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Abstract

This paper deals with single-hidden-layer feedforward nets, studying various aspects of
classification power and interpolation capability. In particular, a worst-case analysis shows
that direct input to output connections in threshold nets double the recognition but not the
interpolation power, while using sigmoids rather than thresholds allows doubling both. For
other measures of classification, including the Vapnik-Chervonenkis dimension, the effect of
direct connections or sigmoidal activations is studied in the special case of two-dimensional
inputs.

1 Introduction

In this paper we deal with the computational capabilities of certain interconnections of simple
processors (“neurons”). These are arranged in a layered network, each processor calculating a
scalar function θ (the activation or response function) of its aggregate input. Such interconnec-
tions, often called feedforward neural nets , have attracted interest as a potentially useful model
of parallel computation. Figure 1 illustrates a typical network of this type.

The input fed to any given processor is an affine combination of the ouputs of all the
processors that connect to it, weighted according to real-valued coefficients. The output of the
last processor is taken as the output of the net. The weights, together with the interconnection
pattern and the choice of θ, determine completely the function computed by the net. Sometimes
one may want to allow direct connections from inputs to outputs, bypassing the intermediate
layers. One such connection is indicated in Figure 1 with a dotted line. Studying the effect of
such connections is one of our objectives. Precise definitions are given later, but we first wish
to describe in simple terms some of the questions to be asked.

Here we shall be concerned exclusively with three-layer nets. That is, there are input
nodes, an output node, and one layer in between. The processors in the intermediate layer are
called hidden units . For simplicity, and since basic computing abilities are not affected in any
significant way, we assume that the output processor computes just a linear combination of its
input (no θ is applied, as illustrated in the Figure).
∗Supported in part by US Air Force Grant AFOSR-880235 and by Siemens Corporate Research.
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There are various types of activation functions that may be of interest. In theoretical
computer science studies (circuit complexity) one deals most often with threshold gates, cor-
responding to a discontinuous function θ = H, the Heaviside function that takes the value 1
for positive arguments and is 0 otherwise. On the other hand, the so-called backpropagation
technique so popular in practice assumes sigmoidal responses, as a differentiable θ is needed
for applying gradient descent techniques. Sigmoidal functions θ are essentially smooth approx-
imations to the Heaviside; an axiomatic definition is given later. Another of our objectives
here is to compare the possible power of nets that use Heaviside activation units to those using
sigmoids.

The capabilities that we are most interested in have to do with classification and interpo-
lation power of the functions computed by feedforward nets. Nets with one hidden layer are
known to be in principle sufficient for arbitrary recognition tasks. This follows from by now
well-known approximation theorems (see e.g. [6], [7], but see also [4], [5], [14] for other problems
where two layers are required instead). However, what is far less clear is how many processors
are needed for achieving a given recognition, interpolation, or approximation objective. This
is of importance in its practical aspect, since having rough estimates of how many processors
will be needed is essential when applying backpropagation. It is also relevant when evaluating
generalization properties, as larger nets tend to lead to poorer generalization; see the remarks
in that regard in Section 4.1 below. It is well-known and easy to prove (see later) that one
can interpolate values at any n + 1 points using an n-processor net, and in particular that
any n + 1-point set can be partitioned arbitrarily into two classes by such nets. Among other
facts, we point out here that allowing direct input to output connections permits doubling the
recognition power to 2n, and the same result is achieved if sigmoids are used but such direct
connections are not allowed. Further, we remark that approximate interpolation of 2n−1 points
is also possible, provided that sigmoidal units be employed, but direct connections in threshold
nets do not suffice in this case.

There are many alternative possible measures of recognition capabilities for nets. These
range from the above-mentioned case of partitioning arbitrary sets to asking what is the cardi-
nality of the largest set that can be arbitrarily partitioned using nets with a fixed architecture,
the Vapnik-Chervonenkis or VC dimension of this architecture, as well as many other measures
in between. We will study a few of these measures. In particular, it is known ([3]) that the VC
dimension of threshold nets with a fixed number of hidden units is at least proportional to the
number or inputs. If sigmoids or direct connections are allowed, we give lower bounds, for the
two input case, at least doubling the VC dimension estimate known for Heaviside nets with no
direct input to output connections.

One intuitive explanation for the apparent discrepancy between the fact that sigmoids ap-
proximate Heavisides but the former have richer approximation properties is due to the fact that
the approximation in question is at what may be called “high gain,” that is, for large incoming
weights. For small weights, however, using sigmoids one can get also approximations to linear
maps (the tangents). This adds a considerable amount of separation power. For interpolation,
the intuition is different, and it is based on a continuity assumption on the sigmoid.

This paper is organized as follows. First we present basic definitions of the various classi-
fication measures and of nets. We then state the main results on classification, and after that
we provide the proofs. These proofs combine simple combinatorial and geometric arguments.
A further section shows that some of the bounds obtained are sharp in the case of a piecewise-
linear activation function. Then we deal with issues of interpolation. We prove general results
as well as study several particular activation functions. The last section summarizes the main
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conclusions and poses open problems.
To close this introduction, we wish to remark that this is a continuation of previous work

dealing with the theme of comparing threshold and sigmoidal feedforward nets. In [15] and [16]
we studied nets with no hidden layers. In the first reference we proved that the gradient descent
procedure may get stuck in spurious local minima, and in the second we compared this numerical
procedure to the classical perceptron learning technique used for Heaviside nets, proving a global
convergence theorem under hypothesis analogous to those used for the perceptron algorithm.

A preliminary version of this paper, without proofs, appeared in [13].

2 Dichotomies

Quantifying the classification power of a class of functions (such as those computable by nets
with a fixed architecture and a fixed number of processors) can be based on the idea of “shat-
tering” of sets, described next. In this approach, a class of functions is considered to be more
powerful than another if it can be used to implement arbitrary partitions on sets of larger
cardinality. This is made precise as follows.

Fix a positive integer N . A dichotomy or two-coloring (S−, S+) on a set S ⊆ IRN is a
partition S = S−

⋃
S+ of S into two disjoint subsets. A function f : IRN → IR will be said to

implement this dichotomy if it holds that

f(u) > 0 for u ∈ S+ and f(u) < 0 for u ∈ S− .

Let F be a class of functions from IRN to IR, assumed to be nontrivial, in the sense that for
each point u ∈ IRN there is some f1 ∈ F so that f1(u) > 0 and some f2 ∈ F so that f2(u) < 0.
This class shatters the set S ⊆ RN if each dichotomy on S can be implemented by some f ∈ F .

For any class of functions F as above, we consider here the following measures of classifica-
tion power. First we introduce µ and µ, dealing with “best” and “worst” cases respectively:

µ(F)

denotes the largest integer l ≥ 1 (possibly ∞) so that there is at least some set S of cardinality
l in IRN which can be shattered by F , while

µ(F)

is the largest integer l ≥ 1 (possibly ∞) so that every set of cardinality l can be shattered by
F . Note that by definition, µ(F) ≤ µ(F) for every class F .

In particular, the definitions imply that no set of cardinality µ(F)+1 can be shattered, and
that there is at least some set of cardinality µ(F)+1 which cannot be shattered. The integer µ
is usually called the Vapnik-Chervonenkis (VC) dimension of the class F (see for instance [3]),
and appears in formalizations of learning in the distribution-free sense.

A set may fail to be shattered by F because it is very special (see the example below with
colinear points). In that sense, a more robust measure is useful:

µ(F)

is the largest integer l ≥ 1 (possibly ∞) for which the class of sets S that can be shattered
by F is dense, in the sense that given every l-element set S = {s1, . . . , sl} there are points s̃i
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arbitrarily close to the respective si’s such that S̃ = {s̃1, . . . , s̃l} can be shattered by F . Note
that

µ(F) ≤ µ(F) ≤ µ(F) (1)

for all F .
To obtain an upper bound m for µ(F) one needs to exhibit an open class of sets of cardinality

m + 1 none of which can be shattered.
Take as an example the class F consisting of all affine functions f(x) = ax + by + c on IR2.

Since any three points can be shattered by an affine map provided that they are not colinear
(just choose a line ax + by + c = 0 that separates any point which is colored different from the
rest), it follows that 3 ≤ µ. On the other hand, no set of four points can ever be dichotomized,
which implies that µ ≤ 3 and therefore the conclusion

µ = µ = 3

for this class. (The negative statement can be verified by a case by case analysis: if the four
points form the vertices of a 4-gon color them in “XOR” fashion, alternate vertices of the same
color; if 3 form a triangle and the remaining one is inside, color the extreme points differently
from the remaining one; if all colinear then use an alternating coloring). Finally, since there is
some set of 3 points which cannot be dichotomized (any set of three colinear points is like this),
but every set of two can,

µ = 2 .

We shall say that F is robust if whenever S can be shattered by F also every small enough
perturbation of S can be shattered. (More precisely, one defines a topology on unordered l-sets
as follows: if S is a set of l elements, then a basis of open neighborhoods of S is given by the
class of all sets of the form S̃ = {s̃1, . . . , s̃l} so that |si − s̃i| < ε for each i. Then robustness
of F means that for each l, the class of l-element sets that can be shattered is open.) For a
robust class and l = µ(F), every set in an open dense subset in the above topology, i.e. almost
every set of l elements, can be shattered. All classes considered in this note are robust. If the
elements of F are continuous, then F is robust.

3 Nets

A “net” is a function of a certain type, corresponding to the idea of feedforward interconnections,
via additive links, of processors each of which has a scalar response or activation function θ.

Definition 3.1 Let θ : IR → IR be any function. A function f : IRN → IR is computable by a
single-hidden-layer net with k hidden processors of type θ and N inputs, or just f is a (k, θ)-net ,
if there are real numbers

w0, w1, . . . , wk, τ1, . . . , τk

and vectors
v0, v1, . . . , vk ∈ IRN

such that, for all u ∈ IRN ,

f(u) = w0 + v0 · u +
k∑
i=1

wi θ(vi · u− τi) (2)
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where the dot indicates inner product. A net with no direct i/o connections is one for which
v0 = 0.

For fixed θ, and under mild assumptions on θ, such nets can be used to approximate uni-
formly arbitrary continuous functions on compacts. See for instance [6], [7]. In particular, they
can be used to implement arbitrary dichotomies. A typical choice is for θ to be the standard
sigmoid

σ(x) =
1

1 + e−x
(3)

or equivalently, up to translations and change of coordinates, the hyperbolic tangent tanh(x).
Another usual choice is the hardlimiter, threshold, or Heaviside function

H(x) =

{
0 if x ≤ 0
1 if x > 0

which can be approximated well by σ(γx) when the “gain” γ is large. Yet another possibility
is the use of the piecewise linear function

π(x) =


−1 if x ≤ −1
1 if x ≥ 1
x otherwise.

(4)

Most analysis has been done forH and no direct connections, but numerical techniques typically
use the standard sigmoid (3) (or equivalently tanh). The activation π will be useful as an
example for which sharper bounds can be obtained. The examples σ and π, but not H, are
particular cases of the following more general type of activation function:

Definition 3.2 A function θ : IR→ IR will be called a sigmoid if these two properties hold:

(S1) t+ := limx→+∞ θ(x) and t− := limx→−∞ θ(x) exist, and t+ 6= t−.

(S2) There is some point c such that θ is differentiable at c and θ′(c) = η 6= 0. 2

Note that we do not require, as it is not needed for the results to be given, that a sigmoid
be monotonic.

Remark 3.3 Property (S1) could be replaced by the stronger property that in addition t+ = 1
and t− = 0. This would not change anything, because for any θ satisfying (S1),

θ̃(x) :=
θ(x)− t−
t+ − t−

satisfies the stronger property and is so that (k, θ)-nets are the same as (k, θ̃)-nets. Similarly,
when convenient we may asssume without loss of generality that t+ = 1 and t− = −1. 2

Remark 3.4 All the examples above lead to robust classes, in the sense defined earlier. More
precisely, assume that θ is continuous except for at most finitely many points x, and it is left
continuous at such x, and let F be the class of (k, θ)-nets, for any fixed k. Then F is robust, and
the same statement holds for nets with no direct connections. This can be proved as follows.
Assume that S = {s1, . . . , sl} can be shattered by F , and consider any fixed dichotomy and any
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f ∈ F implementing it. For this f , take all the points aij := vi.sj− τi, i = 1, . . . , k, j = 1, . . . , l.
By the assumption on θ, there is some small enough ε > 0 so that aij−ε is a point of continuity
for θ for all i, j, and

f̃(u) = w0 + v0 · u +
k∑
i=1

wi θ(vi · u− τi − ε)

still implements the dichotomy. Since f̃ is continuous near each point of S, the corresponding
dichotomy will be implementable for each set sufficiently close to S. Intersecting over all possible
dichotomies, there results a neighborhood of S in which every set can be shattered. If v0 = 0,
one has the same result for the case of no direct connections. 2

4 Statement of Classification Results

We let
µ(k, θ, N)

denote µ(F), where F is the class of (k, θ)-nets in IRN with no direct connections , and similarly
for µ and µ, and a superscript d is used for the class of arbitrary such nets (with possible direct
connections from input to output). The lower measure µ is independent of dimension:

Lemma 4.1 For each k, θ, N , µ(k, θ, N) = µ(k, θ, 1) and µd(k, θ, N) = µd(k, θ, 1).

This justifies denoting these quantities just as µ(k, θ) and µd(k, θ) respectively, as we do
from now on, and giving proofs only for N = 1. The easy Lemma 4.1 and the next remark are
both proved in Section 5 below.

Lemma 4.2 For any sigmoid θ, and for each k, N ,

µ(k + 1, θ, N) ≥ µd(k,H, N)

and similarly for µ and µ.

The main results on classification will be as follows.

Theorem 1 For any sigmoid θ, and for each k,

µ(k,H) = k + 1

µd(k,H) = 2k + 2
µ(k, θ) ≥ 2k .

Theorem 2 For each k,

4
⌊
k

2

⌋
≤ µ(k,H, 2) ≤ 2k + 1

µd(k,H, 2) ≤ 4k + 3 .
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Theorem 3 For any sigmoid θ, and for each k,

2k + 1 ≤ µ(k,H, 2)
4k + 3 ≤ µd(k,H, 2)
4k − 1 ≤ µ(k, θ, 2) .

These results are proved below. The first inequality in Theorem 2 follows from the results
of Baum ([3]), who in fact established a lower bound of 2N bk2c for µ(k,H, N) (and hence for µ
too), for every N , not just N = 2 as in the Theorem above.

Because of Lemma 4.2, the last statements in Theorems 1 and 3 are consequences of the
previous two.

4.1 A Simple Example on Generalization

The relevance of the above results to questions of learning and generalization can be illustrated
through a simple and intuitive example. A careful analysis of the issues involved belongs to
the realm of learning theory, but the example should be sufficient to illustrate how the choice
of processors influences the generalization capabilities of nets.

Assume given “training data” consisting of a set of points in the real axis labeled “O” or
“X” as in Figure 2 (ignore for now the question mark). Suppose that a learning algorithm
has succeded in loading this data into a two-processor Heaviside-net with no direct input to
output connections, that is, in finding some (2,H)-net f with no connections that implements
the indicated dichotomy (say, positive at the X’s and negative at the O’s). Observe that no
possible (1,H)-net can load the data, but there are infinitely many possible such (2,H)-nets.
The relevant fact for our example is that all of these (2,H)-nets will give the same generalization
at a new point placed in the position indicated by the question mark in the Figure. All of them
will classify this point as “X” as follows from the general arguments in the paper.

On the other hand, if as in standard numerical approaches one uses sigmoidal processors and
one finds a (2, θ)-net that loads the same training data, the generalization is not unique. There
are some such nets (assuming that θ satisfies the properties (S1) and (S2)) for which f > 0
where the question mark is, but there are also infinitely many such nets for which f < 0 there.
The actual generalization will depend on the initial conditions used in the gradient descent
(“backpropagation”) algorithm, and not on intrinsic properties of the data.

5 Some Basic Lemmas

We now prove Lemmas 4.1 and 4.2. The former is an immediate consequence of this fact,
applied with FN = (k, θ)-nets on N inputs:

Lemma 5.1 Let {FN , N ≥ 1} be a class of functions so that g(u) = f(u, 0, . . . , 0) ∈ F1

whenever f ∈ FN and so that g(u) = f(v · u) is in FN whenever f ∈ F1 and v is any fixed
vector in IRN . Then, µ(FN ) = µ(F1) for all N .

Proof. Pick any N and any function θ. Take any subset S ⊆ IR of cardinality at most µ(FN ), and
any dichotomy (S−, S+) on this set. Consider now the set S̃− := {(u, 0, . . . , 0) ∈ IRN |u ∈ S−},
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and similarly S̃+ and S = S−
⋃

S+. Let f ∈ FN implement the dichotomy (S̃−, S̃+). Then
f(·, 0, . . . , 0) : IR→ IR implements the original dichotomy. Thus µ(F1) ≥ µ(FN ).

Conversely, take any dichotomy (S−, S+) on S ⊆ IRN , with S of cardinality l ≤ µ(F1).
If S consists of the distinct vectors u1, . . . , ul, then there exists some vector v so that all the
numbers v · ui are distinct (in fact, a random vector will have this property with probability
one). Indeed, the set of all such separating v’s is the intersection of the finitely many open
dense sets

{v | v · (ui − uj) 6= 0}
(one for each i 6= j) and is hence nonempty. Pick any v like this, and let yi := v · ui for each i.
The dichotomy (S−, S+) induces a dichotomy of the set S̃ = {yi, i = 1, . . . , l} corresponding to
values v · ui, ui ∈ S+ and v · ui, ui ∈ S−. Let f be a (k, θ)-net that implements the dichotomy
on S̃. Then g(u) := f(v · u) is a (k, θ)-net which implements the original dichotomy. Thus
µ(FN ) ≥ (F1).

In order to prove Lemma 4.2, we need a few simple facts. The first two are basically just
restatements of (S1) and (S2) respectively:

Lemma 5.2 Let θ be a sigmoid, with t+ = 1 and t− = 0, and pick any compact subset K ⊆ IR
not containing zero. Then,

θ(λx)−H(x)→ 0 as λ→ +∞

uniformly on x ∈ K.

Proof. There is some α > 0 such that α ≤ |x| for all x ∈ K. By property (S1), there is for each
ε > 0 some η > 0 such that |θ(y) −H(y)| < ε if |y| > η. Thus if λ > η/α it follows that also
|θ(λx)−H(λx)| < ε for all x ∈ K; since H(λx) = H(x), the desired conclusion follows.

Lemma 5.3 Let c, η be constants as in (S2), and assume that K ⊆ IR is compact. Then

λ

η

[
θ

(
1
λ

x− c− cλ

λ

)
− θ(c) +

η

λ
c

]
− x → 0 as λ→ +∞

uniformly on x ∈ K.

Proof. Multiplying by η, we need to show that

1
1/λ

[
θ

(
c +

x− c

λ

)
− θ(c)− η

(
x− c

λ

)]
→ 0

uniformly on x ∈ K. The numbers ε = x−c
λ are small as λ→ +∞, uniformly on K; thus what

is desired is that
θ(c + ε)− θ(c)− ηε = o(ε)

which is precisely property (S2).

Now Lemma 4.2 follows from the following one:

Lemma 5.4 If f is a (k,H)-net, S is a finite subset of IRN , θ is a sigmoid, and ε > 0 is given,
then there is a (k+1, θ)-net g with no direct input to output connections so that |f(u)−g(u)| < ε
for each u ∈ S.
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Proof. Without loss of generality (cf. Remark 3.3), we assume t+ = 1 and t− = 0. Arguing as
in Remark 3.4, we can assume that the expressions vi · sj − τi are all nonzero. Let K be the set
consisting of all these expressions. For each term of the form

wiH(vi · u− τi)

we can use an approximation
wi θ(λvi · u− λτi)

for large enough λ, by Lemma 5.2. For the linear term v0 · u, on the other hand,

v0 · u ≈ −
λ

η
θ(c) + c− λ

η
θ

(
1
λ

v0 · u−
c− cλ

λ

)
for large λ, by Lemma 5.3.

6 Upper Bounds

We first establish the upper bounds µ(k,H) ≤ k + 1 and µd(k,H) ≤ 2k + 2. Let f be as in (2)
with θ = H. The points u ∈ IR where

viu = τi, vi 6= 0, i = 1, . . . , k,

determine a partition of IR into at most k + 1 disjoint intervals where f must be linear, or
constant in the case of no direct connections. Thus in the latter case there can be at most k
sign alternations, and in the first (direct connections allowed) at most 2k+1 (since in each of the
k + 1 intervals, f can alternate sign at most once). Consider the set of points S = {0, 1, . . . , l},
and color these in an alternating fashion:

S+ := {0, 2, . . . , l} , S− := {1, 3, . . . , l − 1}

(if l even; similarly if l is odd). There are l sign alternations. If f implements this dichotomy
on S and is of the above form, it must follow from the above discussion that l ≤ 2k + 1 (or
l ≤ k if there are no direct connections). Using l = 2k + 2 (or k + 1 respectively), we conclude
that there is a set of cardinality 2k + 3 (or k + 2 respectively) which cannot be shattered, and
the bounds are proved.

Consider now a set S of l points arranged as the vertices of a regular l-gon in the plane, and
assume that l is even. Dichotomize S by using an alternating coloring. If f is a (k,H)-net, let
L1, . . . , Lk be the lines vi · u = τi, i = 1, . . . , k. (Assume all vi are nonzero; otherwise this just
contributes to the constant term, with a smaller k.) Each line Li crosses the l-gon in at most
two edges; perturbing weights if needed, we may assume that no Li passes through a vertex.

If f has no direct connections (v0 = 0), it must have the same value on any two adjacent
vertices that are not separated by some Li, contradicting the fact that f implements the di-
chotomy unless every edge is so separated. Thus if l = 2k + 2 it is impossible to dichotomize
with no direct connections. The same argument works with all small enough perturbations of
the set S, so

µ(k,H, 2) ≤ 2k + 1

as desired for Theorem 2.
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If instead direct connections are allowed, we argue as follows, with the same set S and the
same dichotomy. Consider the connected components of

IR2 \
k⋃
i=1

Li .

Since each line Li crosses the l-gon in at most two edges, there are at most 2k “segments” of
successive vertices in each component. Assume that some three successive vertices u1, u2, u3

are in the same component. The restriction of f to this component is a linear map, so the only
way for f to implement the above dichotomy on S is if the zero locus of f crosses both edges
(u1, u2) and (u2, u3). (In addition, there cannot be any set of four such successive vertices, as
these cannot be separated linearly.) Moreover, this zero locus is of the form

w0 + v0 · u + γ = 0

where γ is a constant that depends on the particular component. Since all these lines are
parallel, there can be at most two of them. Thus the vertices are arranged into at most two
segments of three successive vertices plus at most 2k − 2 segments of at most 2 vertices each.
It follows that

l ≤ 2(3) + 2(2k − 2) = 4k + 2 .

Consider the sets of cardinality l = 4k + 4 obtained as small perturbations of the above S. By
an analogous argument, none of these can be shattered by (k,H)-nets. So there is some open
class of sets of that cardinality none of which can be shattered, which implies that

µd(k,H, 2) ≤ 4k + 3

as desired for Theorem 2.

7 Lower Bounds

We use the notation “I < J” for intervals to mean that x < y whenever x ∈ I and y ∈ J . A
trivial but useful technical result is as follows.

Proposition 7.1 Let I1 < J1 < I2 < J2 < . . . < Ik < Jk be closed finite subintervals of IR,
and denote I :=

⋃
Ii, J :=

⋃
Ji. Then there exists a (k− 1,H)-net f so that f(x) > 0 for x ∈ I

and f(x) < 0 for x ∈ J .

Proof. Let c1, . . . , ck and τ1, . . . , τk−1 be any numbers separating the intervals:

I1 < c1 < J1 < τ1 < I2 < c2 < J2 < τ2 < I3 < . . . < τk−1 < Ik < ck < Jk

(with the obvious notation). Now pick w0 := c1 and for i = 1, . . . , k−1, wi := ci+1−ci. Finally,
let v0 := −1 and vi := 1 for i = 1, . . . , k− 1. This gives rise to a (k− 1,H)-net f . Since for any
x ∈ Ii

⋃
Ji it holds that f(x) = ci − x, the desired property holds.

We now prove the first two conclusions in Theorem 1. The upper bounds were already
established, so it is necessary to show that any 2k+2 or k +1-element set can be dichotomized,
depending on whether direct connections are allowed or not.
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Let S ⊆ IR have cardinality l = 2k, S = {y1, . . . , yl}, with y1 < y2 < . . . < yl. Now take
any dichotomy (S−, S+) of S. We shall assume that y1 ∈ S+; otherwise the argument is the
same (multiply the obtained f by −1). Thus there are disjoint closed finite intervals as in the
statement of Proposition 7.1 such that each yi ∈ S+ is in some interval Ij and each yi ∈ S− is
in some interval Jj . Any f as in the conclusion of the Lemma dichotomizes. This completes
the proof that µd(k,H, N) = 2k + 2.

In the case of no direct connections, we use a set of cardinality l = k + 1. The same
construction reduces the problem to the separation of intervals

I1 < J2 < I3 < J4 < . . . < Ik < Jk+1

and this can be easily achieved with a combination of k Heavisides, proving µ(k,H, N) = k +1.
We now indicate how to prove the first two statements in Theorem 3. These are consequences

of a result that appeared in [2], which we cite next:
Result. Pick any integer n ≥ 1. Let S be the set consisting of the vertices of the convex

regular n-gon in the plane. Assume that a dichotomy of S is given. Then, there exists some
vector v such that the dot products v.u, u ∈ S, fall into at most⌊n

2

⌋
+ 1

intervals such that each interval contains only elements of the type v ·u, u ∈ S− or only elements
of the type v · u, u ∈ S+.

Take any k, and apply this result with n := 4k + 3. There result 2k + 2 intervals. By
Lemma 7.1, the intervals can be separated by some (k,H)-net (with direct connections), and
again g(u) := f(v · u) can be used. For nets with no direct connections, the same argument
can be applied using n := 2k + 1 points; the resulting k + 1 intervals can be separated using k
processors and no connections.

8 Some Particular Activation Functions

Consider the last inequality in Theorem 1. For arbitrary sigmoids, this is far too conservative,
as the number µ can be improved considerably from 2k, even made infinite (see below). We
conjecture that for the important practical case θ(x) = σ(x) it is close to optimal, but the only
upper bounds that we have are still too high. For the piecewise linear function π, at least, one
has equality:

Lemma 8.1 µ(k, π) = 2k.

Proof. To prove this fact it is enough to show that

f(x) = w0 +
k∑
i=1

wi π(γix− τi)

can not implement the dichotomy of {1, 2, . . . , l} into odds and evens unless 2k ≥ l. Since f is
continuous, this will in turn follow from the fact that f cannot be zero on more than 2k − 1
disjoint closed intervals.

11



Indeed, assume without loss of generality that all γi > 0 (terms with γi = 0 can be absorbed
into w0), and let T be the set of all numbers of the form 1

γi
(τi − 1) and 1

γi
(τi + 1),

T := {t1, . . . , t2k}

with t1 ≤ t2 ≤ . . .. On each interval [ti, ti+1], as well as on (−∞, t1] and [t2k, +∞), the function
f is linear.

Assume that f vanishes precisely on the disjoint closed intervals Ij , j = 1, . . . , m. If for
some j, j′ it were the case that both Ij and Ij′ intersect one of the above intervals of linearity,
then f would have to be identically zero on that interval and therefore j = j′. Furthermore,
f is constant on (−∞, t1] and [t2k, +∞), so if any Ij intersects one of these it follows that no
other Ij′ can intersect [t1, t2] or [t2k−1, t2k] respectively. In conclusion, m ≤ 2k − 1, as wanted.

We show next that there exist sigmoids θ, as differentiable as wanted, even real-analytic,
where all classification measures are infinite. Of course, such a function θ must necessarily be so
complicated that there is no reasonably “finite” implementation for it. This remark is mainly
of theoretical interest, to indicate that, unless further restrictions are made on (S1)-(S2), far
better bounds can be obtained.

Lemma 8.2 There is some sigmoid θ, which can be taken to be an analytic function, so that
µ(1, θ) =∞.

Proof. First consider all possible ordered sequences of rational numbers

σi = (qi1, . . . , q
i
ni) , ni ≥ 1 , qi1 < . . . < qini

enumerated in any fixed way. Next define ρ1 := 1 and pick a sequence {ρr} so that, for every
l = 1, . . . , nr,

yrl := ρre
qrl > ρie

qij + 1

for all i = 1, . . . , r − 1 and j = 1, . . . , ri. By construction.

y1
1 < . . . < y1

n1
< y2

1 < . . . < y2
n2

< y3
1 < . . .

and the set of all yij ’s is a discrete subset of IR. One can then construct basically the infinite
product of the monomials (1−x/yij), multiplied by suitable exponential functions to guarantee
convergence, see [12], Theorem 15.9; this results in a real-analytic function α which has simple
zeroes at the yij ’s and no other zeroes. It follows that α alternates sign on the intervals between
consecutive yij ’s, since otherwise a local minimum would result at some yij and hence a zero of
multiplicity at least two. All yij 6= 0, so α(0) 6= 0. Composing if necessary with tanh, we may
and will assume that α is bounded. Define

θ(x) :=
1

1 + ex
α(ex) .

Since α is bounded,
lim

x→+∞
θ(x) = 0 6= α(0) = lim

x→−∞
θ(x)

and therefore θ satisfies (S1)-(S2).
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Now let I1 < J1 < I2 < J2 < . . . < Ik < Jk be as in Proposition 7.1. We wish to show that
there is some number τ so that f(x) = θ(x− τ) is positive on the Ii’s and negative on the Ji’s
—or viceversa, in which case −θ(x− τ) will be the desired net instead. Pick any 2k +1 rational
numbers separating the intervals,

q1 < I1 < q2 < J1 < . . . < Jk < q2k+1

and let σi be the sequence (q1, . . . , q2k+1). Denote ρ := ρi. Since α has constant and alternating
signs on the intervals (ρeqi , ρeqi+1), and since ρex is in such an interval whenever x ∈ (qi, qi+1),
the desired conclusion follows taking τ := − ln(ρ).

The above construction was somewhat complicated because we wanted µ(1, θ) = ∞. If
only µ and µ are desired to be infinite, one may also take far simpler examples, such as cosx
—modified slightly in order to obtain property (S1). More interesting perhaps is the fact that
one may find such examples, with infinite VC dimension, even if the extra requirement that θ
be strictly increasing is also imposed. For instance, consider

θ(x) :=
1
π

arctanx +
cos x

α(1 + x2)
+

1
2

(5)

where α is any fixed number larger than 2π. This function has limits 1, 0 at ±∞, and is
(real-)analytic. Moreover, its derivative is everywhere positive, since it can be written as

1
απ(1 + x2)2

[
α

2
s(x) + (x2 + 1)

(
α

2
− π sin x

)]
where

s(x) =
(

x2 − 4πx cos x

α
+ 1

)
,

and this last expression is itself always positive because as a quadratic form in x its discriminant
satisfies

∆/4 =
(

2π cos x

α

)2

− 1 < 0 .

A plot of this function θ (with α = 100) is given in Figure 3.
We now prove that

µ(2, θ, 1) =∞

(so also the VC dimension µ(2, θ, 1) = ∞) for the function in Equation (5). Consider the
auxiliary function

ρ(x) := θ(x) + θ(−x)− 1 =
2 cos x

α(1 + x2)
(6)

and fix an arbitrary positive integer l. We need to obtain a dense class of sets S, each having
cardinality l, such that each S can be shattered by (1, ρ)-nets (and hence also by (2, θ)-nets,
which is the desired conclusion).

Indeed, take any set S consisting of rationally independent points x1, . . . , xl. From, e.g.,
Theorem 3.2 and Lemma 2.7 in [10], we may conclude that the values of (wx1, ...., wxl) modulo
2π are dense in [0, 2π]l, as w ranges over IR (in fact, even restricting to positive integer multiples
w one would still obtain density). It follows that the vectors of the form

(cos(wx1), . . . , cos(wxl))

13



form a dense subset of [−1, 1]l. Thus the vector

(ρ(wx1), . . . , ρ(wxl))

can achieve any desired sequence of signs, by picking appropriate weights w. This gives the
shattering result.

9 Interpolation

In this Section we deal with the following approximate interpolation problem. Given a sequence
of k (distinct) points u1, . . . , uk in RN , any ε > 0, and any sequence of real numbers y1, . . . , yk,
as well as some class F of functions from IRN to IR, we ask if there exists some

f ∈ F so that |f(ui)− yi| < ε for each i . (7)

Let
λ(F)

be the largest integer k ≥ 1, possibly infinite, so that for every set of data as above (7) can be
solved. Note that, obviously,

λ(F) ≤ µ(F) . (8)

We may also introduce λ(F) and λ(F) in a manner analoguous to that of µ and µ. However,
no nontrivial results will be provided for them except for some relatively minor remarks.

By exactly the same argument as in proving Lemma 5.1, λ is independent of the dimension
N when applied to nets. Thus we let λd(k, θ) and λ(k, θ) be respectively the values of λ(F)
when applied to (k, θ)-nets with or without direct connections, for any input dimension, and
we always assume in proofs that N = 1.

9.1 Interpolating With k Processors

We first remark that the inequality

λ(k, θ) ≥ k + 1 (9)

holds under minimal assumptions on θ. Moreover, exact interpolation at k + 1 points with a
(k, θ)-net is in general possible. (See for instance [1], [11] for previous proofs of this result, under
somewhat more restrictive assumptions.) The following very easy technical fact is all that is
required; it says that for any linear class of functions which solves the approximate interpolation
problem on a set S, it is enough to use k generators of this class in order to interpolate at k
points.

Lemma 9.1 Let {fδ : IRN → IR, δ ∈ ∆} be a set of functions, and let F be the linear space
of functions IRN → IR spanned by this set. Let

S = {u1, . . . , uk}

be a finite set of points in IRN so that the following property holds: for each ε > 0 and each
sequence of real numbers y1, . . . , yk, there is some f ∈ F so that (7) holds. Then the following
stronger property also holds: For every sequence of real numbers y1, . . . , yk, there are

δ1, . . . , δk ∈ ∆ and w1, . . . , wk ∈ IR
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such that, writing

f :=
k∑
i=1

wifδi ,

it holds that f(ui) = yi for each i = 1, . . . , k.

Proof. Let S be as given, and denote, for each sequence δ1, . . . , δl of elements of ∆:

Φ(δ1, . . . , δl) :=

 fδ1(u1) · · · fδl(u1)
...

. . .
...

fδ1(uk) · · · fδl(uk)

 ∈ IRk×l .

Pick an ε > 0 such that

C ∈ IRk×k , ‖C − I‖ < ε ⇒ C nonsingular , (10)

where we denote ‖A‖ :=
∑ |aij | for any matrix A. Now consider the approximate interpolation

problem
f(u1) = 1 , f(uj) = 0 , j 6= 1 .

Let

f =
l∑

i=1

wifδi

solve this problem with tolerance ε. Thus

Φ(δ1, . . . , δl)W1

is at distance less than ε from the first column col (1, 0, . . . , 0) of an identity matrix, where
W1 = col (w1, . . . , wl). Repeating with each interpolation problem

f(ui) = 1 , f(uj) = 0 , j 6= i

and padding with zeroes as necessary the corresponding vectors W1, W2, . . ., there results the
existence of a set of indices {δ1, . . . , δq} and a matrix W ∈ IRq×k, for some integer q, so that
C = Φ(δ1, . . . , δq)W satisfies (10). We conclude that the matrix Φ(δ1, . . . , δq) has rank k.
Picking a subset of k linearly independent columns, after reordering we may assume that

V := Φ(δ1, . . . , δk)

is nonsingular. Now the equalities f(ui) = yi can be achieved by simply solving for w the linear
equation V w = col (y1, . . . yk).

Remark 9.2 In the above proof, note that if δ0
1, . . . , δ0

r are such that the corresponding matrix
Φ(δ0

1 , . . . , δ0
r ) is already known to have rank r then one may always take the first r columns of V

to correspond to these indexes δ0
i , i = 1, . . . , r (just add these columns to Φ(δ1), . . . ,Φ(δq), and

then pick a basis that includes them). In particular, we may apply the Lemma to the case of
(k−1, θ)-nets (use the constant function f ≡ 1 as the first element), and this will give equation
(9) assuming that approximate interpolation employing any number of processors is possible.2
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Remark 9.3 For nets with direct connections allowed, and if S contains at least N +1 affinely-
independent elements, the projections f(u) = ui can be used as initial basis elements in addition
to the constant f ≡ 1. So only k −N − 1 processors are needed in that case. This shows that
for sets in general position, k + N + 1 points can be exactly interpolated using (k, θ)-nets with
direct connections. 2

The only property needed for the above two remarks to apply is that of approximate in-
terpolation at any set S, with no prior constraint on how many processors are used –see for
instance [5] for approximate interpolation. This property holds in particular if θ is so that nets
with processors of type θ are dense in the set of continuous functions on a real interval (with the
uniform convergence topology). Examples of such θ’s are H or ([7]) any continuous bounded
nonconstant function.

9.2 Interpolating with k/2 processors

The main technical fact is as follows:

Proposition 9.4 Assume that θ is a continuous sigmoid. Given any 2n + 1 (distinct) points
x0, . . . , x2n in R, any ε > 0, and any sequence of real numbers y0, . . . , y2n, there exists some
(n + 1, θ)-net f such that |f(xi)− yi| < ε for each i.

Before proving this Proposition, we establish an easy technical result:

Lemma 9.5 Let θ be a continuous sigmoid. Assume given real numbers p, q, α, β, ε, δ so that
ε > 0, δ > 0, and α < q < β. Then, there exists some real numbers a, b, c, d so that, if
f(x) := d + aθ(bx + c), then the following properties hold:

1. f(p) = q.

2. |f(x)− α| < ε for all x ≤ p− δ.

3. |f(x)− β| < ε for all x ≥ p + δ.

Proof. We assume that t+ = 1 and t− = −1 in the definition of sigmoid (cf. Remark 3.3). Let
ρ > 0 be smaller than β − q, q − α, and ε. Consider the function

g(ξ) :=
β − α

2
θ(ξ) +

β + α

2
.

Note that g(ξ) approaches α, β at −∞, +∞, so there is some K > 0 so that |g(ξ) − α| < ρ if
ξ ≤ −K and |g(ξ)− β| < ρ if ξ ≥ K. Pick any γ > 2K/δ and define for this γ, f0(x) := g(γx).
Then,

|f0(x)− α| < ρ if x ≤ −δ/2

and
|f0(x)− β| < ρ if x ≥ δ/2 .

As f0(δ/2) > β − ρ > q and f0(−δ/2) < α + ρ < q, by continuity of f0 (here we use that θ is
continuous) there must be some u ∈ (−δ/2, δ/2) so that f0(u) = q. Finally, we let

f(x) := f0(x + u− p) .
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Clearly this satisfies f(p) = q. For any x ≤ p − δ it holds that z := x + u − p ≤ −δ/2, so
|f(x)− α| = |f0(z)− α| < ρ < ε, as desired. The property for x ≥ δ/2 is shown analogously.

Now we prove Proposition 9.4. Assume that we have already proved that for any two
increasing sequences of real numbers

x0 < x1 < . . . < x2n and z0 < z1 < . . . < z2n (11)

there is some (n, θ)-net so that
|f(xi)− zi| < ε/2 (12)

for each i. The result then follows from here. Indeed, given the original data, we may assume
that the xi are already in increasing order (reorder them, if necessary). Now pick any real d so
that

d >
yi − yi+1

xi+1 − xi
(13)

for all i = 0, . . . , 2n− 1. Letting zi := xid + yi, these are now in increasing order. Let f be so
that equation (12) holds for each i. By Lemma 5.3, there are some numbers a, b, c, e so that

|a + eθ(bxi + c) + dxi| < ε/2

for each i. Then |f(xi) + a + eθ(bxi + c)− yi| < ε is a (n + 1, θ)-net as wanted.
Thus, we must prove the result for the particular case of increasing sequences (11), which

we do via an argument somewhat analogous to that used in [5] for showing the (weaker) fact
that one can approximately interpolate n points using n− 1 processors. We show inductively:

Given data (11) and any ε > 0, there exists an (n, θ)-net f so that

|f(xi)− zi| < ε for each i = 0, . . . , 2n (14)

and
|f(x)− z2n| < ε for all x ≥ x2n . (15)

For n = 1 this follows from Lemma 9.5, by choosing p = x1, q = z1, α = z0, β = z2, and δ
less than x1 − x0 and x2 − x1. Assume now that an (n − 1, θ)-net f1 has been obtained for
x0, . . . , x2n−2 and z0, . . . , z2n−2, and so that

|f1(xi)− zi| < ε/2 for each i = 0, . . . , 2n− 2 (16)

and
|f1(x)− z2n−2| < ε/2 for all x ≥ x2n−2 . (17)

Note that this last inequality holds in particular for x2n−1 as well as for all x ≥ x2n. Now let
f2 be as in Lemma 9.5, with δ less than x2n−1−x2n−2 and x2n−x2n−1, α = 0, β = z2n− z2n−2,
q = z2n−1 − z2n−2, and p = x2n−1, and so that

|f2(x)| < ε/2 for all x < x2n−1 − δ (18)

and
|f2(x)− β| < ε/2 for all x > x2n−1 + δ . (19)

It follows that f := f1 + f2 is as desired for the inductive step. This completes the proof of the
Proposition.
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We now summarize properties of λ. The next result should be compared with Theorem 1.
The main difference is in the second equality. Note that one can prove λ(k, θ) ≥ λd(k − 1,H),
in complete analogy with the case of µ, also as a consequence of Lemma 5.4, but this is not
sufficient anymore to be able to derive the last inequality in the Theorem from the second
equality.

Theorem 4 For any continuous sigmoid θ, and for each k,

λ(k,H) = k + 1
λd(k,H) = k + 2

λ(k, θ) ≥ 2k − 1 .

Proof. The first equality is easy, and the last one follows from Proposition 9.4. The inequality
λd(k,H) ≥ k+2 follows from Remark 9.3, as two distinct points are always affinely independent.
We now prove the remaining inequality λd(k,H) ≤ k + 2.

Consider the problem of interpolating at the points

{1, 2, . . . , k + 3}

and the respective desired values
{0, 1, 0, 2, 0, 3, . . .}

(that is, odds should be mapped to zero, and even numbers of the form 2l into l). Assume that

f(u) = w0 + v0u +
k∑
i=1

wiH(viu− τi)

would solve the approximate interpolation problem for this data, with, say, ε = 0.2. Without
loss of generality, we may take all vi = 1.

Consider the possible points of discontinuity x = τi. AsH, and therefore also f , is continuous
from the left, we may shift f into a map of the form f(u − δ), δ > 0, with δ small enough so
that the new f still interpolates to within ε accuracy, and τi + δ is not an integer for any i. So
we will assume from now on that τi is not an integer.

Since there are only k points of the form τi, there must be two integer intervals, say [l, l +1]
and [m, m+1], with l and m in the range {1, 2, . . . , k +2}, that contain no such point. In each,
f is an affine map

f(u) = v0u + αi

(where αi depends on the interval). The slope v0 of f on each interval is the same, but as
calculated at the endpoints the slopes must be different (since they must be at distance less
than one from distinct integers, by the choice of interpolation data). Thus no such net can
exist.

Remark 9.6 One may expect that, under weak extra hypotheses, it should be possible to
interpolate at 2k, rather than 2k − 1, points. Note that for k = 2 this is easy to achieve: just
choose the slope d so that some zi−zi+1 becomes zero and the zi are allowed to be nonincreasing
or nondecreasing. The same proof, changing the signs if necessary, gives the wanted net. Below
we prove that when θ = π, the piecewise linear sigmoid, this bound is always achieved. 2

18



9.3 Interpolation for Some Particular Activations

The previous results show that one can approximately interpolate at any 2k − 1 points using
only k sigmoidal processors. We now prove that, for the standard sigmoid , this approximate
interpolation property holds in the following stronger sense: for an open dense set of 2k − 1
points, one can achieve an open dense set of values. (In this sense, for “generic” data at 2k− 1
points the interpolation problem can be solved.)

Remark 9.7 Note that in general approximate interpolation fails to imply the stronger prop-
erty. To illustrate the difference, start with any smooth map ρ : IR → IR2 which has a dense
image D. Next let

f(x, δ) := ρ1(δ) + xρ2(δ) ,

seen as a function of x parameterized by δ. Given any two distinct points x1, x2 ∈ IR, the
possible pairs (f(x1, δ), f(x2, δ)), as δ varies, describe a dense subset of IR2. This is because(

f(x1, δ)
f(x2, δ)

)
= Tx1,x2

(
ρ1(δ)
ρ2(δ)

)
,

where
T =

(
1 x1

1 x2

)
is nonsingular. By Sard’s Theorem, however, this set of pairs (f(x1, δ), f(x2, δ)) has measure
zero, as the differential of the map δ 7→ f(x1, δ), f(x2, δ) has everywhere rank ≤ 1. Thus, the
family of functions F = {f(·, δ), δ ∈ IR} is so that for every pair x1 6= x2 one can solve the
approximate interpolation problems f(x1, δ) = y1, f(x2, δ) = y2 to any desired accuracy, but
on the other hand for no possible pair {x1, x2} does the set of achievable pairs (y1, y2) have
nonzero measure.

Another example of the same phenomenon, this one closer to nets, uses the sigmoid θ
introduced in Equation (5). We claim that for every integer k, any k rationally independent
numbers {x1, . . . , xk}, any k real numbers {y1, . . . , yk}, and any ε > 0, there is some (2, θ)-net
f which satisfies (7). Indeed, consider the function ρ introduced in (6). Take a sequence of real
numbers ωn →∞ so that, for each j = 1, . . . , k,

cos ωnxj → q

(
xj
x1

)2

yj as n→∞ ,

where q is any number so that q(xj/x1)2yj ∈ [−1, 1] for all j. Now let

fn(x) :=
α(1 + w2

nx
2
1)

2q
ρ(wnx) ,

which is computable by a (2, θ)-net for each fixed n. It follows that fn(xj)→ yj as n→∞, as
desired. Again we conclude that approximate interpolation is possible (except, in this case, for
those {x1, . . . , xk} that are rationally dependent), but for each given set {x1, . . . , xk} the set of
possible values (f(x1), . . . , f(xk)), as f ranges over all possible (2, θ)-nets, has measure zero if
k > 7 (the number of parameters).

The content of the next result is that using special properties of the standard sigmoid one
can obtain the stronger generic interpolation result. 2
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The result for the standard sigmoid will be a consequence of the following more general
technical fact. We write imT for the image of a mapping T and intS for the interior of a set
S.

Lemma 9.8 Let Φ : IRr × IRs → IRt be a real-analytic mapping. Assume that there is some
open dense subset X0 ⊆ IRr so that

for each fixed x ∈ X0 , im Φ(x, ·) is dense in IRt (20)

and that there exists some x0 ∈ X0 such that one can factor Φ(x0, ·) in the following manner:

Φ(x0, α) = R(φ(α)) for all α ∈ IRs (21)

where φ : IRs → IRq is a mapping so that int imφ 6= ∅, for some positive integer q, and
R : IRq → IRt is a rational function having no poles on the image of φ.

Then, there exists an open dense subset X1 ⊆ IRr so that

for each fixed x ∈ X1 , imΦ(x, ·) contains an open dense subset of IRt . (22)

In particular, this implies that s ≥ t.

Proof. Consider the map R. As it is rational, its image is a semialgebraic set, that is, a finite
union of sets of the form Ai

⋂
Φi, where each Ai has the form {x | f(x) > 0} and each Φi has the

form {x | f(x) = 0}, for suitable polynomials f . (This is the Tarski-Seidenberg, or “generalized
Sturm’s” Theorem; see for instance [8], VI.10.) Since Φ(x0, ·) = R ◦ φ, the image of R must
also be dense, so no proper sets of type Φi may appear. Thus imR contains an open set, from
which it follows from Sard’s Theorem that R must have a nonsingular Jacobian at some point,
and hence at almost all points in its domain (by analyticity). In particular, R must have a
nonsingular Jacobian at some point of int imφ, so by the Implicit Mapping Theorem it follows
that int imR ◦ φ is nonempty too. Again from Sard’s Theorem, this time applied to Φ(x0, ·),
this means that ∂Φ

∂α (x0, α0) has rank t for some α0 ∈ IRs (and in particular s ≥ t).
Now let

X1 :=
{

x ∈ X0

∣∣∣ rank
∂Φ
∂α

(x, α0) = t

}
which is again open dense, because of analyticity of ∂Φ

∂α (·, α0). For each fixed x ∈ X1 the set

Ax :=
{

α
∣∣∣ rank

∂Φ
∂α

(x, α) = t

}
is open dense, by analyticity. Let Φx be the restriction of Φ(x, ·) to Ax. The image of Φ(x, ·)
is dense (because x ∈ X1 ⊆ X0), so density of Ax in IRs implies that Φx(Ax) is also dense.
Moreover, Φx is an open mapping, since it has nonsingular differential at every point, so the
image of Φx is an open dense subset of IRt.

Remark 9.9 The above Lemma can be applied to the interpolation problem with the standard
sigmoid (3). Just take

Φ((u1, . . . , u2k−1), α) :=

 f(u1, α)
...

f(u2k−1, α)

 (23)
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where f(u, α) is the map (2) (with no connections, i.e. v0 = 0,) and α is the vector consisting
of all the weights w0 as well as wi, vi, τi, i = 1, . . . , k which appear in (2). (Thus r = (2k−1)N ,
s = 1 + (2 + N)k, and t = 2k − 1 in the Lemma.) Property (20) holds by Proposition 9.4,
with X0 = IRr. Property (21) holds if we take as x0 any vector (u0

1, . . . , u
0
2k−1) where the

u0
i ’s are 2k − 1 distinct vectors with integer coordinates. When x0 is like this, Φ(x0, ·) can be

expressed as a rational function of the wi’s and of the exponentials of both the scalars τi’s and
the coordinates of the vectors vi’s. Thus one can take q = s, and the map φ in the Lemma
is obtained by taking either an identity or an exponential in each coordinate (and is hence a
diffeomorphism with its image, which implies that the image has nonempty interior, as needed
for the Lemma). 2

Another interesting example is that of the piecewise linear sigmoid π introduced in Equation
(4). We next show that

λ(k, π) = 2k (24)

(not just 2k−1). The upper bound is a consequence of Lemma 8.1 and Equation (8). To prove
that 2k points can be interpolated, in fact exactly , not just approximately, we modify the proof
of Proposition 9.4 as follows.

Assume given an increasing sequence of 2n + 2 points x−1 < x0 < x1 < . . . < x2n in IR as
well as 2n + 2 desired interpolation values y−1, y0, . . . , y2n. We will show the existence of an
(n + 1, π)-net so that f(xi) = yi for i = −1, . . . , 2n.

Without loss of generality, we may assume that y−1 ≥ y0 (multiply everything by −1
otherwise) and that x0 = 0 (translate if necessary). As before, pick a d so that (13) holds but
now ask in addition that d > y0−y−1

x−1
≥ 0, so that not only are the zi = xid + yi increasing for

i = 0, . . . , 2n, but also

x−1 <
y0 − y−1

d
.

Now find an (n, π)-net which interpolates f(xi) = zi for i ≥ 0 and also satisfies f(x) = z0 = y0

for all x ≤ x0 = 0 (same proof as before works, except that now one can easily show that the
interpolation is exact).

The final interpolation function will have the form f(x) + q(x), where q(x) is a (1, π)-net.
Thus we need

q(xi) = −xid, i = 0, 1, . . . , 2n

and q(x−1) = y−1 − y0 (this last equality because f(x−1) = y0). This can be achieved by any
(1, π)-net which has the constant value y−1 − y0 for all x ≤ y0−y−1

d and which coincides with
the linear map q(x) = −xd for x ∈ [y0−y−1

d , x2n]. This completes the proof of (24).

9.4 Particular Sets of Points

In the case of classification, whereas not every set of cardinality k + 2 can be shattered by
(k,H)-nets, (or 2k + 3 if allowing direct connections,) it is true that some sets of cardinality
2k + 1 (or 4k + 3 with direct connections) can be shattered in IR2. It is then natural to ask if
a similar situation occurs for interpolation, that is, if by choosing appropriate points in IRN ,
N > 1, one may be able to achieve interpolation at more than k + 1 points (or k + 2, if direct
connections are allowed). We next show that, at least for the case of Heaviside nonlinearities,
such an improvement is essentially impossible.
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Fix any set of p points u1, . . . , up in IRN , and consider the mapping

Φ(α) =

 f(u1, α)
...

f(up, α)


as earlier, where

α = (~w,~v, ~τ) ∈ IR(k+1)+Nk+k

is the set of all weights appearing in a (k,H)-net with no direct connections. (In the case where
direct connections are allowed, the notation will be the same, but now α will be a vector of size
N(k + 1) + k.) For each binary matrix E = (eij) ∈ {0, 1}p×k let

XE := {α |H(vj · ui − τj) = eij for each i = 1, . . . , p and j = 1, . . . , k} .

Then, the image of Φ is the (finite) union of the images of the restrictions to each of the (possibly
empty) sets XE . On the other hand, each such restriction is the map

(~w,~v, ~τ) 7→ Ê ~w

where

Ê =

 1
... E
1

 ∈ {0, 1}p×(k+1)

and hence is a subspace of dimension at most k +1. We conclude that the image of Φ is a finite
union of subspaces of IRp of dimension no greater than k + 1. Thus a dense set of values can
only be obtained if p ≤ k + 1, which is the result that we had for arbitrary points. Thus, with
the obvious definition,

λ(k,H, N) = λ(k,H, N) = k + 1 .

In the case of direct connections, the restrictions to each set XE are of the form (Ê ~w+ linear
map on IRN ) and thus the image is a subspace of dimension ≤ k +1+N . Therefore, no matter
what the set of points is, one cannot obtain a dense set of values unless p ≤ k+1+N . Together
with Remark 9.3, one concludes that (again with the obvious notation)

λd(k,H, N) = λ
d(k,H, N) = k + 1 + N .

Though for N > 1 this is larger than λd(k,H, N) = k+2, we only gained a constant (independent
of the number of processors k) improvement.

10 Conclusions and Remarks

Our main conclusions can be summarized as follows. For any θ, let

µ(θ) := lim inf
k→∞

µ(k, θ)
k

.

Thus, roughly speaking, we are guaranteed that kµ(θ) points can always be shattered when
using (k, θ)-nets. Similarly we may define µd for the case of direct connections, and we may
analogously define λ for interpolation problems.
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With these notations, we proved that

µ(H) = 1 , µd(H) = 2 , µ(θ) ≥ 2 .

where the last inequality holds for any sigmoid θ that satisfies (S1)-(S2). (In particular, µ(π) =
2, but it can even happen that µ(θ) = ∞ for suitable θ’s.) In contrast, for interpolation we
had:

λ(H) = 1 , λd(H) = 1 , λ(θ) ≥ 2 ,

where the last inequality holds for any continuous sigmoid θ that satisfies (S1)-(S2). (In par-
ticular, λ(π) = 2; and also λ(θ) ≥ 1 even if continuity or (S1)-(S2) do not hold, but under very
weak nonlinearity assumptions.) These results hold independently of the input dimension N .
Note that a parameter count would suggest λ ≤ 3, and indeed such a bound holds in the case of
the standard sigmoid, as results from the facts on “generic” interpolation discussed in Remark
9.9.

Various upper bounds were given for µ. For the VC dimension µ, the results given were for
the case N = 2: Letting

µ(θ) := lim inf
k→∞

µ(k, θ, 2)
k

and similarly for µd, we have:

µ(H) ≥ 2 , µd(H) ≥ 4 , µ(θ) ≥ 4

(the latter if (S1)-(S2) hold).
It is known from [3] that µ(H) ≥ N for any input dimension N . We conjecture that if

(S1)-(S2) hold then
µ(θ) ≥ 2N

for all N , not just N = 2, and similarly that µd(H) ≥ 2N in general. Unfortunately, our proofs
of these facts for N = 2 are based on the result from [2] regarding arrangements of points in
the plane, a fact which does not generalize to dimension three or higher (S. Suri has shown
—personal communication— that for any k-element set in IR3 there are dichotomies for which
no family of less than k

2+ε parallel hyperplanes can partition the space into single-class regions,
where ε is some number smaller than 0.2).

For a measure of interpolation similar to µ, we showed that still λ(H) = 1 and λ
d(H) = 1

hold, independently of the dimension N . For sigmoids, however, it may happen that λ(θ) =∞
(c.f. Remark 9.7).

One may also compare the power of nets with and without connections, or threshold vs
sigmoidal processors, on Boolean problems. For instance, it is a trivial consequence from
the given results that parity on n bits can be computed with dn+1

2 e hidden sigmoidal units
and no direct connections, though requiring (apparently, though this is an open problem) n
thresholds. In addition, for some families of Boolean functions, the gap between sigmoidal nets
and threshold nets may be infinitely large: in [9] the authors prove in particular that the class
of functions of 2n Boolean variables

Fn(x1, . . . , xn, y1, . . . , yn) := MAJ (x1, . . . , xn)⊕MAJ (y1, . . . , yn)

(where MAJ indicates majority function) can be computed with (5, θ)-nets, independently of n,
as long as θ be “nonlinear” enough (for instance, if θ is twice differentiable and satisfies (S1),)
but there is no possible fixed integer l so that every Fn can be computed by some (l,H)-net.
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In the recent work [14], the author has studied certain representation properties of two-
hidden-layer nets, in comparison to the single-layer nets studied here (see also [4]). The results
in that reference do not deal with numbers of units needed, however.
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