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Abstract. This work explores Lyapunov characterizations of the input-output-to-state stabil-
ity (IOSS) property for nonlinear systems. The notion of IOSS is a natural generalization of the
standard zero-detectability property used in the linear case. The main contribution of this work is
to establish a complete equivalence between the IOSS property and the existence of a certain type
of smooth Lyapunov function. As corollaries, one shows the existence of “norm-estimators,” and
obtains characterizations of nonlinear detectability in terms of relative stability and of finite-energy
estimates.
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1. Introduction. This paper concerns itself with the following question, for
dynamical systems: is it possible to estimate, on the basis of external information
provided by past input and output signals, the magnitude of the internal state x(t) at
time t? The rest of this introduction will explain, in very informal and intuitive terms,
the motivation for this question, closely related to the “zero-detectability” problem,
sketching the issues that arise and the main results. Precise definitions are provided
in the next section.

State estimation is central to control theory. It arises in signal processing ap-
plications (Kalman filters), as well as in stabilization based on partial information
(observers). By and large, the theory of state estimation is well understood for linear
systems, but it is still poorly developed for more general classes of systems, such as
finite dimensional deterministic systems, with which this paper is concerned. An out-
standing open question is the derivation of useful necessary and sufficient conditions
for the existence of observers, i.e., “algorithms” (dynamical systems) which converge
to an estimate x̂(t) of the state x(t) of the system of interest, using the information
provided by {u(s), s ≤ t}, the set of past input values, and by {y(s), s ≤ t}, the set
of past output measurements. In the context of stabilization to an equilibrium, let us
say to the zero state x = 0 if we are working in a Euclidean space, a weaker type of
estimate is sometimes enough: it may suffice to have a norm-estimate, that is to say,
an upper bound x̂(t) on the magnitude (norm) |x(t)| of the state x(t). Indeed, it is
often the case (cf. [32] and Assumption UEC (73) in [18]) that norm-estimates suffice
for control applications. To be more precise, one wishes that x̂(t) eventually becomes
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INPUT-OUTPUT-TO-STATE STABILITY 1875

an upper bound on |x(t)| as t → ∞. We are thus interested in norm-estimators
which, when driven by the input/output data generated by the system, produce such
an upper bound x̂(t); cf. Figure 1.1.

✲ ✲

✲

✲u y
x

x̂

Fig. 1.1. Norm-estimator.

In order to understand the issues that arise, let us start by considering the very
special case when the external data (inputs u and outputs y) vanish identically. The
obvious estimate (assuming, as we will, that everything is normalized so that the
zero state is an equilibrium for the unforced system, and the output is zero when
x = 0) is x̂(t) ≡ 0. However, the only way that this estimate fulfills the goal of
upper bounding the norm of the true state as t → ∞ is if x(t) → 0. In other
words, one obvious necessary property for the possibility of norm-estimation is that the
origin must be a globally asymptotically stable state with respect to the “subsystem”
consisting of those states for which the input u ≡ 0 produces the output y ≡ 0.
One says in this case that the original system is zero-detectable. For linear systems,
zero-detectability is equivalent to detectability, that is to say, the property that if
any two trajectories produce the same output, then they approach each other. Zero-
detectability is a central property in the general theory of nonlinear stabilization on the
basis of output measurements; see, for instance, among many other references, [34, 17,
50, 10, 16]. Our work can be seen as a contribution toward the better characterization
and understanding of this fundamental concept.

✲ ✲
u→ 0

⇒ x→ 0
y → 0

Fig. 1.2. State converges to zero if external data does.

However, zero-detectability by itself is far from being sufficient for our purposes,
since it fails to be “well-posed” enough. One easily sees that, at the least, one should
ask that, when inputs and outputs are small, states should also be small, and if inputs
and outputs converge to zero as t→∞, states do too; cf. Figure 1.2. Moreover, when
formally defining the notion of norm-estimator and the natural necessary and sufficient
conditions for its existence, other requirements appear: the existence of asymptotic
bounds on states, as a function of bounds on input/output data, and the need to
describe the “overshoot” (transient behavior) of the state.

One way to approach the formal definition, so as to incorporate all the above char-
acteristics in a simple manner, is to look at the analogous questions for the stability
problem, which, for linear systems, is known to be technically dual to detectability.
This leads one to the area which deals precisely with this circle of ideas: input-to-state
stability (ISS).

ISS was introduced in [35] and has proved to be a very useful paradigm in the
study of nonlinear stability; see, for instance, the textbooks [16, 20, 22, 23], and the
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1876 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

papers [7, 14, 15, 19, 28, 11, 32, 33, 44, 42, 49, 48], as well as its variants such as
integral ISS (cf. [2, 4, 24, 38]) and input/output stability (cf. [35, 46, 47]). The notion
of ISS takes into account the effect of initial states in a manner fully compatible with
Lyapunov stability, and incorporates naturally the idea of “nonlinear gain” functions;
the reader may wish to consult [37] and [41] for expositions, as well as [44] for the
proofs of several of the main characterizations. Roughly speaking, a system is ISS
provided that, no matter what is the initial state, if the inputs are small, then the
state must eventually be small. Dualizing this definition one arrives at the notion
of detectability which is the main subject of study of this paper: input-output-to-
state stability (IOSS). (The terminology “IOSS” is not to be confused with the totally
different concept called input/output stability (IOS)—cf. [35, 46, 47]—which refers
instead to stability of outputs, rather than to detectability.)

A system ẋ = f(x, u) with measurement (“output”) map y = h(x) is IOSS if
there are some functions β ∈ KL and γ1, γ2 ∈ K∞ such that the estimate

|x(t)| ≤ max
{
β(|x(0)| , t), γ1

(∥∥u|[0,t]∥∥) , γ2

(∥∥y|[0,t]∥∥)}
holds for any initial state x(0) and any input u(·), where x(·) is the ensuing trajectory
and y(t) = h(x(t)) the respective output function. (States x(t), input values u(t), and
output values y(t) lie in appropriate Euclidean spaces. We use |·| to denote Euclidean
norm and ‖·‖ for supremum norm. Precise definitions and technical assumptions
are discussed later.) The terminology IOSS is self-explanatory: formally, there is
“stability from the input/output data to the state.” The term was introduced in
the paper [45], but the same notion had appeared before: it represents a natural
combination of the notions of “strong” observability (cf. [35]) and ISS, and was called
simply “detectability” in [36] (where it is phrased in input/output, as opposed to
state space, terms and applied to questions of parameterization of controllers) and
was called “strong unboundedness observability” in [19] (more precisely, this last
notion also allows an additive nonnegative constant in the right-hand side of the
estimate). In [45], two of the authors described relationships between the existence
of full state observers and the IOSS property, or more precisely, a property which we
called “incremental IOSS.” The use of ISS-like formalism for studying observers, and
hence implicitly the IOSS property, has also appeared several times in other authors’
work, such as the papers [31, 26].

One of the main results of this paper is that a system is IOSS if and only if it
admits a norm-estimator (in a sense also to be made precise). This result is in turn
a consequence of a necessary and sufficient characterization of the IOSS property in
terms of smooth dissipation functions, namely, there is a proper (radially unbounded)
and positive definite smooth function V of states (a “storage function” in the language
of dissipative systems introduced by Willems [52] and further developed by Hill and
Moylan [12, 13] and others) such that a dissipation inequality

d

dt
V (x(t)) ≤ −σ1(|x(t)|) + σ2(|y(t)|) + σ3(|u(t)|)(1.1)

holds along all trajectories, with the functions σi of class K∞. This provides an
“infinitesimal” description of IOSS, and a norm-observer is easily built from V . Such
a characterization in dissipation terms was conjectured in [45], and we provide here a
complete solution to the problem. (The paper [45] also explains how the existence of
V links the IOSS property to “passivity” of systems.)

It is worth pointing out that several authors have independently suggested that
one should define “detectability” in dissipation terms. For example, in [27, eq. 15], one
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INPUT-OUTPUT-TO-STATE STABILITY 1877

finds detectability defined by the requirement that there should exist a differentiable
storage function V satisfying our dissipation inequality but with the special choice
σ2(r) := r2 (there were no inputs in the class of systems considered there). A variation
of this is to weaken the dissipation inequality, to merely require

x �= 0 ⇒ d

dt
V (x(t)) < σ2(|y(t)|)

(again, with no inputs), as done, for instance, in the definition of detectability given
in [30]. Observe that this represents a slight weakening of our property, in so far as
there is no “margin” of stability −σ1(|x(t)|). One of our contributions is to show that
such alternative definitions (when posed in the right generality) are in fact equivalent
to IOSS.

❄

✲ ✲x
u y

∆

Fig. 1.3. Robust detectability.

A key preliminary step in the construction of V , just as it was for the analogous
result for the ISS property obtained in [42], is the characterization of the IOSS prop-
erty in robustness terms, by means of a “small gain” argument. The IOSS property is
shown to be equivalent to the existence of a “robustness margin” ρ ∈ K∞. This means
that every system obtained by closing the loop with a feedback law ∆ (even dynamic
and/or time-varying) for which |∆(t)| ≤ ρ(|x(t)|) for all t (cf. Figure 1.3) is OSS (i.e.,
is IOSS as a system with no inputs). In order to formulate precisely this notion of
robust detectability, we need to consider auxiliary “systems with disturbances.” Since
such systems must be introduced anyhow, we decided to present all our results (and
definitions, even of IOSS) for systems with disturbances, in the process gaining extra
generality in our results.

The core of the paper is, thus, the construction of V for “robustly detectable”
(more precisely, “robust IOSS”) systems ẋ = g(x, d) which are obtained by substitut-
ing u = dρ(|x|) in the original system, and letting d = d(·) be an arbitrary measurable
function taking values in a unit ball. The function V must satisfy a differential in-
equality of the form V̇ (x(t)) ≤ −σ1(|x(t)|) + σ2(|y(t)|) along all trajectories, that is
to say, the following partial differential inequality:

∇V (x) · g(x, d) ≤ −σ1(|x|) + σ2(|y|)
for some functions σ1 and σ2 of class K∞. But one last reduction consists of turning
this problem into one of building Lyapunov functions for “relatively asymptotically
stable” systems. Indeed, one observes that the main property needed for V is that
it should decrease along trajectories as long as y(t) is sufficiently smaller than x(t).
This leads us to the notion of “global asymptotic stability modulo outputs” and its
Lyapunov-theoretic characterization.

The construction of V relies upon the solution of an appropriate optimal control
problem, for which V is the value function. This problem is obtained by “fuzzifying”
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1878 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

the dynamics near the set where y � x, so as to obtain a problem whose value function
is continuous. Several elementary facts about relaxed controls are used in deriving
the conclusions. The last major ingredient is the use of techniques from nonsmooth
analysis, and in particular inf-convolutions, in order to obtain a Lipschitz, and from
there by a standard regularization argument, a smooth, function V , starting from the
continuous V that was obtained from the optimal control problem.

Finally, we will also discuss a version of detectability which relies upon “energy”
estimates instead of uniform estimates. Such versions of detectability are fairly stan-
dard in control theory; see, for instance, [10], which defined “L2-detectability” by a
requirement that the state trajectory should be in L2 if the observations are. The
corresponding “integral to integral” notion uses a very interesting concept introduced
in [29], that of “unboundedness observability” (UO), which amounts to a “relative
(modulo outputs) forward completeness” property. It is shown that, for systems with
no controls, the integral variant of OSS is equivalent to the conjunction of OSS and
UO.

It is worth remarking that the main result in this paper amounts to providing
necessary and sufficient conditions for the existence of a smooth (and proper and
positive definite) solution V to a partial differential inequality which is equivalent to
asking that (1.1) holds along all trajectories, namely,

max
u∈Rm

{∇V (x) · f(x, u) + σ1(|x|)− σ2(|h(x)|)− σ3(|u|)} ≤ 0 .(1.2)

It is a consequence of our results that if there is an (even just) lower semicontinuous
such solution (when “solution” is interpreted in a weak sense, for example, in terms of
viscosity or proximal subdifferentials), then there is also a smooth solution (usually,
however, with different comparison functions σi’s). This is because the existence
of a weak solution is already equivalent to IOSS, as shown in [21]. It is a routine
observation that the above partial differential inequality can be posed in an equivalent
way as a Hamilton–Jacobi inequality (HJI), in the special case of quadratic input
“cost” σ3(r) = r2 and for systems ẋ = f(x, u) which are affine in controls, i.e.,
systems of the form

ẋ = g0(x) +
m∑
i=1

ui gi(x)(1.3)

(we are denoting by ui the ith component of u). Indeed, one need only replace
the expression in (1.2) by its maximum value obtained at ui = (1/2)∇V (x) · gi(x),
i = 1, . . . ,m, thereby obtaining the following HJI:

∇V (x) · g0(x) +
1

4

m∑
i=1

(∇V (x) · gi(x))2 + σ1(|x|)− σ2(|h(x)|) ≤ 0 .(1.4)

2. Definitions and statements of the main results.

2.1. Systems of interest. We study a system whose dynamics depend on two
types of inputs, which we respectively call controls and disturbances:

ẋ(t) = f(x(t),u(t),w(t)), y(t) = h(x(t)).(2.1)

Here, states evolve in X = Rn, controls are measurable, essentially bounded functions
u on I = R≥0 with values in U := Rmu , and disturbances are measurable functions
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INPUT-OUTPUT-TO-STATE STABILITY 1879

w : I → Γ with values in Γ, which is a compact, convex subset of Rmw . We will
denote the set of all such functions by MΓ. In those cases when a different interval
I ⊂ R≥0 of definition for a control u is specified, we always apply the definitions to
the extension of u to R≥0, using u ≡ 0 on R≥0 \ I. The function f : X×U×Γ→ X
is locally Lipschitz in (x, u) uniformly on w, jointly continuous in x, u, and w, and
such that f(0, 0, w) = 0 for any w ∈ Γ; and h : X → Y := Rp is smooth (C1) and
vanishes at 0.

A function α : R≥0 → R≥0 is of class K if it is continuous, positive definite,
and strictly increasing, and is of class K∞ if it is also unbounded. A function β :
R≥0 ×R≥0 → R≥0 is said to be of class KL if for each fixed t ≥ 0, β(·, t) is of class
K, and for each fixed s ≥ 0, β(s, t) decreases to 0 as t→∞. Let z(·) be a measurable
function.

The L∞ (essential supremum) norm of the restriction of z to the interval [t1, t2]
is denoted by

∥∥z|[t1,t2]∥∥.
Given a state ξ ∈ X, for each pair (u,w) denote by x(t, ξ,u,w) the unique

maximal solution of the system (2.1), which is defined on some maximal interval
[0, tmax(ξ,u,w)). We will use the notation y(t, ξ,u,w) := h(x(t, ξ,u,w)), and, when
unimportant or clear from the context, we will write tmax instead of tmax(ξ,u,w),
x(t) instead of x(t, ξ,u,w), and y(t) instead of y(t, ξ,u,w).

2.2. Notions of “uniform detectability” and dissipation functions.
Definition 2.1. A system of type (2.1) is said to be uniformly input-output-to-

state stable (UIOSS) if there exist functions β ∈ KL and γ1, γ2 ∈ K such that the
estimate

|x(t, ξ,u,w)| ≤ max
{
β(|ξ| , t), γ1

(∥∥u|[0,t]∥∥) , γ2

(∥∥y|[0,t]∥∥)}(2.2)

holds for any initial state ξ ∈ X, control u, disturbance w, and t ∈ [0, tmax(ξ,u,w)).
Definition 2.2. A smooth (C∞) function V : X→ R≥0 is a UIOSS-Lyapunov

function for system (2.1) if
• there exist K∞-functions α1, α2 such that

α1(|ξ|) ≤ V (ξ) ≤ α2(|ξ|)(2.3)

holds for all ξ in X, and
• there exists a K∞-function α and K-functions σ1, σ2 such that

∇V (ξ) · f(ξ, u, w) ≤ −α(|ξ|) + σ1(|u|) + σ2(|h(ξ)|)(2.4)

for all ξ in X, for all control values u ∈ U, and for all disturbance values
w ∈ Γ.

Property (2.3) amounts to positive definiteness and properness of V ; requiring
the existence of an upper bound α2 is redundant, as it follows from the fact that V
is continuous and satisfies V (0) = 0. However, it is convenient to specify this bound
explicitly, as it will be used in various estimates. Condition (2.4) is a dissipation
inequality in the sense of [52].

Remark 2.1. A smooth function V : X→ R≥0, satisfying (2.3) on X with some
α1, α2 of class K∞, is a UIOSS-Lyapunov function for a system (2.1) if and only if
there exist functions α3 of class K∞, and γ and χ1 of class K such that

∇V (ξ) · f(ξ, u, w) ≤ −α3(|ξ|) + γ(|h(ξ)|)(2.5)
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1880 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

for any ξ ∈ X, w ∈ Γ, and u ∈ U such that |ξ| ≥ χ1(|u|).
Indeed, clearly (2.4) implies (2.5) with α3(·) := α(·)/2, γ ≡ σ2, and χ1 := α−1 ◦

(2σ1). To prove the other implication, assume now that (2.5) holds with some α3 ∈
K∞ and γ, χ1 ∈ K. Define σ1(·) = max {0, σ̂1(·)}, where

σ̂1(r) := max {∇V (ξ) · f(ξ, u, w) + α3(χ1(|u|)) : |u| ≤ r, |ξ| ≤ χ1(r), w ∈ Γ} .

Then σ1 is continuous, σ1(0) = 0, and one can assume that σ1 is a K∞-function
(majorize it by one if it is not). We claim that (2.4) holds with α ≡ α3 and σ2 ≡ γ.
Indeed, if |ξ| ≥ χ1(|u|), then (2.5) holds, from which (2.4) trivially follows. If |ξ| <
χ1(|u|), then, by definition of σ1,

σ1(|u|) ≥ ∇V (ξ) · f(ξ, u, w) + α3(χ1(|u|))

for every w, which, in turn, implies (2.4).
A few particular cases of the UIOSS property have been studied in the literature.

If the system (2.1) in consideration has no outputs and no disturbances, UIOSS re-
duces to the well-known ISS property, whose Lyapunov characterization was obtained
in [42]. In case (2.1) is autonomous, UIOSS becomes OSS. This property was intro-
duced in [43] where Lyapunov-type necessary and sufficient conditions were obtained.
Finally, for systems with no disturbances, UIOSS is just IOSS. This property was
introduced in [45], where it was conjectured that any IOSS control system admits a
smooth IOSS-Lyapunov function. This conjecture will be proven here in a more gen-
eral setting, for systems forced by both controls and disturbances. A few interesting
applications of this Lyapunov characterization were also discussed in [45], one of them
to be defined next.

2.3. Norm-estimators.
Definition 2.3. A state-norm-estimator (or state-norm-observer) for a system

Σ of type (2.1) is a pair (Σn.o, k(·, ·)), where k : R
 × Y → R, and Σn.o is a system

ṗ = g(p, u, y)(2.6)

evolving in R
 and driven by the controls and outputs of Σ, such that the following
conditions are satisfied.

• There exist K-functions γ̂1 and γ̂2 and a KL-function β̂ such that for any
initial state ζ ∈ R
, all inputs u and y, and any t in the interval of definition
of the solution p(·, ζ,u,y), the following inequality holds:

|k(p(t, ζ,u,y),y(t))| ≤ β̂(|ζ| , t) + γ̂1

(∥∥u|[0,t]∥∥)+ γ̂2

(∥∥y|[0,t]∥∥)(2.7)

(in other words, the system (2.6) is IOS with respect to the inputs u and y
and output k).

• There are functions ρ ∈ K and β ∈ KL so that, for any pair of initial states ξ
and ζ of systems (2.1) and (2.6), respectively, any control u : R≥0 → U and
any disturbance w ∈MΓ, we have

|x(t, ξ,u,w)| ≤ β(|ξ|+ |ζ| , t) + ρ(|k(p(t, ζ,u,yξ,u,w),yξ,u,w(t))|)(2.8)

for all t ∈ [0, tmax(ξ,u,w)). (Here yξ,u,w denotes the output trajectory of Σ,
that is, yξ,u,w(t) = y(t, ξ,u,w).)
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INPUT-OUTPUT-TO-STATE STABILITY 1881

2.4. Statement of the main result. The main theorem to be proved in this
paper, summarizing the equivalent characterizations of UIOSS, will be as follows.

Theorem 2.4. Let Σ be a system of type (2.1). Then the following are equivalent:
1. Σ is UIOSS.
2. Σ admits a UIOSS-Lyapunov function.
3. There is a state-norm-estimator for Σ.

The main contribution is in showing that 1 implies 2; the remaining implications
are much easier.

2.5. Example: Linear systems. A particular class of systems (2.1) is as fol-
lows. A linear, time-invariant system Σlin with outputs is one for which f and h are
linear, that is,

ẋ = Ax+Bu,(2.9)

y = Cx,

where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n. (We assume that mw = 0.)
Recall the following definition.
Definition 2.5. A linear, time-invariant system (2.9) is detectable, or asymp-

totically observable, if the implication

Cx(t) ≡ 0 =⇒ x(t)→ 0(2.10)

holds for any trajectory x(t) of (2.9), corresponding to the zero control u ≡ 0.
The following result is a totally routine linear systems theory fact, but we include

the proof as a motivation for the nonlinear material to follow.
Proposition 2.6. If a linear system (2.9) is detectable, then it is IOSS.
Proof. It is a well-known fact (see, for example, [39]) that if a system (2.9) is

detectable, then there exists a matrix L ∈ Rn×p, such that the matrix A + LC is
Hurwitz, and, furthermore, the system

ż(t) = Az(t) +Bu(t) + L(Cz(t)− y(t)),(2.11)

referred to as an observer and driven by the controls and outputs of (2.9), has the
property that if x(t) and z(t) are any solutions of (2.9) and (2.11), respectively, then
|x(t)− z(t)| → 0, and, in particular, if x(0) = z(0), then x(t) = z(t) for all nonnegative
t. Fix an initial state ξ and a control u. Then the solution x(t, ξ,u) of (2.9) is also
the solution of (2.11) with z(0) = ξ, so that

x(t, ξ,u) = et(A+LC)ξ +

∫ t

0

es(A+LC)[Bu(t− s)− Ly(t− s)]ds.

Choose two positive numbers δ′ and δ so that �λ ≤ −δ′ < −δ for every eigenvalue
λ of A + LC. Then there exists a polynomial P (·) and, consequently, a constant K
such that

|x(t, ξ,u)| ≤ P (t)e−δ′t |ξ|+
∫ t

0

P (s)e−δ′s [‖B‖ |u(t− s)|+ ‖L‖ |y(t− s)|] ds

≤ Ke−δt |ξ|+K
‖B‖
δ

∥∥u|[0,t]∥∥+K
‖L‖
δ

∥∥y|[0,t]∥∥.(2.12)

Thus, the IOSS estimate (2.2) holds for (2.9) with the linear gains β(r, t) := Ke−δtr

and γ1(r) = γ2(r) := K ‖B‖
δ r.
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1882 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

To see this, first note that the solution z(·, ζ,u,y) of (2.11) satisfies the estimate

|z(t, ζ,u,y)| ≤ Ke−δt |ξ|+K
‖B‖
δ

∥∥u|[0,t]∥∥+K
‖L‖
δ

∥∥y|[0,t]∥∥,
where K, δ are the same as in (2.12). Also, with e := x− z, we have

ė(t) = (A+ LC)e(t).

From this we see that, along any trajectory (x(t), z(t)) of (2.9) and (2.11),

|x(t)| ≤ K |ξ − ζ| e−δt + |z(t)|

for all t ≥ 0, where K, δ are again as in (2.12).
To find an IOSS-Lyapunov function for system (2.9), take any symmetric matrix

P ∈ Rn×n such that

P(A+ LC) + (A+ LC)′P = −I

(such a matrix P exists, because A+ LC is Hurwitz). Define

V (x) := x′Px.(2.13)

Notice that, since P(A + LC) = ((A + LC)′P)′, we have x′P(A + LC)x = x′(A +
LC)′Px. Therefore

∇V (x) · f(x, u) = 2x′P (Ax+Bu)

= 2x′P ((A+ LC)x+Bu− Ly)

= 2x′P(A+ LC)x+ 2x′PBu− 2x′PLy
= x′(P(A+ LC) + (A+ LC)′P)x+ 2x′PBu− 2x′PLy

≤ − |x|2 + 2 ‖P‖ ‖B‖ |u| |x|+ 2 ‖P‖ ‖L‖ |y| |x|
≤ − |x|2 + |x|2/4 + 4 ‖P‖2 ‖B‖2 |u|2 + |x|2/4 + 4 ‖P‖2 ‖L‖2 |y|2
≤ − |x|2 /2 + 4 ‖P‖2 ‖B‖2 |u|2 + 4 ‖P‖2 ‖L‖2 |y|2.

So, the UIOSS dissipation inequality holds for V with gains defined by α(r) = r/2,

σ1(r) = 4 ‖P‖2 ‖B‖2 r2, σ2(r) = 4 ‖P‖2 ‖L‖2 r2.

2.6. Systems without controls. Let Ω be a compact metric space (which is
always assumed to be of the form [−1, 1]m unless specified otherwise). Consider
systems of the type

ẋ = f(x(t),d(t)), y(t) = h(x(t)),(2.14)

where f : X × Ω is locally Lipschitz in x uniformly on d and jointly continuous in x
and d, and f(0, d) = 0 for any d ∈ Ω. The inputs are measurable functions d : I → Ω,
and we use the term disturbances to refer to such Ω-valued inputs. We will use MΩ

to denote the collection of all such functions.
This system can be seen as a particular case of (2.1) that eschews controls and

is driven only by disturbances. However, it will play an important role in our stud-
ies; therefore for convenience we will define the corresponding stability property and
dissipation inequality for this system separately from the main Definition 2.1.
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INPUT-OUTPUT-TO-STATE STABILITY 1883

Definition 2.7. A system (2.14) is UOSS (uniformly output-to-state stable) if
there exist some β ∈ KL and γ2 ∈ K such that

|x(t, ξ,d)| ≤ max
{
β(|ξ| , t), γ2

(∥∥y|[0,t]∥∥)}(2.15)

for any disturbance d, initial state ξ ∈ X, and t ∈ [0, tmax).
Definition 2.8. A UOSS-Lyapunov function for system (2.14) is a smooth func-

tion V : X→ R≥0 satisfying (2.3) and

∇V (x) · f(x, d) ≤ −α3(|x|) + γ(|h(x)|) ∀x ∈ X, ∀ d ∈ Ω,(2.16)

with some class K∞ functions αi and a K function γ. For systems with no disturbances
we simply say that V is an OSS-Lyapunov function.

2.6.1. “Modulo outputs” relative stability. Recall the classical notion of
uniform global asymptotic stability for systems of type (2.14), ensuring that every
solution of the system tends to the equilibrium and never goes too far from it. Suppose
now that it does not matter how the system behaves when the information provided
by the output is adequate, that is, the norm of the output dominates the norm of
the current state. On the other hand, we want the system to decay nicely when
the output does not help in determining how large the state is. This motivates the
following “modulo output” definition of stability.

Definition 2.9. A system of type (2.14) satisfies the GASMO (global asymptotic
stability modulo output) property if there exist a function ρ of class K∞ and a function
λ of class KL such that, for all ξ ∈ X, d ∈MΩ, and any T < tmax(ξ,d), if

|x(t, ξ,d)| ≥ ρ(|h(x(t, ξ,d))|) ∀ 0 ≤ t ≤ T,

then the estimate

|x(t, ξ,d)| ≤ λ(|ξ| , t) ∀ 0 ≤ t ≤ T(2.17)

holds.
Remark 2.2. If a system in consideration has no outputs, then the GASMO

property becomes global asymptotic stability (GAS).
The following proposition provides an “ε-δ” characterization of the GASMO prop-

erty.
Proposition 2.10. A system of type (2.14) satisfies the GASMO property if and

only if there exists a K∞-function ρ so that the following two properties hold.
1. For any ε > 0 and any r > 0, there exists some Tr,ε such that for any |ξ| ≤ r,

any d, and any T ∈ [0, tmax(ξ,d)) such that T ≥ Tr,ε, if

|x(t, ξ,d)| ≥ ρ(|y(t, ξ,d)|) ∀ 0 ≤ t ≤ T ,

then

|x(t, ξ,d)| < ε ∀ t ∈ [Tr,ε, T ] .

2. There exists a K-function ϑ such that for any ξ ∈ X, any disturbance d, and
any T < tmax(ξ,d) such that

|x(t, ξ,d)| ≥ ρ(|y(t, ξ,d)|) ∀ 0 ≤ t ≤ T ,

the following “bounded overshoot” estimate holds:

|x(T, ξ,d)| ≤ ϑ(|ξ|) .
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1884 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

The necessity part is obvious. To prove the sufficiency, we need the following
lemma, proved in section 3 of [25], although not explicitly stated in this form.

Lemma 2.11. Let Φ(r, t) : (R≥0)
2 → R≥0 be a map such that

1. for all ε > 0 and for all R > 0 there exists T such that Φ(r, t) < ε for all
0 ≤ r ≤ R and for all t ≥ T ,

2. for all ε > 0 there exists δ > 0 such that if r ≤ δ, then Φ(r, t) < ε for all
t > 0.

Then Φ can be majorized by a KL-function.
Proof of sufficiency for Proposition 2.10. Consider the function

Φ(r, t) := sup {|x(t, ξ,d)| : |ξ| ≤ r, d ∈MΩ, |x(s, ξ,d)| ≥ ρ(|y(s, ξ,d)|) ∀ s ∈ [0, t]} .
Then the conditions 1 and 2 of Lemma 2.11 follow from the assumptions 1 and 2 of
the proposition, so that one can majorize Φ by a KL-function λ.

2.6.2. Integral variants. The UOSS property gives uniform estimates on states
as a function of uniform bounds on outputs. There is a “finite energy output implies
finite energy state” version as well.

Definition 2.12. A system of type (2.14) is integral-to-integral uniformly output-
to-state stable (iiUOSS) if there exist functions γ, κ of class K, and χ ∈ K∞ such
that ∫ t

0

χ(|x(s, ξ,d)|) ds ≤ κ(|ξ|) +
∫ t

0

γ(|h(x(s, ξ,d))|) ds(2.18)

for any initial state ξ, any disturbance d ∈MΩ, and any time t ∈ [0, tmax(ξ,d)).
Without loss of generality, γ and κ can be assumed to be of class K∞.
Definition 2.13. A system (2.1) is called forward complete if for every initial

condition ξ, every input signal u, and every disturbance d defined on [0,+∞), the
corresponding trajectory x(t, ξ,u,d) is defined for all t ≥ 0, i.e., tmax(ξ,u,d) = +∞.

The following property, which is strictly weaker than forward completeness, was
introduced in [29].

Definition 2.14. A system (2.14) has the unboundedness observability property
(UO) if

lim sup
t↗tmax(ξ,d)

|y(t, ξ,d)| = +∞(2.19)

holds for each initial state ξ and disturbance d with tmax(ξ,d) <∞.
The following useful characterization of UO was provided in [3].
Proposition 2.15. A system (2.14) has the UO property if and only if there exist

class K functions ρ1, χ1, χ2, and a constant c, such that the following implication
holds:

|h(x(t, ξ,d))| ≤ ρ1(|x(t, ξ,d)|) ∀ t ∈ [0, T ]

⇒ |x(t, ξ,d)| ≤ χ1(t) + χ2(|ξ|) + c ∀t ∈ [0, T ](2.20)

for all ξ ∈ X, d ∈MΩ, and all T ∈ [0, tmax(ξ,d)).
This proposition provides a uniform bound on all the states that can be reached

by a UO system in given time from a given bounded set via a trajectory not dominated
by the output. Notice that for systems with disturbances (2.14), the UOSS property
implies the UO property.
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INPUT-OUTPUT-TO-STATE STABILITY 1885

2.6.3. Statement of the main result for the case of no controls.
Theorem 2.16. Let Σ be a system of type (2.14). Then the following are equiv-

alent:
1. Σ is UOSS.
2. Σ is GASMO.
3. Σ is iiUOSS and UO.
4. Σ admits a UOSS-Lyapunov function.

2.7. Organization of the paper. Implications 2 ⇒ 3 ⇒ 1 of Theorem 2.4 are
proven in section 5. The part of Theorem 2.4 most difficult to prove is the implication
1 ⇒ 2. The main technical result needed for this proof is implication 2 ⇒ 4 of
Theorem 2.16. This is proven in section 4. The construction of a UIOSS-Lyapunov
function for an original system (2.1) is reduced, via a small gain argument, to the
construction of a UOSS-Lyapunov function for a special system (2.14) related to the
original system (2.1). This reduction is done in section 3.1, and section 3.2 completes
the construction of UIOSS-Lyapunov functions.

Finally, implications 3 ⇒ 2, 1 ⇒ 2, and 4 ⇒ 3 of Theorem 2.16 are proven in
section 3.3, and 4 ⇒ 1 follows from Theorem 2.4.

3. Reduction to the case of no controls. In this part we show how to reduce
our main result to the particular case of systems with no controls. Let U1 denote a
closed unit ball {u ∈ U : |u| ≤ 1} in U.

3.1. Robust output-to-state stability.
Definition 3.1. System (2.1) is said to be robustly output-to-state stable

(ROSS) if there exists a locally Lipschitz K∞-function ϕ, called a stability margin,
such that the system

ẋ(t) = g(x(t),d(t)) := f(x(t),du(t)ϕ(|x(t)|),w(t))(3.1)

with disturbances d := [du, w] ∈ U1 × Γ and outputs y = h(x) is UOSS.
Notice that the set U1 × Γ is a compact, convex subset of Rmu+mw . We will

denote it by Ω in this section. Observe also that the dynamics g of system (3.1) are
locally Lipschitz in x uniformly in d, and also g(0, d) = 0 for all d ∈ Ω.

Lemma 3.2. If a system (2.1) is UIOSS, then it is ROSS.
The proof will follow from a few preliminary lemmas.
Let β ∈ KL and γ1, γ2 ∈ K∞ be as in (2.2). Let ϑ(r) = β(r, 0). Without loss of

generality, we may assume that ϑ is K∞ and ϑ(r) ≥ r (so that ϑ−1(r) ≤ r).
Define ϕ(r) to be a locally Lipschitz K∞-function, which minorizes γ1

−1( 1
4ϑ

−1(r))
and can be extended as a Lipschitz function to a neighborhood of [0,∞). To prove
the lemma we will show that ϕ is a stability margin for (2.1).

Proposition 3.3. Fix a ξ ∈ X, a control u, and a disturbance w, and let
x(·) := x(·, ξ,u,w) be the corresponding solution of the system (2.1). Let T ∈
[0, tmax(ξ,u,w)). Then if |u(t)| ≤ ϕ(|x(t)|) for almost all t ∈ [0, T ], the estimate

|x(t)| ≤ max

{
β(|ξ| , t), γ2(

∥∥y|[0,t]∥∥), |ξ|
4

}
(3.2)

holds for all t ∈ [0, T ].
Proof.
Claim 1. Suppose T < tmax(ξ,u,w). If

|u(t)| ≤ ϕ(|x(t)|) for almost all t ∈ [0, T ),(3.3)
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1886 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

then, for all t ∈ [0, T ),

|x(t)| ≤ max
{
ϑ(|ξ|), 2γ2(

∥∥y|[0,t]∥∥)} .(3.4)

Proof of the claim. Suppose first that ξ = 0. In this case x(t) ≡ 0. Indeed, define
du(·) on [0, tmax(ξ,u,w)) by

du(t) =

{
0 if x(t) = 0,
u(t)/ϕ(|x(t)|) if x(t) �= 0.

Then (3.3) implies that du ∈MU1 and that x(·) is the solution of (3.1) with ξ = 0, w
as we picked, and du(·) as we defined. Noticing that the constant function equal to 0
is also a solution of this system, with the same initial state and the same disturbance,
we conclude by uniqueness of solutions that x(t) = 0 for all nonnegative t, so that (3.4)
trivially holds.

Suppose now that ξ �= 0. Fix ε, such that 1 < ε < 2. We will first show that if
|u(t)| ≤ ϕ(|x(t)|) for almost all t < T , then the estimate

|x(t)| ≤ max
{
εϑ(|ξ|), 2γ2(

∥∥y|[0,t]∥∥)}(3.5)

holds for all t ∈ [0, T ). Indeed, notice that (3.5) is true as a strict inequality at t = 0
because |ξ| ≤ ϑ(|ξ|) < εϑ(|ξ|). If (3.5) fails at some t ∈ [0, T ), then there exists a

t0 = min
{
t < T : x(t) = max

{
εϑ(|ξ|), 2γ2(

∥∥y|[0,t]∥∥)}} .
Note that t0 > 0 because at t = 0 we have a strict inequality in (3.5). So, (3.5) holds
for all t ∈ [0, t0) and x(t0) = max

{
εϑ(|ξ|), 2γ2(

∥∥y|[0,t0]∥∥)}. Therefore for almost all
t ∈ [0, t0) we have

γ1(
∥∥u|[0,t]∥∥) ≤ γ1(

∥∥ϕ(|x(·)|)|[0,t]∥∥)
≤ max

{
1

4
ϑ−1(εϑ(|ξ|)), 1

4
ϑ−1(2γ2(

∥∥y|[0,t]∥∥))}
≤ max

{
1

4
εϑ(|ξ|), 1

4
2γ2(
∥∥y|[0,t]∥∥)}

≤ max
{
ϑ(|ξ|), γ2(

∥∥y|[0,t]∥∥)} .
Then, since our system is UIOSS and x(·) is continuous, for all t ∈ [0, t0] we have

|x(t)| ≤ max
{
ϑ(|ξ|), γ1(

∥∥u|[0,t]∥∥), γ2(
∥∥y|[0,t]∥∥)}

= max
{
ϑ(|ξ|), γ2(

∥∥y|[0,t]∥∥)} .
On the other hand, |x(t0)| = max

{
εϑ(|ξ|), 2γ2(

∥∥y|[0,t0]∥∥)} by definition of t0. The
contradiction proves the estimate (3.5). Letting ε tend to 1, we conclude that esti-
mate (3.4) holds for all t ∈ [0, T ), completing the proof of Claim 1.

Hence, under the assumption of Claim 1, we have

γ1

(∥∥u|[0,t]∥∥) ≤ γ1

(∥∥ϕ(|x(·)|)|[0,t]∥∥)
≤ max

{ |ξ|
4
,
1

4
ϑ−1
(
2γ2

(∥∥y|[0,t]∥∥))}
for all t in [0, tmax). So,

|x(t)| ≤ max

{
β(|ξ| , t), γ2

(∥∥y|[0,t]∥∥) , |ξ|
4
,
1

4
ϑ−1
(
2γ2

(∥∥y|[0,t]∥∥))}
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INPUT-OUTPUT-TO-STATE STABILITY 1887

for all t ∈ [0, tmax). Noticing that

1

4
ϑ−1
(
2γ2

(∥∥y|[0,t]∥∥)) ≤ γ2

(∥∥y|[0,t]∥∥)
(because ϑ−1(r) ≤ r), we arrive at (3.2).

Lemma 3.4. Given any KL-function β̂, there exists a KL-function β and a K∞-
function ν such that for any τ > 0, any continuous function µ : [0, τ ] → R≥0, and
any nonnegative constant C, the following implication holds:

∀t1, t2, 0 ≤ t1 < t2 ≤ τ, µ(t2) ≤ max

{
β̂(µ(t1), t2 − t1),

µ(t1)

2
, C

}
(3.6)

implies

µ(τ) ≤ max {β(µ(0), τ), ν(C)} .(3.7)

Proof. By Proposition 7 in [38], there exist µ1 and µ2 ∈ K∞ such that

β̂(r, t) ≤ µ1(µ2(r)e
−t),

so, by majorizing β̂ as above if necessary, we can assume without loss of generality that
β̂ is continuous in its second variable, and β̂(r, 0) ≥ r for all r. For any r > 0 define

Tr to be the first time when β̂(r, Tr) = r/2. By replacing β̂ with the KL-function β̃,
defined by

β̃(r, t) := max
{
β̂(r, t), β̂(r, 0)e−t

}
,

we can assume without loss of generality that the series
∑∞

i=0 T r

2i
diverges for every

r > 0.
Define a function φ : R≥0 ×R≥0 → R≥0 as follows:

φ(r, t) =

{
β̂(r, t) for t ∈ [0, Tr),

β̂
(

r
2k , t−

∑k−1
i=0 T r

2i

)
for t ∈

[∑k−1
i=0 T r

2i
,
∑k

i=0 T r

2i

)
, k = 1, 2, 3 . . . .

Notice that the following two conditions hold for φ.
(1) For every R, ε > 0, there exists t̃ > 0 such that φ(r, t) ≤ ε for all r < R and

t > t̃.
Indeed, fix positive R and ε and find k ∈ Z such that β̂(R/2k, 0) < ε. Next, by

continuity of β̂ and by compactness of [0, R] we can find a t̃, such that
∑k−1

i=0 T r

2i
< t̃

for all positive r < R. Then, if r < R and t > t̃, then

φ(r, t) = β̂

(
r

2k
, t−

k−1∑
i=0

T r

2i

)
< β̂
( r

2k
, 0
)
< ε.

(2) For all ε > 0 there exists δ > 0 such that if r ≤ δ, then φ(r, t) < ε for all
t ≥ 0.

Indeed, for all r and t, φ(r, t) ≤ β̂0(r) := β̂(r, 0). For any positive ε, take δ =

δ(ε) := β̂−1
0 (ε). Then, for all t ≥ 0 we have

φ(r, t) ≤ β̂
(
β̂−1

0 (ε), 0
)
≤ ε.
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1888 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

Therefore, by Lemma 2.11, φ can be majorized by a KL-function β.
Let ν(r) = β̂(2r, 0).
Now pick any µ, C, and τ satisfying (3.6). Define T = min {t : µ(t) ≤ 2C} and

T = τ if µ(t) > 2C for all t ≥ 0.
For any t1 and t2 in [0, τ ] such that 0 ≤ t1 ≤ t2 ≤ T , we have µ(t1) > 2C, so that

µ(t1)/2 > C, hence

µ(t2) ≤ max
{
β̂(µ(t1), t2 − t1), µ(t1)/2

}
.(3.8)

Suppose now that τ = T . If 0 ≤ τ < Tµ(0), then (3.8) with t1 = 0, t2 = τ yields

µ(τ) ≤ max

{
β̂(µ(0), τ),

µ(0)

2

}
= β̂(µ(0), τ),

where the equality follows from the definition of Tµ(0). Likewise, if

τ ∈
[
k−1∑
i=0

Tµ(0)

2i
,

k∑
i=0

Tµ(0)

2i

)
,

then

µ(τ) ≤ max

{
β̂

(
2−kµ(0), τ −

k−1∑
i=0

Tµ(0)

2i

)
, 2−(k+1)µ(0)

}

= β̂

(
2−kµ(0), τ −

k−1∑
i=0

Tµ(0)

2i

)
,

where the inequality follows from (3.8) and the equality is implied by the definition
of Tµ(0)

2k
. Therefore we have

µ(τ) ≤ φ(µ(0), τ).(3.9)

In case τ > T , inequality (3.6) implies

µ(τ) ≤ max
{
β̂(2C, τ − T ), µ(T )/2, C

}
= max

{
β̂(2C, τ − T ), C, C

}
≤ β̂(2C, 0) = ν(C).(3.10)

Combining (3.9) and (3.10) we obtain

µ(τ) ≤ max {φ(µ(0), τ), ν(C)} ≤ max {β(µ(0), τ), ν(C)} .

Proof of Lemma 3.2. We need to show that the system (3.1), corresponding to our
system (2.1) with the stability margin ϕ we have defined, is UOSS. Apply Lemma 3.4

to the KL-function β̂ := β to find appropriate functions β1 ∈ KL and ν ∈ K. Assume
given any initial state ξ and disturbance d = [du,w], and let x(t) := x(t, ξ,du,w) be
the corresponding solution. Fix any positive t < tmax(ξ,d), and define u by

u(s) :=

{
ϕ(|x(s)|)du(s), s ≤ t
0, s > t.
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INPUT-OUTPUT-TO-STATE STABILITY 1889

Then, for all s ≤ t we have x(s) = x(s, ξ,u,w), where the latter is the solution of the
original system (2.1) with control u and disturbance w. Let C = γ2(

∥∥y|[0,t]∥∥). Then,
for any t1 and t2 in [0, t] we have C ≥ γ2(

∥∥y|[t1,t2]∥∥). So, since |u(s)| ≤ ϕ(|x(s)|) for
all s ∈ [0, t], Proposition 3.3 will imply that

|x(t2)| ≤ max

{
β(|x(t1)| , t2 − t1),

|x(t1)|
2

, C

}
.

By the choice of β1 and ν we then have

|x(t)| ≤ max
{
β1(|ξ| , t), ν(γ2(

∥∥y|[0,t]∥∥))} ,
proving the UOSS property for system (3.1) corresponding to the original UIOSS
system. Thus, ϕ is indeed a stability margin for the original system, and the proof of
Lemma 3.2 is now complete.

3.2. A UIOSS system admits a UIOSS-Lyapunov function. We show now
how the main implication of Theorem 2.4 follows from Theorem 2.16.

Lemma 3.5 (see Lemma 2.13 in [42]). Suppose a system Σ of type (2.1) is ROSS.
Let V be a UOSS-Lyapunov function for the system (3.1) associated with Σ. Then V
is a UIOSS-Lyapunov function for Σ.

Proof. Let ϕ be a stability margin for Σ. Since V is a UOSS-Lyapunov function
for (3.1), inequalities (2.3) and (2.16) hold with some α1, α2, α3, and γ. Pick a state
ξ ∈ X and disturbance value w ∈ Γ. For any control value u ∈ U with |u| ≤ ϕ(|ξ|) we
can find a du ∈ U1 such that u = duϕ(|ξ|), so that by the dissipation inequality (2.16)
for V (applied with d := [du, w]) we have

∇V (ξ) · f(ξ, u, w) = ∇V (ξ) · g(ξ, d) ≤ −α3(|ξ|) + γ(|h(ξ)|),
proving (2.5) for V . So, the condition as in Remark 2.1 is satisfied for V with χ1 =
ϕ−1, and αi and γ as before. Thus, V is a UIOSS-Lyapunov function for Σ.

By Theorem 2.16, the system (3.1) admits a UOSS-Lyapunov function V . Hence
the following corollary follows.

Corollary 3.6. If a system (2.1) is ROSS, then it admits a UIOSS-Lyapunov
function.

By Lemma 3.2, every UIOSS system is also ROSS, hence the implication 1 ⇒ 2
of Theorem 2.4 follows.

3.3. UOSS and iiUOSS imply the GASMO property.
Lemma 3.7. A UOSS system of type (2.14) satisfies the GASMO property.
Proof. Assume that system (2.14) is UOSS. Without loss of generality, we may

assume that γ2 in (2.15) is of class K∞.
Let ϑ(s) = β(s, 0). Recall that we have assumed that ϑ(s) > s for all s > 0. Now

let ρ be any K∞-function satisfying the inequality ρ(s) > ϑ(4γ2(s)) for all s > 0.
Claim. For any ξ ∈ X, any d ∈MΩ, and any τ ∈ [0, tmax(ξ,d)), if

|x(t, ξ,d)| ≥ ρ(|y(t, ξ,d)|) ∀ 0 ≤ t ≤ τ,

then

γ2(|y(t, ξ,d)|) ≤ |ξ| /2 ∀ 0 ≤ t ≤ τ,

and hence

|x(t, ξ,d)| ≤ β(|ξ| , 0) = ϑ(|ξ|) ∀ 0 ≤ t ≤ τ.
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1890 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

In particular, if |x(t, ξ,d)| ≥ ρ(|y(t, ξ,d)|) for all t ∈ [0, tmax(ξ,d)), then tmax(ξ,d) =
∞.

Proof of the claim. If ξ = 0, the result is clear. Pick any ξ �= 0, d ∈ MΩ and
assume that |x(t, ξ,d)| ≥ ρ(|y(t, ξ,d)|) for all 0 ≤ t ≤ τ for some τ ∈ (0, tmax(ξ,d)).
Then, at t = 0,

γ2(|y(0, ξ,d)|) ≤ γ2(ρ
−1(|ξ|)) ≤ γ2(ρ

−1(ϑ(|ξ|))) < |ξ| /4.
Hence, γ2(|y(t, ξ,d)|) < |ξ| /4 for all t ∈ [0, δ) for some δ > 0. Let

t1 = inf {t > 0 : γ2(|y(t, ξ,d)|) ≥ |ξ| /2} .
Then t1 > 0. Assume now that t1 ≤ τ . Then

γ2(|y(t1, ξ,d)|) = |ξ| /2 and γ2(|y(t, ξ,d)|) < |ξ| /2
for each t ∈ [0, t1), and hence for such t, |x(t, ξ, d)| ≤ ϑ(|ξ|) . Then, for each 0 ≤ t ≤ t1,

γ2(|y(t, ξ,d)|) ≤ γ2(ρ
−1(|x(t, ξ,d)|)) ≤ γ2(ρ

−1(ϑ(|ξ|))) < |ξ| /4.
By continuity, γ2(|y(t1, ξ,d)|) ≤ |ξ| /4, contradicting the definition of t1. This shows
that it is impossible to have t1 ≤ τ , and the proof of the claim is complete.

For each r > 0 let Tr be any nonnegative number so that β(r, t) < r/2 for all t ≥
Tr. Now, given any r > 0 and any ε > 0, for each i = 1, 2, . . ., let ri := 21−ir, and let
k(ε) be any positive integer so that 2−k(ε)r < ε and define Tr,ε as Tr1+Tr2+· · ·+Trk(ε)

.
Pick any trajectory x(t, ξ,d) as in the statement of Proposition 2.10, defined

on an interval of the form [0, T ], with T ≥ Tr,ε, with initial condition |ξ| ≤ r, and
disturbance d ∈ MΩ, satisfying |x(t, ξ,d)| ≥ ρ(|y(t, ξ,d)|) for all t ∈ [0, T ]. Then,
the above claim implies that γ2(|y(t, ξ,d)|) < |ξ| /2 for all such t. Therefore, for any
t > Tr1 = Tr,

|x(t, ξ,d)| ≤ max {β(|ξ| , t), |ξ| /2}
≤ max {β(r, t), r/2} ≤ r/2 .

Consider now the restriction of the trajectory to the interval [Tr1 , T ]. This is the same
as the trajectory that starts from the state x(Tr1 , ξ,d), which has norm less than r1,
so by the same argument and the definition of Tr2 we have that |x(t, ξ, d)| ≤ r/4 for
all t ≥ Tr2 . Repeating on each interval [Tri , Tri+1

], we conclude that |x(t, ξ, d)| < ε
for all Tr,ε ≤ t ≤ T .

Lemma 3.8. Suppose a system of type (2.14) is iiUOSS and UO. Then it satisfies
the GASMO property with ρ(·) := max

{
χ−1(2γ(·)), ρ−1

1 (·)} , where χ and γ are as in
the definition of iiUOSS and ρ1 is as in Proposition 2.15.

To prove this lemma, we need the following elementary observation, which is a
variant of what is usually referred to as “Barbălat’s lemma.”

Proposition 3.9. Let X := {xα, α ∈ A} be a family of absolutely continuous
curves in X, each of which is defined on an interval Iα, either half-open (Iα = [0, λα))
or closed (Iα = [0, λα]). Suppose the following.

• X is closed with respect to shifts, that is, for all α ∈ A and T ∈ Iα, there exists
an α′ ∈ A such that xα′ ≡ xαT , where xαT is defined by xαT (t) := xα(t+T ),
and λα′ = λα − T .

• There exists a nonnegative, increasing function ν3 such that

|ẋα(t)| ≤ ν3(|xα(t)|) ∀α ∈ A for almost all t ∈ Iα.
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INPUT-OUTPUT-TO-STATE STABILITY 1891

• There exist functions κ and χ of class K∞ such that

κ(|xα(0)|) ≥
∫ t

0

χ(|xα(s)|) ds ∀α ∈ A, t ∈ Iα.

Then for any two positive numbers r and ε there exists a Tr,ε, such that for all α ∈ A
and t ∈ Iα the following holds:

t ≥ Tr,ε and |xα(0)| ≤ r ⇒ |xα(t)| < ε.

Proof.
Claim 1. Given any ε > 0, there exists δ = δ(ε) such that if |xα(0)| ≤ δ, then

|xα(t)| < ε for all t ∈ Iα.
Proof of Claim 1. Fix a positive ε, and set

δ(ε) = min

{
ε

2
, κ−1

(
εχ(ε/2)

2ν3(ε)

)}
.

Pick any α ∈ A such that |xα(0)| ≤ δ.
Suppose

∣∣xα(t̃2)∣∣ ≥ ε for some t̃2 ∈ Iα. Then there exist t1 and t2 with t1 < t2 ≤
t̃2 such that |xα(t1)| = ε/2 and ε/2 < |xα(t)| < ε for all t ∈ (t1, t2). Then

ε

2
= |xα(t2)| − |xα(t1)| ≤ |xα(t2)− xα(t1)| ≤ sup

t1≤t≤t2

|ẋα(t)| (t2 − t1) ≤ ν3(ε)(t2 − t1).

So,

κ(δ) ≥ κ(|ξ|) ≥
∫ t2

t1

χ(|xα(s)|) ds >
1

2
χ
(ε
2

)
(t2 − t1) ≥ εχ(ε/2)

2ν3(ε)
≥ κ(δ).

The obtained contradiction proves the claim.
Claim 2. Given positive numbers r and δ, there exists a time τ(r, δ) such that if

|xα(0)| ≤ r and τ(r, δ) ∈ Iα, then ∃t0 < τ(r, δ) such that |x(t0, ξ,d)| ≤ δ.

Proof of Claim 2. Take τ(r, δ) = 2κ(r)
χ(δ) . Then, if τ(r, δ) ∈ Iα and |xα(t)| > δ for

all t ∈ [0, τ(r, δ)), then we have

κ(r) ≥ κ(|xα(0)|) ≥
∫ τ(r,δ)

0

χ(|xα(s)|) ds > χ(δ)
κ(r)

χ(δ)
= κ(r).

The obtained contradiction proves the claim.
Fix arbitrary positive r and ε. By Claim 1, find δ(ε) such that if |xα(0)| < δ(ε),

then |xα(t)| ≤ ε for all t ∈ [0, λα). Define Tr,ε := τ(r, δ(ε)), where τ(r, δ(ε)) is
furnished by Claim 2. If |xα(0)| < r, then, by Claim 2, there is a t0 < τ(r, δ(ε)) with
|xα(t0)| < δ(ε). Consider now a function xα′(·) := xα(t0 + ·) (it belongs to X by
assumption). Since |xα′ | ≤ δ(ε), Claim 1 ensures that

|xα(t)| = |xα′(t− t0)| ≤ ε ∀ t ≥ t0 ≥ Tr,ε.

This shows that Tr,ε satisfies the conclusion of the proposition.
We now return to the proof of Lemma 3.8.
Proof. Recall that we have defined λξ,d := inf{t ∈ [0, tmax(ξ,d)) : |x(t, ξ,d)| ≤

ρ(|y(t, ξ,d)|)}, and let λξ,d = tmax if |x(t, ξ, d)| > ρ(|y(t, ξ,d)|) for all t ∈ [0, tmax).
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1892 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

Note that, given ξ and d, for all t < λξ,d we have χ(|x(t, ξ,d)|) > 2γ(|h(x(t, ξ,d))|)
so that

κ(|ξ|) ≥
∫ t

0

(χ(|x(s, ξ,d)|)− γ(|h(x(s, ξ,d))|)) ds >
1

2

∫ t

0

χ(|x(s, ξ,d)|) ds.(3.11)

Let ν3 be a K-function such that maxd∈Ω |f(x, d)| ≤ ν3(|x|). Write xξ,d(·) := x(·, ξ,d).
Notice that the family {xξ,d(·), ξ ∈ X, d ∈MΩ} with Iξ,d := [0, λξ,d) satisfies all
the assumptions of Proposition 3.9 (with “κ” = 2κ). Given any positive r, ε, Propo-
sition 3.9 furnishes Tr,ε. This Tr,ε obviously fits the first condition in the characteri-
zation of the GASMO property, provided by Proposition 2.10.

To find a function ϑ to ensure that the second part of Proposition 2.10 is satisfied,
recall that, by Proposition 2.15, if a system (2.14) has the UO property, then there
exist class K∞-functions ρ1, µ1, µ2, and a constant c > 0 such that the following
implication holds for all ξ ∈ X, all d ∈MΩ, and all T ∈ [0, tmax(ξ,d)):

|h(x(t, ξ,d))| ≤ ρ1(|x(t, ξ,d)|) ∀t ∈ [0, T ]

⇒ |x(t, ξ,d)| ≤ µ1(t) + µ2(|ξ|) + c ∀t ∈ [0, T ].

Therefore, if |ξ| ≤ r and Tr,r/2 is as defined above, then for all t ∈ [0, λξ,d) we have

|x(t, ξ,d)| ≤ µ1(Tr,r/2) + µ2(r) + c if t < Tr,r/2

and

|x(t, ξ,d)| ≤ r/2 if t ≥ Tr,r/2.

Thus, the following estimate holds for all such t:

|x(t, ξ,d)| ≤ ϑ̃(|ξ|) := max
{|ξ| /2, µ1(T|ξ|,|ξ|/2) + µ2(|ξ|) + c

}
.

Next, take a sequence {εk} , k = 0, 1, 2, . . . , strictly decreasing to 0, with ε0 = 1.
For each εk, find δk = δ(εk) as in the proof of Claim 1. Since δk ≤ εk/2, the sequence
{δk} converges to 0 as well. Find a function ϑ of class K, such that

(1) ϑ(δk+1) > εk ∀k > 0,
(this will ensure that |x(t, ξ,d)| ≤ ϑ(|ξ|) for all ξ with |ξ| < δ0, for all t ∈ [0, λξ,d])

(2) ϑ(s) ≥ ϑ̃(s) ∀s > δ0.
Then ϑ satisfies the second condition in the Proposition 2.10. This completes the

proof.
Remark 3.1. The unboundedness observability assumption is crucial in prov-

ing the last lemma. The following example illustrates a disturbance-free integral-to-
integral output-to-state stable (iiOSS) system which fails to be OSS (and, equivalently,
fails to be GASMO).

Let 1A(·) denote the indicator function of a set A, and let φε be a C∞-bump
function with support in (−ε, ε):

φε(ξ) :=

{
e
− |ξ|2

ε2−|ξ|2 , |ξ| < ε,
0, |ξ| ≥ ε.

(3.12)

Fix an arbitrary positive ε < 0.25 and consider a one dimensional autonomous system

Σ : ẋ = f(x), y = h(x),
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INPUT-OUTPUT-TO-STATE STABILITY 1893

where

f(x) = x3
[
1(−∞,−1](x)(1− φε(x+ 1)) + 1[1,+∞)(x)(1− φε(x− 1))

]
−x
[
1(−1,1)(x)(1− φε(x+ 1))(1− φε(x− 1))

]
,

and h is a smooth function such that h(x) = x for all x in [−2, 2], and h(x) = 0 if
|x| ≥ 3.

Claim 1. The system Σ is iiOSS.
Proof. Note that Σ has a stable equilibrium at x = 0 and two unstable ones at 1

and −1. If |x| < 1, then sign(x) = −sign(f(x)), so, if |ξ| ≤ 1, then |x(t, ξ)| ≤ 1 for
any nonnegative t. Therefore, if ξ ∈ [−1, 1], then for all t ≥ 0 we have∫ t

0

|x(s, ξ)| ds =

∫ t

0

|h(x(s, ξ))| ds,(3.13)

so, estimate (2.18) trivially follows for all ξ ∈ [−1, 1] and all t ∈ tmax(ξ) with γ = Id
and any κ ∈ K.

If |ξ| ≥ 1 + ε, then f(x) = x3, so that

x(t, ξ) =
sign(ξ)√
ξ−2 − 2t

.

Thus, in this case the solution x(t, ξ) is defined for all nonnegative t < tmax(ξ) = ξ−2/2
and ∫ t

0

|x(s, ξ)| ds ≤
∫ tmax(ξ)

0

|x(s, ξ)| ds =
1

ξ
≤ 1

1 + ε
.

Let κ be any K-function such that κ(1) ≥ (1 + ε)−1. Suppose 1 < |ξ| < 1 + ε.
Let t̂ be the time when

∣∣x(t̂, ξ)∣∣ = 1 + ε. Then tmax(ξ) = t̂ + (1 + ε)−2/2. Also,

x(s, ξ) = h(x(s, ξ)) for all s ∈ [0, t̂], so, in particular, equality (3.13) holds for all
t < t̂, which, again, trivially implies (2.18) with γ = Id and any κ ∈ K.

If t > t̂, then∫ t

0

|x(s, ξ)| ds =

∫ t̂

0

|x(s, ξ)| ds+
∫ t

t̂

|x(s, ξ)| ds

≤
∫ t̂

0

|x(s, ξ)| ds+
∫ tmax(ξ)

t̂

|x(s, ξ)| ds

=

∫ t̂

0

|h(x(s, ξ))| ds+
∫ tmax(1+ε)

0

|x(s, 1 + ε)| ds

≤
∫ t̂

0

|h(x(s, ξ))| ds+ κ(ξ)

≤
∫ t

0

|h(x(s, ξ))| ds+ κ(ξ).

This shows that Σ is iiOSS, as estimate (2.18) holds for Σ with the κ that we con-
structed and γ = Id.

Claim 2. System Σ is not OSS.
Proof. Indeed, pick any initial state ξ of large enough magnitude so that h(ξ) = 0.

Then h(x(t, ξ)) = 0 for all t < tmax(ξ) = ξ−2/2. If Σ were OSS, then there would
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1894 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

exist some KL-function β such that |x(t, ξ)| ≤ β(|ξ| , t), but |x(t, ξ)| tends to ∞ as
t→ tmax(ξ), whereas β(|ξ| , t) ≤ β(|ξ| , 0). This contradiction proves the claim.

We now prove implication 4 ⇒ 3 of Theorem 2.16.

Proof. Suppose a system Σ of type (2.14) is UOSS. We have already remarked
that Σ is UO, so we must show that it is iiUOSS. By assumption there exists a smooth
function V satisfying (2.16) and (2.3) with some α1, α2, α3, and γ. Pick any ξ, d,
and t ∈ [0, tmax(ξ,d)). Integrating inequality (2.16) along the trajectory x(·, ξ,d) over
[0, t] we get∫ t

0

α3(|x(t, ξ,d)|)dt ≤ V (x(0, ξ,d))− V (x(t, ξ,d)) +

∫ t

0

γ(|h(x(t, ξ,d))|) dt

≤ α2(|ξ|) +
∫ t

0

γ(|h(x(t, ξ,d))|) dt,

proving inequality (2.18) for system Σ, with χ = α3 and κ = α2.

With Lemma 3.7 in mind we conclude that the only step missing in establishing
the Lyapunov characterization for UOSS is proving the implication 2.16 ⇒ 2.16 in
Theorem 2.16.

3.4. A remark on the GASMO ⇒ UOSS implication.

Remark 3.2. Once the Lyapunov characterization for UOSS is proven, the impli-
cation 2 ⇒ 1 of Theorem 2.16 will automatically follow by appealing to the converse
Lyapunov theorem (2 ⇒ 4 ⇒ 1). However, it is worth mentioning that GASMO ⇒
UOSS implication can easily be proven directly without this intermediate step.

Indeed, fix ξ ∈ X and d ∈MΩ. Take any t ∈ [0, tmax(ξ,d)). If t ≤ λξ,d, then the
GASMO property provides the estimate

|x(t, ξ,d)| ≤ λ(|ξ| , t).(3.14)

Suppose now that t > λξ,d. Obviously, at least one of the two following conditions
must be satisfied:

(1) |x(t, ξ,d)| > 2ρ(|h(x(t, ξ,d))|),
(2) |x(t, ξ,d)| ≤ 3ρ(|h(x(t, ξ,d))|).

If condition (2) applies, then we have a bound

|x(t, ξ,d)| ≤ 3ρ(|h(x(t, ξ,d))|) ≤ 3ρ(
∥∥y|[0,t]∥∥).(3.15)

In case condition (1) holds, let

t̃ := max {s, λξ,d < s < t : |x(s, ξ,d)| = 2ρ(|h(x(s, ξ,d))|)} .

Then, again by the GASMO property applied with initial state x(t̃, ξ,d), we have

|x(t, ξ,d)| ≤ λ(
∣∣x(t̃, ξ,d)∣∣ , t− t̃)

≤ λ(2ρ(
∣∣y(t̃, ξ,d)∣∣), 0) ≤ λ(2ρ(

∥∥y|[0,t]∥∥), 0).(3.16)

Combining estimates (3.14), (3.15), and (3.16), we conclude that inequality (2.15)
holds for Σ with β(·) := λ(·) and γ2(·) := max {λ(2ρ(·), 0), 3ρ(·)} .
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INPUT-OUTPUT-TO-STATE STABILITY 1895

4. The case of no controls.

4.1. Setup. Suppose a system Σ of type (2.14) satisfies the GASMO property
with some K∞ function ρ. By majorizing ρ with another K∞-function if necessary,
we will assume that ρ is smooth when restricted to s > 0 and also ρ(s) > s for all
positive s. We let

D := {ξ ∈ X: |ξ| ≤ ρ(|h(ξ)|)} ,

E := X\D ,

and

E1 := {ξ ∈ X : |ξ| > 2ρ(|h(ξ)|)} .

For each d ∈MΩ and ξ ∈ E , define
λξ,d = inf {t ∈ [0, tmax) : x(t, ξ,d) ∈ D} ,(4.1)

with the convention λξ,d = tmax(ξ,d) if the trajectory never enters D. If D = X, then
any proper, smooth, and positive definite function V : X → R is a UOSS-Lyapunov
function for (2.14). Indeed, because it is proper and finite, V obviously satisfies (2.3)
for some α1 and α2. Since V is smooth, |∇V (ξ)| is bounded above by a nondecreasing
continuous function ν(|ξ|) and

d

dt
V (x(t)) = ∇V (x(t)) · f(x(t),d(t)) ≤ ν(|x(t)|)ν3(|x(t)|),

where ν3(|·|) is aK-function majorizing f(·, d) for all d ∈ Ω. Then, since |x| ≤ ρ(|h(x)|)
for all x ∈ X, we have

d

dt
V (x(t)) ≤ −ν(|x(t)|)ν3(|x(t)|) + 2ν(ρ(|h(x(t))|))ν3(ρ(|h(x(t))|)) .

So, V satisfies inequality

∇V (x) · f(x, d) ≤ −α3(|x|) + γ(|h(x)|) ∀x ∈ X, ∀ d ∈ Ω

(with α3(·) = ν(·)ν3(·) and γ(·) = [2ν ◦ ρ(·)][ν3 ◦ ρ(·)]), which is the same as (2.4) for
systems of type (2.14).

Suppose now that D �= X. Recall that we have defined, for each ξ �∈ D and d ∈
MΩ, λξ,d = inf {t ∈ [0, tmax) : x(t, ξ,d) ∈ D} , with the convention λξ,d = tmax(ξ,d)
if the trajectory never enters D.

The GASMO property then implies

|x(t, ξ,d)| ≤ λ(|ξ| , t) ∀ ξ ∈ E , ∀d ∈MΩ, ∀ t ∈ [0, λξ,d)(4.2)

for some λ ∈ KL.
Note that, because of property (4.2), the system cannot have any equilibrium in

E , that is,
f(ξ, d) �= 0

for every ξ ∈ E and every d ∈ Ω. Moreover, replacing ρ(s) by cρ(s) for some c > 1 if
necessary, one may also assume that f(ξ, d) �= 0 for all ξ ∈ ∂D \ {0} and all d ∈ Ω.
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1896 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

We introduce an auxiliary system Σ̂ which slows down the motions of the original
one:

ż = f̂(z, d) =
1

1 + |f(z, d)|2 + κ(z)
f(z, d),(4.3)

where κ is any smooth function X→ [0,∞) with the property that

κ(ξ) ≥ 2max
d∈Ω

|∇(ρ ◦ |h|)(ξ) · f(ξ, d)|(4.4)

whenever |h(ξ)| ≥ 1. (Recall that ρ was assumed, without loss of generality, to be

smooth for positive arguments.) For each disturbance d̂ (defined on R≥0) denote by

z(s, ξ, d̂)

the value at time s of the solution of the equation ż = f̂(z, d̂) with initial state ξ.

Observe that, as f̂ is bounded, this solution exists for all nonnegative s.
Claim 1. For each ξ and each d,

x(t, ξ,d) = z(σξ,d(t), ξ,d ◦ σξ,d−1) ∀ t ∈ [0, tmax(ξ,d)),(4.5)

where σξ,d : [0, tmax(ξ,d))→ R≥0 is defined by

σξ,d(t) =

∫ t

0

[
1 + |f(x(s, ξ,d),d(s))|2 + κ(x(s, ξ,d))

]
ds.

Moreover, σξ,d(t) → ∞ as t → tmax(ξ,d), so, we can define σξ,d(tmax(ξ,d)) := +∞
for convenience.

Proof of Claim 1. Indeed, writing s = σξ,d(t) and computing the derivative of
x(σξ,d

−1(s), ξ,d) with respect to s, one has

f(x(t, ξ,d),d(t)) =
d

dt
x(t, ξ,d) =

d

dt
x(σξ,d

−1 ◦ σξ,d(t), ξ,d)

=
d

ds
x
(
σξ,d

−1(s), ξ,d
) · d

dt
σξ,d(t)

=
d

ds
x(σξ,d

−1(s), ξ,d)
[
1 + |f(x(t, ξ,d),d(t))|2 + κ(x(t, ξ,d))

]
.

Therefore

d

ds
x(σξ,d

−1(s), ξ,d) =
f(x(t, ξ,d),d(t))

1 + |f(x(t, ξ,d),d(t))|2 + κ(x(t, ξ,d))

=
f
(
x(σξ,d

−1(s), ξ,d),d ◦ σξ,d−1(s)
)

1 + |f (x(σξ,d−1(s), ξ,d),d ◦ σξ,d−1(s))|2 + κ (x (σξ,d−1(s), ξ,d))

= f̂
(
x
(
σξ,d

−1(s), ξ,d
)
,d ◦ σξ,d−1(s)

) ∀ 0 ≤ s < σξ,d(tmax(ξ,d)).

Thus, the functions z(s, ξ,d◦σξ,d−1) and x(σξ,d
−1(s), ξ,d) satisfy the same differential

equation (4.3) with initial state ξ on [0, σξ,d(tmax(ξ,d))), therefore they coincide on
[0, σξ,d(tmax(ξ,d))).
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To show the limit property of σξ,d, suppose

lim
t→tmax(ξ,d)

σξ,d(t) = b <∞

(note that the limit exists because σξ,d(·) is increasing). Let
K = {z(s, ξ,d ◦ σξ,d−1) : 0 ≤ s < b}.

Then K is bounded, so K̄ is compact, and by (4.5), x(t, ξ,d) ∈ K ⊆ K̄ for all
t ∈ [0, tmax(ξ,d)), contradicting the maximality of tmax(ξ,d).

For each initial state ξ and each disturbance function d, define

θξ,d = inf {t ≥ 0 : z(t, ξ,d) ∈ D} ,(4.6)

where θξ,d =∞ if z(t, ξ,d) /∈ D for all t ≥ 0. Note that θξ,d > 0 for all d ∈ MΩ and
all ξ ∈ E because E is open. Observe also that if d1 = d ◦ σξ,d,

θξ,d = σξ,d1
(λξ,d1

).

Claim 2. System Σ̂ satisfies the GASMO property.
Proof. According to (4.2) and (4.5), we have, for every ξ ∈ E and each d,

|z(t, ξ,d)| = ∣∣x(σξ,d1

−1(t), ξ,d1)
∣∣

≤ λ(|ξ| , σξ,d1

−1(t)) ≤ ϑ(|ξ|),
for all t ∈ [0, θξ,d), where ϑ(s) = λ(s, 0), and d1 is such that d = d1 ◦σξ,d1

−1. Let

Mr = 1 + max
d∈Ω,|ξ|≤ϑ(r)

|f(ξ, d)|2 + max
|ξ|≤ϑ(r)

κ(ξ).

Then, for any ξ ∈ E with |ξ| ≤ r, it holds that

σξ,d1
(t) =

∫ t

0

[
1 + |f(x(s, ξ,d1),d1(s))|2 + κ(x(s, ξ,d1))

]
ds ≤ Mrt

for all t ∈ [0, λξ,d1), and hence, σξ,d1
−1(t) ≥ t

Mr
for all |ξ| ≤ r, t ∈ [0, θξ,d). Conse-

quently, we have

|z(t, ξ,d)| ≤ λ̂(|ξ| , t) ∀ t ∈ [0, θξ,d),(4.7)

where λ̂(s, t) = λ(s, t
Ms

) is clearly of class KL. Therefore, this shows that system Σ̂ is
GASMO.

From now on, we let the function λ of class KL be as in Definition 2.9 for the
system Σ̂, that is, the following estimate holds for system (4.3):

|z(t, ξ,d)| ≤ λ(|ξ| , t) ∀ t ∈ [0, θξ,d),(4.8)

for all ξ ∈ E , and all d ∈MΩ.
According to Proposition 7 in [38], there exist K∞-functions µ1 and µ2 such that

λ(r, t) ≤ µ1(µ2(r)e
−t) ∀ r, t ≥ 0.(4.9)

Define

Ξ(s) := µ−1
1 (s).(4.10)
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1898 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

The proof will now develop as follows. We first construct a continuous Lyapunov-
like function V0, defined on the set E1. Next V0 is approximated by a Lipschitz
continuous function (by the methods of nonsmooth analysis). The resulting function
is then approximated by a smooth function V1. Finally we extend V1 to the rest of the
state space, obtaining a Lyapunov-like function, smooth away from the origin, which
is then approximated by a smooth Lyapunov function.

4.2. Definitions and basic facts on relaxed controls. Recall that our dis-
turbances d are measurable functions R≥0 → Ω, a compact, convex subset of Rm.

Let P (Ω) be the set of all Radon probability measures on Ω. Bishop’s theorem
furnishes a weak norm on P (Ω), whose corresponding metric topology coincides with
the weak star topology on P (Ω) (see [51, pp. 40 and 267]).

For any T > 0, we define ST to be the set of all measurable functions from [0, T ]
to P (Ω), and S to be the set of all measurable functions from R≥0 to P (Ω). We
topologize ST by weak convergence: {νk(·)} → ν(·) in ST if and only if∫ T

0

∫
Ω

g(t, ω)d[νk(t)](ω) dt→
∫ T

0

∫
Ω

g(t, ω)d[ν(t)](ω) dt

for all functions g : [0, T ] × Ω → R which are continuous in ω, measurable in t, and
such that

max {|g(t, ω)| , ω ∈ Ω}

is integrable on [0, T ]. We say that {νk} → ν weakly in S if, for every T > 0, the
sequence

{
νk|[0,T ]

}
of restrictions of νk to [0, T ] converges to ν|[0,T ] in ST .

Notice that, since every element of Ω can be identified with the δ-measure, con-
centrated in it, Ω can be embedded into P (Ω), MΩ into S, and MT

Ω into ST in the
obvious way, where MT

Ω is the set of functions in MΩ restricted to [0, T ].
For each ν ∈ P (Ω), we denote

f(x, ν) =

∫
Ω

f(x, r) dν(r) .(4.11)

Notice that for any relaxed control ν(·), the function f(·, ν(·)) : (x, t)→ f(x, ν(t)) is
Lipschitz in x and measurable in t. Moreover, as for all x ∈ X and all ν ∈ P(Ω), we
have a bound

|f(x, ν)| ≤ max
d∈Ω

|f(x, d)| ,

the solution of the “system” ẋ(t) = f(x(t), ν(t)) exists for any initial condition ξ and
relaxed control ν on some maximal interval [0, tmax(ξ, ν)). Write x(·, ξ, ν) to denote
this solution. Just as in the case with ordinary controls, we will define

λξ,ν := inf {t ≤ tmax : x(s, ξ, ν) ∈ D} .(4.12)

The basic three facts we will be using in the next section are as follows.
Fact 1. For any T > 0, the space ST is sequentially compact (see [51, Thm IV.2.1,

p. 272]). Consequently, S is sequentially compact by a diagonalization argument.
Fact 2. For any T > 0, the set MT

Ω of ordinary controls on [0, T ] is dense in
ST (see [5, p. 691], also [51]). Consequently, MΩ is dense in S. The topology of S
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induces a topology on the subspaceMΩ. This topology is stronger than the topology
of Lp for any positive p: in fact, {dk(t)} → d would imply∫ T

0

g(dk(t))dt→
∫ T

0

g(d(t)) dt

for any continuous function g : U → R and any positive T .
Fact 3. For any T > 0, the mapping (t, ξ, ν(·)) %→ z(t, ξ, ν) is continuous on

[0, T ]×X× ST (see [1, Lemma 3.12]).
Some relevant immediate consequences of Facts 1, 2, and 3 are as follows.
Claim 1. The function (ξ, ν) → λξ,ν , mapping initial states and disturbances to

the first hitting times as defined in (4.12), is lower semicontinuous on both ν and ξ.
(This easily follows from continuous dependence on initial conditions and control, and
from the fact that the set D is closed.)

Claim 2. If system (2.14) is GASMO, then, for any initial value ξ ∈ E , a relaxed
disturbance ν ∈ S, and time T ≤ λξ,ν we have an estimate

x(T, ξ, ν) ≤ λ(|ξ|, T ).
Proof. Pick ξ ∈ X and ν ∈ S. Let {dk} be a sequence of ordinary disturbances,

converging to ν in S. Then, for large enough k we have tmax(ξ,dk) > T , and x(·, ξ,dk)
converge to x(·, ξ, ν) uniformly on [0, T ]. Also, by Claim 1, lim infk→∞ λξ,dk

≥ λξ,ν .
Since we assume the system to be GASMO, the estimate (2.17) holds for d := dk for
all large enough k and for all t ≤ T , so the claim follows.

With the previous claim in mind, we can say that the system (2.14) with d ∈ S is
GASMO (this is a slight abuse of terminology because, strictly speaking, (2.14) with
relaxed disturbances is not really a “system,” as that would mean, by definition, that
disturbances take values in a finite dimensional space). Consequently, the auxiliary
system (4.3) is also GASMO for d ∈ S. Thus, we can assume that (4.8) holds for all
ξ ∈ E and all d ∈ S.

4.3. Constructing a continuous Lyapunov-like function on E1. In sec-

tion 4.1 we introduced the system Σ̂ : ż = f̂(z, d) := f(z,d)

1+|f(z,d)|2+κ(z)
, which slows

down the motions of the original system Σ. Recall also that D := {ξ : |ξ| ≤ ρ(|h(ξ)|)},
and define the set

B := {ξ : ρ(|h(ξ)|) ≤ |ξ| ≤ 1.5ρ(|h(ξ)|)} .
Let f0 : X→ R be defined by

f0(ξ) = max
d∈Ω

∣∣∣f̂(ξ,d)∣∣∣ .
Note that f0 is locally Lipschitz, and recall that we have assumed with no loss of
generality that Σ has no equilibria on the set {x ∈ X : |x| ≥ ρ(|h(x)|)} (otherwise
replace ρ(·) by cρ(·), where c > 1). In particular, f0(ξ) �= 0 for any ξ ∈ ∂D \ {0}. Let
φ : X \ {0} → [0, 1] be smooth and

φ(x) =

{
1, x ∈ D,
0, x ∈ X \ (D ∪ B).

Now introduce another system, on the state space X \ {0},
Σ̃ : ż = f̃(z, d, v),
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1900 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

where disturbances d are as before, and auxiliary controls v are measurable functions
of time, taking values in [−1, 1]n (note that the dimension of the control set for v’s is
the same as that of X), where, for each i = 1, 2, . . . , n,

f̃i(z, d, v) := f̂i(z, d) + 2φ(z)f0(z)vi.

For each T > 0, let WT denote the set of the auxiliary controls defined on [0, T ]
(i.e., measurable functions v : [0, T ]→ [−1, 1]n) equipped with the weak convergence
topology; that is, “{vk} converges weakly to v in WT ” means∫ T

0

ϕ(s)vk(s) ds →
∫ T

0

ϕ(s)v(s) ds

for all functions ϕ that are integrable over [0, T ]. With the weak topology, WT is
sequentially compact (cf. [39, Proposition 10.1.5]). Consequently, given any sequence
{vk} of controls defined on [0,∞), there exist some control v and a subsequence {vkj}
such that vkj

→ v weakly on every interval [0, T ].
We denote the set of the auxiliary controls defined on [0,∞) byW. Let {vk} ⊂ W

and v ∈ W. We say that {vk} weakly converges to v if, for every T > 0, the sequence
of restrictions {vk|[0,T ]} weakly converges to v|[0,T ] in WT .

Recall that z(t, ξ,d) denotes the solution of Σ̂. Write z(t, ξ,d,v) for the value at

time t of the solution of Σ̃ with initial state ξ �= 0, disturbance d ∈MΩ, and auxiliary
control v ∈ W.

Observe the following.
• Σ̃ is affine in v.
• since for any ξ ∈ X and d ∈ [−1, 1]m, |f̂(ξ, d)| ≤ 1, we have |f̃(ξ, d, v)| ≤ 3

for any ξ, d and v. In particular, this implies that Σ̃ is forward complete.
• Suppose ξ �∈ D ∪ B and pick d ∈MΩ and v ∈ W. Then there is some t0 > 0
such that z(t, ξ,d) �∈ D ∪ B for all t ∈ [0, t0], and z(t, ξ,d,v) ≡ z(t, ξ,d) on
[0, t0].

To extend the definition of z(t, ξ,d,v) to the case when d ∈ S, we let, for a fixed
d ∈ S and v ∈ W,

gd,v(z, t) := f̂(z,d(t)) + 2φ(z)f0(z)v(t)

(where f(z,d(t)) is as defined in (4.11) for ν := d(t) ∈ P(Ω)). Then gd,v : X \
{0} × R≥0 → X is locally Lipschitz in its first variable, and |gd,v(z, t)| ≤ 3 for all
(z, t) ∈ X \ {0} ×R≥0. Hence, the solution of

ż(t) = gd,v(z, t),

z(0) = ξ

exists for all ξ ∈ X \ {0} and t ≥ 0. We will denote it by z(t, ξ,d,v).

Observe that f̃ : X \ {0} × Ω × [−1, 1]n → Rn is continuous, and f̃(z, d, v) is

locally Lipschitz in z on X \ {0} uniformly on (d, v) ∈ Ω × [−1, 1]n. The system Σ̃

evolves in the state space X \ {0}. As |f̃ | ≤ 3 everywhere, trajectories are defined
and unique for each initial value ξ ∈ X \ {0} and each pair of inputs d,v. Moreover,
if z(·) is a maximal such trajectory, then either z(t) is defined for all t ≥ 0, or there
is some T > 0 such that limt→T z(t) = 0. We prove next that this last case cannot
happen.
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Lemma 4.1. For every ball U around 0, there is a constant c such that for any
ξ ∈ U , ξ �= 0, d ∈ S, v ∈ W, and t ≥ 0, we have a lower bound

|z(t, ξ,d,v)| > 1

2
|ξ| e−ct.(4.13)

Proof. Since f̂ is locally Lipschitz in x uniformly in d, and f̂(0, d) = 0 for all d,

we can find a positive constant c, such that |f̂(z, d)| ≤ c|z|/3 for all z ∈ U and all
d ∈ Ω. Then also |f0(z)| ≤ c|z|/3; therefore∣∣∣f̃(z, d, v)∣∣∣ ≤ ∣∣∣f̂(z, d)∣∣∣+ 2 |f0(z)| ≤ c|z|

for all v ∈ [−1, 1]n, all d ∈ Ω, and hence, all d ∈ P(Ω). Now fix ξ ∈ U \ {0}, d ∈ S,
and v ∈ W, and write z(t) := z(t, ξ,d,v). Note that the inequality (4.13) holds for
t = 0; therefore it holds for all small enough t > 0. Suppose that (4.13) fails at some
t2 > 0, so that

|z(t2)| ≤ 1

2
|ξ| e−ct2 < |ξ| .(4.14)

Then there exists a t1 < t2 such that |z(t1)| = |ξ| and |z(t)| ≤ |ξ| for all t ∈ [t1, t2].
Let

w(t) := |z(t)|2 /2.

Then, for almost all t ∈ [t1, t2]

|ẇ(t)| = |z(t) · ż(t)| ≤ c |z(t)|2 = 2cw(t).

In particular, this implies that ẇ(t) + 2cw(t) ≥ 0. So, for all t ∈ [t1, t2] we have

0 ≤ e2ct(ẇ(t) + 2cw(t)) =
d(e2ctw(t))

dt
,

implying that e2ctw(t) ≥ e2ct1w(t1) for all t ∈ [t1, t2]. Thus,

1

2
|z(t2)|2 = w(t2) ≥ e2ct1w(t1)e

−2ct2 =
1

2
|z(t1)|2 e−2c(t2−t1) ≥ 1

2
|ξ|2 e−2ct2 ,

so that |z(t2)| ≥ e−ct2 |ξ|, contradicting (4.14).
Corollary 4.2. For every r > 0 and T > 0 there is a σ = σ(r, T ) > 0 such that

for any d ∈ S, v ∈ W, |ξ| ≥ r, and t ≤ T we have

|z(t, ξ,d,v)| ≥ σ.

Lemma 4.3. For each d ∈ ST and each v ∈ WT , if ξk → ξ in X \ {0}, dk → d
in ST , and vk → v in WT , {z(t, ξk,dk,vk)} converges to z(t, ξ,d,v) uniformly on
[0, T ].

Proof. Assume without loss of generality that ξk ∈ U := B |ξ|
2

(ξ). Since |f̃ ≤ 3|
and by Corollary 4.2, RT (U) ⊆ B1.5|ξ|+3T (0) \ Bσ(0), where σ = σ(|ξ| /2, T ) is as

in Corollary 4.2. Let M1 and M2 be Lipschitz constants for f̂(·, d) (uniformly for
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1902 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

d ∈ Ω) and 2f0 φ, respectively, on B1.5|ξ|+3T (0) \ Bσ(0). Write z(t) := z(t, ξ,d,v),
and zk(t) := z(t, ξk,dk,vk). Now, for all t ∈ [0, T ] we have

|z(t)− zk(t)| =
∣∣∣∣ξk − ξ +

∫ t

0

(
f̃(zk(t),dk(t),vk(t))− f̃(z(t),d(t),v(t))

)
dt

∣∣∣∣
≤ |ξk − ξ|+

∣∣∣∣∫ t

0

(
f̃(z(t),dk(t),vk(t))− f̃(z(t),d(t),v(t))

)
dt

∣∣∣∣
+

∫ t

0

∣∣∣f̃(zk(t),dk(t),vk(t))− f̃(z(t),dk(t),vk(t))
∣∣∣ dt

≤ |ξk − ξ|+
∣∣∣∣∫ t

0

(
f̂(z(t),dk(t))− f̂(z(t),d(t))

)
dt

∣∣∣∣(4.15)

+2

∣∣∣∣∫ t

0

(f0(z(t))φ(z(t))vk(t)− f0(z(t))φ(z(t))v(t)) dt

∣∣∣∣(4.16)

+

∫ t

0

(M1 +M2) |zk(t)− z(t)| dt.

The integrals in (4.15) and (4.16) tend to 0 because of the convergence of {dk(·)} to
d in S and the weak convergence of vk to v. So, for any ε > 0 we can find a K such
that, for all k ≥ K,

|ξk − ξ|+
∣∣∣∣∣
∫ T

0

(
f̂(z(t),dk(t))− f̂(z(t),d(t))

)
dt

∣∣∣∣∣
+ 2

∣∣∣∣∫ t

0

(f0(z(t))φ(z(t))vk(t)− f0(z(t))φ(z(t))v(t)) dt

∣∣∣∣ ≤ εe−(M1+M2)T .

Then, for all k ≥ K and t ∈ [0, T ] we have, by the Gronwall inequality,

|z(t)− zk(t)| ≤ εe−(M1+M2)T e(M1+M2)t ≤ ε.

As ε was arbitrary, this proves uniform convergence.
Also, since for any ξ ∈ ∂D \ {0}, f0(ξ) �= 0, and f0(ξ) ≥ |f̂(ξ, d)| for any d ∈ Ω,

we have the following controllability property on ∂D \ {0}.
Lemma 4.4. Let ξ �= 0 be on ∂D. Then, for each τ > 0, there exists a neighbor-

hood U of ξ, such that for any η ∈ U and any d ∈MΩ, there is some control v, and
some 0 ≤ t1 ≤ τ , such that z(t1, η,d,v) = ξ and z(t, η,d,v) ∈ U for all 0 ≤ t ≤ t1.

Proof. Since φ(ξ) f0(ξ) �= 0 and the function φ(·) f0(·) is continuous, we can find
a ball U1 centered at ξ and a constant c1 such that φ(z)f0(z) > c1 for every z ∈ U1.
Since φ(ξ) = 1 and φ is continuous, one could also find a ball U2 ⊆ U1 centered at ξ,
so that ∣∣∣f̂(z, d)∣∣∣ ≤ 1.5φ(z)f0(z) ∀z ∈ U2, d ∈ Ω.

Fix τ > 0 and let B(ξ) be the ball of radius τc1/2 centered at ξ. Define U := B(ξ)∩U2.
Pick a point η ∈ U . Then |ξ − η| < τc1/2, so,

v̄2 :=
2(ξ − η)

τc1

has norm smaller than 1. Consider the “feedback law”

k(z, d) =
1

2
(1.5k1(z, d) + 0.5v̄2),
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INPUT-OUTPUT-TO-STATE STABILITY 1903

where

k1(z, d) := − f̂(z, d)

1.5φ(z)f0(z)
.

Notice that for all z ∈ U and d ∈ Ω we have |k1(z, d)| ≤ 1 and

f̃(z, d, k(z, d)) = f̂(z, d) + 2φ(z)f0(z)k(z, d)

= f̂(z, d) + 1.5φ(z)f0(z)k1(z, d) + 0.5φ(z)f0(z)v̄2

= 0.5φ(z)f0(z)v̄2 =
(ξ − η)φ(z)f0(z)

τc1
.

Thus, with any initial condition η ∈ U and disturbance d ∈ MΩ, if the control
v(t) := k(z(t), d(t)) is applied, then the trajectory of the system Σ̃ will be the line
segment, connecting ξ and η, transversed with a velocity greater than (ξ − η)/τ . So,
there exists a t0 ≤ τ such that z(t0, η,d,v) = ξ and, since U is convex, z(t, η,d,v) ∈ U
for all t ≥ t0.

For each d ∈ S, let
θd(ξ,v) = inf {t ≥ 0 : z(t, ξ,d,v) ∈ D} ,

where as before, θd(ξ,v) =∞ if the trajectory never reaches D.
Lemma 4.5. The map (ξ,v,d) %→ θd(·, ·) is lower semicontinuous on E ×W ×S.
Proof. Let {ξk} ⊂ E , {vk} ⊂ W and {dk} ⊂ S be such that ξk → ξ,vk → v, and

dk → d for some ξ ∈ E , v ∈ W, and d ∈ S. We need to show that

θd(ξ,v) ≤ lim inf
k→∞

θdk
(ξk,vk).(4.17)

Let θk = θdk
(ξk,vk). Without loss of generality, we may assume that

lim inf
k→∞

θk = θ0 <∞.

Passing to a subsequence if necessary, we assume that θk → θ0. Thus, there exists
some K such that θk ≤ θ0 + 1 for all k ≥ K. Since {z(t, ξk,dk,vk)} converges to
z(t, ξ,d,v) uniformly on [0, θ0 + 1], it follows that

z(θ0, ξ,d,v) = lim
k→∞

z(θk, ξk,dk,vk).

Since D is closed and z(θk, ξk,dk,vk) ∈ D for each k, we know that z(θ0, ξ,d,v) ∈ D,
and hence, θd(ξ,v) ≤ θ0.

Define, for ξ ∈ E ,d ∈ S, and v ∈ W,

Vv(ξ,d) :=

∫ θd(ξ,v)

0

Ξ(|z(t, ξ,d,v)|) dt

(where Ξ is as in (4.10)) and, for ξ ∈ E and d ∈ S,
Ṽ0(ξ,d) := inf

v∈W
Vv(ξ,d).

Note that for some v and d, Vv(ξ,d) may take ∞ as its value, but Ṽ0(ξ,d) is always
finite, since

Ṽ0(ξ,d) ≤ VO(ξ,d),(4.18)
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1904 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

where O(·) is the control identically equal to 0. Recall that by definition of Ξ we have
then, for all ξ ∈ E1 and d ∈ S,

VO(ξ,d) =

∫ θd(ξ,O)

0

Ξ(|z(t, ξ,d, O)|) dt

=

∫ θd(ξ,O)

0

Ξ(|z(t, ξ,d)|) dt ≤
∫ ∞

0

Ξ(µ1(µ2(|ξ|)e−t))dt ≤ µ2(|ξ|),(4.19)

where µ1 and µ2 are as in (4.9).
Lemma 4.6. The function V(·)(·, ·) : E ×S ×W → R≥0 is lower semicontinuous.
Proof. Let (ξ,d,v) ∈ E × S ×W, and let {ξk} → ξ, {dk} → d and {vk} → v,

where ξk ∈ E for all k.
Case 1. Vv(ξ,d) < ∞. In this case, for any ε > 0, there exists some 0 < T <

θd(ξ,v) such that

Vv(ξ,d) =

∫ θd(ξ,v)

0

Ξ(|z(t, ξ,d,v)|) dt ≤
∫ T

0

Ξ(|z(t, ξ,d,v)|) dt+ ε.

Without loss of generality we can assume that all ξk are within the unit distance
from ξ. Recall that the reachable set from the unit ball around ξ is bounded. Since
z(t, ξk,dk,vk) converges to z(t, ξ,d,v) uniformly on [0, T ], and Ξ(·) is uniformly con-
tinuous on compacts, there exists some K > 0 such that

|Ξ(|z(t, ξ,d,v)|)− Ξ(|z(t, ξk,dk,vk)|)| < ε

1 + T
∀k > K, ∀t ∈ [0, T ].

This implies that∫ T

0

Ξ(|z(t, ξk,dk,vk)|) dt ≥
∫ T

0

Ξ(|z(t, ξ,d,v)|) dt− ε

for all k ≥ K. By Lemma 4.5, there exists some K1 ≥ K such that θdk
(ξk,vk) > T

for all k ≥ K1. Thus, for all k ≥ K1,

Vvk
(ξk,dk) ≥

∫ T

0

Ξ(|z(t, ξk,dk,vk)|) dt

≥
∫ T

0

Ξ(|z(t, ξ,d,v)|) dt− ε ≥ Vv(ξ,d)− 2ε.

As ε was arbitrary, we conclude that

Vv(ξ,d) ≤ lim inf Vvk
(ξk,dk).

Case 2. Vv(ξ,d) =∞.
In this case, θd(ξ,v) =∞. Fix an integer k ≥ 0. There exists some Tk such that∫ Tk

0

Ξ(|z(t, ξ,d,v)|) dt ≥ k.

Repeating the same argument used above, one sees that∫ Tk

0

Ξ(|z(t, ξl,dl,vl)|) dt ≥ k − 1
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INPUT-OUTPUT-TO-STATE STABILITY 1905

for all l ≥ L0 for some L0. By Lemma 4.5, there is some L1 ≥ L0 such that
θdl

(ξl,vl) ≥ Tk for all l ≥ L1. Consequently, for all l ≥ L1,

Vvl
(ξl,dl) ≥

∫ Tk

0

Ξ(|z(t, ξl,dl,vl)|) dt ≥ k − 1.

Since k > 0 can be picked arbitrarily, it follows that

lim inf Vvl
(ξl,dl) =∞.

In both cases, we have shown that lim inf Vvl
(ξl,dl) ≥ Vv(ξ,d). The lower semicon-

tinuity property follows readily.
Lemma 4.7. For every ξ ∈ E, d ∈ S, there exists a control v̄ such that

Vv̄(ξ,d) = Ṽ0(ξ,d).(4.20)

Proof. Let vk be a sequence of controls such that Vvk
(ξ,d)↘ Ṽ0(ξ,d). Without

loss of generality we are assuming that all these controls are defined for all positive
t (by letting them equal to 0 where they are not defined). Extract from {vk} a
subsequence {vkl

} converging weakly to some limit v̄ in W. Without relabeling, we
assume that vk → v̄. By Lemma 4.6,

Vv̄(ξ,d) ≤ lim
k→∞

Vvk
(ξ,d) = Ṽ0(ξ,d).

Combining this with the fact that Ṽ0(ξ,d) ≤ Vv(ξ,d) for all v ∈ W, one thus proves
(4.20).

Corollary 4.8. For any ξ ∈ E ,d ∈ S,v ∈ W, and 0 ≤ T < θd(ξ,v), it holds
that

Ṽ0(ξ,d) ≤
∫ T

0

Ξ(|z(s, ξ,d,v)|) ds+ Ṽ0(z(T, ξ,d,v),dT ),(4.21)

where dT (t) = d(t+ T ) for all t ≥ 0.
Proof. Suppose the assertion is not true. Then there exist ξ ∈ E , T > 0, v ∈ W,

and d ∈ S such that (4.21) fails. By Lemma 4.7, one can find a control v1 such that

Ṽ0(z(T, ξ,d,v),dT ) = Vv1(z(T, ξ,d,v),dT ). Define v̄ to be the concatenation of v
and v1. Then, letting θ := θdT

(z(T, ξ,d,v),v1) and noticing that θd(ξ, v̄) = θ + T ,
we get, by our assumption,

Ṽ0(ξ,d) >

∫ T

0

Ξ(|z(s, ξ,d,v)|) ds+ Ṽ0(z(T, ξ,d,v),dT )

=

∫ T

0

Ξ(|z(s, ξ,d,v)|) ds+
∫ θ

0

Ξ(|z(t, z(T, ξ,d,v),dT ,v1)|) dt

=

∫ θ+T

0

Ξ(|z(s, ξ,d, v̄)|) ds,

which contradicts with the minimality of Ṽ0(ξ,d).
Lemma 4.9. For each ξ ∈ ∂D, the following holds:

lim
η→ξ

Ṽ0(η,d) = 0(4.22)
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1906 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

uniformly in d ∈ S, that is, for any ε > 0, there is a neighborhood U of ξ such that
Ṽ0(η,d) < ε for all η ∈ U ∩ E and all d ∈ S.

Proof. If ξ = 0, the result follows from (4.18) and (4.19). Suppose now that ξ �= 0.
Let ε > 0 be given. Let τ = ε

Ξ(|ξ|+1) . Find a neighborhood U of ξ as in Lemma 4.4.

Shrinking U if necessary, we assume that |ξ − η| ≤ 1 for all η ∈ U .
Suppose η ∈ U ∩ E and d ∈ MΩ. By the controllability property, there is some

control v such that z(t1, η,d,v) = ξ ∈ ∂D for some t1 ∈ [0, τ ], and that z(t, η,d,v) ∈
U for all t ∈ [0, t1]. Thus,

Vv(η,d) ≤
∫ t1

0

Ξ(|z(s, η,d,v)|) ds ≤ τ · Ξ(|ξ|+ 1) ≤ ε,

from which it follows that Ṽ0(η,d) ≤ ε.

The above shows that Ṽ0(η,d) ≤ ε for all nonrelaxed d ∈ MΩ, η ∈ U ∩ E . Pick
a relaxed d ∈ S. Then there exists a sequence {dk} ⊂ MΩ such that dk → d in

the topology of relaxed controls. Let η ∈ U ∩ E . Let vk be such that Ṽ0(η,dk) =
Vvk

(η,dk). By weak sequential compactness of W, one may assume, after taking a
subsequence, that vk → v̄ for some v̄. By Lemma 4.6,

Vv̄(η,d) ≤ lim inf
k→∞

Vvk
(η,dk) ≤ ε,

and consequently, Ṽ0(η,d) ≤ ε. This shows that Ṽ0(η,d) ≤ ε for all η ∈ U ∩E and all
d ∈ S.

To prove the continuity of Ṽ0, we also need the following result.
Lemma 4.10. Suppose for some ξ ∈ E, d ∈ S, and v ∈ W, Vv(ξ,d) <∞. Then

there exists some ξ0 ∈ ∂D such that

lim
t→θd(ξ,v)

z(t, ξ,d,v) = ξ0.(4.23)

Proof. Suppose Vv(ξ, ν) <∞. This means that∫ θν(ξ,v)

0

Ξ(|z(s, ξ, ν,v)|) ds <∞.(4.24)

If θd(ξ,v) < ∞, then (4.23) follows from the continuity of z(·, ξ, ν,v) with ξ0 =
z(θd(ξ,v)).

Suppose now that θd(ξ,v) =∞. Since the integral in (4.24) converges, it follows
that ∫ ∞

t

Ξ(|z(s, ξ,d,v)|) ds→ 0 as t→∞.

Consider the family of functions {xt(·), t > 0}, defined by xt(s) := z(t + s, ξ,d,v),
It = [0,∞). By Lemma 4.1, the trajectory z(s, ξ,d,v) does not reach the origin in
finite time, hence, there exists a positive, strictly decreasing function ϕ such that
ϕ(s) < |z(s, ξ,d,v)| for all s > 0. Find a K∞-function κ such that

κ(ϕ(t)) >

∫ ∞

t

Ξ(|z(s, ξ,d,v)|) ds =

∫ ∞

0

Ξ(|xt(s)|) ds.

Then the family {xt(·), t > 0} satisfies all the conditions of Proposition 3.9 (with
χ := Ξ). Take r := |ξ|. Then, for any ε > 0, |z(t, ξ,d,v)| < ε for all t > Tr,ε. So, the
conclusion of the lemma follows.
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Proposition 4.11. The function Ṽ0 : E × S → R is continuous.
Proof. Fix ξ ∈ E , d ∈ S. Suppose ξk → ξ,dk → d, where ξk ∈ E . Let {kj} be a

subsequence of {k} such that

lim
j→∞

Ṽ0(ξkj ,dkj ) = lim inf
k→∞

Ṽ0(ξk,dk).(4.25)

For each k, let vk be such that Ṽ0(ξk,dk) = Vvk
(ξk,dk). Notice that limk→∞ Vvk

(ξk,dk)
exists, because of (4.25).

By sequential compactness of W, there exists a subsequence of {vkj} converging
to some v̄ ∈ W. Without relabeling, we assume that vkj → v̄. It then follows from
Lemma 4.6 that

Vv̄(ξ,d) ≤ lim Vvkj
(ξkj

,dkj
) = lim inf Ṽ0(ξk,dk).

Consequently, Ṽ0(ξ,d) ≤ lim inf Ṽ0(ξk,dk). To complete the proof, we will show that

Ṽ0(ξ,d) ≥ lim sup
k→∞

Ṽ0(ξk,dk).(4.26)

Let v be a control such that Ṽ0(ξ,d) = Vv(ξ,d). Let ε > 0 be given. By
Lemma 4.10, there is some ξ0 ∈ ∂D such that (4.23) holds. By Lemma 4.9, there is a
neighborhood U of ξ0 such that

Ṽ0(η, ν) < ε/4 ∀η ∈ U ∩ E , ∀ν ∈ S.(4.27)

Let 0 < T < θd(ξ,v) be such that z(T, ξ,d,v) ∈ U . Then, since {z(t, ξk,dk,v)}
converges to z(t, ξ,d,v) uniformly on [0, T ], it follows that z(T, ξk,dk,v) ∈ U for
k ≥ K1 for some K1. By Lemma 4.5, one may assume that T < θdk

(ξk,v) for all
k ≥ K1. Consequently, η = z(T, ξk,dk,v) is also in E , so, applying (4.27) with
ν = (dk)T , we have

Ṽ0(z(T, ξk,dk,v), (dk)T ) < ε/4 ∀ k ≥ K1,

where (dk)T (t) = dk(T + t). By the uniform convergence property of {z(t, ξk,dk,v)},
it follows that there is some compact set K such that z(t, ξk,dk,v) ∈ K for all k and
all t ∈ [0, T ]. Using also the uniform continuity of Ξ(·) on compacts, one sees that
there is some K2 ≥ K1 such that∫ T

0

Ξ(|z(s, ξk,dk,v)|) ds ≤
∫ T

0

Ξ(|z(s, ξ,d,v)|) ds+ ε/2

for all k ≥ K2. Thus, (4.21) implies

Ṽ0(ξk,dk) ≤
∫ T

0

Ξ(|z(s, ξk,dk,v)|) ds+ Ṽ0(z(T, ξk,dk,v), (dk)T )

≤ Vv(ξ,d) + ε/2 + ε/2 = Ṽ0(ξ,d) + ε

for all k ≥ K2. From this it follows that

Ṽ0(ξ,d) ≥ lim sup Ṽ0(ξk,dk)− ε.

Letting ε→ 0, one proves (4.26).
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1908 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

For each ξ ∈ E , define
V0(ξ) := sup

d∈MΩ

Ṽ0(ξ,d).(4.28)

Note that the supremum is finite for each ξ ∈ E ; in fact, by (4.18) and (4.19), we have
the upper bound

V0(ξ) ≤ µ2(|ξ|) ∀ ξ ∈ E ,(4.29)

where µ2 is as in inequality (4.9). Also observe that the same function V0 results if
the supremum in (4.28) is taken over the set S. This follows from the fact that MΩ

is dense in S and the continuity property of Ṽ0.
By sequential compactness of S and by continuity of Ṽ0, we get the following.
Corollary 4.12. For any ξ in E there exists a (possibly relaxed) disturbance d

such that V0(ξ) = Ṽ0(ξ,d), that is, V0(ξ) = maxd̄∈S Ṽ0(ξ, d̄). Moreover, V0 : E → R
is continuous.

Proof. Fix ξ ∈ E . By definition of V0, there exists a sequence of disturbances
{dk(·)} such that Ṽ0(ξ,dk)↗ V0(ξ). By sequential compactness of S, we can extract

a subsequence {dki}, converging in S to some d. By continuity of Ṽ0,

V0(ξ) = lim
i→∞

Ṽ0(ξ,dki) = Ṽ0(ξ,d),

proving the first statement of the corollary.
Now fix ξ ∈ E . Take any sequence {ξk} ∈ E , converging to ξ and such that the

sequence {V0(ξk)} converges. Let dk(·) and d ∈ S be maximizing disturbances for ξk
and ξ, respectively, that is,

V0(ξk) = Ṽ0(ξk,dk) and V0(ξ) = Ṽ0(ξ,d).

Extracting a subsequence if necessary, let d̂ be a limit of {dk} in S. Then, by

continuity of Ṽ0 and by definition of V0, we have

V0(ξ) ≥ Ṽ0(ξ, d̂) = lim
k→∞

Ṽ0(ξk,dk) = lim
k→∞

V0(ξk).

Consequently, if {ξi} ⊂ E is any sequence, converging to ξ, then

V0(ξ) ≥ lim sup
i→∞

V0(ξi),

proving upper semicontinuity of V0.
On the other hand, again by continuity of Ṽ0, we have

lim inf
k→∞

V0(ξk) ≥ lim
k→∞

Ṽ0(ξk,d) = V0(ξ),

showing the lower semicontinuity of V0. Thus we conclude that V0 is continuous on
E .

Lemma 4.13. There exists a K∞-function α such that

α(|ξ|) ≤ V0(ξ)

for all ξ ∈ E1.
Notice that if |ξ| ≥ 1.6ρ(|h(ξ)|) and ξ �= 0, then ξ ∈ E , because |ξ| > |ξ| /1.6 ≥

ρ(|h(ξ)|). To prove Lemma 4.13, we first prove a technical lemma.
Lemma 4.14. Suppose Σ : ż = g(z, d), y = h(z) is a system of type (2.14), and

p(·) is a smooth function of class K∞, such that the following conditions hold:
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INPUT-OUTPUT-TO-STATE STABILITY 1909

• |g(ξ, d)| ≤ 1 for all ξ ∈ X and d ∈ Ω,
• |∇(p ◦ |h|)(ξ) · g(ξ, d)| ≤ 1 for all d ∈ Ω and all ξ with |h(ξ)| ≥ 1,
• p(s) ≥ s for all s > 0.

Pick any constant a > 0 and define K0 = p(1) + (2 + a)/a+ 1. Then for each ξ ∈ X
such that

|ξ| ≥ (1 + a)p(|h(ξ)|) and |ξ| ≥ K0,

it holds that

|z(t, ξ,d)| > p(|h(z(t, ξ,d))|)
for all t ∈ [0, 1) and any d ∈MΩ.

Proof. Fix a, ξ, and d as in the formulation of the lemma, and define

θ := min {t : |z(t, ξ,d)| ≤ p(|h(z(t, ξ,d))|)}
with the convention θ = +∞ if the inequality never holds for t ≥ 0. Assume the
lemma is false, so that θ < 1.

Let η = z(θ, ξ,d), and let d̂ be the shift of d by θ, that is, d̂(t) = d(t+ θ). Since
|g(z, d)| ≤ 1 for all z ∈ X and all d ∈ Ω, it holds that |η| ≥ |ξ| − θ ≥ K0 − 1. By the
definitions of η and θ, one has

p(|h(η)|) = |η| ≥ K0 − 1,(4.30)

so also |h(η)| ≥ p−1(K0 − 1) > 1. Thus, |h(z(s, η, d̂))| > 1 for all s near zero.

Claim. |h(z(s, η, d̂))| > 1 for all s ∈ [−1, 0].
Assume the claim is false. Then there must exist some −1 ≤ s0 < 0 so that

s0 = max
{
s ≤ 0 : |h(z(s, η, d̂))| ≤ 1

}
.

We have that for each s ∈ (s0, 0], |h(z(s, η, d̂))| > 1.
Recall that |∇(p ◦ |h|)(z)f(z, d)| ≤ 1 for all z with |h(z)| ≥ 1 and all d ∈ Ω.
Thus ∣∣∣∣ ddsp(∣∣∣h(z(s, η, d̂))∣∣∣)

∣∣∣∣ ≤ 1 ∀ s ∈ (s0, 0].

This, in turn, implies that

p
(∣∣∣h(z(s0, η, d̂))

∣∣∣) ≥ p(|h(η)|) + s0 ≥ K0 + s0 − 1 > p(1),

and so, since p is strictly increasing, |h(z(s0, η, d̂))| > 1, thus contradicting the defi-
nition of s0. This proves the claim.

It follows from the claim that |h(z(s, ξ,d))| > 1 for all s ∈ [0, θ]. Thus,

p(|h(η)|) = |η| ≥ |ξ| − θ

≥ (1 + a)p(|h(ξ)|)− θ ≥ (1 + a)p(|h(η)|)− (1 + a)θ − θ.

(The last inequality used the fact that
∣∣ d
dsp(|h(z(s, ξ,d))|)

∣∣ ≤ 1 for all s ∈ [0, θ].) It
follows that p(|h(η)|) ≤ 2+a

a θ, so from (4.30) we know that

K0 ≤ 1 + p(|h(η)|) ≤ 1 +
2 + a

a
θ,
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1910 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

contradicting the choice of K0. This shows that it is impossible to have θ < 1.
Proof of Lemma 4.13. Recall that if ξ �∈ D ∪ B, then f̃(ξ, d, v) = f̂(ξ, d) for any d

and v, so that∣∣∣∇(1.5ρ ◦ |h|)(ξ) · f̃(ξ, d, v)
∣∣∣ = 1.5 |∇(ρ ◦ |h|)(ξ) · f(ξ, d)|

1 + |f(ξ, d)|2 + κ(ξ)
≤ 1,

where the last inequality follows from (4.4). Therefore the assumptions of Lemma 4.14

are satisfied with p := 1.5ρ and f(ξ, d) := f̃(ξ, d, v) = f̂(ξ, d). By Lemma 4.14, we
can find a constant K0 such that if |ξ| > K0 and |ξ| ≥ 1.6ρ(|h(ξ)|), then z(t, ξ,d, v) �∈
D ∪ B for all t ∈ [0, 1). In particular, for such a ξ we will have θd(ξ,v) > 1 and
|z(t, ξ,d,v)| > |ξ| − 1 for all positive t < 1 . Hence, the inequality

Ξ(|z(t, ξ,d,v)|) > Ξ(|ξ| − 1) ∀t ∈ [0, 1)

holds for any d ∈MΩ, v ∈ W, and any ξ such that

|ξ| > max {K0 + 1, 1.6ρ(|h(ξ)|)} .(4.31)

Therefore, for any ξ as in (4.31) and any d ∈MΩ, the following estimate holds:

V0(ξ) ≥ Ṽ0(ξ,d) ≥
∫ 1

0

Ξ(|z(t, ξ,d,v)|)dt ≥ Ξ(|ξ| − 1).

Next, notice that V0 is strictly positive on E . Indeed, |f̃(ξ, d, v)| ≤ 3 for any ξ ∈ E ,
d ∈ Ω, and v ∈ [−1, 1]n, so that

|z(s, ξ,d,v)− ξ| ≤ 1

2
dist(ξ,D) ∀ s ≤

1
2dist(ξ,D)

3
, d ∈MΩ, v ∈ W.

Therefore θd(ξ,v) ≥ 1
6dist(ξ,D) and |z(s, ξ,d,v)| ≥ ξ − 1

2dist(ξ,D) for all s ≤
1
6dist(ξ,D), all d ∈MΩ, and v ∈ W. So, we have

Vv(ξ,d) ≥
∫ dist(ξ,D)/6

0

Ξ (|z(s, ξ,d,v)|) ds ≥ dist(ξ,D)
6

Ξ(|ξ| − dist(ξ,D)/2).

This shows that

inf
d∈MΩ

inf
v∈W

Vv(ξ,d) ≥ dist(ξ,D)
6

Ξ

(
|ξ| − dist(ξ,D)

2

)
.(4.32)

Thus also the supd∈MΩ
infv∈W Vv(ξ,d) satisfies (4.32), and hence the same inequality

holds for V0.
Since V0 is lower semicontinuous, it attains its minimum on any compact set. For

each positive l define

rl :=
1

l
max {K0 + 1, 1.6ρ(|h(ξ)|)} and ml = inf {V0(z) : z ∈ E1, rl ≤ |z| ≤ r1} .

Since the sequence {ml} is nonincreasing and positive, and Ξ is of class K∞, we can
find a K∞-function α such that

α(s) < ml ∀ s ∈ [rl, rl−1], ∀ l > 1
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and

α(s) < Ξ(s− 1)∀ s ≥ max {K0 + 1, 1.6ρ(|h(ξ)|)} .

By construction, α will be a lower bound for V0 on E1.
Combining Lemma 4.13 with (4.29), we get the following, using ᾱ := µ2:

α(|ξ|) ≤ V0(ξ) ≤ ᾱ(|ξ|) ∀ ξ ∈ E1.(4.33)

The following lemma and corollary summarize the dissipation properties for V0.
Lemma 4.15. For any ξ ∈ X \ (D ∪ B) and d ∈ MΩ, and any t0 such that

z(t, ξ,d) �∈ D ∪ B for all t ∈ [0, t0], the following dissipation inequality holds:

V0(z(t, ξ,d))− V0(ξ) ≤ −
∫ t0

0

Ξ(|z(t, ξ,d)|) dt.

Proof. Fix ξ ∈ X \ (D∪B), d ∈MΩ, and any positive t0 as in the formulation of
the lemma. Let ε > 0 be given. Find d1 such that

V0(z(t0, ξ,d))− Ṽ0(z(t0, ξ,d),d1) < ε,

and let v1 ∈ W be a control such that Ṽ0(z(t0, ξ,d),d1) = Vv1(z(t0, ξ,d),d1). Let d̃
be defined by

d̃(t) =

{
d(t) if 0 ≤ t ≤ t0,
d1(t− t0) if t > t0.

Then z(t, z(t0, ξ,d),d1,v1) = z(t+ t0, ξ, d̃, ṽ) for all t ≥ 0. By assumption,

z(t, ξ,d) �∈ D ∪ B ∀ t ∈ [0, t0],

and therefore we have

z(t, ξ,d) = z(t, ξ,d,v) ∀ t ∈ [0, t0], ∀ v ∈ W.(4.34)

Notice also that (4.34) implies that θ
d̃
(ξ,v) > t0 for all v ∈ W and

Ṽ0(ξ, d̃) = min
v∈W

∫ θ
d̃
(ξ,v)

t0

Ξ
(∣∣∣z(s, ξ, d̃,v)∣∣∣) ds

=

∫ t0

0

Ξ
(∣∣∣z(s, ξ, d̃)∣∣∣) ds+ min

v∈W

∫ θ
d̃
(ξ,v)

t0

Ξ
(∣∣∣z(s, ξ, d̃,v)∣∣∣) ds

=

∫ t0

0

Ξ(|z(s, ξ,d)|)ds+ min
v∈W

∫ θd1
(z(t0,ξ,d),v)

0

Ξ(|z(s, z(t0, ξ,d),d1,v)|)ds

=

∫ t0

0

Ξ(|z(s, ξ,d)|)ds+ Ṽ0(z(t0, ξ,d),d1).

Consequently, one has

Ṽ0(z(t0, ξ,d),d1) = Ṽ0(ξ, d̃)−
∫ t0

0

Ξ (|z(s, ξ,d)|) ds.
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1912 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

Thus,

V0(z(t0, ξ,d)) ≤ Ṽ0(z(t0, ξ,d),d1) + ε

= Ṽ0(ξ, d̃)−
∫ t0

0

Ξ(|z(s, ξ,d)|) ds+ ε

≤ V0(ξ)−
∫ t0

0

Ξ(|z(s, ξ,d)|) ds+ ε.

Letting ε→ 0, we get the desired inequality.
Thus, we have proven that the UOSS dissipation inequality holds for V0 along the

trajectories of the slower system Σ̂ which are entirely contained in X \ (D ∪ B). It
follows immediately that the same estimate holds along the trajectories of the original
system Σ.

Corollary 4.16. For any ξ ∈ X \ (D ∪ B) and d ∈ MΩ, and any t0 such that
x(t, ξ,d) �∈ D ∪ B for all t ∈ [0, t0], the following dissipation inequality holds:

V0(x(t, ξ,d))− V0(ξ) ≤ −
∫ t0

0

Ξ(|x(t, ξ,d)|) dt.(4.35)

Proof. Pick an initial state ξ ∈ X \ (D ∪ B), a disturbance d ∈ MΩ, and an
appropriate t0. Then

V0(x(t0, ξ,d))− V0(x(ξ))

= V0(z(σξ,d(t0), ξ,d ◦ σξ,d−1))− V0(z(σξ,d(t1), ξ,d ◦ σξ,d−1))

≤ −
∫ σξ,d(t0)

0

Ξ(
∣∣z(s, ξ,d ◦ σξ,d−1)

∣∣) ds
= −

∫ t0

0

Ξ(
∣∣z(σξ,d(t), ξ,d ◦ σξ,d−1)

∣∣) dσξ,d(t)
= −

∫ t0

0

Ξ(|x(t, ξ,d)|) d

dt
σξ,d(t) dt

= −
∫ t0

0

Ξ(|x(t, ξ,d)|)[1 + |f(x(t, ξ,d),d(t))|2 + κ(x(s, ξ,d))] dt

≤ −
∫ t0

0

Ξ(|x(t, ξ,d)|) dt.

4.4. Some definitions and facts from nonsmooth analysis.
Definition 4.17. A vector ζ ∈ Rn is a proximal subgradient (respectively,

proximal supergradient) of the function V : Rn → (−∞,+∞] at x if there exists
some positive σ such that, for all x′ in some neighborhood of x,

V (x′) ≥ V (x) + ζ · (x′ − x)− σ|x′ − x|2(4.36)

(correspondingly, V (x′) ≤ V (x) + ζ · (x′ − x) + σ|x′ − x|2).(4.37)

The (possibly empty) set of all proximal subgradients (respectively, supergradients)
of V at x is called the proximal subdifferential and is denoted ∂PV (x) (respectively,
proximal superdifferential, denoted ∂PV (x)). Note that the definitions imply that if
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the function V is differentiable at x, then both the subdifferential and superdifferential
sets must be subsets of the {∇V (x)}.

Lemma 4.18. Let Σ be a system of type (2.14), ξ be a vector in X, d̄ ∈ Ω, and
V : X → R. Then, if there exist some continuous αξ : R≥0 → R and ε > 0 such
that the following inequality holds for all τ < ε,

V (x(τ, ξ,d))− V (ξ) ≤
∫ τ

0

αξ(t)dt(4.38)

(where d is the constant disturbance equal to d̄), then for any ζ ∈ ∂PV (ξ) the proximal
form of inequality (4.38) holds:

ζ · f(ξ, d̄) ≤ αξ(0).(4.39)

Proof. It follows from (4.36) and (4.38) that, for all τ close enough to 0 we have∫ τ

0

αξ(t)dt ≥ V (x(τ, ξ,d))− V (ξ) ≥ ζ · (x(τ, ξ,d)− ξ)− σ|x(τ, ξ,d)− ξ|2.

Dividing by τ and passing to the limit as τ tends to 0, we get (4.39).

4.5. Smoothing out a continuous Lyapunov function. The next result
shows how to approximate a continuous function V by a locally Lipschitz one in a
weak C1 sense. The function V is assumed to be bounded below, or up to a translation
by a constant, nonnegative.

Lemma 4.19. Let Σ : ẋ = f(x, d) be a system, with x ∈ X = Rn and d ∈ Ω,
a compact metric space, so that f(x, d) is locally Lipschitz in x uniformly on d and
jointly continuous in x and d. Assume that we are given

• an open subset O of X;
• a continuous, nonnegative function V : O → R satisfying

ζ · f(x, d) ≤ Θ(x, d) ∀x ∈ O, ζ ∈ ∂PV (x), d ∈ Ω(4.40)

with some continuous function Θ : O × Ω→ R;
• two positive, continuous functions Υ1 and Υ2 on O.

Then there exists a function Ṽ : O → R, locally Lipschitz on O, such that

0 ≤ V (x)− Ṽ (x) ≤ Υ1(x) ∀x ∈ O(4.41)

and

Lfd Ṽ (x) ≤ Θ(x, d) + Υ2(x) ∀d ∈ Ω and for almost all x ∈ O,(4.42)

where fd is the vector field defined by fd = f(·, d).
Note that, by Rademacher’s theorem, the directional derivative Lfd Ṽ (x), given

by ∇V (x) ·f(x, d), is defined for almost all x because Ṽ is locally Lipschitz. The proof
will follow closely along the lines of the proof of the similar result for CLFs, found in
[9] or [40].

We will first prove a “local” version of the result. For any K which is a compact
subset of O and r > 0, we introduce the following notations:

• B̄r(K) := {x ∈ X : ∃ξ ∈ K with |x− ξ| ≤ r}, the closed r-fattening of K,
for r > 0,

• β(K) := supx∈K V (x),
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1914 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

• mK := 1
4 min {Υ2(x) : x ∈ K} ,

• AK := a Lipschitz constant for f with respect to x in K, that is,

|f(x, d)− f(x′, d)| ≤ AK |x− x′| ∀d ∈ Ω, ∀x ∈ K,

• ωK(·) := the modulus of continuity of V on K, that is,

ωK(δ) := sup {V (x)− V (x′) : |x− x′| ≤ δ;x, x′ ∈ K} ,
• πK(·) := the modulus of continuity of Θ on K × Ω, that is,

πK(δ) := sup{Θ(x, d)−Θ(x′, d′) : |x− x′|+ dist (d, d′) ≤ δ;

x, x′ ∈ K, d, d′ ∈ Ω}.
To approximate the given continuous function V by a locally Lipschitz one, we

would like to use the notion of “Iosida–Moreau inf-convolution,” well known in convex
analysis. Fix a parameter α ∈ (0, 1]. Suppose for the moment that V is defined on
the whole X. Define

Vα(x) := min
y∈X

[
V (y) +

1

2α2
|y − x|2

]
.

For each fixed x, the set of points y where the minimum is attained is nonempty
because V is bounded below. Denote one of them by yα(x).

Fix a compact K and α ∈ (0, 1], let

Kα := B̄
α
√

2β(K)
(K).

The following four claims summarize some of the useful properties of Vα, proven in
[9], [40] (or see the primary sources such as [8]).

Claim 1. For all x ∈ K,

|yα(x)− x|2 ≤ min
{
2α2β(K), 2α2ωKα

(
α
√
2β(K)

)}
.

Proof of Claim 1. By definition of Vα and β(K), we have

1

2α2
|yα(x)− x|2 ≤ V (x)− V (yα(x)) ≤ V (x) ≤ β(K),(4.43)

so that |yα(x)− x|2 ≤ 2α2β(K). On the other hand, the first inequality in (4.43)
implies also that

|yα(x)− x|2 ≤ 2α2(V (x)− V (yα(x)))

≤ 2α2ωKα
(|yα(x)− x|) ≤ 2α2ωKα

(
α
√

2β(K)
)
,

proving the claim.
Let

ζα(x) =
x− yα(x)

α2
.

Claim 2. For any x ∈ X,

ζα(x) ∈ ∂PV (yα(x)) and(4.44)
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INPUT-OUTPUT-TO-STATE STABILITY 1915

ζα(x) ∈ ∂PVα(x).(4.45)

Claim 3. For any x ∈ K,

Vα(x) ≤ V (x) ≤ Vα(x) + ωKα

(
α
√
2β(K)

)
.

Claim 4. Vα is locally Lipschitz.
Now recall that, in our setting, V is defined on an open subset O ofX, so, we can’t

minimize the expression in the definition of Vα over the whole state space. However,
for any compact subset K of O we can choose α small enough so that

Kα ⊂ O,

hence, for any x in K we could define Vα minimizing over y ∈ O, and the same
function Vα results on K.

Lemma 4.20. Assume that V satisfies (4.40), a compact K is fixed, and α ∈ (0, 1]
is chosen to satisfy

• Kα = B̄
α
√

2β(K)
(K) ⊂ O,

• πKα

(
α
√
2β(K)

)
≤ mK , and

• 2AKαωKα

(
α
√

2β(K)
)
≤ mK .

Then the function

Vα(x) := inf
y∈O

[
V (y) +

1

2α2
|y − x|2

]
(4.46)

will possess the following property:
∀ x ∈ K,∀ d ∈ Ω, and ∀ ζ ∈ ∂PVα(x),

ζ · f(x, d) ≤ Θ(x, d) + 2mK .

Proof. Fix any x ∈ K. The choice of α ensures that the infimum in (4.46) is a
minimum, and it is achieved at some yα(x) ∈ Kα. The definition of ζα(x) and Claim
1 imply that

|ζα(x)||yα(x)− x| = |yα(x)− x|2
α2

≤ 2ωKα

(
α
√

2β(K)
)
.(4.47)

Using again the fact that yα(x) ∈ Kα,

|f(x, d)− f(yα(x), d)| ≤ AKα
|x− yα(x)|.

Combining the last inequality with (4.47) we obtain

|ζα(x)||f(x, d)− f(yα(x), d)| ≤ 2AKαωKα

(
α
√
2β(K)

)
.(4.48)

Now, by Claim 2, ζα(x) ∈ ∂PV (yα(x)). Hence,

ζα(x) · f(yα(x), d) ≤ Θ(yα(x), d)

≤ Θ(x, d) + πKα(|x− yα(x)|)
≤ Θ(x, d) + πKα

(
α
√

2β(K)
)

≤ Θ(x, d) +mK .
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1916 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

So, by the last inequality, (4.48), and the choice of α, we have

ζα(x) · f(x, d) = ζα(x) · f(yα(x), d) + ζα(x) · (f(x, d)− f(yα(x), d))

≤ Θ(x, d) +mK +mK .(4.49)

Next, we show that ∂PVα(x) ⊆ {ζα} for all x ∈ K. Pick any ζ ∈ ∂PVα(x). By
definition of the proximal subgradient, the inequality

ζ · (y − x) ≤ Vα(y)− Vα(x) + o(|y − x|)(4.50)

holds for all y near x. Since ζα(x) is a proximal supergradient of Vα at x, we also
have

−ζα(x) · (y − x) ≤ −Vα(y) + Vα(x) + o(|y − x|).(4.51)

Adding (4.50) and (4.51), we get

(ζ − ζα(x)) · (y − x) ≤ o(|y − x|)(4.52)

for all y sufficiently close to x. Substituting y = x+h(ζ− ζα(x)) in (4.52) and letting
h tend to 0, we arrive at ζ = ζα(x).

Now we are ready to prove the main lemma of the section.
Proof of Lemma 4.19. For every x ∈ O find an rx > 0 small enough so that

B̄rx(x) ⊂ O. Then the collection of open balls {Brx(x), x ∈ O} forms an open cover-
ing of O. By paracompactness of O we can find a locally finite refinement {Bi, i ∈ N}
of {Brx(x), x ∈ O} (cf. [6, Lemma 4.1]). Moreover, since ∪x∈OBrx = O, we also have
∪iBi = O. Let {ϕi, i ∈ N} be a partition of unity, subordinate to {Bi}. For each
index i, let

Ji = {j ∈ N : Bi ∩Bj �= ∅} .
Notice that Ji is finite for all i, because of local finiteness of the covering {Bi}. For
every i ∈ N define

Mi := sup |∇ϕi(x)||f(x, d)|,
where the supremum is taken over all x ∈ ∪j∈JiB̄j and all d ∈ Ω; and

Ni = max
j∈Ji

card(Jj),

that is, Ni denotes the maximum cardinality of Jj for j such that Bj intersects
Bi. Next, for each compact K = B̄i, i ∈ N, choose an αi as in the formulation of
Lemma 4.20, satisfying the following two additional conditions:

Ni ωKαi

(
αi

√
2β(B̄i)

)
Mi <

1

2
inf
x∈B̄i

Υ2(x)(4.53)

and

ωKαi

(
αi

√
2β(B̄i)

)
<

1

2
inf
x∈B̄i

Υ1(x)(4.54)

(where Kαi
denotes B

αi

√
2β(B̄i)

(B̄i)).
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INPUT-OUTPUT-TO-STATE STABILITY 1917

Next, for each i ∈ N, define Vαi on B̄i as in (4.46) (this can be done, because, by
the choice of αi, Kαi ⊆ O). Since Vαi is locally Lipschitz, it is differentiable almost
everywhere by Rademacher’s theorem. Lemma 4.20 implies that for almost all x ∈ B̄i

and all d ∈ Ω

LfdVαi(x) ≤ Θ(x, d) + Υ2(x)/2.

Define

Ṽ :=
+∞∑
i=1

Vαiϕi.

Strictly speaking, this does not make sense, because Vαi is not defined outside B̄i,
but that does not matter because ϕi vanishes outside Bi anyway.

Since each Vαi(x) ≤ V (x) for all x ∈ Bi and ϕi’s add up to 1, the definition of Ṽ

shows that Ṽ (x) ≤ V (x) for all x ∈ O. It is also clear from the definition of Ṽ that

Ṽ is locally Lipschitz on O.
We claim that for almost all x ∈ O and all d ∈ Ω the following hold:
1. 0 ≤ V (x)− Ṽ (x) ≤ Υ1(x);

2. ∇Ṽ (x) · f(x, d) ≤ Θ(x, d) + Υ2(x).
Take any x ∈ O and find i ∈ N such that x ∈ Bi. Define also Jx := {j ∈ N : x ∈ Bj}.
Note that Jx ⊆ Ji and that Ṽ (x) :=

∑
j∈Jx

Vαj
(x)ϕj(x). Then Claim 3 and the

choice of αj (condition (4.54)) imply

V (x)− Vαj (x) ≤ ωKαj

(
αj

√
2β(B̄j)

)
≤ Υ1(x)/2

for all j ∈ Jx. Thus,

V (x)− Ṽ (x) = V (x)−
+∞∑
j=1

Vαjϕj

= V (x)−
∑
j∈Ji

Vαj
ϕj

≤ V (x)− min
j∈Jx

{
Vαj (x)

}∑
j∈Jx

ϕj(x)


= V (x)− min

j∈Jx

{
Vαj

(x)
}

≤ Υ1(x)

2
,

proving the first statement.
To prove the second statement, write

Lfd Ṽ (x) =
∑
j∈Jx

LfdVαj
(x)ϕj(x) +

∑
j∈Jx

Vαj
(x)Lfdϕj(x)

=
∑
j∈Jx

LfdVαj (x)ϕj(x) +
∑
j∈Jx

Vαj (x)Lfdϕj(x)− V (x)
∑
j∈Jx

Lfdϕj(x)(4.55)

≤ max
j∈Jx

LfdVαj
(x)
∑
j∈Jx

ϕj(x) +
∑
j∈Jx

(
Vαj

(x)− V (x)
)
Lfdϕj(x)
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1918 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

≤ Θ(x, d) + Υ2(x)/2 +
∑
j∈Ji

∣∣Vαj (x)− V (x)
∣∣ |Lfdϕj(x)|

≤ Θ(x, d) + Υ2(x)/2 +
∑
j∈Ji

MjωKαj

(
αj

√
2β(B̄j)

)
(4.56)

≤ Θ(x, d) + Υ2(x)/2 +
∑
j∈Ji

Υ2(x)

2Nj
(4.57)

≤ Θ(x, d) + Υ2(x)/2 + Υ2(x)/2(4.58)

≤ Θ(x, d) + Υ2(x),

where the equality (4.55) follows from the fact that
∑

j∈Jx
Lfdϕj(x) = 0, inequal-

ity (4.56) follows from Lemma 4.20 and Claim 3; inequality (4.57) follows from the
choice of αi (condition (4.53)); and (4.58) is implied by the fact that

cardJi ≤ Nj ∀j ∈ Ji.

This completes the proof of the lemma.
The lemma we have just proved will provide the “continuous ⇒ locally Lipschitz

away from zero” step in the smoothing process. To obtain a smooth Lyapunov func-
tion, we will use the following simple smoothing result. The proof is given, for the
special case when α does not depend on d, in [25], but the general case (α depends
on d) is proved in exactly the same manner, so we omit the proof here.

Lemma 4.21. Let O be an open subset of Rn, and let Ω be a compact subset of
Rl, and assume the following as given:

• a locally Lipschitz function Φ : O → R;
• a continuous map f : Rn × Ω → Rn, (x, d) %→ f(x, d) which is locally
Lipschitz on x uniformly on d;

• a continuous function α : O × Ω→ R and continuous functions µ, ν : O →
R>0

such that for each d ∈ Ω,

LfdΦ(ξ) ≤ α(ξ, d) almost everywhere ξ ∈ O ,(4.59)

where fd is the vector field defined by fd = f(·, d) (recall that ∇Φ is defined almost
everywhere, since Φ is locally Lipschitz by Rademacher’s theorem). Then there exists
a smooth function Ψ : O → R such that

|Φ(ξ)−Ψ(ξ)| < µ(ξ) ∀ ξ ∈ O
and for each d ∈ Ω,

LfdΨ(ξ) ≤ α(ξ, d) + ν(ξ) ∀ ξ ∈ O .

The next result immediately follows by Lemma 4.21.
Corollary 4.22. Under the assumptions of Lemma 4.19 there also exists a

smooth function V̂ on O, satisfying inequalities∣∣∣V (x)− V̂ (x)
∣∣∣ ≤ Υ1(x) ∀x ∈ O(4.60)

and

Lfd V̂ (x) ≤ Θ(x, d) + Υ2(x) ∀d ∈ Ω, ∀x ∈ O.(4.61)
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Proof. Suppose that O, V , Υ1, Υ2 are given and the assumptions of Lemma 4.19
hold. Replacing Υ1 by Υ1/2 and Υ2 by Υ2/2, and applying Lemma 4.19, we can

find a locally Lipschitz function Ṽ , defined on O and satisfying (4.41) and (4.61) with
Υ1/2 and Υ2/2 instead of Υ1 and Υ2. Next, Lemma 4.21, applied with the same O
and with Φ := Ṽ , α := Θ + Υ2/2, µ := Υ1/2, and ν := Υ2/4, furnishes a smooth
function V̂ := Ψ as needed.

In section 4.3 we have constructed a function V0, satisfying inequalities (4.33) on
E1 and (4.35) along all trajectories of Σ, contained in E1. Therefore, by Lemma 4.18,
the proximal inequality (4.39) holds for V0 at any interior point of E1. Then Corol-
lary 4.22, applied with O := int E1, Υ1(·) := α(|·|)/2, Υ2(·) := Ξ(|·|)/2, Θ(x, d) :=
Ξ(|x|), provides a smooth function

V1 : int E1 → R>0; V1 := V̂0,

satisfying the following two conditions for all ξ ∈ int E1:
α(|ξ|)/2 ≤ V1(ξ) ≤ ᾱ(|ξ|) + α(|ξ|)/2

(we will replace α(|·|)/2 by α(·) and ᾱ(|·|) + α(|·|)/2 by ᾱ(|·|) from now on to avoid
cluttering the notation),

LfdV1(ξ) ≤ −Ξ1(|ξ|) ∀d ∈ Ω,(4.62)

where Ξ1(·) ≡ Ξ(·)/2.
4.6. Extending to the rest of X and smoothing at the origin. To con-

struct a UOSS-Lyapunov-like function defined on the whole X, we must “patch” V1

with some smooth, proper, and positive definite function such that the dissipation
inequality still holds.

Lemma 4.23. Suppose Σ is a system of type (2.14), and ρ is a function of class
K∞. Define E1 := {x ∈ X : |x| > 2ρ(|h(x)|)} and suppose that V1 : E1 → R≥0 is a
smooth function satisfying, with some suitable K∞ functions, the inequality

α(|ξ|) ≤ V1(ξ) ≤ ᾱ(|ξ|)(4.63)

and inequality (4.62) on E1. Then there exist a Lyapunov-like function V2 for Σ,
smooth away from the origin, and a class K∞ function Φ, such that

V2(x) = Φ ◦ V1(x) ∀ x such that |x| > 3ρ(|h(x)|),
and the following dissipation inequality holds with some α̌3 ∈ K∞, γ̌ ∈ K:

∇V2(ξ) · f(ξ, d) ≤ −α̌3(|ξ|) + γ̌(|h(ξ)|) ∀ξ �= 0, ∀d ∈ Ω.(4.64)

Proof. Let

E2 := {ξ : |ξ| > 3ρ(|h(ξ)|)} .
Since the sets {ξ : |ξ| ≥ 3ρ(|h(ξ)|)} and {ξ : |ξ| ≤ 2ρ(|h(ξ)|)} are disjoint and closed
in the topology of X \ {0}, one can find a smooth function φ : X \ {0} → [0, 1] with
the property that

φ(ξ) =

{
1 if |ξ| ≥ 3ρ(|h(ξ)|),
0 if |ξ| ≤ 2ρ(|h(ξ)|)
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1920 M. KRICHMAN, E. D. SONTAG, AND Y. WANG

and φ is nonzero elsewhere. It is easy to see that |∇φ(x)| is bounded above by a
K-function ν2 of |x| outside the unit ball centered at 0. One can also find a smooth,
strictly increasing function ν1 : [0, 1]→ R≥0, such that ν1(0) = 0 and |∇φ(x)| ≤ 1

ν1(|x|)
for all x such that 0 < |x| ≤ 1.

Let ν3 be a K-function such that maxd∈Ω |f(ξ, d)| ≤ ν3(|ξ|). Take any smooth
function π1: [0, ᾱ(1)]→ R≥0 with π′

1(s) > 0 for all s ∈ (0, ᾱ(1)), such that

π1(ᾱ(r))

ν1(r)
< s(r),

π1(r
2)

ν1(r)
< s(r)

for some K-function s and all 0 < r ≤ 1. Let π2 be any K-function such that
π2(r) ≤ π′

1(r) for all nonnegative r ≤ 1.

Let Φ(r) =
∫ r
0
π2(r1)dr1. Then Φ(r) ≤ π1(r) for all r ≤ 1, so that Φ(ᾱ(r))

ν1(r)
< s(r)

and Φ(r2)
ν1(r)

< s(r) for all r ∈ (0, 1].

Now let

V2(ξ) = φ(ξ)Φ(V1(ξ)) + (1− φ(ξ))Φ(|ξ|2).(4.65)

If |ξ| > 3ρ(|h(ξ)|), then V2 ≡ Φ ◦V1 in a neighborhood of ξ, so that, for all d ∈ Ω,

∇V2(ξ) · f(ξ, d) = Φ′(V1(ξ))[∇V1(ξ) · f(ξ, d)] ≤ −π2(α(|ξ|))Ξ1(|ξ|).(4.66)

On the other hand, if |ξ| ≤ 3ρ(|h(ξ)|), then
∇V2(ξ) · f(ξ, d) = [∇φ(ξ) · f(ξ, d)] Φ(V1(ξ)) + φ(ξ) Φ′(V1(ξ)) [∇V1(ξ) · f(ξ, d)]

−[∇φ(ξ) · f(ξ, d)] Φ(|ξ|2) + (1− φ(ξ)) 2Φ′(|ξ|2) [ξ · f(ξ, d)]
≤ |∇φ(ξ)| |f(ξ, d)| Φ(V1(ξ)) + |∇φ(ξ)| |f(ξ, d)| Φ(|ξ|2)

+ 2 |(1− φ(ξ))| Φ′(|ξ|2) |ξ| |f(ξ, d)|
≤ |∇φ(ξ)| |f(ξ, d)| Φ(ᾱ(|ξ|)) + |∇φ(ξ)| |f(ξ, d)| Φ(|ξ|2)

+2Φ′(|ξ|2) |ξ| |f(ξ, d)| ,
where the first inequality follows from the fact that φ(ξ) Φ′(V1(ξ)) [∇V1(ξ)·f(ξ, d)] ≤ 0.
Next, the definition of Φ provides the following bounds for the three terms in the
right-hand side of the last inequality:

Φ(ᾱ(|ξ|)) |∇φ(ξ)| |f(ξ, d)| ≤ max {s(|ξ|),Φ(ᾱ(|ξ|))ν2(|ξ|)} ν3(|ξ|),

2Φ′(|ξ|2)[|ξ| |f(ξ, d)|] ≤ 2π2(|ξ|2) |ξ| ν3(|ξ|),

Φ(|ξ|2) |∇φ(ξ)| |f(ξ, d)| ≤ max
{
s(|ξ|),Φ(|ξ|2)ν2(|ξ|)

}
ν3(|ξ|).

Define α̌3, γ̌, α̌1, and α̌2 by

α̌3(r) := π2(α(r))Ξ1(r),

γ̌(r) := 2π2((3ρ(r))
2)3ρ(r)ν3(3ρ(r))

+max
{
s(3ρ(r)),Φ((3ρ(r))2)ν2(3ρ(r))

}
ν3(3ρ(r)) + α̌3(3ρ(r)),
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α̌1(r) = min
{
Φ(r2),Φ ◦ α(r)} ,

and

α̌2(r) = max
{
Φ(r2),Φ ◦ ᾱ(r)} .

Then inequalities

α̌1(|x|) ≤ V2(x) ≤ α̌2(|x|) ∀x �= 0(4.67)

and (4.64) hold for V2. Define V2(0) := 0. Then inequality (2.3) holds for V2 with
α1 := α̌1, α2 := α̌2 on X, and in particular implies that V2 is continuous as 0. Then,
V2 is a UOSS-Lyapunov-like function for Σ, smooth away from the origin.

Recall that V2(ξ) ≡ Φ(V1(ξ)) for all ξ with |ξ| > 3ρ(|h(ξ)|). Therefore inequal-
ity (4.62) implies that

∇V2 · f(ξ, d) ≤ −α3(|ξ|) ∀ |ξ| > 3ρ(|h(ξ)|), ∀d ∈ Ω.(4.68)

Proposition 4.24. Suppose that a system Σ of type (2.14) admits a continu-
ous UOSS-Lyapunov-like function V2, smooth away from 0 and satisfying inequali-
ties (4.67), (4.64), and (4.68). Then Σ admits a UOSS-Lyapunov function.

The basic idea used to obtain a Lyapunov function, smooth on the whole X, is
composing V2 with some appropriately chosen K∞-function β. This technique was
previously utilized in [25]. We will need the following generalization of Lemma 4.3
from [25], where this function β is constructed. In our setting we also need the
derivative of β to be of class K∞, which was not required in [25]. The proof is only a
slight modification of the proof of the mentioned lemma.

Lemma 4.25. Assume that V : Rn −→ R≥0 is C0, positive definite, and the
restriction V |Rn\{0} is C∞.

Then, given any m ∈ N there exists a K∞-function βm, smooth on (0,∞), satis-
fying the following conditions:

• β
(i)
m (t)→0 as t→0+ for each i = 0, 1, . . .,

• β
(i)
m ∈ K∞ ∀i ≤ m,

• Wm:=β ◦ V is a C∞ function on all of Rn.
We now return to the proof of Proposition 4.24.
Proof. Take the function V2, and apply Lemma 4.25 to get a function β1, with

derivative in class K, such that

V3 := β1 ◦ V2

is smooth onX. Let α1(·) := β1(α̌1(·)/2), α2(·) := β1(α̌2(·)+α̌1(·)/2). Then αi ∈ K∞
and

α1(|x|) ≤ V3(x) ≤ α2(|x|).

Furthermore, for any x ∈ X \ {0} we have

LfdV3(x) = β′
1(V2(x)) [LfdV2] (x)

≤ β′
1(V2(x)) (−α3(|x|)/2 + γ̌(|h(x)|))

≤ −β′
1(α̌1(|x|)/2)α̌3(|x|)/2 + β′

1(α̌2(|x|) + α̌1(|x|)/2)γ̌(|h(x)|).
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Recall that, because of (4.68), the γ̌ term in the last estimate can be dropped if
|x| > 3ρ(|h(x)|), so that we can write

LfdV3(x) ≤ −β′
1(α̌1(|x|)/2)α̌3(|x|)/2+β′

1(α̌2(3ρ(|h(x)|))+ α̌1(3ρ(|h(x)|))/2)γ̌(|h(x)|).

Thus V3 is a smooth UOSS-Lyapunov function, satisfying the dissipation inequal-
ity with

α3(·) := β′
1(α̌1(·)/2) α̌3(·)/2

and

γ(·) := β′
1(α̌2(3ρ(·)) + α̌1(3ρ(·)))/2) γ̌(·).

This completes the construction.

5. Norm-observers. As conjectured in [45] and proved in this presentation,
every IOSS system admits an IOSS-Lyapunov function. One of the main motivations
for the notion of IOSS, and for deriving Lyapunov characterizations, is the fact that
a Lyapunov function enables us to get insights into the behavior of control systems.
In particular, it may be useful to have an estimate of how far the system is from
the equilibrium at any given time, and in some situations this “norm-estimate” is
sufficient for the design of a stabilizer. We next provide a construction for a norm-
observer in the most general case—for systems of type (2.1), assuming that we have
a smooth UIOSS-Lyapunov function at our disposal.

5.1. Exponential decay Lyapunov functions.
Definition 5.1. Let Σ be a system of type (2.1). A C1-function V : X → R≥0

is an exponential decay UIOSS-Lyapunov function for Σ if it satisfies (2.3) with some
α1 and α2, and the following version of inequality (2.4):

∇V (x) · f(x, u, w) ≤ −V (x) + σ1(|u|) + σ2(|h(x)|) ∀x ∈ X, u ∈ U, w ∈ Γ(5.1)

holds with some σ1 and σ2 ∈ K.
Lemma 5.2. Suppose V is a UIOSS-Lyapunov function for a system Σ of type (2.1),

satisfying inequality (2.4). Then there exists a K∞-function ρ such that a function
W := ρ ◦ V is an exponential decay UIOSS-Lyapunov function for Σ.

Proof. Assume that system (2.1) admits a UIOSS-Lyapunov function with αi

(i = 1, 2) as in (2.3) and with α, σ1, σ2 as in (2.4). Replacing α by α ◦ α−1
2 , we have

d

dt
V (x(t, ξ,u)) ≤ −α(V (x(t, ξ,u))) + σ1(|u(t)|) + σ2(|y(t, ξ,u)|)(5.2)

for almost all t ∈ [0, tmax(ξ, u)). According to Lemma 12 in [32], there exists some
function ρ ∈ K∞ which can be extended as a C1-function to a neighborhood of

[0, ∞) such that ρ′(r)α(r)
2 ≥ ρ(r) for all r ≥ 0. Consider the function W (ξ) :=

ρ(V (ξ)). Observe that W is again proper and positive definite. Along any trajectory
x(t) := x(t, ξ,u) (with y(t) := y(t, ξ,u)), at any point where (2.4) holds, one has that
d
dtW (x(t)) = ρ′(V (x(t))) d

dtV (x(t)) is upper bounded by

−ρ′(V (x(t)))
α(V (x(t)))

2
+ ρ′(V (x(t)))

(
−α(V (x(t)))

2
+ σ1(|u(t)|) + σ2(|y(t)|)

)
,
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INPUT-OUTPUT-TO-STATE STABILITY 1923

which in turn is bounded by

−ρ(V (x(t)) + ρ′(V (x(t)))

(
−α(V (x(t)))

2
+ σ1(|u(t)|) + σ2(|y(t)|)

)
.(5.3)

Observe that when V (x(t)) ≥ α−1(2σ1(|u(t)|) + 2σ2(|y(t)|)) it holds that

ρ′(V (x(t)))

(
−α(V (x(t)))

2
+ σ1(|u(t)|) + σ2(|y(t)|)

)
≤ 0,(5.4)

while if instead V (x(t)) ≤ α−1(2σ1(|u(t)|) + 2σ2(|y(t)|)), then
ρ′(V (x(t))) (σ1(|u(t)|) + σ2(|y(t)|)) ≤ σ̂1(|u(t)|) + σ̂2(|y(t)|)(5.5)

for some K∞-functions σ̂1 and σ̂2 (using here the fact that ρ′(s) is a continuous func-
tion). Combining (5.4) and (5.5), one concludes from the estimate (5.3) on d

dtW (x(t))
that

d

dt
W (x(t)) ≤ −W (x(t)) + σ̂1(|u(t)|) + σ̂2(|y(t)|)

for almost all t ∈ [0, tmax).

5.2. Construction of a norm-observer.
Proposition 5.3. Suppose that a system Σ admits an exponential decay UIOSS-

Lyapunov function V . Then the pair (Σn.o, k), where

Σn.o : ṗ = −p+ σ1(|u|) + σ2(|y|),(5.6)

with σ1 and σ2 as in (5.1) and k(·, ·) defined by k(s, r) = s, is a norm-estimator for
Σ.

Proof. Assume without loss of generality that the function α2 in the definition of
V satisfies r ≤ α2(r) for all nonnegative r.

The system (5.6) is ISS with respect to u and y, since it can be seen as an asymp-
totically stable linear system driven by the input (σ1(|u|), σ2(|y|)), so, inequality (2.7)
obviously holds. Pick any initial states ξ, ζ of Σ and (5.6), respectively, any control u,
and any disturbance w. Consider the resulting trajectory (x(t), p(t)) of the composite
system. Property (5.1) implies that

d

dt
(V (x(t))− p(t)) ≤ −(V (x(t))− p(t))(5.7)

for almost all t ∈ [0, tmax(ξ,u,w)). Thus

V (x(t)) ≤ p(t) + e−t(V (ξ)− ζ) ≤ |p(t)|+ 2e−tα2(|ξ|+ |ζ|)
(using r ≤ α2(r)). This can be written as (2.8) with ρ := α−1

1 (2(·)) and β(s, t) :=
α−1

1 (4e−tα2(s)).
Implication 2 ⇒ 3 of Theorem 2.4 now follows from Lemma 5.2 and Proposi-

tion 5.3.
We now turn to the proof of implication 3 ⇒ 1 of Theorem 2.4.
Proof. Assume that (Σn.o, k) is some norm-estimator for Σ. Choose any initial

state ξ for Σ, any input u, disturbance w, and the special initial state ζ = 0 for Σn.o.
Then inequality (2.7) becomes

|k(p(t, 0,u,yξ,u,w), y(t, ξ,u,w))| ≤ γ̂1

(∥∥u|[0,t]∥∥)+ γ̂2

(∥∥yξ,u,w|[0,t]∥∥)(5.8)
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for all t ∈ [0, tmax), with some class-K functions γ̂1 and γ̂2 (the KL-term vanishes
because ζ = 0). Then, combining (5.8) with the estimate (2.8) we get

|x(t, ξ,u,w)| ≤ β(|ξ| , t) + ρ(|k(p(t, 0,u,yξ,u,w), y(t, ξ,u,w))|)
≤ max

{
2β(|ξ| , t), 4ρ(γ̂1(

∥∥u|[0,t]∥∥)), 4ρ(γ̂1(
∥∥yξ,u,w|[0,t]∥∥))} .

This proves the UIOSS property for Σ.

6. Pointers for future research.

6.1. Integral variants of UIOSS. The UIOSS property gives uniform esti-
mates of the states in terms of the uniform bounds on outputs and essential bounds
on controls. A natural question to ask is what property will result if instead of the
uniform (or essential) bounds we use other “finite energy” concepts, such as, for exam-
ple, Lγ-type norms (defined by

∥∥g|[σ,τ ]

∥∥
γ
=
∫ τ
σ
γ(|g(t)|)dt) of inputs and/or outputs,

where the “γ’s” for inputs and outputs are some appropriately chosen functions of
class K∞, which depend on the system. For systems without controls, the iiUOSS
property provides a “finite energy outputs ⇒ finite energy state” characterization,
which is “almost” equivalent to UOSS (see Theorem 2.16). Searching for the uni-
form estimate of the states in terms of Lγ-norms of inputs and outputs leads to the
following definition.

Definition 6.1. A system of type (2.1) is uniformly integral input-output-to-
state stable (UiIOSS) if there exist functions αx ∈ K∞, β ∈ KL, γ1, and γ2 ∈ K such
that

αx (|x(t, ξ,w,u)|) ≤ β(|ξ| , t) +
∫ t

0

(γ1(|u(s)|) + γ2 (|y(s, ξ,w,u)|)) ds(6.1)

for all ξ ∈ X, all w and u, and all t ∈ [0, tmax(ξ,u,w)).
This general definition may be adjusted in obvious manners to all the particular

cases of system (2.1).
Remark 6.1. It is easy to see that estimate (6.1) is equivalent to the following

estimate (with different bounding functions, of course):

|x(t, ξ,w,u)| ≤ max

{
β(|ξ| , t), γ

(∫ t

0

(γ1(|u(s)|))ds
)
,

γ

(∫ t

0

γ2(|y(s, ξ,w,u)|)ds
)}

,(6.2)

In the particular case of systems without outputs and disturbances, a Lyapunov
characterization of the UiIOSS property, reduced to integral input-to-state stability
(iISS), was obtained in [4]. By repeating the proof of the implication 1 ⇒ 2 of
Theorem 1 in [4] one can show that a system of type (2.1) will be UiIOSS if it
admits a smooth, proper Lyapunov function V : X→ R≥0, satisfying inequality (2.4)
with some σ1 and σ2 of class K, and a positive definite function α. Whether or not
this sufficient condition is also necessary for UiIOSS is not known. Notice, however,
that this condition is weaker than the corresponding property for UIOSS, as the
dissipation condition for a UIOSS-Lyapunov function requires α to be of class K∞.
Thus, any UIOSS system will also be UiIOSS. The converse implication is not true,
as demonstrated in the following example.

Example 6.2. The construction is similar to the one used in Remark 3.1, so, we
recall that φε(·) denotes a C∞-bump function as in (3.12), and 1A(·) is the indicator
function of a set A.
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Choose εf = 0.1 and any εh < (1− εf )e
−1, and consider the autonomous system

Σ1 : ẋ = f(x); y = h(x)

with

f1(x) = x
[
1(−∞,−1](x)(1− φεf (x+ 1)) + 1[1,+∞)(x)(1− φεf (x− 1))

]
−x
[
1(−1,1)(x)(1− φεf (x+ 1))(1− φεf (x− 1))

]
,

and

h1(x) = 1− φεh(x)

evolving in X = R. We claim that Σ1 is iOSS but not OSS.
Consider also an autonomous system Σ2 on R with

f2(x) = x; h2(x) ≡ 1.(6.3)

This system cannot serve as a counterexample, because h2(0) �= 0. However, its
behavior away from 0 is identical to that of Σ1, so that considering it will simplify
the presentation.

Let xi(t, ξ), i = 1, 2, denote the solutions of Σi, starting at ξ, and let yi(t, ξ)
denote the corresponding output trajectories. It is easy to see that both Σ1 and Σ2

are forward complete.
Since the dynamics of Σ1 and Σ2 are odd functions and outputs are even (but only

the magnitudes of outputs are involved in the estimates), we need only to consider
trajectories starting from the positive initial states, as the same estimates will work
for trajectories contained in the other half-line.

Since f1(x) < f2(x) for all x ∈ (0, 1+εf ) and f1(x) = f2(x) for x ≥ 1+εf , we have,
for all t > 0, x1(t, ξ) < x2(t, ξ) for any ξ ∈ (0, 1 + εf ), and x1(t, ξ) = x2(t, ξ) = ξet

if |ξ| ≥ 1 + εf . In particular, this shows that Σ1 is not OSS, because the trajectory
diverges to +∞, but h1(ξe

t) is bounded.
However, observe that when t ≤ |ξ|,

|x2(t, ξ)| ≤ |ξ| e|ξ| ≤ e2|ξ| |ξ| e− t
1+|ξ| ,

whereas when t > |ξ|, we have

|x2(t, ξ)| ≤ tet.

Letting

β(r, t) := re2r− t
1+r ; γ2 := Id; γ(t) := tet,

and noticing that ∫ t

0

γ2(|y2(s, ξ)|)ds = t,

we conclude x2(t, ξ) satisfies estimate (6.2).
Now observe that
• If ξ ≥ 1, then 1 ≤ x1(t, ξ) ≤ x2(t, ξ) for all t ≥ 0, so that y1(t, ξ) = y2(t, ξ) = 1

and x1(t, ξ) satisfies (6.2).
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• If ξ ∈ [0, 1− εf ], then

x1(t, ξ) = ξe−t ≤ β(|ξ| , t).
• Finally, if ξ ∈ (1− εf , 1), then

– for all t ≥ 0 it holds that |x1(t, ξ)| < 1;
– for all t ∈ [0, 1] it holds that |x1(t, ξ)| > (1− εf )e

−1 > εh, so that
y1(t, ξ) = 1 = y2(t, ξ).

Therefore x1(t, ξ) satisfies (6.2) for all t ≤ 1 and∫ t

0

γ2(|y2(s, ξ)|)ds ≥ 1 ≥ x1(t, ξ) ∀ t ≥ 1.

This shows that x1(t, ξ) satisfies (6.2) for all ξ and t ≥ 0, thus, Σ1 is, indeed,
iOSS.

It could also be of interest to consider yet another property, providing a uniform
estimate for the state in terms of the uniform norm of the output and Lγ-norm of the
input.

Definition 6.2. A system of type (2.1) satisfies the U(iI)OSS property if there
exist functions αx ∈ K∞, β ∈ KL, γ1, and γ2 ∈ K such that

αx (|x(t, ξ,w,u)|) ≤ β(|ξ| , t) +
∫ t

0

γ1(|u(s)|)ds+ γ2

(∥∥yξ,w,u|[0,t]
∥∥)(6.4)

for all ξ ∈ X, all w and u, and all t ∈ [0, tmax(ξ,u,w)).
Deriving a Lyapunov characterization for this property may be a challenge. It

would be logical to expect that a good candidate for a U(iI)OSS-Lyapunov function
can be a proper function V : X→ R≥0, satisfying inequality (2.4) with α being either
positive definite or class K∞. However, we can see right away that neither of these two
possibilities is the right guess. Indeed, notice that both OSS and iISS are particular
cases of the U(iI)OSS property. If a U(iI)OSS-Lyapunov function would satisfy (2.4)
with α of class K∞ (as required by OSS), it would follow that every disturbance-free
U(iI)OSS system without outputs is ISS, which is not true (see [4] for an example
of an iISS system, which is not ISS). On the other hand, if a U(iI)OSS-Lyapunov
function satisfied (2.4) with α positive definite (as required by iISS), it would imply
that having such a dissipation function is sufficient for OSS, which is not so, because
this would mean that every iOSS system is OSS.

6.2. Incremental IOSS. As mentioned in the introduction, the detectability
property for nonlinear systems is not equivalent to zero-detectability. In searching for
a correct notion for nonlinear detectability one could think of the following general-
ization of UIOSS.

Definition 6.3. A system (2.1) is incrementally uniformly input-output to state
stable (∆UIOSS) if there exists some β ∈ KL and γ1, γ2 ∈ K such that, for every two
initial states ξ1 and ξ2, any two controls u1 and u2, and any disturbance w,

|x(t, ξ1,u1,w)− x(t, ξ2, u2,w)| ≤ max
{
β(|ξ1 − ξ2| , t),

γ1

(∥∥(u1 − u2)|[0,t]
∥∥) , γ2

(∥∥(yξ1,u1,w − yξ2,u2,w)|[0,t]
∥∥) }(6.5)

for all t in the common domain of definition.
Deriving a right Lyapunov characterization for this property may lead to a con-

struction of a full-order observer.
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