest. If we were only able to use this data, we would need to set some 
parameters from literature or other experiments in order to obtain identifiability.  
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Supplementary Figure S10. Growth dynamics of isolated sensitive and resistant 
cell lineages indicates that sensitive cells growth on more quickly than the resistant cells, 
validating our modeling assumptions. 
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Supplementary Figure S11. Model predicted treatment response from longitudinal 
N(t) calibration only.  Prediction of treatment response at A. 25 nM B. 75 nM C. 150 nM 
and D. 200nM from the N(t) calibration using the other doses. No phenotypic composition 
data was used to calibrate the model parameters that were used to predict the new 
treatment response.  
 

 
Supplementary Figure S12. Variance explained in each PC and hyperparameter 
optimization for PCA + KNN. A. Proportion of variance explained by the top 50 principal 
components PCs B. Cumulative variance in each successive principal component for the 
top 50 PCs. C. Number of nearest neighbors used in the classifier versus mean AUC from 



5-fold CV to determine optimal number of neighbors of k=73. C. Number of principal 
components used in the classifier versus mean AUC from 5-fold CV to determine optimal 
number of components, n=500. D. ROC curve from classifier with optimized number of 
nearest neighbors and components for separating labeled cells.  
 
 
 
 
 
 
 
 
 
 
 
 
 


