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SUMMARY 
This paper studies various stability issues for parametrized families of systems, including problems of 
stabilization with respect to sets. The study of such families is motivated by robust control applications. 
A Lyapunov-theoretic necessary and sufficient characterization is obtained for a natural notion of robust 
uniform set stability; this characterization allows replacing ad hoc conditions found in the literature by 
more conceptual stability notions. We then use these techniques to establish a result linking state-space 
stability to ‘input to state’ (bounded-input bounded-state) stability. In addition, the preservation of 
stabilizability under certain types of cascade interconnections is analysed. 
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1. INTRODUCTION 

Questions of stability for parametrized families of nonlinear systems have long attracted much . 

research attention; see for instance References 5 ,  4 and 2, and the references there. In this 
paper, we show how to characterize uniform stability precisely in terms of Lyapunov 
functions, and, moreover, how to do so when stability with respect to an invariant subset is 
of interest. (Our notion of robust uniform set stability for parametrized systems reduces to the 
one routinely used in the control literature when the set of interest is just an equilibrium.) A 
necessary and sufficient characterization is obtained, which allows the replacing of ad hoc 
conditions often found in the literature by more conceptual stability notions. A basic tool is 
provided by the converse Lyapunov theorem established in Reference 8. 

In operator-theoretic studies of systems, the central interest is usually on a notion of ‘input 
to state’ stability (ISS) defined in terms of finiteness of gains (operator norms). As shown in 
Reference 12, and since explored by many other authors, a more natural notion for nonlinear 
systems is one in which the size of the state must satisfy a nonlinear estimate in terms of the 
initial state and the size of the control. In that reference, it was shown that, with this notion, 
a system is stabilizable with respect to an equilibrium if and only if it is inputlstate stabilizable. 
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In Reference 8, this result was generalized to stability and ISS with respect to sets, using the 
above mentioned converse theorem. Here, we show how these results can be extended to deal 
with families of systems (and stability with respect to sets). The extension is fairly 
straightforward, but it is complicated by the fact that the Lyapunov function then depends on 
the parameters, which is not desirable in robust control applications. Thus we have to work 
harder in order to provide sufficient conditions under which a more uniform function exists. 

One application of our techniques is in the study of the preservation of stability under 
cascades with integrators. This is the critical ingredient in the 'backstepping technique' 
currently popular; see for instance the textbook, Reference 13, Section 4.8, and references 
therein, for stabilization, and Reference 7 for many other issues. It is a natural extension of 
these studies to investigate the same question for parametrized families. Here the uncertainty 
caused by the presence of unknown parameters makes the problem far harder, and results for 
systems without parameters cannot be generalized in a straightforward manner to families. 
When studying stabilizability for parametrized nonlinear systems, much work classically 
imposed restrictive 'matching conditions' on uncertainties; see, for example, References 1, 4 
and 5. In later work, such as for instance References 2, 11 , 14 and 3, conditions were dropped 
and various local results were obtained. In their recent paper, Reference 6, Imura, Sugie, and 
Yoshikawa were able to give a general theorem on preservation of stability under cascades, for 
parametric families under no matching conditions. In the last section of our paper, we show 
how to apply our approach to generalize their result in various ways, especially relaxing their 
exponential stability conditions. 

2. STABILITY OF PARAMETRIZED SYSTEMS (NO CONTROLS) 

We start by giving a number of definitions that apply to parametrized families, first for systems 
with no controls and later with controls. These definitions apply in particular to systems that 
do not depend on parameters, of course. Some important facts and basic concepts about set 
stability for nonlinear systems without parameters are needed throughout the paper; we refer 
the reader to the Appendix and Reference 8 for these. In particular, the concepts of a, %9 
and %-functions, needed in the next definition, are recalled in the Appendix. 

Consider a parametrized family of systems of the following type: 

where the state x ( t )  E I?" for all t ,  the parameter pE R', and f is a smooth map from R"" to 
R". In particular, for each fixed p, f ( -  , p )  is a smooth vector field on R". Here we assume that 
for each fixed parameter p, the system (1) is complete and we use x,,(t,xo) to denote the 
solution at time t E I? of (l), with initial state x(0) = xo and parameter value p. A system with 
no parameters is one in which f is independent of p. 

We say that a closed (not necessarily compact) subset d o f  R" is an invariant set of (1) if 
it is an invariant set of i = f (x ,  p )  for each fixed p. Throughout this work we assume that the 
following property holds for d: 

where I x lrd denotes the standard point-to-set distance, i.e., 

I x 

Note that when d= (0), I x l.d= 1 x I is the usual Euclidean norm. 

d ( x ,  d) = inf d ( x ,  z )  
ZE,d 
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De$nition 2. I 

asymptotically stable (RUGAS) with respect to the set .d if the following properties hold: 
Let d be a closed invariant set of (1). We say that (1) is robustly uniformly globally 

1. Robust uniform stability. There exists a &-function 6 (  * ) such that for any E > 0 given, 

(x , ( t ,  xo) Id< E for all p, all t 2 0 

provided 1 xo I.s < a(€). 
2 .  Robust uniform attraction. For any r, E > 0, there exists a T > 0, such that 

I x,(t, X O )  1.d < E for all p 

whenever I xo 1.d < r and t 2 T. 

asymptotically stable' (UGAS) with respect to the set d. 
For systems with no parameters, we simply say that the system is 'uniformly globally 

When dconsists just of an equilibrium point, UGAS reduces to the usual notion of global 
asymptotic stability. 

One can study the stability of a parametrized family of systems by studying the stability of 
the following augmented system (with no parameters): 

,i = f ( x ,  p ) ,  il= 0 (2) 
in which both x and p are treated as states. To make notations simpler, we use ( x ,  p )  to denote 
the column vector 

and similarly, use ( f , O )  to denote 

Let z = ( x ,  p ) ,  F = (f, 0); then the above system can be written as 

i = F ( z )  (3) 
Note that system (1) is RUGAS with respect to d i f  and only if system (3) is UGAS with 

respect to d x  I?'. Consequently, the stability of a parametrized family of systems with respect 
to an equilibrium xo is equivalent to the stability of its augmented system with respect to the 
invariant set 1x0) x IR'. 

The following characterization of the RUGAS property follows from Proposition A. 1 in the 
Appendix: 

Proposition 2.2 

exists a x9-function 0 such that, given any initial state XO, the solution x,(t,xo) satisfies 
The system (1) is RUGAS with respect to a closed, invariant set d G  IR" if and only if there 

IX, ( t ,XO)Idf  O(IxoI.Sst) 

for all p and all t 2 0. 
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It is well-known that Lyapunov functions provide a powerful tool for studying stabilizability 
of systems. We define Lyapunov functions for parametrized families of systems in the 
following way: 

Dejnition 2.3 

Let d be a nonempty, closed, invariant set of (1). A smooth Lyapunov function for  the 
parametrized family of systems (1) with respect to d is a smooth function V: IR" x IR' + IR 
satisfying, with the notation Vp(E)ef V(€,  p ) :  

1. there exist two %-functions a1 and a2 such that 

al(l E Id Q V,(E) Q a z ( l  E 104 
for any p c  R' and any E E  R"; 

2. there exists a continuous, positive definite function a3 such that 

For d= (0), Lyapunov functions for parametrized families as in the above definition are 
routinely assumed in robust control studies; see for instance References 5 ,  4 and 2. Applying 
Theorem 3 in the Appendix for the augmented system (3) for families of systems (l), one 
obtains the following result: 

Theorem 1 

invariant set d i f  and only if it admits a smooth Lyapunov function V with respect to d. 
A parametrized family of systems (1) is RUGAS with respect to a nonempty, closed, 

Remark 2.4 

Note that we made the blanket assumption that the system is complete. This property is 
needed in the technical proof of the converse Lyapunov theorem given in Reference 8. 
However, this assumption turns out to be superfluous in the case in which the closed invariant 
set d i s  compact. This can be shown by the following argument: 

First observe that, for any given smooth (in fact, just continuous) map f (2, p ) ,  there exist 
two smooth scalar functions a ( x )  and b ( p )  such that a ( x )  2 1, b ( p )  2 1, and 
I f ( x , p )  I Q a ( x ) b ( p )  for all xE R" and P E  R'. The existence of a ( x )  and b ( p )  follows from 
the following argument. 

For each integer i, let Ci = (xE R" : I x I Q i ]  and let Di = ( p  E R': I p I Q i )  . Let 

Ci=max 1, sup I f (x ,a ) l )  t ( X , I O € C z X D ,  

Then it holds that 

If(x,  p )  I < C i c j ,  V(x, E Ci X Dj (4) 

Let ui ( x )  be a nonnegative smooth function such that ui ( x )  = 1 if x E Ci\Ci - 1, and ui ( x )  = 0 
if x $ C i + l  or xECi-2, where Ci=0 if i g  0. Let 

00 

( Y ( x ) =  2 ciui(x) 
i =O 
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Then a ( x )  2 ci if X E  Ci\Ci-I. Similarly, there exists a nonnegative smooth function b ( p )  such 
that b ( p )  2 cj if p c  DjWj-1 .  For any ( x , p )  E IR" x IR', there exist i and j such that 
x E Ci\Ci - 1 and p E D j W j -  1. From (4), it follows that 

I f (x ,p)  I Q cicj Q a ( x ) b ( ~ )  

Hence, a(x )  and b ( p )  are the desired functions. 
Now, to system (l), we associate the following system: 

Because the right-hand side is bounded in norm on x,  for each fixed p (by b ( p ) ) ,  the system 
( 5 )  is complete, i.e., x,(t,xo) is defined for all t E R for every fixed parameter p. Furthermore, 
it can be shown (see Reference lO), that if (1) is RUGAS then so is (5 ) .  It then follows from 
Theorem 1 that there exists a Lyapunov function V for (5 ) .  Noting that a ( x )  2 1, one can 
show that V is also a Lyapunov function for the original system (1). 

When dealing with families of parametrized control systems, it is usually desirable to obtain 
a Lyapunov function which is independent of the parameter p. However, as illustrated in the 
following example, it is in general impossible to find a Lyapunov function which is 
independent of p, even for a RUGAS family with parameters in a compact set. The example 
is motivated by an example in Reference 13 (see p. 170). 

Example 2.5 

Consider the two-dimensional parametrized family of systems: 

i = A (p )x ,  xE IR2, p c  [0,27rI 

where for each p E [0,27r], 

-sin2 p 1 - sin p cos p 

The system is RUGAS for pE [0,27r]. This can be shown as follows. First of all, for each p,  
the eigenvalues of A ( p )  are (-1 - Jj)/2 and (-1 + Jj)/2, where j = m, and 
moreover, one can show that for p E [0,27r], 

where 
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It follows immediately that 

It is not hard to see that there exist L1 and L2 such that I( T(p) 11 < L1 and 1) T - ' ( p )  ( 1  < L2 
for all p, therefore, 

( 1  eA@)' 11 < 11 ~ ( p )  11 I( ~ - ' ( p )  11 e-'" < Le-'", for all t > o 
where L = L1 Lz. From here one sees clearly that system (6) is RUGAS for p E [0,2?r] . 
However, we have the following conclusion: 

There is no Lyapunov function for system (6) which is independent of p. 

Proof. Assume that there would be a Lyapunov function V for (6) which does not depend 
on p. Then there would exist some &-functions ai for i = 1 ,  2 and a continuous, positive 
definite function a 3  such that 

a1(l x 1) < V(x) < a z ( l  x I), vx 
and 

avA(p)x<  ax -a3(lxl), for all xand  for all p c  [0,2a] (7) 

Now we let U: IR + [0,27r] be defined by 

u(t) = t (mod 27r) 

Then V would also be a Lyapunov function for the time-varying system 

i = A (u(t))x(t) (9) 
because (7) would still be true when p is replaced by u(t). This would imply that system (9) 
is uniformly globally asymptotically stable. This is, however, impossible since with U (t) 
defined by (S), 

xl( t )= -cos t, x2(t)=sin t 

is a solution of (9). By contradiction, we have shown that there is no Lyapunov function for 
0 (6) which is independent of p. 

3. INPUTlSTATE STABILIZABILITY OF PARAMETRIZED SYSTEMS 

In this section, we consider the question of inputlstate stabilizability for parametrized systems, 
with an emphasis on compact subsets of parameters. 
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Consider the following parametrized family of control systems: 

.t = f  ( x ,  U ,  a), p E R' (10) 

where f is a smooth map from R" x R"' x R' to R". We use x,,(t,xo, U )  to denote solutions 
when the parameter p is used. 

Let Q be a subset of R'. We say that a system is smoothly robustly stabilizable with respect 
to a closed set d a n d  all p E Q if there exist a smooth function k ( x )  and a %%function p, both 
of which are independent of p, such that every solution of 

.f = f ( x ,  k (x ) ,  
is defined for all t E IR, and it holds that 

I x,(t,xo) Id Q @(I xo Id, 0, v t  2 0, vp E Q 

When Q = IR', this is the same as the concept introduced in Definition 2.1 (cf. Proposition 
2.2), for the system obtained by using the feedback U = k ( x ) .  

A system is robustly inputlstate stable (RZSS) with respect to a closed set .d and all p E Q if 
there exist a XLP-function /3 and a X-function y, such that for all p E Q, all essentially bounded 
controls U ,  and all initial states XO, the solution x,,(t,xo,p) is defined for all t 2 0 and the 
following estimate holds 

Ixp(t,xo, U )  Id Q P(I xo Id, t )  + r(ll U II) 
for all t 2 0. 

For systems with no parameters, we simply say 'globally inputlstate stable' (ISS). 

Remark 3.1 

only require the estimate to be 
Because of causality, the ISS property is equivalent to the one that would result if we would 

I x(t,xo, U )  Id Q P(I xo Id, t )  + r(ll V t  ID (1  1) 

for any locally essentially bounded function U ,  where ut is the truncation of U at time t: 

def u ( T ) ,  if 0 Q T Q t 
[o, if r > t U471 = 

A system is smoothly robustly inputlstate stabilizable with respect to .d and all p E Q if there 
exist a smooth map k :  R" + R"' and an m x m matrix r of smooth functions defined on IR", 
invertible everywhere, such that the system 

.t =f(x, k ( x )  + r ( X ) u ,  

is RISS with respect to .A for p E Q. 

Definition 3.2 

A smooth function i t  R" x R' -, iR is said to be an ZSS-Lyapunov function for the system 
(10) and for the set Q with respect to a closed set d i f  there exist some %-functions a1, a2 
and x, and a continuous positive definite function a3 such that, for all p E Q, it holds that 

(12) a1(1 E Id) Q UE, p )  Q a 2 ( l  E I.5A VE E R" 
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whenever 

151-4kX(IUl) 

The following result provides a sufficient condition for inputlstate stability in terms of the 
existence of ISS-Lyapunov functions. We say that control system (10) is forward complete if 
for each p E Q, each locally essentially bounded control U, and each xo, the corresponding 
trajectory x(t,xo, U) exists for all t 2 0. 

Proposition 3.3 

Assume that system (10) is forward complete and that it admits an ISS-Lyapunov function 
for p E Q with respect to a closed set d. Then, the system (10) is RISS with respect to d for 
pEQ. 

Proof. For system (lO),  consider the following augmented system 

2 =f (x ,  U, p ) ,  /i = 0 

Let d denote the set d x  62. Clearly I z (2= I x Id, where z = (x ,  p ) '  . Note that V is an ISS- 
Lyapunov function for (10) with respect to d if and only if Y is an ISS-Lyapunov function 
for (15) with respect to d. Applying Proposition A.2 to (IS), one sees that the existence of 
the ISS-Lyapunov function implies that the solutions of (15) satisfy 

I z ( t )  I2 6 @(I z(0) 12) + Y(llU II) 
for some XZ-function 0 and some yl function y. It then follows that system (10) is IsS. U 

Remark 3.4 

Note that when the set d i s  compact, the existence of an ISS-Lyapunov function guarantees 
that the system is forward complete. Thus, in the case when d i s  compact, one can drop the 
forward completeness assumption. 

Assume now that U = k(x )  robustly stabilizes system (10) for all p E IR' with respect to a closed 
set d. Then by Theorem 1, one knows that there exists a smooth Lyapunov function 
VF(t)Ef Y([, p )  such that 

for some &-functions ( ~ 1 ,  a2 and some continuous positive definite function C Y ~ .  

&-function x such that 
It then can be shown (see References 8 and 9) that there exist some matrix r o ( E , p )  and a 
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for all p whenever I E Id 2 x(l U I). Moreover, for this ro, the system 

i =my w) + r o w ,  CL) 

is forward complete. In fact, it is shown in References 8 and 9 that ro can be chosen as PoImmxm 
for some smooth function (00 satisfying 0 < (p&, p )  < 1 for all 5 and p. Now for any compact 
subset Q of R', let 

Cp1~)e~ min m(t, p )  
P E Q  

Then ( o l ( [ )  is locally Lipschitz since PO(-, - ) is a smooth function. Let (02 be a smooth function 
such that 

f (01 ( E )  < ( 0 2 ( E )  < i (01 ( E )  

for all E (such a function always exists, see Reference 8). Let 

Clearly r ( E )  is invertible everywhere, and 

whenever I E 2 x(l  U 1). In other words, V is an ISS-Lyapunov function for the system 

i =m, w) + r w ,  p )  (16) 

for p E 62 with respect to d. Applying Proposition 3.3, we obtain the following conclusion 
which generalizes the results in Reference 12 to set stability for parametrized systems. 

Theorem 2 

Assume that the system (10) is smoothly robustly uniformly asymptotically stabilizable with 
respect to a closed set d for all values of p. Then for any compact subset 62 of IR', the system 
(10) is smoothly robustly input/state stabilizable with respect to ~4 for all p E Q. 

Remark 3.5 

In practice, it may be too stringent to require that a system be stabilizable for all values of 
p, as the given system may only be stabilizable for those values of p lying in a fixed compact 
set Q. Thus an interesting question is: If one knows that a system is stabilizable for p E Q, does 
it follow that the system is inputlstate stabilizable for p E Q with the same set 62? In the above 
discussion, our approach required us to assume that the system is stable for  all p. However, 
one may often be able to proceed as follows. Assume that there is a smooth map U: IR' --* IR' 
so that the image of U is 62, and so that there is a compact subset A E IR' such that a(A) = 62. 
Now replace f ( x ,  U, p )  by f ( x ,  U, a(v) ) ,  and apply the above results to the system 

i =fk U, u ( v ) )  

for v E A. One obtains inputlstate stabilizability for all values of U, or equivalently, the values 
of p in 62. As an illustration, assume that one knows that the system i = f (x ,  U, p )  is stabilizable 
for p E [0,1]. Let a ( v )  = sin2 U. Then the system i = f ( x ,  U, sin' v )  is stabilizable for all v E IR. 
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Applying Theorem 2 t o f ( x ,  U, sin2 U )  with the set [0, ~ / 2 ]  for the parameter U, one concludes 
that the system is inputlstate stabilizable for all values of U in [0,7r/2], or equivalently, for all 
values of p in [0,1]. 

Remark 3.6 

is not needed in Theorem 2. 
From Remarks 2.4 and 3.4, it follows that when &is compact, the completeness assumption 

4. ADDING AN INTEGRATOR 

In this section, we study the stabilizability of the following type of parametrized cascade 
system: 

(17) 

i = U  (18) 

where x ( t )  E R", z ( t )  E R"', and f is a smooth map. Assume that f ( 0 ,  0, p )  = 0 for all p. To 
study the stabilizability problem for the above system, let us first consider the following type 
of parametrized cascade system: 

= f (x ,  2, a )  

i =f (x ,  2, p )  

i = g(x,  2, p )  + U 
(19) 

(20) 

where g: R " x  R m x  R'+ lRm is a smooth mapping with g(O,O,p)=O. Let 
go(x, p)!Efg(x, 0, p ) .  Then g can be written as go(x, p )  + gl (x, z, p)z for some rn x rn matrix 
of smooth functions gl. Rewrite (20) as 

(21) i = go(x, p )  + gl ( x ,  2, p)z + U 
For the above cascade parametrized system, we have the following conclusion. 

Lemma 4.1 

Assume that the system (19) is UGAS with respect to the origin when z = 0 for all p, and 
admits an ISS-Lyapunov function V with a ~ ,  a 2 ,  a3 and x as in Definition 3.2. Let fl be a 
compact subset of R'. Assume further that the function x is smooth, and it holds that 

Then the system (19)-(20) is smoothly robustly stabilizable with respect to the equilibrium 
( x ,  z )  = (0,O) for p 6 !I. 

Proof. Let Vbe the ISS-Lyapunov function for (19) and (YI,  a2, a3 and x be as in Definition 
3.2, and define 

Then along the trajectories of (19)-(20), 
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Take a smooth function (01 (x,  z )  satisfying 

(01 (x,  2 )  2 

and let k~ (x, z )  = - (01 (x,  z )z  - z,  U = U I  + kl (x,  z). Then (24) implies that 

II g1 (x,  2, c) (I 
C E Q  

def def 

av 
ax ?I <-f(x,z,p)-  1z12+zrul +z’go(x,p) 

Let (02 be a smooth function satisfying 

Notice that such a function always exists because of condition (22). Now let 

def def 
k2(x, z )  = - &(x)z, and U I  = k2(x, z )  + U’ 

Note that when I x I 2 x(l z I), aV/ax f (x,z,p) < -as(lxI),  thus, (25) implies that when 
1x1 2 x(lzl), 

PI < - c ~ 3 ( l  x 1) - I z 1’ + 2’242 - 12 I Z ( 0 I ( X )  + z’go(x, p )  

Now let us consider the case when I x I Q x(l  z I). Using the smoothness of the functions x, 
a V/ax, f ( x ,  z, p )  and go(x, p), one can rewrite the functions as follows: 

av 
x(r)  = rXo(r), ax (x, PI = x‘ W X ,  a )  

and 

where xo is a smooth function, and W(x,p) E I R n x “ ,  F~(x ,z ,p )  c R n x m ,  and Go(x,p) E R m X “  
are matrices of smooth functions. With these notations, it follows from (25) that along the 
trajectories of (19)-(20), 

f ( x ,  Z, P )  0, a)  + F i ( X ,  Z, P)Z,  go(& P )  = Go(x, CC)X 

av 
t l  Q -& f ( x ,  2, p )  - 1 z I’ + Z’U’ - I z (2(0f(x) + z’go(x, p )  

and let 
def 

U’ = k3 ( x ,  2 )  = - (03 (x,  z )z  
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def Thus, for U = k(x ,  z )  = kl ( x ,  z )  + k2(x, z )  + k3(x, z ) ,  it follows from (28) that when 
I x I < x(l z I), one has 

Vl < -Crs(lxl)- 1zI2 (30) 

Notice that with uz defined by (29), the last term in (27) is nonpositive. Combining (27) and 
(30), one knows that VI is a Lyapunov function of the system (19)-(20). We conclude that the 
system is smoothly robustly stabilizable. 0 

The proof of the lemma is a bit tedious, because, unlike the situation in the case of single 
systems, where the terms in the right-hand side of (20) can be cancelled in a straightforward 
manner by choosing a simple control law, here one needs to make some estimates which allow 
the design of a control law which is independent of the parameters, and which can overcome 
the effect of those terms. 

Now we return to discuss the stabilizability of system (17)-(18). Let fo(x,  z ) s f f ( x ,  z, 0) and 
let f i E f f - f o .  Rewrite system (17)-(18) as 

Assume that there exists a smooth function ko(x) for which ko(0) = 0 such that z = ko(x) 
stabilizes system ( 3  1) with respect to the origin for all p. By Theorem 1, there exists a Lyapunov 
function V for the closed-loop system 

(33) i =fo(x ,  ko(x)) + f l ( X ,  ko(x),  c r )  

Let a2 be a compact subset of R’. One can show, as in the proof of Theorem 2, that there exists 
a smooth function cp satisfying 0 < p(x) < 1 such that Vis an ISS-Lyapunov function for the 
system 

i= fo(x ,ko(x)+  ~ P ( x ) ~ ) + f l ( x , ~ o ( x ) + ~ ( x ) ~ , P )  

that is, there exist &-functions ( 1 1 1 ,  (112, x, and a positive definite function (113, such that 

a1 (1 x 1) < V(x,  P )  < az(I  x I) 
and 

av(fo(x,ko(x)+ &)w) + f i ( x , k o ( x ) +  ( D ( x ) ~ , P ) )  < - ~ ( l x I )  ax  
whenever 

1x1 2 x(l wI> (34) 
def  Now take U = z - ko(x) and w e f $ ( x ) v  where $ ( x ) s f  l/p(x). Then w satisfies the equation 

w = !!k f(x, 2, a ) d x ) w  + $(XI24 - $(XI 2 ( fo(x,  2) + f l  ( x ,  2, P ) )  ax 

where f =fo +h. Write fi(x, ko(x) + U, p )  as f i ( x ,  ko(x), p )  + FI(x ,  v ,  p )v  for some matrix Fl 
of smooth functions. It then holds that 

+= $(x )u+go(x ,p )+g1(x ,  w , p ) w - g z ( x , z )  
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where 

and 

def Let U = ( O ( X ) ( U I  - g2(x, 2)) .  We have 

X =  fo(x,  ko(x) + I D ( X )  w) +fi ( x ,  ko(x) + P ( X )  w, p )  (35) 

~ = = 1  +go(x ,p )+g1(x ,  w , p ) w  (36) 
Applying Lemma 4.1 to the system (35)-(36), we know that if the function x in (34) can be 
chosen smooth, then there exists a smooth feedback law U ]  = kl (x ,  w) stabilizing the system 
with respect to the equilibrium 0. Noticing the relations between w, U and z and the fact that 
0 < (o < 1, one sees that the control law 

def 
U = k(x ,  Z) = cp(x)(ki(x, w) - g2(x, 2)) 

stabilizes system (3 1)-(32). Thus we have shown the following conclusion. 

Proposition 4.2 

Assume that the system (31) is stabilizable with respect to the origin by a smooth feedback 
law z = ko(x)  for which ko(0) = 0 for all p. Assume further that, for a compact subset fl of 
R’, the following holds: 

1. the function x in (34) can be chosen smooth; 
2. as 1x1 tends to 0,  

Then the cascade system (31)-(32) is smoothly robustly stabilizable with respect to the origin 
for all p E Q. 

Remark 4.3 

A special case of Proposition 4.2 is that when system (31) is smoothly exponentially 
stabilizable, that is, there exists a smooth feedback law z = ko(x), such that the system (33) 
is UGAS, and there exist a smooth function V and quadratic functions ai, i = 1 , 2 , 3  such that 
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Assume a3(r) 2 cr2 for some c > 0. Still denoting z - ko(x) by U, and write 

f ( x ,  ko(x) + 0, a)  =f(x, ko(x), a )  + FI(X, U, 
and write 

_- a v- X I  W(x, a)  
ax 

for some matrices FI and W of smooth functions. Then one has: 

av 
ax ax %(x,ko(x) + U,P) =- f f (x ,ko (x ) ,a )+X’W(X,a )Fl (x ,  u , a ) u  

For the compact subset 62 of R’, let p(x) be a smooth function satisfying 

1 
p(x) ‘ 1 + max 11 ~ ( x ,  c ) ~ 1  (x ,  U, p) 11 

P e n ,  101 c IXV,? 

Then for such a choice cp, one has 

From here one sees that the function x can be chosen as x ( r ) = @ r ,  which is smooth 
everywhere. Thus we showed that condition 1 holds. Condition 2 also holds, because 
d m )  = O(l x I), and also fi ( x ,  ko(x), a)  = O(l x 1) since fi(0, ko(O), a )  = 0 and belongs to 
a compact set. Thus both conditions 1 and 2 hold when a3 is a quadratic function. Thus we 
recover the following result given in Reference 6: 

If system (31) is smoothly exponentially stabilizable for all a, then for any compact set 
62, the cascade system (3 1)-(32) is smoothly stabilizable. 
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The methods used in Reference 6 could be adapted to study the general case, i.e., the case 
when (3 1)  is merely smoothly, not necessarily exponentially, stabilizable. However, instead of 
condition 1 in Proposition 4.2, the generalization would require imposing restrictions on 
aV,ax, in addition to the condition (37) that was assumed in Proposition 4.2. 

In many cases, condition 1 assumed in Proposition 4.2 can be relaxed. For instance, when the 
parameter does not appear in the control channel of (31), that is, when f1  is independent of 
z ,  and the Lyapunov function for the closed-loop system (33) is independent of p ,  one does 
not need to check if x is smooth. The design can then proceed as follows. 

Assume that z = ko(x) smoothly stabilizes the system 

with a Lyapunov function V ( x )  satisfying 

w(l x I) < U x )  Q a2( l  x I) 
and 

av 
ax - ( fo (x ,  ko(X)) +fi(X, CL)) < - a 3 ( (  x 1) 

Again let uzfz  - ko(x), then 

ir = 2.4 + g o ( x , p )  + g 1 ( x , z )  

where 
def def ako 

f 1  ( x ,  p ) ,  and gl ( x ,  z )  = - - f o ( x ,  z )  ax go(x,tL) = - ax 
Let w = ( x ’ ,  U’)’ and use F(w, U, p )  to denote the map (f6 +fi, U ’  + g6 + g i ) ’ .  Let 

VI(X, 

Then along the trajectories of (40)-(41), 
V ( x )  + $ 1  U 12 

. av 
v1= - ( f o ( x , z )  +fl(X,P)) + u’u + u ’ g o ( x , p )  + u ’ g 1 ( x , z )  ax 

av 
ax 

+ - F1(x, u ) u  + U ‘ U  + u’go(x, p )  + u‘g1(x ,  z )  

where F1 is a matrix of smooth functions such that 

fl ( x ,  k ( x )  + U) =f1 ( x ,  k(xN + Fl ( x ,  u ) u  

Let 

k1(x ,u)=  -g1(x,z)- - FI(X,U) (E >’ 
and let u = k~ (x ,  U) + u1. Then one has 

r‘l < -cY3(lxI)+ U ’ & +  u ‘ g o ( x , p )  (42) 

Now assume that for a compact set Cl, condition (37) holds. Again let (p2(x) be given as in (26), 
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and let 
def 

U1 = k2(x, U )  = - $Op4(X)U - U 

U = k(x ,  U )  = kl (x ,  U )  + kZ(X, U )  

Then for 
def 

it follows from (42) that 

3a3(IxI)- 1 V l  < - 
4 

from which it follows that Vl is a Lyapunov function for the system 

,i = fo(x,  2 )  +fl (x ,  a)  
i = k(x ,  z - ko(x)) 

Thus we established the following conclusion. 

Proposition 4.4 

Assume that the system (40) is smoothly stabilizable with respect to the origin for all p, with 
a Lyapunov function which is independent of p. Then the cascade system (40) and (18) is 
stabilizable for p in a compact set 52 if condition (37) holds. 

Remark 4.5 

In the proof of Propositions 4.2 and 4.4 we needed to assume that the system was 
stabilizable for all values of p. But as illustrated in Remark 3.5 one can often weaken this 
assumption. 

Example 4.6 

Consider the system 
, i = p ~ 3 + ~ ~ ,  P E  [-1,11 

i = U  

(43) 

(44) 

The closed-loop system for (43) under the feedback law z = ko(x )e f  - 2x2 is 

i =  - ( 2 - p ) x 3 ,  p c  [ - i , 1 1  (45) 
which is a RUGAS system with respect to the equilibrium x =  0 for pE [ -1 ,1] ,  with the 
Lyapunov function V ( X )  = x2/2  satisfying 

dV 
d x  
- [ - ( 2 - p ) x 3 ~  = - ( 2 - p ) x 4 ~  -x4, V ~ L E  [ - i , i ]  

Notice that z = - 2x2 does not stabilize the system (43) for all values of p E R, but as indicated 
in Remark 3.5,  one can consider the stabilization problem for system (43)-(44) for p E [ - 1 , 1 ]  
by studying the system 

i = x 3  sin v + x z ,  V C R  

i = U  
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def  3 
Let f ( x ,  z ,  v )  = x sin v + xz. Clearly z = - 2x2 stabilizes the system (46) for all v, with the 
Lyapunov function V ( X )  = 5 x2 satisfying 

dV 
dx - f ( x ,  k ( x ) ,  v )  < - x4, vv E m 

Notice that the closed-loop system is not exponentially stable, so one needs to check if 
condition (37) holds to see if Proposition 4.4 applies. In this example, aj(r)  = r4, 

f1 ( x ,  z ,  v )  = f ( x ,  z ,  v )  - f ( x ,  z ,  0) = x3 sin v 

and 

max I*fl(x,k(x),p)l  = 4 x 4 = o ( / m ) ) ,  as 1x1 + O  

By Proposition 4.4, the system (43)-(44) is stabilizable. In what follows, we will construct the 
desired feedback law by following the steps in the proof of the Proposition. Letting 
U = z - (- 2x2),  one has 

dx 

ti = U + 4x4 sin v + 4x2z 

Let 

d e f X 2  4- U’ 
VI ( x ,  z )  = ~ 

2 

then along the trajectories of the system, 

t l  = - (2 - sin v)x4 + x2u + uu + 4x4u sin v + 4X2ZU 

Take kl (x ,  z)zf -x2 - 4x2z and let U = u1+ k~ ( x ,  z) .  Then (47) becomes: 

14 < -x4 + U ~ U +  4x4v sin v 

Now let 

and take u1= k2(x, v)zf - v(pf(x) - U. Then it follows from (48) that 

f l  < -x4 - U’ - 16x4u2 + 4x4u sin v 

< - X 4 - U 2 - 4 X 4  

Therefore, the desired feedback law is 

u = k ( x , z ) = k l ( x , z ) + k 2 ( x , U ) =  - x2 -4x2z -  v(l+4x2)2- U 

and the closed-loop system is 

i=px3+xz ,  p E  [ - 1 , l l  
i = - x  - 4x2z - ( z  + 2x2)(1 + 4x92 - (2 + 2x2) 2 

(47) 

(48) 

which is RUGAS for p €  [ -1 , l l  
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APPENDIX 

In this section, we recall some notions and results for set stability for nonlinear systems without 
parameters. For proofs of results presented here, please consult References 8 and 10. 

We first recall some standard concepts from stability theory. 
A function y: IR,o + IR2o is a X- function if it is continuous, strictly increasing and y(0) = 0; it is a 

&.-function if it is a X-function and also ~ ( s )  .+ 00 as s + 00. Finally, y is a positive definite function 
if y(s) > 0 for all s > 0, and y(0) = 0. 

A function /3: IR,o x R2o .+ R ~ O  is a &9-function if for each fixed t 2 0 the function p(. ,  t )  is a 
&-function, and for each fixed s 2 0 it is decreasing to zero as t + 00. 

Consider the following system: 

X = f ( x ) ,  XER" (49) 

where f is assumed to be smooth (i.e., infinitely differentiable). We will assume that the system is 
complete, and denote by x( t ,  X O )  (and sometimes simply by x ( t )  if there is no ambiguity from the context) 
the solution at time t of (49) with x(0) = XO. 

The following characterization of the UGAS property will be extremely useful. 

Proposition A.1 

X9-function /3 such that, given any initial state XO, the solution x(t,xo) satisfies 
The system (49) is UGAS with respect to a closed, invariant set R" if and only if there exists a 

Ix(t,xo) Id< P(Ix0 Id,t) .  any t 2 0 (50) 

Lyapunov functions are introduced for parametrized systems (and hence in particular for systems with 
no parameters) in Definition 2.3. 

Theorem 3 

V with respect to the set d. 
The system (49) is UGAS with respect to d i f  and only if there exists a smooth Lyapunov function 

Consider the following nonlinear system: 

x = f ( x ,  U )  (51) 

with smooth f: R" x R"'+ R". 

parameters. Then, References 8 and 9 show: 
Recall Definition 3.2 of ISS-Lyapunov functions, considered in the special case of systems with no 

Proposition A.2 

it is ISS with respect to d. 
If the system (51) is forward complete and admits an ISS-Lyapunov function with respect to d, then 

Sketch of the proof. Let V be an ISS-Lyapunov function for (51) with respect to d w i t h  the functions 
a i ( x )  (i = 1, 2, 3) and x as in Definition 3.2. Pick any X O ~  R" and any bounded measurable function U .  
It is nyt hard to show that the set S =  [ t e  R"(  V ( l )  < a2(x((JuII))) is forward invariant. With < = ai Oa20 x ,  one has, for the trajectory x(t,xo, U ) ,  that 1 x ( t )  Id< <(I( U 11) if x ( t )  E S. On the other 
hand, 

dV(x( t ) ) /d t  = W x ( t ) )  . f ( x ( t ) ,  u ( t ) )  Q -a (V(x ( t ) ) )  
when x ( t )  fS ,  where a = a 3 O a i L .  Finally, let be a X9-function so that y ( t )  Q &(yo, t )  for each 
solution of the differential inequality j ( t )  Q - a ( y ( t ) ) ,  y(0) =yo 2 0. Then p(s, t )  = a i 1 ( & ( a 2 ( S ) ,  t ) )  

U and < are as needed for the definition. 
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