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a b s t r a c t

Recent work on data-driven control and reinforcement learning has renewed interest in a relative old
field in control theory: model-free optimal control approaches which work directly with a cost function
and do not rely upon perfect knowledge of a system model. Instead, an ‘‘oracle’’ returns an estimate of
the cost associated to, for example, a proposed linear feedback law to solve a linear–quadratic regulator
problem. This estimate, and an estimate of the gradient of the cost, might be obtained by performing
experiments on the physical system being controlled. This motivates in turn the analysis of steepest
descent algorithms and their associated gradient differential equations. This note studies the effect of
errors in the estimation of the gradient, framed in the language of input to state stability, where the
input represents a perturbation from the true gradient. Since one needs to study systems evolving on
proper open subsets of Euclidean space, a self-contained review of input to state stability definitions
and theorems for systems that evolve on such sets is included. The results are then applied to the
study of noisy gradient systems, as well as the associated steepest descent algorithms.

© 2022 Elsevier B.V. All rights reserved.
i
(
e
g
p

f
t
p

1. Introduction

Suppose that a function V : X → R, defined on an open
subset X of Rn, achieves a global minimum at a compact set
A ⊂ X, and that its gradient does not vanish except on A. Under
appropriate technical conditions, the solutions of the gradient
flow ẋ = −η∇V (x)T (where η > 0 is a ‘‘learning rate’’) will
globally, and even exponentially, converge to A as t → ∞.

In many data-driven applications, the gradient can be well-
estimated numerically. The combination of direct gradient esti-
mation and gradient descent has generated strong recent interest
in control theory, and specifically in Reinforcement Learning (RL)
model-free control. In order to theoretically better understand
the problem, several authors have studied an archetypical control
problem, the infinite-horizon Linear Quadratic Regulator (LQR)
problem. Since the pioneering work of Kalman in the early 1960s,
it has been known that the solution of the LQR problem can be ob-
tained explicitly via a Riccati equation, and many computational
packages do so very efficiently. Nonetheless, if the system being
controlled is imperfectly known, the function to be optimized
is not known except through ‘‘queries’’ involving sampling and
experimentation, and in that context direct methods might be of
interest. In any event, however, working on a well-understood
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problem like LQR serves to understand properties of model-free
approaches.

It turns out that when the LQR problem is formulated as an
optimization over a set of stabilizing feedback matrices, the loss
function, while not convex, satisfies strong convergence guar-
antees [1]. The trick is to employ a reparametrization for the
LQR problem that allows solving an associated strongly convex
problem. We refer the reader to [1] for details. Note that, in the
LQR problem as just described, the open set X is a set of matrices.
Restricting the optimization dynamics to this open set is essential
for the approach to work.

In this note, we study a perturbed gradient system (superscript
T indicates transpose):

ẋ(t) = −η ∇V (x(t))T + B(x(t))u(t) . (1)

The additive term represents disturbances. For example, if B(x)
s the constant matrix with rows (1, 0, . . . , 0), (0, 1, . . . , 0), . . . ,
0, 0, . . . , 1) then we have independent disturbances ui acting on
ach coordinate. Without the additive term, this is a standard
radient descent flow. For generality, we allow state-dependent
erturbations (non-constant B).
The ‘‘disturbance’’ inputs might represent errors that arise

rom numerically approximating the gradient from data through
wo-point estimates as in [1], or from measurement noise. The
aper [2] interprets the discretization error when solving ODE’s
s a perturbation, and relates asymptotic stability for dynamical
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ystems to families of approximations, specifically applying this
o numerical one step schemes for ordinary differential equations.

To quantify the effect of disturbances, we will use the notion
f input to state stability (ISS), introduced in [3] (see expositions
n [4–7]). We will prove (under technical assumptions on V and
ts gradient, mainly that they blow up at the boundary of X, so
hat trajectories cannot escape the constraint set; assumptions
hich hold in the motivating example from [1]) that the dis-
urbed gradient system is ISS. This implies that if the disturbances
r errors are bounded, small, ‘‘eventually’’ small, or convergent,
he solutions of the system will inherit the same properties, with
ell-controlled transient behavior.
The natural setting is that of differential equations that evolve

n a nontrivial open subset X of Rn. An example is a gradient
ystem that uses a loss function associated to a feedback matrix
that is required to stabilize a given linear system ẋ = Ax + Bu,

n the sense that A − BK is a Hurwitz matrix (i.e., it has all
ts eigenvalues with negative real parts). We can view matrices
f size p × q as elements of Rn, n = pq. Since eigenvalues

depend continuously on matrix entries (a standard fact, proved
for example in the linear algebra appendix in [5]), the set X ⊂ Rn

of stabilizing matrices (for a fixed system defined by A and B) is
open.

The precise statement of the ISS result requires introducing
appropriate notions of stability and ‘‘size’’ of elements in open
subsets. We consider such notions here; that material that we
discuss on ISS on open subsets is not new. However, these results
are not easy to find clearly stated in the literature, and they are of
independent interest beyond the study of gradient systems, so we
provide proofs of several facts about them for more general sys-
tems with inputs. Since it represents no additional complication,
we consider stability with respect to compact sets as opposed to
single equilibria.

In addition to studying the gradient system, we study the
performance of steepest descent, the discrete process in which a
line search is performed, iteratively minimizing a cost function
in the direction of the gradient. Given a continuously differ-
entiable function V : X → R to be minimized on an open
subset X ⊆ Rn, the steepest descent algorithm consists of the
following procedure: given any initial state x0, one performs a
line search in the negative gradient direction so as to minimize
V (x0 − λ∇V (x0)T ) over λ ≥ 0; the minimal point then defines a
new point x1, and one then iterates. Observe that this search only
makes sense on a maximal interval such that the line segment
{x0 − µ∇V (x0)T , µ ∈ [0, λ]} is included in X (so that one may
evaluate V for increasing λ). When the gradient is imperfectly
evaluated, the picture is further complicated by the fact that one
in fact moves in a direction x0 − λ[∇V (x0)T + B(x)u], for some
unknown additive ‘‘noise’’ input vector u (we include B(x) to allow
a state-dependence of the input). This gives an iteration that we
write as x+

= x − λ
[
∇V (x)T + B(x)u

]
.

It is in principle possible that even for a very small step one
cannot diminish the cost at all, and moreover one might even exit
the set X altogether for an input of large magnitude. A trivial
example of this is provided by X = (−1, 1), B(x) = 1, and
V (x) = x2/2. The perturbed steepest descent procedure attempts
to move to x − λ(x + u). If we take any x > 0 and any u < −x
then for any step size λ > 0 the cost increases, which means that
the steepest descent procedure will be ‘‘stuck’’ at x. Moreover, for
large λ the expression x − λ(x + u) gives a result outside X. Of
course, this can be fixed if the magnitude of the input u is ‘‘not too
large’’ compared to the state x. Indeed, we will show that, under
reasonable technical assumptions, the steepest descent procedure
is input to state stable as a discrete-time system with respect to
disturbances.
2

2. Size functions on open subsets

We start by introducing a notion of ‘‘size’’ that is well-suited to
quantifying global convergence to a given compact set, and which
in particular acts as a barrier function preventing escape from X.

Definition 2.1. Let X be an open subset of Rn and let A ⊂ X be
a compact subset. We will say that

ω : X → R

is a size function for (X,A) if ω is:

1. continuous,
2. positive definite with respect to A, that is, ω(A) = 0 and

ω(x) > 0 for all x ∈ X, x ̸∈ A, and
3. proper, that is, for every real number r ≥ 0, the sublevel

set Sr := {x | ω(x) ≤ r} is a compact subset of X.

Remark 2.2. Observe that, since X is an open set, asking that Sr
is compact in the induced topology of X is equivalent to asking
that Sr is compact as a subset of Rn. □

Remark 2.3. Let us denote by |x| the standard Euclidean norm
in Rn (any other norm could be used as well). When X = Rn,
a natural choice of size is ω(x) = |x|A = mina∈A |x − a|, the
distance to the set A. The notion that we introduce here is based
on the beautiful paper of Kurzweil [8] (see also [9]), which studied
Lyapunov stability theory on open sets, and is a particular case of
‘‘measures’’ in the sense of Lakshmikantham and coauthors (see
e.g. [10]). In [11–13], the concept is called a ‘‘proper indicator
function’’ (but we prefer not to use that term, since ‘‘indicator
function’’ is typically used for the characteristic function of a set).
Another point worth mentioning is that the definition of size
function and many of the results can equally well be formulated
on a general differentiable manifold X. In that sense, the setup in
this note is closely related to the work in [14], in which a variant
of ISS for systems evolving in manifolds was considered. □

The following elementary exercise in real analysis provides an
intuitive characterization of size functions. We denote by ∂X the
boundary of the set X (which is empty if and only if X = Rn).

Lemma 2.4. The following two statements are equivalent for any
function ω : X → R:

(a) ω is a size function for (X,A)
(b) ω is continuous, positive definite with respect to A, and the

following property holds for every sequence {xk ∈ X, k ≥ 1}:

if either xk → ∂X or |x| → ∞, necessarily ω(xk) → ∞. (2)

Proof. We must show that property (2) is equivalent to compact-
ness of every sublevel set Sr .

Suppose that property (2) is true, and pick any r ≥ 0. By
Remark 2.2, we need to prove that Sr is closed and bounded as a
subset of Rn.

We first prove that Sr is closed. Suppose that a sequence {xk}
in Sr is such that xk → x ∈ Rn as k → ∞. We must show that
x ∈ Sr . There are two cases to consider: x ̸∈ X and x ∈ X. In the
first case, being the limit of elements in X, necessarily x ∈ ∂X.
Thus xk → ∂X and, by the assumed property, ω(xk) → ∞,
contradicting the fact that the sequence {ω(xk)} is bounded (by
r), So this case cannot hold. Thus x ∈ X, so that x ∈ Sr because
Sr is closed in the relative topology of X. (More explicitly: by
continuity of ω, we have that ω(xk) → ω(x), and hence ω(x) ≤ r ,
so x ∈ Sr .).

Next we prove that Sr is bounded. Suppose by way of contra-

diction that there is a sequence {xk} in Sr is such that |xk| → ∞
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s k → ∞. Again using the assumed property, it follows that
(xk) → ∞, contradicting that all ω(xk) ≤ r . Thus Sr is bounded.
Conversely, suppose that Sr is compact for every r ≥ 0 and

consider a sequence {xk ∈ X, k ≥ 1}. Suppose first that |xk| → ∞.
e need to prove that, for every r > 0, there is an integer K so

hat k > K ⇒ w(xk) > r . Suppose that this is not true, i.e., there
are some r and a subsequence kj → ∞ so that xkj ∈ Sr for all
kj. Replacing {xk} by this subsequence, we can then assume that
xk ∈ Sr for all k, and still |xk| → ∞. Since Sr is compact, there is
a convergent subsequence with its limit x ∈ Sr . This contradicts
that |xk| → ∞. Similarly, suppose that xk → ∂X. By contradiction,
assume again that there are some r and a subsequence kj → ∞

so that xkj ∈ Sr for all kj. Replacing xk by the subsequence, we
can then assume that xk ∈ Sr for all k, and still xk → ∂X. By
compactness, we can assume, taking a subsequence, that xk →

x ∈ Sr ⊆ X for some x. However, since xk → ∂X (because we
have subsequences of a sequence converging to the boundary),
this implies that x ∈ ∂X. We have a contradiction, because X and
∂X are disjoint subsets of Rn. This completes the proof. ■

Given any open set X ⊆ Rn and any compact A ⊂ X, there are
many possible size functions for (X,A). As we remarked earlier,
|x|A works when X = Rn. In general, we may use, for example:

ω(x) = max
{
|x|A ,

1
dist(x, ∂X)

−
a

dist(A, ∂X)

}
or any a ≥ 1. The case a = 2 of this formula was given in [8],
and with that choice one has that ω(x) = |x|A for all x near A.

2.1. Comparing size functions

In the same manner that any two norms on a finite dimen-
sional space are equivalent, there is a notion of equivalence of
size functions.

We denote by R≥0 the set of nonnegative real numbers.
Recall that K is the set of functions α : R≥0 → R≥0 that are

continuous, strictly increasing, and satisfy α(0) = 0, and K∞ ⊂ K
is the subset of unbounded functions, that is, α(r) → ∞ as r →

∞. The set K is closed under sums, products, and compositions,
as is the set K∞. Moreover, functions in K∞ are invertible, and
α−1

∈ K∞, so K∞ is a group under composition (with identity
element the map α(r) = r). If α ∈ K, one also says that ‘‘α
is of class K’’ and similarly for K∞. These classes of functions
have played a central role in dynamical systems since at least
the textbook by Hahn [15], and were key in the development
of input to state stability notions in [3]. They have many other
useful properties, for example the weak subadditivity property
α(r + s) ≤ α(2r) + α(2s); see for instance [4,5]. They allow us
to relate size functions. Observe that if ω is a size function and
α ∈ K∞, then α ◦ ω is also a size function.

Lemma 2.5. Suppose that ω is a size function for (X,A). Then for
ach ε > 0 there is a δ > 0 such that

(x) < δ ⇒ |x|A < ε.

roof. Since ω is continuous and ω(A) = 0, there exists ε0 > 0
such that |x|A < ε0 ⇒ ω(x) < 1 and Bε0 (A), the closed ball
of radius ε0 around A, is included in X. It follows that for any
x ∈ X with |x|A ≤ ε0, ω(x) ≤ 1. Now pick any ε > 0. We let
ε̄ := min{ε, ε0}. Consider the set

C := {x | |x|A ≥ ε̄ and ω(x) ≤ 1}.

The set is nonempty: pick any x ∈ X with |x|A = ε0; then
ω(x) ≤ 1 and also |x|A = ε0 ≥ ε̄. The set C is compact, because
it is the intersection of a closed set and a compact set. Also, ω(x)

is nonzero in this set, because ω is positive definite. Therefore

3

there is a positive minimum of w on the set C; we pick δ as
this minimum, and thus x ∈ C ⇒ ω(x) ≥ δ. Without loss of
generality, we will assume δ < 1 (otherwise, make δ smaller).
Now assume that ω(x) < δ. This means that x is not in C , so either
ω(x) > 1 or |x|A < ε̄. However, ω(x) > 1 cannot happen, because
ω(x) < δ < 1. Therefore, |x|A < ε̄ ≤ ε, as wanted. ■

Proposition 2.6. Suppose that ω1 and ω2 are two size functions for
(X,A). Then, there is some α ∈ K∞ such that

ω1(x) ≤ α(w2(x)) for all x ∈ X . (3)

Proof. Define

α(r) := max
{x|ω2(x)≤r}

ω1(x).

Since the set {x | ω2(x) ≤ r} is compact, this maximum is well-
defined. Note that the inequality (3) holds. Indeed, given any
x ∈ X, let r := ω2(x); then ω1(x) ≤ α̃(r) = α̃(ω2(x)), because
belongs to the set over which we are maximizing. Moreover, α̃

s nondecreasing (since as r is larger, one takes a maximum over
larger set). Also, α̃(0) = 0 by positive definiteness of ω1 and ω2.
e prove next that α̃ is continuous at 0.
Fix any ε > 0. We want to find a δ > 0 so that r < δ ⇒

(r) < ε. From the definition of α̃, it is enough to find a δ such
hat, for each r < δ:

2(x) ≤ r ⇒ ω1(x) < ε/2.

ince ω1 is continuous and ω1(A) = 0, there is a δ1 > 0 such that

x|A < δ1 ⇒ ω1(x) < ε/2.

y Lemma 2.5 applied to ω2 and ε = δ1, there is a δ > 0 such
hat

2(x) < δ ⇒ |x|A < δ1.

e conclude that:

2(x) < δ ⇒ ω1(x) < ε/2.

Now assume r < δ. For any x such that ω2(x) ≤ r , also ω2(x) < δ,
nd hence ω1(x) < ε/2, as wanted.
So far we have a nondecreasing α̃ : R≥0 → R≥0 which satisfies

α(0) = 0 and is continuous at zero. Such a function can be
majorized by a class K∞ function α, i.e. α̃(r) ≤ α(r) for all r ,
which together with ω1(x) ≤ α̃(ω2(x)) implies the estimate (3).
The construction of α is a standard exercise. First majorize α̃ by
a nondecreasing continuous function. For example, pick a doubly
infinite sequence of nonnegative numbers rk, k ∈ Z so that rk → 0
monotonically as k → −∞ and rk → ∞ monotonically as

→ +∞ and let α interpolate linearly the values (rk, α̃(rk+1))
recall that α̃ is nondecreasing, so that the interpolation function
s nondecreasing, and it clearly majorizes α̃). This gives an α ∈ K.
inally, add any K∞ function to obtain an α of class K∞. ■

orollary 2.7. Suppose that ω1 is a size function for (X,A). Let
2 : X → Rn be a continuous function. Then the following properties
re equivalent:

(a) ω2 is a size function for (X,A);
(b) there exist functions α1, α2 ∈ K∞ such that

α1(ω1(x)) ≤ ω2(x) ≤ α2(w1(x)) for all x ∈ X . (4)

roof. Suppose that ω2 is a size function for (X,A). By Propo-
ition 2.6, there is an α ∈ K∞ such that ω1(x) ≤ α(w2(x)) for
ll x. Thus α1(ω1(x)) ≤ w2(x) where α1 = α−1. Applying again
roposition 2.6, but interchanging the ωi’s, we have an α2 ∈ K∞

uch that ω (x) ≤ α (w (x)) for all x, so (4) holds.
2 2 1
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Conversely, suppose that (4) holds. Since ω2(x) ≥ α1(ω1(x))
and α1(ω(x)) > 0 for x ̸∈ A, it follows that ω2(x) > 0 for x ̸∈ A.
n the other hand, ω2(A) ≤ α2(w1(A)) = 0, so ω2 is positive
efinite with respect to A. It remains to show that ω2 is proper.
ick any r ≥ 0; we need to show that Sr = {x | ω2(x) ≤ r} is

compact. Note that Sr ⊆ S ′
r := {x | ω1(x) ≤ α−1

1 (r)} and that the
latter set is compact because ω1 is proper. As the restriction of ω2
to S ′

r is continuous, Sr is closed in S ′
r and therefore compact. ■

3. Systems with inputs

From now on, assume given an open subset X ⊆ Rn, A ⊂ X,
and a size function ω for (X,A). We consider here systems with
n state variables and m-dimensional inputs in the usual sense of
control theory [5]:

ẋ(t) = f (x(t), u(t))

(the argument ‘‘t ’’ is often omitted, and dot indicates derivative
with respect to time). The map

f : X × Rm
→ Rn

is assumed to be locally Lipschitz and

f (A, 0) = 0.

States x(t) take values in X, and inputs (also called ‘‘controls’’ or
‘‘disturbances’’ depending on the context) are Lebesgue measur-
able essentially bounded maps

u : [0, ∞) → Rm.

We consider the sup norm of inputs:

∥u∥∞ := ess sup
t≥0

|u(t)|

where |u| is the Euclidean norm in Rm and ‘‘ess sup’’ denotes
essential supremum.

For each initial state x0 and each input u, the solution of the
initial value problem with initial state x(0) = x0 and input u is
denoted as

x(t, x0, u) ∈ X

and is defined on some maximal interval

[0, tmax(x0, u)).

Remark 3.1. For the sake of maximum generality, we allow
inputs to be arbitrary (bounded) measurable functions. A tech-
nical issue is that measurable functions are in reality equivalence
classes of functions, equal only up to measure zero subsets. So-
lutions of the differential equation are absolutely continuous
functions and estimates over time have to be qualified by the
phrase ‘‘for almost all t ’’. We omit this qualification to make
reading easier. In any event, for continuous inputs (which suffice
for most applications) solutions are continuously differentiable
and there is no need for the qualifier. □

3.1. Input to state stability

The notion of input to state stability (ISS), introduced in [3]
(see expositions in [4–7]) provides a framework to describe sta-
bility features of the mapping (x(0), u(·)) ↦→ x(·) that sends initial
states and input functions into solution trajectories. Prominent
among these features are that inputs that are bounded, small,
‘‘eventually’’ small, or convergent, should lead to states with the
respective property. In addition, ISS quantifies how initial states
affect transient behavior.

The formal definition, extended to open subsets, is as follows.
Recall that a function β : [0, ∞) × [0, ∞) → [0, ∞) is said to
4

Fig. 1. ISS combines overshoot and asymptotic behavior.

be of class KL if (1) for each fixed t , β(s, t) as a function of r is
in class K and (2) for each fixed r , β(r, t) decreases to zero as
t → ∞.

efinition 3.2. A system is input to state stable (ISS) (on the open
et X and with respect to A) if there exist functions β ∈ KL and
∈ K∞ so that the following property holds: for all inputs u(·)

and all initial conditions x0 ∈ X, the solution is defined for all
t ≥ 0, that is, tmax(x0, u) = +∞, and it satisfies the estimate:

ω(x(t, x0, u)) ≤ β(ω(x0), t) + γ (∥u∥∞) (ISS)

for all t ≥ 0.

Note that this definition is independent of the particular size
function used (although with β and γ functions that may change
with ω) because of Proposition 2.6. When X = Rn, since |x|A is a
size function, this becomes the usual definition of ISS.

Since, in general, max{a, b} ≤ a + b ≤ max{2a, 2b}, one could
restate the ISS condition in a slightly different manner, namely,
asking for the existence of some β ∈ KL and γ ∈ K∞ (in general
different from the ones in the ISS definition) such that

ω(x(t, x0, u)) ≤ max
{
β(ω(x0), t) , γ (∥u∥∞)

}
holds for all solutions.

Intuitively, the definition of ISS requires that, for t large, the
size of the state must be bounded by some function of the sup
norm, that is to say, the maximum amplitude, of inputs, since
β(ω(x0), t) → 0 as t → ∞. On the other hand, the term
β(ω(x0), 0) may dominate for small t , and this serves to quantify
the magnitude of the transient (overshoot) behavior as a function
of the size of the initial state x0, see Fig. 1.

For stable (A having all eigenvalues with negative real part)
linear systems ẋ = Ax + Bu evolving on X = Rn, the variation of
parameters formula gives immediately the following inequality:

|x(t)| ≤ β(t)
⏐⏐x0⏐⏐ + γ ∥u∥∞,

where

β(t) = ∥etA∥ → 0 and γ = ∥B∥
∫

∞

0
∥esA∥ds < ∞

(here ∥·∥ is induced operator norm). This is a particular case of the
ISS estimate, |x(t)| ≤ β(|x0|, t)+γ (∥u∥∞), with linear comparison
functions. Note that β(t) ≤ Ce−λt for some C > 0 and some λ > 0,
so one has exponential convergence when u ≡ 0.

Remark 3.3. We could think of a particular size function ω as
an output function or ‘‘observable’’ y = ω(x) of the system ẋ =

f (x, u). With this interpretation, the definition is almost identical
with that of ‘‘state-independent input to output stability’’ (SIIOS)
given in [16]. The paper [16] presents a large number of results
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elating SIIOS to several other stability notions with respect to
utputs. However, the interest in that paper is on non-proper ω,
nd X = Rn, since for proper functions and X = Rn, SIIOS would
imply coincide with ISS. □

emark 3.4. The definition of ISS on open sets is the only one
hat is invariant under coordinate changes and is also compatible
ith the definition of ISS on Euclidean spaces. To see this, let us
ake the case A = {x̄}. Generally, suppose that X ⊆ Rn and Y ⊆
n are open subsets (for example, Y = Rn), that ϕ : X → Y is a

diffeomorphism with ϕ(x̄) = ȳ, and that ωY is a size function for
(Y, ȳ). Then ωX(x) := ωY(ϕ(x)) defines a size function for (X,A):
continuity and positive definiteness are clear, and properness
follows because, given any r ≥ 0, the set Sr := {x | ωX(x) ≤ r} is
the same as ϕ−1({y | ωY(y) ≤ r}), and this set is compact because
ϕ−1 is continuous and {y | ωY(Y ) ≤ r} is compact. Now, given
any system ẋ = f (x, u) with state space X, define the system
ẏ = g(y, u) with state space Y by mapping trajectories under ϕ,
that is, g(y, u) := ϕ∗(ϕ−1(y))f (ϕ−1(y), u), where ϕ∗ denotes the
Jacobian of ϕ. Suppose that this transformed system is ISS, so we
have an estimate:

ωY(y(t, y0, u)) ≤ max
{
β(ωY(y0), t) , γ (∥u∥∞)

}
that holds for all solutions. For any initial state x0 of the orig-
inal system, ϕ(x(t, x0, u)) = y(t, y0, u), by construction. Since
ωY(ϕ(x(t, x0, u))) = ωX(x(t, x0, u)) by definition of ωX, we con-
clude that the original system is ISS as well. Now, if a system is
ISS on an open set with respect to a point equilibrium A, there
is a diffeomorphism ϕ : X → Y = Rn. Thus, the definition of ISS
on Euclidean spaces maps precisely into the definition that we
gave. □

3.2. ISS-Lyapunov functions

We now define ISS-Lyapunov functions on open sets. These
are functions that can be used to certify that a system is ISS. We
assume given a system ẋ = f (x, u) as above.

Definition 3.5. A continuously differentiable V : X → R is said to
be an ISS-Lyapunov function for ẋ = f (x, u) with respect to (X,A)
if V (x) = V for x ∈ A and the following properties hold:

(a) V − V is a size function for (X,A), and
(b) there exist functions α, γ ∈ K∞ such that

V̇ (x, u) ≤ −α(ω(x)) + γ (|u|) ∀ (x, u) ∈ X × Rm (L-ISS)

where V̇ : X × Rm
→ R is the function:

V̇ (x, u) := ∇V (x) · f (x, u).

The interpretation of V̇ is given by the fact that, for any solu-
tion x(t) of ẋ = f (x, u), the derivative dV (x(t))/dt is V̇ (x(t), u(t)).

Remark 3.6. Property (a) in the definition of ISS-Lyapunov func-
tion is equivalent to the existence of two functions αi ∈ K∞,
i = 1, 2 such that

α1(ω(x)) ≤ V (x) − V ≤ α2(ω(x)) ∀ x ∈ X . (5)

This is an immediate application of Corollary 2.7. Regarding prop-
erty (b), redefining α := α ◦ α−1

2 ∈ K∞, one also has an estimate
in which, instead of condition (L-ISS), one has the differential
inequality:

V̇ (x, u) ≤ −α(V (x)) − V + γ (|u|) ∀ (x, u) ∈ X × Rm . (L-ISS’)

Conversely, suppose that (a) and (L-ISS’) hold. Let α1 be as in (5).
Then α̃(ω(x)) ≤ α(V (x)) − V , where α̃ := α ◦ α1. This α̃ gives an
stimate of the form (L-ISS). □
5

Theorem 1. If a system admits an ISS-Lyapunov function, then it is
ISS. ■

This is a well-known fact, and its proof is entirely analogous
to the proof for X = Rn in the original paper [3]. We sketch the
details here, starting from an estimate L-ISS’. Pick any solution
x(t, x0, u), and define

v(t) := V (x(t, x0, u)) − V .

Note that v̇(t) = V̇ (x(t), u(t)) ≤ −α(v(t)) + γ (|u(t)|). For any t ,
ither α(v(t)) ≤ 2γ (|u(t)|) or v̇(t) ≤ −α(v(t))/2. From here, one
educes by a comparison theorem that

(t) ≤ max
{
β(v(0), t) , α−1(2γ (∥u∥∞))

}
∀ t ∈ [0, tmax(x0, u)),

here the KL function β(s, t) is the solution y(t) of the initial
alue problem

˙ = −
1
2
α(y) , y(0) = s.

sing that v(0) = V (x0) − V ≤ α2(ω(x0)) and ω(x(t, x0, u)) ≤

α−1
1 (V (x(t, x0, u)) − V ) = α−1

1 (v(t)), we have

ω(x(t, x0, u)) ≤ max
{
α−1
1 (β(α2(ω(x0)), t)) , α−1

1 (α−1(2γ (∥u∥∞)))
}

≤ max
{
β̃(ω(x0), t) , γ̃ (∥u∥∞)

}
∀ t ∈ [0, tmax(x0, u))

with β ∈ KL and γ̃ ∈ K∞. It only remains to prove that
tmax(x0, u) = +∞. To see this, note that, for any solution x(t, x0, u),
we have the bound

ω(x(t, x0, u)) ≤ r := max
{
β̃(ω(x0), 0) , γ̃ (∥u∥∞)

}
.

Therefore, x(t, x0, u) ∈ Sr for all t on the maximal interval of
definition of the solution. The set Sr is compact (properness of
size functions), so the solution is defined for all t ≥ 0 (see for
example the ODE appendix in [5]).

The converse of Theorem 1 is also true: if a system is ISS, then
it admits an ISS-Lyapunov function. Again, the proof is entirely
analogous to that for the case X = Rn, proved in [17,18], which
is basically a theorem about Lyapunov functions for differential
inclusions. We have not been able to find a clean citation for
this converse result, though it can be easily derived from a far
more general theorem, valid for hybrid systems, given in [13].
In the special case of a singleton A = {x̄}, one can derive
the theorem from the case X = Rn as follows. If a system is
ISS, then the system with zero inputs ẋ = f (x, 0) has x̄ as an
asymptotically stable point with domain of attraction all of X
(this follows from the estimate ω(x) ≤ β(ω(0), t)). This implies
that X is diffeomorphic to Rn, see Theorem 2.2 in [19], which
obtains this as a simple corollary of the Brown–Stallings Theorem.
(A proof of a simpler fact, that X must be contractible, is very
easy; see for example theorem 21 in [5].) This means that under
a diffeomorphism, we can apply the result for X = Rn, and when
transforming back, we obtain an L-ISS Lyapunov function.

4. Application to gradient systems

We assume given a pair (X,A) and a size function ω for (X,A).
We write the gradient of a function V : X → R as a row
(co)vector ∇V , and its Euclidean norm as |∇V |. When ∇V is
locally Lipschitz, the gradient flow has unique solutions and if ∇V
s globally Lipschitz, these solutions are automatically defined for
ll t ≥ 0. (In the notations of Nesterov’s book [20], the set of
unctions V for which ∇V has a uniform Lipschitz constant L is
enoted C1,1

L (X). In our setup, solutions are defined for all t ≥ 0
even if ∇V is not assumed to be globally Lipschitz.)
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.1. Proper loss functions

efinition 4.1. A continuously differentiable V : X → R, with
locally Lipschitz continuous gradient ∇V , will be said to be a
proper loss function with respect to (X,A) if V (x) = V for x ∈ A
nd the following properties hold:

(a) V − V is a size function for (X,A), and
(b) |∇V | is a size function for (X,A). □

emma 4.2. Suppose given a continuously differentiable V : X →

, with locally Lipschitz continuous gradient ∇V , so that V (x) = V
or x ∈ A and such that V − V is a size function for (X,A). Then
hese two properties are equivalent:

• V is a proper loss function,
• for some α ∈ K∞,

α(ω(x)) ≤ |∇V (x)| for all x ∈ X.

roof. Suppose that V is a proper loss function. Since |∇V | is
size function for (X,A), there is an α ∈ K∞ as claimed, by
orollary 2.7 (take α = α1). Conversely, suppose that α(ω(x)) ≤

∇V (x)| with α ∈ K∞. Then ∇V (A) = 0, because V has a (local
nd even global) minimum at A. For x ̸∈ A, 0 < α(ω(x)) ≤

∇V (x)|, so |∇V (x)| is positive definite.
It remains to show that |∇V | is proper. Pick any r ≥ 0; we

eed to show that Sr = {x | |∇V (x)| ≤ r} is compact. Note that
r ⊆ S ′

r := {x | ω(x) ≤ α−1(r)} and that the latter set is compact
because ω is proper. As the restriction of ∇V to S ′

r is continuous,
r is closed in S ′

r and therefore compact. ■

Applied with ω = V − V , Lemma 4.2 together with the
efinition of size function says that an equivalent way to define
proper loss function is to ask:

• V is continuously differentiable, with locally Lipschitz con-
tinuous gradient;

• V achieves a strict global minimum at x ∈ A;
• V is proper; and
• there is some α ∈ K∞ such that

α(V (x) − V ) ≤ |∇V (x)|2 for all x ∈ X . (6)

We wrote |∇V (x)|2 instead of |∇V (x)| for convenience in what
follows; this makes no difference, since (α(·))2 is a K∞ function
if and only if α is.

In many problems one can directly obtain an estimate as in (6),
and this is useful for obtaining explicit ISS stability rates.

4.2. Gradient flow is ISS

Fix a proper loss function V , a constant η > 0 (the ‘‘learning
rate’’), and a locally Lipschitz mapping B : X → Rn×m with
bounded image. We consider the gradient system in (1), repeated
here for convenience:

ẋ(t) = −η ∇V (x(t))T + B(x(t))u(t).

Theorem 2. If V is a proper loss function, then system (1) is ISS.

Proof. We will prove that V − V is an ISS-Lyapunov function
for (1). Since V − V is a size function, we need to show an
stimate (L-ISS’). We have:

˙ (x, u) = −η|∇V (x)|2 + ∇V (x) B(x)u
= −η|∇V (x)|2 + (

√
η∇V (x))(

√
1/ηB(x)u)

≤ −η|∇V (x)|2 +
η

|∇V (x)|2 +
1

|B(x)u|2

2 2η

6

= −
η

2
|∇V (x)|2 +

1
2η

|B(x)u|2

≤ −
η

2
α(V (x) − V ) +

KB

2η
|u|2

= −α̃(V (x) − V ) + γ (|u|)

where we used that, for row and column vectors in Rn, |vw| ≤

|v||w| ≤ (1/2)(|v|
2
+ |w|

2) (Cauchy–Schwarz inequality followed
by 2ab ≤ a2 + b2), and the inequality α(V (x) − V ) ≤ |∇V (x)|2,
and where KB is an upper bound on the induced Euclidean norms
|B(x)|, x ∈ X, and defined α̃ :=

η

2α ∈ K∞ and γ :=
KB
2η r

2
∈ K∞.

o V is an ISS-Lyapunov function, and thus the system (1) is
SS. ■

In the particular case in which the estimate α(V (x) − V ) ≤

|∇V (x)|2 holds with a linear function α, the proof of Theorem 1
provides a rate of decrease for v(t) = V (x(t)) − V which is
exponential: the function β(r, t) has the form e−λt r for some
ositive λ.

.3. An example: LQR problem

The (infinite-horizon) LQR problem is one of the best-studied
ptimal control problems. Consider a time-invariant linear sys-
em

˙ = Ax + Bu

nd define the cost function:

(x0, u) :=

∫
∞

0
xT (t)Qx(t) + uT (t)Ru(t) dt

here x(t) = x(t, x0, u). Here x(t) ∈ Rn, u(t) ∈ Rm, A ∈ Rn×n

nd B ∈ Rn×m are matrices so that the pair (A, B) is controllable
or even just stabilizable or ‘‘asymptotically controllable’’), which
uarantees the finiteness of the objective function, and Q ∈ Rn×n,
nd R ∈ Rm×m are positive definite. The objective is to min-
mize J (x0, u) over all measurable essentially bounded control
unctions u : [0, ∞) → Rm, for any given x0.

The unique optimal control is obtained by using the linear
eedback law u(t) = −Kx(t), where K = R−1BTΠ and Π is the
nique positive definite solution of the algebraic Riccati equation

BR−1BTΠ − ATΠ − ΠA − Q = 0

that is, u(t) = −Kx(t)), where x solves ẋ = (A − BK )x with
(0) = x0), and at this optimum value,

(x0, u) = (x0)TΠx0

see, for instance, Theorem 41 in [5]). The optimal feedback
atrix K = R−1BTΠ stabilizes the system, i.e., A−BK is a Hurwitz
atrix (all eigenvalues have negative part).
Since the optimal control is given by a linear feedback, one

ay pose the simpler question of optimizing over all feedback
atrices which belong to the open set X := {K | A − BK is
urwitz}. In terms of K and using u = −Kx, one can introduce
he loss function

x0 (K ) :=

∫
∞

0
x(t)TQx(t) + (−Kx(t))T R (−Kx(t)) dt

here x(t) solves ẋ = (A − BK )x, i.e., x(t) = e(A−BK )tx0, so that we
an also write

x0 (K ) =

∫
∞

0
x(t)T (Q + K TRK )x(t) dt

= trace
(
(Q + K TRK )

∫
∞

0
x(t) x(t)T dt

)
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here we have used that for a scalar a = trace (a) and that
trace (UV ) = trace (VU). To obtain a simpler problem, we assume
now that the initial state is picked distributed randomly accord-
ing to some probability density in Rn (for example, Gaussian) with
covariance Σ = E[x0(x0)T ] and we wish to minimize

V (K ) := E[Vx0 ] = trace ((Q + K TRK )P)

with

P = E
[∫

∞

0
etFx0(x0)T etF

T
dt

]
=

∫
∞

0
etF Σ etF

T
dt

where F = A−BK . It follows (see for instance Theorem 18 in [5])
that P is the (unique) solution of the Lyapunov matrix equation

(A − BK )P + P(A − BK )T + Σ = 0 (7)

In summary, one has to minimize the loss function V (K ) =

trace ((Q + K TRK )P) where the positive definite matrix P satis-
fies (7) and K ∈ X. Since the solution P of the linear system
of Eqs. (7) is a rational function of the data (Cramer’s rule), it
follows that V (K ) is rational in the entries of the matrix K , and
hence V is differentiable. Although it is not generally convex, it
has a unique global minimum at the optimal K = R−1BTΠ . It
is also known that it is a proper function, see [21]. The gradient
can be computed as follows (this is implicit in the computations
in [21,22], but see [23] for a clear exposition):

∇V (K ) = 2(RK − BT L)P

where L is the unique positive definite matrix that satisfies

(A − BK )T L + L(A − BK ) + Q + K TRK = 0.

For example, suppose that n = m = 1, a = q = r = Σ = 1. In
his case X = {k | bk > 1} and one obtains

V (k) =
k2 + 1

2(bk − 1)
nd

′(k) =
bk2 − 2k − b
2(bk − 1)2

.

In general, it can be shown, see [1], that V is a proper loss
function. In fact, that reference shows that the Polyak–Łojasiewicz
condition [24]

cr (V (x) − V ) ≤ |∇V (x)|2

holds on sublevel sets, for constants cr , which implies that a lower
ounding α ∈ K∞ exists.

.4. The condition that |∇V | be a size function is key

Weaker positive definiteness conditions than (6) may still
esult in global convergence of gradient flows but may not guar-
ntee that the gradient system with inputs (1) is ISS. We illustrate
his with an example.

Take X = (0, ∞) ⊂ R, V (x) = x +
1
x , A = {1}, V = 2. Then

− V is a size function with respect to (X,A). The associated
radient system with inputs is

˙ =
1
x2

− 1 + u

which, when the input is u ≡ 0 has 1 as a globally asymp-
otically stable system. In other words, with no disturbances in
he gradient calculation, there is global convergence to the global
inimum, as expected since V is convex. However, when u ≡ 1
e obtain the equation ẋ =

1
x2
, whose solutions diverge to +∞.

Observe that |∇V | is not a size function, since |1 − 1/x2| → 1
s x → +8.
7

. ISS and steepest descent

In this section, we fix a pair (X,A) and a size function ω for
X,A).

We recall from the introductory discussion that we are in-
erested in proving that the steepest descent iteration x+

=

− λ[∇V (x)T + B(x)u], where λ is picked at each step of the
teration so as to minimize the value V (x+), is a discrete-time
SS system. We start by reviewing some simple properties of
ipschitz functions.

.1. Gradients of locally lipschitz functions on X

Suppose given a continuously differentiable function V : X →

such that these two properties hold:

SV] V − V is a size function for (X,A);
[LL] ∇V is locally Lipschitz.

We next review a couple of well-known facts about Lipschitz
functions.

Remark 5.1. For each compact subset K ⊂ X, there some L ≥ 0
such that the one-sided Lipschitz estimate

(∇V (y) − ∇V (x)) (y − x) ≤ L |y − x|2 (8)

holds for all x, y ∈ K . Indeed, the function ∇V is Lipschitz on K ,
with some constant L (start locally and take finite subcovers), so

|(∇V (y) − ∇V (x)) (y − x)| ≤ |∇V (y) − ∇V (x)| |y − x|

≤ (L |y − x|) |y − x| = L |y − x|2

by the Cauchy–Schwarz inequality and the Lipschitz property. □

Remark 5.2. Suppose that x, y ∈ K and that L is a one-sided
Lipschitz constant as in (8) on the segment

K = [x, y] := {z | z = x + s(y − x), s ∈ [0, 1]}

connecting x and y. Then

V (y) ≤ V (x) + ∇V (x)(y − x) +
L
2

|y − x|2 . (9)

This is a standard fact, see e.g. [20]. The blanket assumption
X = Rn made there is not needed; since the proof is so sim-
ple, we write it here. Pick x, y, and consider the continuously
differentiable function:

g : [0, 1] → R : s ↦→ V (x + s(y − x)).

hen

(y) − V (x) − ∇V (x)(y − x) = g(1) − g(0) − g ′(0)

=

∫ 1

0
g ′(s) ds − g ′(0)

=

∫ 1

0
[g ′(s) − g ′(0)] ds

here
′(s) − g ′(0) = ∇V (x + s(y − x))(y − x) − ∇V (x)(y − x)

=
1
s
[∇V (x + s(y − x)) − ∇V (x)] (s(y − x))

≤ sL |y − x|2

y (8) when s ̸= 0 (and this is trivial when s = 0). Therefore

(y) − V (x) − ∇V (x)(y − x) ≤

∫ 1

0
sL |y − x|2 ds =

L
2

|y − x|2 ,

as desired. □
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We wish to study the behavior of steepest descent when the
gradient of V is inaccurately estimated.

From now on we assume that ∇V is positive definite:

PD] ∇V (x) ̸= 0 for all x ̸∈ A.

in addition to [SV] and [LL].

emma 5.3. Pick any x0 ∈ X, x0 ̸∈ A, and let L be a Lipschitz
onstant for ∇V on the compact set

S :=
{
x ∈ X | V (x) ≤ V (x0)

}
(without loss of generality, L > 0). Pick any q ∈ Rn and write
p := ∇V (x0)T ̸= 0. Suppose that λ > 0 has the property that

x0 − µ(p + q) ∈ S for each 0 ≤ µ ≤ λ.

hen

(x0 − λ(p + q)) − V (x0) ≤

(
−λ +

λ2L
2

)
|p|2 +

λ2L
2

|q|2

+
(
λ + λ2L

)
|p| |q| . (10)

roof. Let x = x0 and y = x0−λ(p+q). The segment [x, y] consists
of points of the form x0 − µ(p + q), with 0 ≤ µ ≤ λ. Therefore,
we may apply the Lipschitz estimate (9), to obtain:

V (x0 − λ(p + q)) − V (x0) ≤ −λpT (p + q) +
λ2L
2

|p + q|2 .

ince

p + q|2 = |p|2 + |q|2 + 2pTq ≤ |p|2 + |q|2 + 2 |p| |q|

nd similarly −pTq ≤
⏐⏐pTq⏐⏐ ≤ |p| |q|, the estimate (10)

ollows. ■

We have this immediate consequence:

orollary 5.4. Suppose that q ≤ c |p| in Lemma 5.3. Then,

(x0 − λ(p + q)) − V (x0) ≤ λ

[
(c − 1) +

λL
2
(c + 1)2

]
|p|2 .

In particular, taking c = 1/2 and λ ≤
2
9L , then V (x0 − λ(p + q)) −

(x0) ≤ −
λ
4 |p|2. □

Lemma 5.5. Pick x0, L, q, and p as in Lemma 5.3. Suppose that
|q| ≤

1
2 |p| and λ =

2
9L . Then x0 −µ(p+ q) ∈ X for each 0 ≤ µ ≤ λ

nd

(x0 − λ(p + q)) − V (x0) ≤ −
1

18L
|p|2 .

Proof. Since X is an open set, x0−µ(p+q) ∈ X for all small µ > 0.
Also, since

d
ds

⏐⏐⏐⏐
s=0

V (x0 − s(p + q)) = −pT (p + q) = − |p|2 + pTq

≤ − |p|2 + |p| |q| ≤ −
1
2

|p|2 < 0,

there is some ε > 0 such that

V (x0 − µ(p + q)) < V (x0) for all µ ∈ (0, ε).

Suppose that there would exist some µ ∈ [0, λ] such that x0 −

µ(p + q) ̸∈ S. Since S is compact and X is open, this would mean
that there is some µ ∈ [ε, λ] such that x0 − µ(p + q) ∈ X and
V (x0 − µ(p + q)) = V (x0). To apply Corollary 5.4, we need to see
that this cannot happen. Let

λ := min
{
µ ∈ [ε, λ] | V (x0 − µ(p + q)) = V (x0)

}
≥ ε > 0.
0

8

Since V (x0 − µ(p + q)) ≤ V (x0) for all µ ∈ [0, λ0], we may apply
Corollary 5.4 to λ0 to conclude that

0 = V (x0 − λ(p + q)) − V (x0) ≤ −
λ0

4
|p|2 ,

which contradicts λ0 > 0 and p ̸= 0. Thus the hypotheses of
Lemma 5.3 hold, and applying Corollary 5.4 to λ we conclude that

V (x0 − λ(p + q)) − V (x0) ≤ −
λ

4
|p|2 = −

1
18L

|p|2

as claimed. ■

5.2. Line search in direction of steepest descent

We continue with the assumptions [PD], [SV], [LL] on V . We
next define a function

F : X × Rn
→ X

that will represent an individual steepest descent step when
starting at a point x0 ∈ X and the (transpose of the) gradient is
estimated as p+ q where p := ∇V (x0)T and q ∈ Rn represents an
additive noise. Now take any x0 ∈ X and any q ∈ Rn such that
p + q ̸= 0. Define

Λ(x0, q) :=
{
λ ≥ 0 | V (x0 − µ(p + q)) ≤ V (x0) for all µ ∈ [0, λ]

}
.

Note that 0 ∈ Λ(x0, q).
Suppose that x0 ̸∈ A. We claim that the set Λ(x0, q) is compact.

t is bounded above: otherwise, it would be the case that x0 −

(p + q) ∈ X and V (x0 − λ(p + q)) ≤ V (x0) for all λ ≥ 0; then
ince V is proper, the set of points x0 − λ(p + q) is bounded, but
his contradicts that

⏐⏐x0 − λ(p + q)
⏐⏐ ≥

⏐⏐⏐⏐x0⏐⏐ − λ |p + q|
⏐⏐ → ∞ as

→ ∞ because |p + q| ̸= 0. It is also closed. Indeed, suppose
hat λk → λ, with λk ∈ Λ(x0, q). Then V (x0 − λ(p + q)) ≤ V (x0),
y continuity. In addition, for each µ < λ, there is some k so that
< λk so V (x0 − µ(p + q)) ≤ V (x0), proving that λ ∈ Λ(x0, q).

hus we may define

¯
x0,q := argmin

λ∈Λ(x0,q)
V (x0 − λ(p + q))

here ‘‘arg min’’ means that we take the smallest λ that achieves
his minimum value in the direction of p+ q when there is more
han one. We then define

(x0, q) := x0 − λ̄x0,q(p + q).

nd F (x0, q) := x0 if p + q = 0 or if x0 ∈ A.
Note that V (F (x0, q)) ≤ V (x0), because 0 ∈ Λ(x0, q) and we are

inimizing. In other words,˜V (x0, q) := V (F (x0, q)) − V (x0) ≤ 0 ∀ (x0, q)

nd observe that ∆̃V (x0, q) = 0 if V (x0 − ε(p + q)) ≥ V (x0) for all
mall ε. On the other hand, since

d
ds

⏐⏐⏐⏐
s=0

V (x0 − sp) = −
⏐⏐∇V (x0)

⏐⏐2 < 0

it follows that ∆̃V (x0, 0) < 0 for all x0 ̸∈ A.
We next estimate ∆̃V (x0, q) for all |q| that are not ‘‘too large’’

compared to |p|.
Suppose that L is any Lipschitz constant for ∇V on the set

S =
{
x ∈ X | V (x) ≤ V (x0)

}
, |q| ≤

1
2 |p|, and λ =

2
9L . From

Lemma 5.5, λ ∈ Λ(x0, q), so V (F (x0, q)) ≤ V (x0 − λ(p + q)) by
efinition of λ̄x0,q as a minimizer. Thus, again by the Lemma,˜V (x0, q) = V (F (x0, q)) − V (x0) ≤ V (x0 − λ(p + q)) − V (x0)

≤ −
1 ⏐⏐∇V (x0)

⏐⏐2 . (11)

18L
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.3. Steepest descent with inputs

We now consider a slightly more general setup as follows. Let
: X → Rn×m be a mapping with a bounded image, let KB be

n upper bound on the induced Euclidean norms {∥B(x)∥, x ∈ X}.
ssume that the gradient error at each iteration step is q = B(x)u,
here u ∈ Rm; thus |q| ≤ KB |u|.
We define the steepest descent algorithm, with inputs u, as the

iscrete-time system defined by the following iteration function
: X × Rm

→ X:
+

= f (x, u) := F (x, B(x)u).

e define ∆V (x, u) := ∆̃V (x, B(x)u), that is

V (x, u) := V (f (x, u)) − V (x).

ince ∆̃V (x, q) ≤ 0 for all (x, q), also ∆V (x, u) ≤ 0 for all (x, u).
bviously, we can also write

V (x, u) = [V (f (x, u)) − V ] − [V (x) − V ].

which exhibits ∆V as the change, in each steepest descent step,
of the ‘‘excess cost’’ of V compared to its minimum value V .

.4. Discrete-time ISS

We now review input to state stability for discrete time sys-
ems (on open subsets), a notion which is completely analogous
o that for continuous time, see for instance [25–27]. We consider
iscrete-time systems x+

= f (x, u), where f : X × Rm
→ X is a

ontinuous function and f (x, 0) = x for x ∈ A. Again, ω is a size
unction.

efinition 5.6. The discrete-time system x+
= f (x, u) is input

to state stable (ISS) (on the open set X and with respect to A) if
there exist functions β ∈ KL and γ ∈ K∞ so that the following
property holds: for all input sequences u = (u0, u1, . . .) ∈ ℓ∞

m and
all initial conditions x0 ∈ X, the solution x0 satisfies the estimate:

ω(x(t, x0, u)) ≤ β(ω(x0), t) + γ (∥u∥∞) (ISS)

for all t = 0, 1, 2, . . ..

Here ∥u∥∞ =
∑

∞

t=0 |ut | and x(t, x0, u) is obtained by solving
recursively xt+1 = f (xt , ut ).

There are several equivalent definitions of ISS-Lyapunov func-
tion for discrete time systems. We pick here the most convenient
one for the current application.

For any function V : X → R, we denote ∆V (x, u) :=

V (f (x, u)) − V (x).

Definition 5.7. A continuous V : X → R is said to be an
ISS-Lyapunov function for x+

= f (x, u) with respect to (X,A) if
V (x) = V for x ∈ A and the following properties hold:

(a) V − V is a size function for (X,A), and
(b) there exist (i) a continuous and positive definite function α,

and (ii) a function χ ∈ K∞, such that:

ω(x) ≥ χ (|u|) ⇒ ∆V (x, u) ≤ −α(V (x) − V ) (12)

for all x ∈ X, u ∈ Rm.

Equivalences among alternative ISS-Lyapunov function defini-
ions, including a condition of the type ∆V (x, u) ≤ −α(ω(x)) +

(|u|) for functions of class K∞, are discussed in Remark 3.3
f [26]. As with continuous-time systems, the existence of ISS-
yapunov functions is equivalent to the ISS property, see [13,
5,27]. For completeness, and because of the interest in open
ubsets X, we prove the sufficiency below, appealing to some key
echnical lemmas in [26,27].
 f

9

Let us write, for simplicity of notation, W (x) = V (x) − V . As
V (x, u) = [V (f (x, u))−V ]−[V (x)−V ] = W (f (x, u))−W (x), one

can write (12) as:

ω(x) ≥ χ (|u|) ⇒ W (f (x, u)) ≤ W (x) − α(W (x)).

heorem 3. If a discrete-time system admits an ISS-Lyapunov
unction V then it is ISS.

roof. We first remark that one may redefine V , replacing it by a
unction of the form ρ(V (x)) with ρ ∈ K∞, in such a manner that
he estimate (12) holds but now α ∈ K∞ (and the redefined V
s so that V − V still a size function). The argument is similar to
the one given in [3] for the continuous time case, but it is more
delicate, see the proof of Lemma 2.8 in [27]. Moreover, one may
assume that r ↦→ r − α(r) is of class K (see Lemma B.1 in [26]).
o, from now on, and redefining V in this manner if needed, we

will assume that α satisfies these two properties. Since W is a
ize function, there is a π ∈ K∞ such that ω(x) ≥ π (W (x)), and
thus W (x) ≥ π−1(χ (|u|)) implies ω(x) ≥ χ (|u|), so redefining χ

s π−1
◦ χ we can state the ISS-Lyapunov property as:

(x) ≥ χ (|u|) ⇒ W (f (x, u)) ≤ W (x) − α(W (x)).

ow let β(r, t) be the solution of the scalar difference equation

t+1 = yt − α(yt ) , y0 = r ≥ 0.

he property that r ↦→ r − α(r) is of class K implies yt ≥ 0
or all t , and also that yt < y′

t implies yt+1 < y′

t+1 for any two
olutions, in other words, the iteration is monotone (it preserves
rder). Thus the function β is of class K on r . Moreover, since
(y) ≥ 0, yt+1 ≤ yt , iterates form a decreasing sequence. Thus all
olutions converge to zero as t → ∞, since the only equilibrium
− α(y) = y is at y = 0. So β ∈ KL.
We introduce the following function γ : [0, ∞) → [0, ∞):

(µ) := max {W (f (x, u)) | |u| ≤ µ,W (x) ≤ χ (µ)}

hich is well-defined (the set over which we are maximizing is
ompact, and W (f (x, u)) is continuous on (x, u)), nondecreasing
the sets are larger as µ increases), and satisfies γ (0) = 0 (since
(x) = 0 implies x ∈ A and f (x, 0) = x for x ∈ A). Note that this

mplication holds:

(x) ≤ χ (|u|) ⇒ W (f (x, u)) ≤ γ (|u|).

eplacing γ by a larger function if needed, we may assume that
∈ K∞ and also that γ (µ) ≥ χ (µ) for all µ. Consider the

ollowing sets:

µ := {x | W (x) ≤ γ (µ)} .

e claim that this set is forward invariant for inputs with ∥u∥∞ ≤

. Indeed, pick any x ∈ Pµ and any u ∈ Rm with ∥u∥∞ ≤ µ. If
(x) ≥ χ (|u|), then W (f (x, u)) ≤ W (x) ≤ γ (µ), so f (x, u) ∈ Pµ. If

nstead W (x) ≤ χ (|u|), then W (f (x, u)) ≤ γ (|u|) ≤ γ (µ) as well.
Consider now any input u, any initial state x0, and the corre-

ponding solution x(t, x0, u) of x+
= f (x, u). Let at := W (x(t, x0, u))

or t = 0, 1, . . ., and µ := ∥u∥∞. We will compare this sequence
o yt = β(W (x0), t) = β(a0, t). Note that by definition a0 = y0.

Consider first the case that at ≤ γ (µ) for all t . Obviously in
hat case at ≤ max{β(a0, t), γ (µ)} for all t .

Consider next the case that at > γ (µ) for some t . Then either
i) at > γ (µ) for all t , or (ii) there is a T ≥ 0 so that at ≥ γ (µ)
or t = 0, . . . , T and a ≤ γ (µ). Suppose that a ≥ γ (µ) for
T+1 t
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= 0, . . . , T . From the ISS-Lyapunov property, we know that

t ≥ γ (µ) ⇒ at ≥ χ (µ) ≥ χ (|ut |)
⇒ at+1 ≤ at − α(at ).

e claim that at ≤ yt = β(a0, t) for t = 0, . . . , T . This holds for
= 0. In general, if γ (µ) ≤ at ≤ yt then at+1 ≤ at − α(at ) ≤

t − α(yt ) = yt+1, because r − α(r) is nondecreasing in r . By
nduction, at ≤ yt for t = 0, . . . , T . It cannot be that (i) holds,
ince yt → 0 as t → ∞. Thus (ii) holds. Now the condition
T+1 ≤ γ (µ) together with the forward invariance of Pµ implies
hat at ≤ γ (µ) for all t > T .

In summary, at ≤ max{β(a0, t), γ (µ)} for all t , or

(x(t, x0, u)) ≤ max{β(W (x0), t), γ (∥u∥∞)}, t = 0, 1, . . . .

et θi ∈ K∞ be such that ω(x) ≤ θ1(W (x)) and W (x) ≤ θ2(ω(x)).
hen

(x(t, x0, u)) ≤ max{θ1(β(θ2(ω(x0)), t)), γ (∥u∥∞)}
≤ β̃(ω(x0), t) + γ (∥u∥∞)

ith β̃(r, t) = θ1(β(θ2(r), t)) is an ISS estimate. ■

5.5. Application to steepest descent

For each r ≥ 0, we let

L(r) = a Lipschitz constant for∇V on the set {x | V (x) ≤ r}.

Without loss of generality we may take L as a continuous, non-
decreasing, and everywhere nonzero function. Letting

θ (r) :=
1

18L(r)
we conclude that:

|∇V (x)| ≥ 2KB |u| ⇒ ∆V (x, u) ≤ −θ (V (x)) |∇V (x)|2 . (13)

For x ∈ A, this is immediate since both sides vanish; for x ̸∈ A it
follows from (11).

From now on, we assume that:

[SG] |∇V | is a size function for (X,A).

This property implies [PD].

Theorem 4. Suppose that [SV], [LL], [SG] hold. The system x+
=

f (x, u) is ISS, and V is an ISS-Lyapunov function for it.

Proof. We need to obtain an estimate as in (12). Let θ be as
in (13). Since |∇V | /(2KB) is a size function, we may pick χ as
any K∞ function with the property that χ (|∇V (x)| /(2KB)) ≥ ω(x)
for all x. Now, if the pair (x, u) is such that ω(x) ≥ χ (|u|), then
(|∇V (x)| /(2KB)) ≥ ω(x) ≥ χ (|u|), and therefore |∇V (x)| >

KB |u|. Thus we have the implication

(x) ≥ χ (|u|) ⇒ ∆V (x, u) ≤ −θ (V (x)) |∇V (x)|2 .

ince both |∇V |
2 and V − V are size functions, there is some

∈ K∞ such that |∇V (x)|2 ≥ α̃(V (x) − V ), from which

θ (V (x)) |∇V (x)|2 ≤ −θ (V (x)) α̃(V (x) − V )

or all x ∈ X. Let

(r) := θ (r + V ) α̃(r).

Since θ is continuous and everywhere positive, and α̃ ∈ K∞, it
follows that α is continuous and positive definite. We have

ω(x) ≥ χ (|u|) ⇒ ∆V (x, u) ≤ −α(V (x) − V )

nd therefore V is a discrete-time ISS Lyapunov function, as
laimed. ■
10
We remark that in the special case that ∇V is globally Lips-
hitz, one can take L, and hence also θ , as a constant, so that α

can be picked of class K∞.

. Discussion

We have analyzed the ISS properties of continuous-time gra-
ient descent on open subsets of Euclidean space, as well as the
SS properties of the associated discrete-time steepest descent
lgorithm.
The conditions that we impose, which generalize the Polyak–

ojasiewicz condition, have appeared in the recent literature
n similar contexts. For example, in [28] one finds extremum-
eeking controllers based on gradient flows and an ISS property
ith respect for disturbances, for an integrator and a kinematic
nicycle; X is a closed submanifold of Rn. The paper [29] studies

the gradient minimization of a function Vq(x) on X = Rn, where
a parameter q represents time-varying uncertainty and an ISS
property is established with respect to the rate of change of q
(which is a notion called ‘‘DISS’’ in [30]). The work [31] solves an
output regulation problem for switched linear dynamical systems,
with X = Rn, proving an ISS property for gradient flows with
respect to unknown disturbances acting on the plant. In [32], the
authors also study a gradient flow and show ISS with respect to
additive errors, assuming strong convexity of the function to be
minimized (in fact, a more general ‘‘convex-concave’’ property),
also with X = Rn.

It is worth remembering that ISS theory provides an overall
conceptual view, and is never the whole story. To be useful in
specific applications, good estimates of the various gain func-
tions are required. An analogy is Lyapunov-function analysis of
nonlinear differential equations: while showing stability is an
important first step, in practice one wants quantifications of
overshoots, speed of convergence, and so on. The brief discussion
of the LQR problem emphasizes that most of the actual work
goes into establishing such estimates, as is the case in the various
works that we have cited. Nonetheless, it seems useful to have
a conceptual framework and ‘‘roadmap’’ that helps organize the
overall abstract ideas.

Even at the conceptual level, there are many extensions still to
be explored. We mentioned the extension to Riemannian mani-
folds. Also, finite- and fixed-time gradient flows [33,34] may be
studied on open subsets and, most importantly in the current
context, from the point of view of finite and fixed-time ISS in
the sense of e.g. [35–37]; a recent contribution along those lines
is [38].
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