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Characterizations of detectability notions in terms of discontinuous dissipation functions

MIKHAIL KRICHMAN{* and EDUARDO D. SONTAG{

We consider a new Lyapunov-type characterization of detectability for non-linear systems without controls, in terms of
lower-semicontinuous (not necessarily smooth, or even continuous) dissipation functions, and prove its equivalence to
the GASMO (global asymptotic stability modulo outputs) and UOSS (uniform output-to-state stability) properties
studied in previous work. The result is then extended to provide a construction of a discontinuous dissipation function
characterization of the IOSS (input-to-state stability) property for systems with controls. This paper complements a
recent result on smooth Lyapunov characterizations of IOSS. The utility of non±smooth Lyapunov characterizations is
illustrated by application to a well-known transistor network example.

1. Introduction

Stabilizing a control system is one of the most
important goals of control theory. If we are lucky
enough so that at each instant of time all the relevant
information (`the full state of the system’) is available,
the problem reduces to designing a static or state
feedback law. In practical applications a perfect
measurement of the state is not available, and it is
desirable to come up with a control law based on an
`output’Ða smooth function of the state, which may
or may not give adequate information on how far the
true state is from a target set. Obviously, a feedback
based on these output measurements will not perform
very well in the parts of the state space where the
measurements are small whereas the states are never-
theless far from the target. Thus, it is desired that the
system be itself stable in the `unobservable’ parts of
the state space. In other words, when the distance
from the state to the target is large without the output
seeing it, the trajectory must tend to the target by itself.
This is the intuitive idea behind the non-linear detect-
ability notion of GASMO (global asymptotic stability
modulo outputs). Before introducing this property, it
will be helpful to consider a few important particular
cases.

Suppose we are given an autonomous system on
ˆ n with outputs in ˆ m

_xx ˆ f …x†; y ˆ h…x†

with an equilibrium at x ˆ 0. If the measurement does
not provide any information about the state (i.e.
h…¢† ² 0), then the GASMO property would simply
mean global asymptotic stability, that is, jx…t†j µ

 …jx…0†j; t† for some function  of class KL.{ This case
justi®es the use of the word `stability’ in the de®nition of
GASMO. To convince ourselves that GASMO is not
quite a `stability’ notion, we can consider, on the other
extreme, the case when the output provides full informa-
tion on the state (for example, h…x† ˆ x). Then, accord-
ing to our intuitive de®nition, the system will be
GASMO no matter what the dynamics are. In between
the two extremes, in a most usual situation, the output
provides satisfactory information in one part of the state
space (say, for example, on fx : jxj < »…jxj†g, for some

» 2 K1) and unsatisfactory information in another part
fx: jxj ¶ »…jxj†g.

To get a better feel about what the right de®nition of
GASMO, and more generally of detectability, should be
for the non±linear systems without controls and what
should be the property corresponding to GASMO in
the most general case, we will ®rst see what happens
when the system of interest is linear (and with inputs).

A linear, time-invariant system Slin with outputs is
one for which f and h are linear, that is

_xx ˆ Ax ‡ Bu

y ˆ Cx

)
…1†

where A 2 n£n
, B 2 n£m

and C 2 p£n
.

A well-known property of linear systems with out-
puts, consistent with our intuitive de®nition of
GASMO, is the notion of zero-detectability , requiring
that any trajectory, producing zero output under zero
control, tends to zero. It is a well known fact (see, for
example, Sontag 1998 b) that if a system (1) is detect-
able, then there exists a matrix L 2 n£p

, such that the
matrix A ‡ LC is Hurwitz. Then, rewriting (1) in form
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 : ¶

0
£ ¶0

! ¶0 is said to be of class KL if for each
®xed t ¶ 0,  …¢; t† is of class K, and for each ®xed s ¶ 0,
 …s; t† decreases to 0 as t ! 1.
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_xx ˆ …A ‡ LC†x ‡ Bu ¡ Ly

we can write down the solution

x…t† ˆ et…A‡LC†
x…0†

‡
…

t

0
es…A‡LC†‰Bu…t ¡ s† ¡ Ly…t ¡ s†Š ds …2†

By routine manipulations it is possible to ®nd positive
constants K and ¯ such that for any initial state x…0† and
control u we have a bound

jx…t†j µ K e
¡¯tjx…0†j ‡ K

kBk
¯

kuj‰0;tŠk ‡ K
kLk

¯
kyj‰0;tŠk

(see Krichman et al. (2001) for the thorough treatment
of the example). In other words, for a zero-detectable
linear system, the magnitude of the state is bounded by a
decaying `overshoot’ term accounting for the magnitude
of the initial state, and by the e� ects (`gains’) of inputs
and outputs. One legitimate way of extending the notion
of zero-detectability to non±linear systems lies in taking
the above property, appropriately generalized as below,
as a de®nition of zero-detectability.

Namely, replacing the exponential decay term
K e

¡¯tjx…0†j by an arbitrary function  …jx…0†j; t† of
class KL, and replacing K…kBk=¯†kuj‰0;tŠk and
K…kLk=¯†kyj‰0;tŠk by the arbitrary K-gains ®u

…kuj‰0;tŠk†
and ®y

…kyj‰0;tŠk†, we obtain the following bound

jx…t†j µ  …jx…0†j; t† ‡ ®u
…kuj‰0;tŠk† ‡ ®y

…kyj‰0;tŠk† …3†

This property is called IOSS (input±output to state sta-
bility) or just OSS when no inputs are present, and ori-
ginates from the notion of ISS (input-to-state stability).

The ISS property was ®rst introduced in the late
1980s by one of the authors and has proved to be a
useful paradigm for characterizing stability notions of
non-linear systems. Various applications and equivalent
characterizations of this property have been extensively
discussed in the literature since then. In particular, much
attention has been given to the Lyapunov-type char-
acterizations of the ISS-related properties (Lyapunov
characterization of ISS has been established in Sontag
and Wang 1995). Lyapunov techniques are well known
to provide a powerful tool for gaining insights into the
behaviour of a system. For example, smooth Lyapunov
functions can be used in control design (see for
example KrsticÂ et al. 1995); but sometimes ®nding a
non-smooth, or even a discontinous function satisfying
a Lyapunov-type dissipation inequality can be su� cient
to establish a corresponding stability-like property of a
system.

The ®rst attempt to approach the question of detect-
ability of non-linear systems from the ISS-like viewpoint
was made in Sontag and Wang (1996), where the OSS
(output-to-state stability) property

jx…t†j µ  …jx…0†j; t† ‡ ®y
…kyj‰0;tŠk† …4†

(where  and ¼y are as in (3)) was introduced for non-
linear di� erential equations with outputs and no inputs,
and the basic characterizations of this property were
obtained. In particular, it was shown (though not expli-
citly stated) that OSS implies that there exist a class K1-
function » such that any trajectory of the system, lying
entirely outside the set D :ˆ fx 2 : jxj µ »…jh…x†j†g,
will tend to the equilibrium of interest, in a uniform
manner (an estimate such as jx…t; ¹†j µ ¶…j¹j; t† holds
on such trajectories). This property was later called
GASMO. The GASMO property, in turn, was shown
to imply the existence of a lower-semicontinuous
Lyapunov-like function, satisfying the dissipation
inequality

d

dt
V…x…t†† µ ¡¬…jx…t†j† ‡ ¼2

…jh…x…t††j† …5†

thus decreasing along trajectories whenever the state is
not dominated in magnitude by the output gain
(jxj > ¬

¡1…¼2
…jh…x†j††). Besides its intrinsic value as a

notion of relative stability, the GASMO property played
a key role in the characterization of OSS.

The notion of IOSS, described by (3), is a way to
characterize a detectability property when both outputs
and inputs come into the picture. It ®rst appeared
in Sontag (1989 b) stated in input/output terms, and
in Jiang et al. (1994), called `detectability’ and `strong
unboundedness observability’ respectively there, and the
term IOSS was ®rst introduced in Sontag and Wang
(1997), where the natural Lyapunov characterization
was conjectured. This conjecture was proved
in Krichman et al. (2001), thus showing the equivalence
of all the non-linear zero-detectability notions men-
tioned above. The ®rst step of the proof was extending
the converse Lyapunov result from Sontag and Wang
(1996) to systems driven by disturbances, con®ned to a
compact set, whose trajectories satisfy the bound (5)
uniformly with respect to disturbances (hence the
name UOSSÐuniform output-to-state stabilityÐfor
the corresponding property), and also showing that the
resulting Lyapunov function may be chosen to be
smooth. Next, a small-gain argument was used to gen-
eralize this result to non-linear systems driven with both
controls and disturbances and satisfying (3) uniformly
with respect to disturbances. The latter property was
called UIOSS (uniform IOSS).

In this paper, we will explore characterizations of the
UIOSS and GASMO properties in terms of non-smooth
Lyapunov-like functions. It is well-known in di� erential
equation theory that non±di� erentiable Lyapunov func-
tions are often more natural for applications (an exam-
ple based on a result in Sandberg (1969) is provided in
the last section, see also Leonessa et al. (2001). Thus,
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su� ciency statements in the Lyapunov characterizations
can be made stronger if one introduces a weaker notion
of UIOSS-Lyapunov function. This weaker concept
does not require smoothness (or even continuity), and
it replaces the pointwise dissipation inequality as in (5)
with an integral dissipation inequality which is only
required to hold when states are large in comparison
to inputs. On the other hand, it was shown
in Krichman et al. (2001) that a UIOSS system of
type (13) will always admit a smooth UIOSS-
Lyapunov function. In that sense, the necessary part
of the result presented in this paper is weaker as stated.
However, the main di� culty associated with building a
smooth Lyapunov function as in Krichman et al. (2001)
for a system with disturbances lay in ®nding a continuous
quantity, decreasing along the trajectories of the system,
contained in an `unobservable’ subset D of the state
space. As we will discuss below, mimicking the argu-
ment from Sontag and Wang (1996) in presence of dis-
turbances will yield a Lyapunov-like function not even
continuous along the trajectories of the system, in which
case the resulting function cannot be made smooth. This
di� culty is avoided if only discontinuous dissipation
functions are of interest. However, extending this dis-
continuous quantity (a so-called GASMO-Lyapunov
function of a related control-free system, obtained
from the original one by scaling controls appropriately)
to n D requires more elaborate techniques. The main
result of the paper, Proposition 1, provides a universal
method for extending any lower-semicontinuous
GASMO-Lyapunov function to the rest of the state
space. This result may become useful in proving con-
verse Lyapunov theorems for di� erent types of systems
which may not admit continuous Lyapunov functions.

Among other references on IOSS and related
notions, one can mention for instance the detectability
studies in Lu (1995), Morse (1995) and Krener (1999),
where Lyapunov-like de®nitions are used, as well as the
recent work (Liberzon et al. 2002) on an ISS-like notion
of minimum-phase systems and asymptotic gain charac-
terizations in Angeli et al. (2001). A preliminary version
of this paper appeared in Krichman and Sontag (1998).

2. Main de®nitions and statements of results

We start by considering a class of systems not subject
to external inputs. Later, we extend to a more general
class of systems.

The systems to be considered ®rst are of the type

_xx…t† ˆ f …x…t†; d…t††; y…t† ˆ h…x…t†† …6†

where O ³ m is compact and ˆ n for some positive
integer n, f : £ O ! is locally Lipschitz in x uni-
formly on d and jointly continuous in x and d , and
f …0; d† ˆ 0 for every d 2 O. We think of measurable

functions d: I ! O as disturbances acting on the
system, and denote by MO the collection of all such
functions.

We will use the notation tmax, or more precisely
tmax

…¹; d†, for the supremum (possibly ‡1) of the
times t > 0 such that the solution x…t; ¹; d† of

_xx ˆ f …x; d†, x…0† ˆ ¹ exists, and denote y…t; ¹; d† :ˆ
h…x…t; ¹; d†† for each such t. (When ¹ and d are clear
from the context, we often just write x…t† or y…t†.) For
any measurable function z…¢†, the L1 (essential supre-
mum) norm of the restriction of z to the interval ‰t1; t2

Š is
denoted by kzj‰t1 ;t2 Šk.

De®nition 1: A system (6) is uniformly output-to-stat e
stable (UOSS) if there exist some  2 KL and ®y 2 K
such that

jx…t; ¹; d†j µ max f …j¹j; t†; ®y
…kyj‰0;tŠk†g …7†

for any disturbance d, any initial state ¹ 2 , and every
t 2 ‰0; tmax

†.

De®nition 2: A UOSS-Lyapunov-like function for
system (6) is a lower semicontinuous function

V : ! ¶0

such that the following properties hold:

(1) there exist K1-functions ¬1 and ¬2 such that

¬1
…j¹j† µ V…¹† µ ¬2

…j¹j† …8†

for all ¹ in , and

(2) there exist K1-functions ¬ and ® such that the
dissipation inequality

V…x…½; ¹; d†† ¡ V…x…¼; ¹; d††

µ
…

½

¼

…¡¬…jx…s; ¹; d†j† ‡ ®…jy…s; ¹; d†j†† ds …9†

is satis®ed for any initial state ¹ 2 , any distur-
bance d, and any ‰¼; ½ Š » ‰0; tmax

…¹; d††.

One of our results will be as follows.

Theorem 1: A system …6† is UOSS if and only if it ad-
mits a UOSS-Lyapunov-like function.

In Krichman et al. (2001), we established a smooth
version of this result, namely, we showed that a system is
UOSS if and only if there is an in®nitely di� erentiable
UOSS-Lyapunov-like function V . (For smooth V , the
integral dissipation inequality can be recast in the
equivalent in®nitesimal form rV…¹† ¢ f …¹; w† µ
¡¬…j¹j† ‡ ¼2

…jh…¹†j†.) Obviously, the necessity part of
this theorem is a corollary of the stronger result shown
in that paper, while the su� ciency part is stronger here.
It is well-known that Lyapunov functions are sometimes
easier to ®nd, and hence stability properties are easier to
verify, if smoothness (or even continuity) is not required.

884 M. Krichman and E. D. Sontag
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Thus, it is of interest to have a proof of su� ciency when
only a general lower semicontinuous V is available.

Although redundant in view of Krichman et al.
(2001), we also give a self-contained proof of necesssity.
The reason for including this proof is two-fold. First of
all, the ®rst step of the proof of existence of a merely
lower semicontinuous V , which consists of the construc-
tion of a `relative stability’ Lyapunov function, is sub-
stantially simpler than the argument (involving a relaxed
problem) needed to prove the stronger result, so it seems
worth having this simpler proof documented in the lit-
erature. Second, and more importantly, the next step in
the proof, consisting of showing that UOSS-Lyapunov-
like functions can be always obtained by extension of a
relative stability Lyapunov function (in the sense that we
make precise next) is far less trivial than in the smooth
case, and is of considerable independent interest.

Given a system (6) and any function ² of class K1,
let us denote by F …²† (or simply F , when ² is clear from
the context) the set

F …²† :ˆ fx 2 : jxj > ²…jh…x†j†g

We may think of F as the set of states that are large
compared to the current observations. The following
notion of stability, originally considered in Sontag and
Wang (1996), is a natural generalization of global
asymptotic stability of an equilibrium, to the case
when stability is needed only for the `unobservable’
motions of a system with outputs.

De®nition 3: A system of type (6) satis®es the GAS-
MO (global asymptotic stability modulo output) prop-
erty if there exist a function » of class K1 and a
function ¶ of class KL, such that, for all ¹ 2 ,
d 2 MO, and any T < tmax…¹; d†, if

x…t; ¹; d† 2 F …»†

for all 0 µ t µ T , then also the estimate

jx…t; ¹; d†j µ ¶…j¹j; t† …10†

holds for all 0 µ t µ T .
The next lemma, originally proved in Sontag and

Wang (1996) for the disturbance-free case and
in Krichman et al. (2001) for the present setting,
makes it possible to use the GASMO property as the
main tool for constructing a UOSS Lyapunov-like func-
tions. We will not repeat the proof in this paper.

Lemma 1: Any UOSS system …6† satis®es the GAS-
MO property.

De®nition 4: A GASMO-Lyapunov-like function for a
system …6† is a lower-semicontinuous function

V0 : F …²† ! ¶0

for some ² of class K1, such that the following two
properties hold:

(1) there exist class-K1 functions ¬ and ¬ such that

¬…j¹j† µ V0
…¹† µ ¬…j¹j† 8 ¹ 2 F…²† …11†

(2) there exists a class-K1 function ’ so that, along
all trajectories of …6† which are entirely contained
in F…²†

V0
…x…t2

†† ¡ V0
…x…t1

†† µ ¡
…

t2

t1

’…jx…t†j† dt …12†

Suppose now that we are given a UOSS-Lyapunov-
like function V for …6†. Let ²…r† :ˆ ¬

¡1…2®…r††. Then

jxj ¶ ²…jh…x†j† ) ¡¬…jxj† ‡ ®…jh…x†j† µ ¡®…jh…x†j†

for all x. This means that the restriction V0 of V to F is
a GASMO-Lyapunov-like function (use ’ ˆ ®). The
second of our main results is as follows; it states that,
conversely, any GASMO-Lyapunov-lik e function can
be extended to an UOSS-Lyapunov-like function, pro-
vided that a rescaling and a small `thickening’ of F are
allowed.

Proposition 1: Suppose that V0 : F …²† ! ¶0 is a
GASMO-Lyapunov-like function for …6†. Then there ex-
ist a UOSS-Lyapunov-like function V2 for S, and a
class K1 function F, such that

V2
ˆ F ¯ V0

8 x 2 F…2²†

Moreover, if V0 is continuous, then V2 can be chosen
continuous as well.

2.1. Systems with inputs and disturbances

Our main results, such as the extension theorem for
GASMO-Lyapunov-lik e functions, are for systems (6),
but it is easy to state and prove corollaries for the more
general class of systems treated in Krichman et al.
(2001). These are systems whose dynamics depend on
two types of inputs, which we call respectively controls
and disturbances

_xx ˆ f …x…t†; u…t†; w…t††; y…t† ˆ h…x…t†† …13†

Here states evolve in ˆ n, controls are measurable,
essentially bounded functions u on I ˆ ¶0 with values
in :ˆ mu , and disturbances, as earlier, are measurable
functions w: I ! G, where G is a compact subset of

mw .
In those cases when a di� erent interval I » ¶0 of

de®nition for a control u is speci®ed, we always apply
the de®nitions to the extension of u to ¶0, using u ² 0
on ¶0

n I . The function f : £ £ G ! is locally
Lipschitz in …x; u† uniformly on w, jointly continuous in
x, u and w, and such that f …0; 0; w† ˆ 0 for any w 2 G;
and h: ! :ˆ p is smooth and vanishes at 0.

Extending the previous notations, given a state

¹ 2 , for each pair …u; w† we denote by x…t; ¹; u; w† the
unique maximal solution of the system (13), which is

Characterizations of detectability notions 885
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de®ned on some maximal interval ‰0; tmax
…¹; u; w††, and

again we use the notation y…t; ¹; u; w† :ˆ h…x…t; ¹; u; w††,
writing x…t† and y…t† when ¹; u; w are clear from the
context.

The UOSS property and its associated Lyapunov-
like notion generalize as follows.

De®nition 5: A system of type (13) is said to be uni-
formly input±output-to-stat e stable (UIOSS) if there
exist functions  2 KL and ®u; ®y 2 K such that the
estimate

jx…t; ¹; u; w†j µ maxf …j¹j; t†; ®u
…kuj‰0;tŠk†; ®y

…kyj‰0;tŠk†g
…14†

holds for any initial state ¹ 2 , control u, disturbance w
and time t 2 ‰0; tmax

…¹; u; w††:

De®nition 6: A UIOSS-Lyapunov-like function for
system (13) is a lower semicontinuous function
V : ! ¶0 satisfying the following conditions:

. there exist K1-functions ¬1, ¬2 such that (8) holds
for all ¹ in , and

. there exist ¬3, ®, and À 2 K1 such that, for each

¹ 2 , u: ¶0
! , disturbance w 2 MG, and

over any interval ‰¼; ½ Š » ‰0; tmax
…¹; u; w†† in which

jx…s; ¹; u; w†j ¶ À…ju…s†j† for almost all s 2 ‰¼; ½ Š
…15†

the inequality

V…x…½; ¹; u; w†† ¡ V…x…¼; ¹; u; w††

µ
…

½

¼

…¡¬3
jx…s; ¹; u; w†j ‡ ®jy…s; ¹; u; w†j† ds …16†

holds. &

Note that, when there are no control inputs u, the
condition (15) is satis®ed (we may think of u ² 0), so
this notion specializes to the previous one when there are
no u’s. Theorem 1 generalizes like this:

Theorem 2: A system …13† is UIOSS if and only if it
admits a UIOSS-Lyapunov-like function.

Remark 1: Actually, a much weaker condition than
existence of a UIOSS-Lyapunov-like function can be
proved su� cient for UIOSS. This condition generalizes
the one given for GASMO-Lyapunov-lik e functions,
and is as follows. We will show in the proof of
Theorem 2 that for a system to be UIOSS it is enough
to have a lower-semicontinuous function V0, de®ned
on a set F …²†, for some ² of class K1, and
satisfying (11), such that there exist some ®xed K1-
functions ’ and À so that the estimate (12) holds along
any piece of trajectory

x…t† :ˆ x…t; u; w†; t 2 ‰t1; t2Š

of (13) lying entirely in F …²†, as long as jx…t†j ¶ À…ju…t†j†
for almost all t 2 ‰t1; t2

Š. It is easy to see that any
UIOSS-Lyapunov-like function satis®es (12), with

’ ˆ ¬3=2 and ²…¢† ˆ ¬3
¡1…2®…¢††. &

3. Proof of su� ciency in Theorems 1 and 2

To relax the regularity assumptions on the
Lyapunov-like function V in the su� ciency statements
of the Lyapunov-type theorems, it is useful to have a
version of the comparison principle which underlies
most of the su� ciency proofs in Lyapunov theory.

3.1. An integral comparison principle

De®nition 7: A function w: I ! is said to satisfy
the no upward jump (NUJ) condition on an interval
‰a; bŠ » Dom …w† if

lim inf
s!r

¡ w…s† ¶ w…r† for any r 2 …a; bŠ

and
w…r† ¶ lim sup

s!r
‡

w…s† for any r 2 ‰a; b†

It is easy to see that satisfying the inequality

w…½† ¡ w…¼† µ
…

½

¼
Á…t† dt

8 ¼; ½ such that a µ ¼ µ ½ µ b

with some integrable function Á would imply the NUJ
property for w.

Lemma 2: For each K-function ¬: ‰0; 1† ! ¶0, there
exists a KL function  ¬ with the following property:
For any T > 0 and any lower semicontinuous function
w: ‰0; T Š ! ¶0, if, for almost all ¼; ½ such that
0 µ ¼ < ½ µ T the following inequality holds

w…½† ¡ w…¼† µ ¡
…

½

¼
¬…w…t†† dt …17†

then w…T† µ  ¬
…w…0†; T†. &

Proof: The proof follows along the lines of the proof
of the similar comparison principle (with pointwise dis-
sipation inequality) in Sontag (1989 a).

De®ne ²…s† :ˆ ¡
„

s

1 dr=¬…r†, and let a :ˆ ¡ lims!‡1 ²…s†
and b :ˆ lims!0

‡ ²…s† (a and b may be in®nite in case
the improper integral in the de®nition of ² diverges as
the upper integration limit becomes 0 or ‡1). Note
that ² is strictly decreasing on its domain, so that its
inverse function is well de®ned, and Range…²† ˆ
Dom…²

¡1† ˆ …¡a; b†.
De®ne, for s 6ˆ 0

 …s; t† :ˆ 0; if t ‡ ²…s† ¶ b

²
¡1…t ‡ ²…s††; if t ‡ ²…s† < b

»
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and let  …0; t† ² 0. Then  is continuous in each argu-
ment. Also, for each ®xed s,  …s; t† is non-increasing in t
and strictly decreasing in t when t < b ¡ ²…s†. For each
®xed t,  …¢; t† is strictly increasing when positive. For
any s; t such that t ‡ ²…s† 6ˆ b

@

@t
 …s; t† ˆ ¡¬… …s; t††

Hence  2 KL and

 …s; ½† ˆ  …s; ¼† ¡
…

½

¼
¬… …s; t†† dt 80 < ¼ < ½

Note that  …s; 0† ˆ s. Now pick any measurable func-
tion w satisfying (17).

Claim: w…T† µ  …w…0†; T†:

Proof of claim: Suppose the contrary, that is, w…T† >
 …w…0†; T†. By the NUJ property of w, lim inf t!T

¡

w…t† ¶ w…T† so, by continuity of  …w…0†; ¢†, there exists
a ¯ > 0 such that w…t† >  …w…0†; t† for all t 2 ‰T ¡ ¯; T Š.
Let

½ ˆ inf f~½½ j w…t† >  …w…0†; t† 8t 2 ‰~½½ ; T Šg

We next show that

w…½† µ  …w…0†; ½† …18†

If ½ ˆ 0 then w…½† ˆ w…0† ˆ  …w…0†; 0† ˆ  …w…0†; ½†,
because  …s; 0† ˆ s for all s. If ½ > 0 then, because of
the continuity of  and the NUJ property of w, the
inequality w…½† >  …w…0†; ½† would imply that there
exists some ~̄̄ > 0 such that w…t† >  …w…0†; t† for all t
in ‰½ ¡ ~̄̄; ½ Š, contradicting the de®nition of ½ , so, (18)
indeed holds. Hence

w…T† ¡  …w…0†; T† µ ‰w…½† ¡  …w…0†; ½†Š

¡
…

T

½

‰¬…w…t†† ¡ ¬… …w…0†; t††Š dt

…19†

The ®rst term in the right-hand side of (19) is non-
positive by (18). The second term is also non-positive,
because of the choice of ½ . Hence, the right-hand side
of (19) is non-positive, contradicting our assumption.
This proves the claim, which completes the proof of
the lemma. &

3.2. Existence of a UIOSS-Lyapunov-like function
implies UIOSS

We now prove the su� ciency part of Theorem 2.
Note that, as Theorem 1 is a particular case of
Theorem 2, the su� ciency part of Theorem 1 will follow
automatically.

Lemma 3: Let q1, q2 be two positive numbers. Suppose
that

. x: I ! n
is absolutely continuous,

. V :
n ! ¶0 is lower semicontinuous and

satis®es …8† with some ¬i
2 K1, and

. V ¯ x is non-increasing on any subinterval ‰¼; ½ Š of I
such that jx…t†j ¶ q1 > 0 is satis®ed for all
t 2 ‰¼; ½ Š.

Then if ¬1
…q2

† > ¬2
…q1

† and jx…~tt†j µ q1 for some ~tt, then
jx…t†j < q2 for all t > ~tt.

Proof: Suppose jx…t2†j ¶ q2 for some t2 > ~tt. Then,
since x…t† is continuous, there is a t1 ¶ ~tt such that

t1
ˆ max ft < t2

j jx…t†j ˆ q1
g

Then jx…t†j ¶ q1 for all t 2 ‰t1; t2
Š. So, V ¯ x is non-

increasing on ‰t1; t2
Š, hence

¬1
…q2

† µ V…x…t2
†† µ V…x…t1

†† µ ¬2
…q1

†

The obtained contradiction proves the lemma. &

Now suppose a system (13) admits a Lyapunov-like
function V0 as in Remark 1. We extend V0 to the state
space , by the formula

V…x† ˆ V0; x 2 F …²†

¬…jxj†; x 62 F …²†

»

Notice that V is continuous at 0 because of (11) and
lower semicontinuous on , because V0 is lower-
semicontinuous on F…²†, ¬ is continuous, and

¬…j¹j† µ lim infx!¹;x2F…²† V0
…x† for all ¹ 2 @F…²†. We will

show that (13) is UIOSS with ®u
…¢† :ˆ ¬

¡1…2¬…2À…¢†††,
®y

…¢† :ˆ ¬
¡1…2¬…2²…¢†††, and  …s; t† :ˆ ¬

¡1… ’̂’
…¬…s†; t††,

where  ’̂’ is provided by Lemma 2 for the K-function

’̂’ ˆ ’ ¯ ¬
¡1.

Pick an initial state ¹, a control u, a disturbance w,
and a time T < tmax

…¹; u; w†, and write x…t† ˆ x…t; ¹; u; w†
and y…t† :ˆ h…x…t††. Let q1 :ˆ maxf2À…kuj‰0;T Šk†,
2²…kyj‰0;T Šk†g. By de®nition

q1
¶ ²…jy…t†j† for all t 2 ‰0; T Š

with equality only in case q1
ˆ 0. Therefore, if, for some

s 2 ‰0; T Š, it holds that

jx…s†j ¶ q1 > 0 or jx…s†j > q1
ˆ 0 …20†

then x…s† 2 F …²†. Hence, if one of the inequalities in (20)
holds on some subinterval ‰¼; ½ Š of ‰0; T Š, then (12) holds
on ‰¼; ½ Š, and, in particular, V ¯ x is non-increasing on
‰¼; ½ Š.

Suppose ®rst that q1 > 0. If

jx…t†j ¶ q1
…21†
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holds for all t 2 ‰0; T Š, then x…t† 2 F…²† for all t 2 ‰0; T Š,
so that (12) must hold on any subinterval ‰¼; ½ Š of ‰0; T Š,
therefore

V…x…½†† ¡ V…x…¼†† µ
…

½

¼

¡’…jx…s†j† ds

µ
…

½

¼

¡’…¬
¡1…V…x…s†††† ds

ˆ ¡
…

½

¼
’̂’…V…x…s††† ds

Thus, in this case the conditions of Lemma 2 are satis-
®ed for the function w…t† :ˆ V…x…t††, so that

V…x…T†† µ  ’̂’
…V…x…0††; T†

with some function  ’̂’ of class KL. So

jx…T†j µ ¬
¡1…V…x…T†††

µ ¬
¡1… ’̂’

…V…x…0††; T††

µ ¬
¡1… ’̂’

…¬…jx…0†j†; T†† ˆ ¬
¡1… ’̂’

…¬…j¹j†; T††

…22†
If instead (21) fails for some ~tt < T , then

jx…~tt†j < max f2À…kuj‰0;T Šk†; 2²…kyj‰0;T Šk†g

so, by Lemma 3 applied for q1 and

q2
ˆ ¬

¡1…2¬…q1
††

we have

jx…T†j < max f®u
…kuj‰0;T Šk†; ®y

…kyj‰0;T Šk†g …23†

Combining (22) and (23), we obtain the estimate (14).
Suppose now that q1

ˆ 0. If x…t† 6ˆ 0 for all
t 2 ‰0; T Š, then the trajectory lies entirely in F …²†,
so that (22) holds. Otherwise, let ·tt :ˆ
min ft 2 ‰0; T Š: x…t† ˆ 0g. We will show that x…t† ˆ 0
for all t 2 ‰·tt; T Š. Indeed, the set

C :ˆ ft 2 ‰·tt; T Š: x…t† 6ˆ 0g

is open in the topology of ‰·tt; T Š, and thus can be written
as a disjoint union of open intervals …¼i; ½i

† and perhaps
‰·tt; ½0

† and …¼0; T Š. Fix any i. Take any closed subinterval
‰¼; ½ Š of …¼i; ½i

†. The piece of trajectory over ‰¼; ½ Š
lies entirely in F …²†, so that the inequality (12) holds,
implying

jx…½†j µ ¬
¡1… ’̂’

…¬…jx…¼†j†; ½ ¡ ¼†† …24†

Since x…¢† is continuous and x…¼i
† ˆ 0; we can choose ¼

close enough to ¼i so that jx…¼†j is as small as desired,
thus, showing by (24) that jx…½†j is in®nitely small for
any ½ 2 ‰¼; ½i

†. This proves that x…¢† ² 0 on …¼i; ½i
† and

on all of C, so, C ˆ 1 and the conclusion follows.

4. Proof of necessity in theorem 1

Suppose a system S of type (6) is UOSS. By
Lemma 1, S satis®es the GASMO property with some
K1 function ». Majorizing » with another K1 function
if necessary, we may assume » to be smooth when
restricted to >0 and satisfy »…s† > s for all positive s.
Introduce the following notation:

. D :ˆ f¹ 2 : j¹j µ »…jh…¹†j†g ˆ n F …»†,

. E :ˆ F …»†.

If D ˆ , then any proper, smooth and positive de®-
nite function V : ! is a UOSS-Lyapunov function
for (6). This fact is proved in Krichman et al. (2001), but
is relatively easy to convince oneself of.

Suppose now that D 6ˆ . For each d 2 MO and

¹ 2 E, de®ne

¶¹;d
ˆ inf ft 2 ‰0; tmax

†: x…t; ¹; d† 2 Dg …25†

with the convention ¶¹;d
ˆ tmax

…¹; d† if the trajectory
never enters D.

The GASMO property then implies

jx…t; ¹; d†j µ ¶…j¹j; t†

8 ¹ 2 E; 8 d 2 MO; 8 t 2 ‰0; ¶¹;d
† …26†

for some ¶ 2 KL.
Note that, because of property (26), the system can-

not have any equilibria in E, that is

f …¹; d† 6ˆ 0

for every ¹ 2 E and every d 2 O. Moreover, replacing

»…s† by c»…s† for some c > 1 if necessary, one may also
assume that f …¹; d† 6ˆ 0 for all ¹ 2 @D n f0g, all d 2 O.

We introduce an auxiliary system ŜS which slows
down the motions of the original one

_zz ˆ f̂f …z; d† ˆ 1

1 ‡ j f …z; d†j2 ‡ µ…z† f …z; d† …27†

where µ is any smooth function ! ‰0; 1† with the
property that

µ…¹† ¶ 2 max
d2O

jr…» ¯ h†…¹† ¢ f …¹; d†j …28†

whenever jh…¹†j ¶ 1. For each disturbance d̂d (de®ned on
¶0), denote by

z…s; ¹; d̂d†

the value at time s of the solution of the equation

_zz ˆ f̂f …z; d̂d† with initial state ¹. Observe that, as f̂f is
bounded, this solution exists for all non-negative s.
The next two claims, summarizing relevant properties
of ŜS, were proved in Krichman et al. (2001).
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Claim 1: For each ¹ and each d

x…t; ¹; d† ˆ z…¼¹;d
…t†; ¹; d ¯ ¼¹;d

¡1† 8 t 2 ‰0; tmax
…¹; d††

…29†

where ¼¹;d: ‰0; tmax
…¹; d†† ! ¶0 is de®ned by

¼¹;d
…t† ˆ

…
t

0

‰1 ‡ j f …x…s; ¹; d†; d…s††j2 ‡ µ…x…s; ¹; d††Š ds

Moreover, ¼¹;d
…t† ! 1 as t ! tmax

…¹; d†, so, we can
de®ne ¼¹;d

…tmax
…¹; d†† :ˆ ‡1 for convenience.

Claim 2: System ŜS satis®es the GASMO property.

For each initial state ¹ and each disturbance function
d, de®ne

³¹;d
ˆ inf ft ¶ 0: z…t; ¹; d† 2 Dg …30†

where ³¹;d
ˆ 1 if z…t; ¹; d† =2 D for all t ¶ 0. Note that

³¹;d > 0 for all d 2 MO and all ¹ 2 E, because E is
open. Observe also that if d1

ˆ d ¯ ¼¹;d

³¹;d
ˆ ¼¹;d1

…¶¹;d1
†

Lemma 4: For each ®xed disturbance d 2 MO, ³¹;d is
a lower-semicontinuous function of ¹ on E.

Proof: Let ¹0 2 . Pick a disturbance d 2 MO and a
sequence f¹kg that converges to ¹0. Let ³k ˆ ³¹k ;d and

³0 ˆ ³¹0 ;d. We need to show that

³0
µ ³̂³ ˆ lim inf

k!1 ³k

If ³̂³ ˆ 1, there is nothing to prove, so we may assume
without loss of generality that limk!1 ³k

ˆ ³̂³ < 1: It
follows by continuity on initial conditions and the fact
that D is a closed set, that z…³̂³; ¹0; d† 2 D, and hence,

³0
µ ³̂³, as required. &

4.1. De®ning a discontinuous GASMO-Lyapunov-like
function on F…2»†

Let the function ¶ of class KL be as in De®nition 3
for the system ŜS, that is, the following estimate holds for
system (27)

jz…t; ¹; d†j µ ¶…j¹j; t† 8 t 2 ‰0; ³¹;d
† …31†

for all ¹ 2 E and all d 2 MO.
According to Proposition 7 in Sontag (1998 a), there

exist K1-functions ·1 and ·2 such that

¶…r; t† µ ·1
…·2

…r†e¡t† 8 r; t ¶ 0 …32†

De®ne

’…s† :ˆ ·
¡1
1

…s†

Recall that for all ¹ 2 E and any d, the GASMO prop-
erty gives the estimate jz…t; ¹; d†j µ ¶…j¹j; t† for all
t 2 ‰0; ³¹;d

†. Then

…
³¹;d

0
’…jz…t; ¹; d†j† dt µ

…
³¹;d

0
’…¶…j¹j; t†† dt

µ ·2
…j¹j†

…1

0
e

¡t
dt ˆ ·2

…j¹j† …33†

For ¹ 2 E and d 2 MO, de®ne

V̂0V0
…¹; d† :ˆ

…
³¹;d

0
’…jz…t; ¹; d†j† dt …34†

Equation (33) implies that the integral in (34) converges,
so that the de®nition makes sense for all ¹ 2 E.

Lemma 5: For any ®xed disturbance d 2 MO, V̂0V0…¹; d†
is a lower semicontinuous function of ¹ on E.

Proof: Fix a disturbance d 2 MO and a state ¹ 2 E.
Let " > 0 be given. Since

…
³¹;d

0
’…jz…t; ¹; d†j† dt < 1

there exists some 0 < T < ³¹;d such that
…

³¹;d

T
’…jz…t; ¹; d†j† dt <

"

2

By lower semicontinuity of ³¹;d, one can ®nd a bounded
neighbourhood U1 of ¹ contained in E, such that

³·¹¹;d
¶ T for any ·¹¹ in U1. Since ’…jz…¢; ¢; d†j† is uniformly

continuous on ‰0; T Š £ U1, there is some neighbourhood
U of ¹ contained in U1 such that

j’…z…t; ¹; d†† ¡ ’…z…t; ·¹¹; d††j <
"

2T

for all ·¹¹ 2 U, all t 2 ‰0; T Š. Consequently, for all ·¹¹ 2 U

V̂0V0
…¹; d† ¡ V̂0V0

…·¹¹; d†

ˆ
…

³¹;d

0
’…jz…t; ¹; d†j† dt ¡

…
³·¹¹;d

0
’…jz…t; ·¹¹; d†j† dt

µ
…

T

0
’…jz…t; ¹; d†j† dt ‡

…
³¹;d

T
’…jz…t; ¹; d†j† dt

¡
…

T

0
’…jz…t; ·¹¹; d†j† dt

µ
…

T

0

j’…z…t; ¹; d†† ¡ ’…z…t; ¹; d††j dt ‡ "=2 µ "

Since " > 0 was arbitrary, this shows that
V̂V0

…¹† µ lim inf ·¹¹!¹ V̂V0
…·¹¹†. &

For each ¹ 2 E, de®ne

V0
…¹† ˆ sup

d2MO

V̂0V0
…¹; d†

Note that V0 is positive on E. Estimate (33) implies that

V0
…¹† µ ·2

…j¹j† …35†

for all ¹ 2 E.
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To show properness of V0 we will need the following
lemma, proved in Krichman et al. (2001) along the lines
of the proof of the disturbance-free version of this result
in Sontag and Wang (1996).

Lemma 6: Suppose S: _zz ˆ f …z; d†; y ˆ h…z† is a system
of type …6†, and p…¢† is a smooth function of class K1,
such that the following conditions hold:

. j f …¹; d†j µ 1 for all ¹ 2 and d 2 O,

. jr… p ¯ h†…¹† ¢ f …¹; d†j µ 1 for all d 2 O and all ¹
with jh…¹†j ¶ 1,

. p…s† ¶ s for all s > 0.

Pick any constant a > 0 and de®ne K0 ˆ p…1† ‡
…2 ‡ a†=a ‡ 1. Then for each ¹ 2 such that

j¹j ¶ …1 ‡ a†p…jh…¹†j† and j¹j ¶ K0

it holds that
jz…t; ¹; d†j > p…jh…z…t; ¹; d††j†

for all t 2 ‰0; 1† and any d 2 MO.

Lemma 7: If ¹ 2 F …2»† and j¹j > »…1† ‡ 4, then
V0…¹† > ’…j¹j ¡ 1†.

Proof: Recall that we have assumed that »…s† > s for
any positive s. Lemma 6, applied with f ˆ f̂f , a ˆ 1,
p ˆ », implies that ³¹;d ¶ 1 for all ¹ 2 F …2»† with
j¹j > »…1† ‡ 4 and all d 2 MO. Note that j f̂f …z; d†j < 1,
so, if j¹j > »…1† ‡ 4, then jz…t; ¹; d†j > j¹j ¡ 1 for all
t 2 ‰0; 1Š. Therefore, since ³¹;d ¶ 1 for any d, we have

V0
…¹† ¶

…
1

0
’…jz…t; ¹; d†j† dt ¶ 1 ¢ ’…j¹j ¡ 1†

proving the lemma. &

Lemma 8: V0 is lower semicontinuous on E.

Proof: Suppose a sequence f¹kg in E converges to

¹ 2 E. Pick any disturbance d 2 MO. For this particu-
lar d we have

V̂V0
…¹; d† µ lim inf

k!1 V̂V0
…¹k; d† µ lim inf

k!1 V0
…¹k

†

where the ®rst inequality follows from the lower semi-
continuity of V̂V0. Since this estimate holds for arbitrary
d, we will also have

V0
…¹† ˆ sup

d2MO

V̂V0
…¹; d† µ lim inf

k!1 V0
…¹k

†

proving the lemma. &

The following is an immediate consequence of
Lemmas 7 and 8 and inequality (35).

Corollary 1: There exists a K1-function ¬ such that

¬…j¹j† µ V0
…¹† µ ·2

…j¹j† …36†

for all ¹ 2 F…2»†, where ·2 is as in inequality …32†. &

Proof: Since V0 is lower semicontinuous, it attains its
minimum on any compact set. For each positive l
de®ne

rl :ˆ …»…1† ‡ 4†=l

and ml
ˆ inf fV0

…z†: z 2 F…2»†; rl
µ jzj µ r1

g

Since the sequence fml
g is non±increasing and positive,

and ’ is of class K1, we can ®nd a K1-function ¬ such
that

¬…s† < ml
8 s 2 ‰rl; rl¡1

Š; 8 l > 1

and

¬…s† < ’…s ¡ 1† 8 s ¶ »…1† ‡ 4

By construction, ¬ will be a lower bound for V0 on
F …2»†. &

Lemma 9: For any ¹ 2 E and any ¼; ½ such that
0 µ ¼ < ½ < ³¹;d, the following inequality holds

V0
…z…½; ¹; d†† ¡ V0

…z…¼; ¹; d†† µ ¡
…

½

¼
’…z…t; ¹; d†† dt …37†

Proof: Fix ¹ 2 E and d 2 MO, and ®x 0 µ ¼ <
½ < ³¹;d. Let " > 0 be given. Find d1 such that

V0
…z…½; ¹; d†† ¡ V̂0V0

…z…½; ¹; d†; d1
† < "

Let ~dd be the disturbance de®ned by

~dd…t† ˆ d…t ‡ ¼† if 0 µ t µ ½ ¡ ¼

d1
…t ¡ …½ ¡ ¼†† if t > ½ ¡ ¼

»

Then z…t; z…½; ¹; d†; d1
† ˆ z…t ‡ …½ ¡ ¼†; z…¼; ¹; d†; ~dd† for

all t ¶ 0. Let ~³³ ˆ ³z…½;¹;d†;d1
, and ·³³ ˆ ³z…¼;¹;d†;~dd. Then

·³³ ˆ ~³³ ‡ …½ ¡ ¼†, because z…t; ¹; d† 62 D for t µ ½ , by
choice of ½ (if ~³³ ˆ ‡1, then ·³³ ˆ ‡1 satis®es our de®-
nition). Consequently, one has

V̂V0
…z…½; ¹; d†; d1

†

ˆ
… ~³³

0
’…jz…s; z…½; ¹; d†; d1

†j† ds

ˆ
… ~³³

0
’…jz…s ‡ …½ ¡ ¼†; z…¼; ¹; d†; ~dd†j† ds

ˆ
… ·³³

½¡¼
’…jz…s; z…¼; ¹; d†; ~dd†j† ds

ˆ V̂V0
…z…¼; ¹; d†; ~dd† ¡

…
½¡¼

0
’…jz…s; z…¼; ¹; d†; ~dd†j† ds

ˆ V̂V0
…z…¼; ¹; d†; ~dd† ¡

…
½¡¼

0
’…jz…s ‡ ¼; ¹; d†j† ds

ˆ V̂V0
…z…¼; ¹; d†; ~dd† ¡

…
½

¼
’…jz…s; ¹; d†j† ds
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Thus,

V0
…z…½; ¹; d†† µ V̂V0

…z…½; ¹; d†; d1
† ‡ "

ˆ V̂V0
…z…¼; ¹; d†; ~dd† ¡

…
½

¼
’…jz…s; ¹; d†j† ds ‡ "

µ V0
…z…¼; ¹; d†† ¡

…
½

¼
’…jz…s; ¹; d†j† ds ‡ "

Letting " ! 0, we get the desired inequality. &

To see that the same estimate holds along the origi-
nal system, pick an initial state ¹ 2 E, disturbance d 2 O
and t1 and t2 such that 0 µ t1 < t2 < ¶¹;d. Then

V0
…x…t2; ¹; d†† ¡ V0

…x…t1; ¹; d††

ˆ V0
…z…¼¹;d

…t2
†; ¹; d ¯ ¼

¡1
¹;d

†† ¡ V0
…z…¼¹;d

…t1
†; ¹; d ¯ ¼

¡1
¹;d

††

µ ¡
…

¼¹;d…t2†

¼¹;d
…t1†

’…jz…s; ¹; d ¯ ¼
¡1
¹;d

†j† ds

ˆ ¡
…

t2

t1

’…jz…¼¹;d
…t†; ¹; d ¯ ¼

¡1
¹;d

†j† d¼¹;d
…t†

ˆ ¡
…

t2

t1

’…jx…t; ¹; d†j† d

dt
¼¹;d

…t† dt

ˆ ¡
…

t2

t1

’…jx…t; ¹; d†j†

£‰1 ‡ j f …x…t; ¹; d†; d…t††j2 ‡ µ…x…t; ¹; d††Š dt

µ ¡
…

t2

t1

’…jx…t; ¹; d†j† dt

Remark 2: Note that if the system we consider is dis-
turbance-free, V0…¹† ˆ

„
³¹

0 ’…jz…t; ¹†j† dt. For any posi-
tive t, we have ³z…t;¹† ˆ ³¹ ¡ t so that V0…z…t; ¹†† is
di� erentiable in t and

d

dt
V0

…z…t; ¹†† ˆ ¡’…jz…t; ¹†j†

One can easily see (by a discussion similar to that in case
with disturbances, treated above), that

d

dt
V0

…x…t; ¹†† µ ¡’…jx…t; ¹†j†

Thus, we have a lower semicontinuous function V0,
de®ned on the set E, where it satis®es the integral dis-
sipation inequality (37). Moreover, the inequality (36)
holds for all x 2 F …2»†.

4.1. Proof of Proposition 1

To construct a UOSS-Lyapunov-like function
de®ned on the whole state-space , we must extend
V0. This is done next, and in the process we prove
Proposition 1. (Letting ² :ˆ 2», the set F…2»† is the
same as F…²†. We will construct a Lyapunov-like func-

tion V2 for S and a class K1 function F such that
V2

ˆ F ¯ V0 on F …3»†. As this set contains F …2²†, the
proposition will follow.)

We will ®rst make a few observations. The following
two lemmas serve as discontinuous versions of the chain
rule and the product rule respectively in the form rele-
vant to our setting. Other versions of the chain rule for
non±smooth functions were proven in the literature, (see
for example Clarke et al. 1998, Theorem 9.1), but most
of them require more restrictive regularity assumptions,
such as Lipschitz continuity of both functions to be
composed. Also, in many cases, the needed property
of generalized gradients is proven to hold at some
point in a given neighbourhood of a given point, rather
than at a given point itself. Thus, to keep the presenta-
tion self-contained, it will be helpful to have the follow-
ing integral versions on hand.

Lemma 10: Let ®…t†, t 2 ‰¼; ½ Š, be an absolutely contin-
uous curve in . Let W be a function de®ned on a sub-
set of containing ®, such that for any t1; t2 in ‰¼; ½ Š
the function W ¯ ® is Riemann integrable and the follow-
ing dissipation inequality holds

W…®…t2
†† ¡ W…®…t1

†† µ
…

t2

t1

¬…t† dt …38†

where the function ¬ is Lebesgue integrable on ‰¼; ½ Š.
Assume that F is continuously di� erentiable with
F

0…r† ¶ 0 for all r. Then

F…W…®…½††† ¡ F…W…®…¼††† µ
…

½

¼

F
0…W…®…t†††¬…t† dt

Proof: Let ·…s† ˆ
„

s

¼ ¬…t† dt. Observe ®rst that for any
t1, t2 in ‰¼; ½ Š, we have

F…W…®…t2
††† ¡ F…W…®…t1

†††

ˆ F
0…±†‰W…®…t2

†† ¡ W…®…t1
††Š

where ± is some number between W…®…t2
†† and W…®…t1

††
furnished by the Mean Value Theorem. By (38), we have

F…W…®…t2
††† ¡ F…W…®…t1

†††

ˆ F
0…±†…W…®…t2

†† ¡ W…®…t1
††† µ F

0…±†
…

t2

t1

¬…t† dt

ˆ F
0…±†…·…t2

† ¡ ·…t1
††

Now let ¼ ˆ t0 < t1 < t2 < ¢ ¢ ¢ < tm¡1 < tm
ˆ ½ be any

partition of ‰¼; ½ Š. Then

F…W…®…½††† ¡ F…W…®…¼†††

ˆ
Xm

iˆ1

‰F…W…®…ti
††† ¡ F…W…®…ti¡1

†††Š

µ
Xm

iˆ1

F
0…±i

†…·…ti
† ¡ ·…ti¡1

†† …39†
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where ±i is between W …®…ti¡1
†† and W…®…ti

††. Note that

min‰ti¡1 ;ti
Š
F

0…W…®…t††† µ F
0…±i

† µ sup
‰ti¡1;ti

Š
F

0…W…®…t†††

As we let the mesh of the partition tend to zero, the
expression in the right-hand side of the inequality (39)
will converge to the Riemann±Stiltjes integral (which
exists and equal to the corresponding Lebesgue integral
with respect to the measure, generated by ·, because
F

0 ¯ W ¯ ® is Riemann integrable on ‰¼; ½ Š, and · is
absolutely continuous). Finally, we obtain

F…W…®…½††† ¡ F…W …®…¼††† µ
…

½

¼

F
0…W…®…t††† d·…t†

ˆ
…

½

¼

F
0…W…®…t†††¬…t† dt

as stated in the lemma. &

Thus, if F is continuously di� erentiable with F
0 2 K

and F…0† ˆ 0, and V0 is as we constructed, i.e.
satis®es (36) and (37) for all ¹ 2 F…2»†, then
V0

…x…t; ¹; d†† is decreasing on ‰¼; ½ Š for any
0 µ ¼ < ½ < ¶¹;d. Thus, for any ¹ 2 F…2»†, V0

…x…¢; ¹; d††
is Riemann integrable on ‰¼; ½ Š for any 0 µ ¼ < ½ < ¶¹;d.
Consequently, by Lemma 10 the function V1 :ˆ F ¯ V0

will satisfy the following dissipation inequality along
any piece of trajectory contained in F…2»†

V1
…x…½; ¹; d†† ¡ V1

…x…¼; ¹; d††

µ ¡
…

½

¼

F
0…¬…jx…t; ¹; d†j††’…jx…t; ¹; d†j† dt …40†

Since ‰F 0 ¯ ¬…¢†Š ’…¢† is of class K1, V1 may also serve as
a UOSS Lyapunov function, if appropriately extended
to the complement of F …2»†.

Lemma 11: Let ® be as in the previous lemma, and
suppose that ¿ is a smooth function de®ned on a subset
of containing ®, with values in ‰0; 1Š. Assume that W
is a measurable function on . Then:

(1) If W is decreasing along ®, then

¿…®…½††W…®…½†† ¡ ¿…®…¼††W…®…¼††

µ
…

½

¼
W…®…t†† d¿…®…t††

(2) If W is increasing along ®, then

¿…®…½††W…®…½†† ¡ ¿…®…¼††W…®…¼††

µ
…

½

¼

W…®…t†† d¿…®…t†† ‡ W…®…½†† ¡ W…®…¼††

Proof: Observe ®rst that for any ¼ µ t1 < t2 µ ½ , it
holds that

¿…®…t2††W…®…t2
†† ¡ ¿…®…t1

††W…®…t1
††

ˆ ¿…®…t2
††‰W…®…t2

†† ¡ W…®…t1
††Š

‡W …®…t1††‰¿…®…t2
†† ¡ ¿…®…t1

††Š …41†

Assume W…®…t†† is increasing. Since 0 µ ¿…¹† µ 1, it
follows that the right-hand side of (41) is bounded by

W…®…t2
†† ¡ W…®…t1

†† ‡ W…®…t1
††‰¿…®…t2

†† ¡ ¿…®…t1
††Š

If W…®…t†† is decreasing, the right-hand side of

W…®…t1
††…¿…®…t2†† ¡ ¿…®…t1

†††

Now let ¼ ˆ t0 < t1 < t2 < ¢ ¢ ¢ < tm¡1 < tm
ˆ ½ be

any partition of ‰¼; ½ Š. Then, in the case when W…®…t††
is increasing, we have

¿…®…½††W…®…½†† ¡ ¿…®…¼††W…®…¼††

ˆ
Xm

iˆ1

¿…®…ti
††W…®…ti

†† ¡ ¿…®…ti¡1
††W…®…ti¡1

††

µ
Xm

iˆ1

fW…®…ti
†† ¡ W…®…ti¡1

††

‡ W…®…ti¡1
††…¿…®…ti†† ¡ ¿…®…ti¡1

†††g

ˆ W…®…½†† ¡ W…®…¼††

‡
Xm

iˆ1

W…®…ti¡1
††‰¿…®…ti

†† ¡ ¿…®…ti¡1
††Š

The estimate

¿…®…½††W…®…½†† ¡ ¿…®…¼††W…®…¼††

µ
Xm

iˆ1

W…®…ti¡1
††‰¿…®…ti

†† ¡ ¿…®…ti¡1
††Š

for the case of decreasing W…®…t†† is obtained in a
similar way.

As we let the mesh of the partition tend to zero, the
sum in the right-hand side of the last inequalities will
converge to the Riemann±Stiltjes integral (which exists,
since W ¯ ® is monotone, and hence Riemann integ-
rable, and the integrating function ¿ ¯ ® is smooth),
so, the result follows. &

We will also need the following simple separation
result from topology (it is a well-known fact, see, for
example, Boothby 1986).

Lemma 12: Let M be a smooth manifold, and suppose
K1 and K2 are two closed subsets of M such that
K1 \ K2 ˆ 1. Then there exists a smooth function

¿: M ! ‰0; 1Š such that

¿…x† ˆ 1 x 2 K1

0 x 2 K2

»

892 M. Krichman and E. D. Sontag

D
ow

nl
oa

de
d 

by
 [

R
ut

ge
rs

 U
ni

ve
rs

ity
] 

at
 0

9:
36

 0
7 

O
ct

ob
er

 2
01

4 



Proof (of Proposition 1): Let

E
2 :ˆ F …3»† ˆ f¹ : j¹j > 3»…jh…¹†j†g

and

D
2 :ˆ int … n F …4»†† ˆ f¹: j¹j < 4»…jh…¹†j†g

(see ®gure 1). Lemma 12 provides a smooth function

¿: n f0g ! ‰0; 1Š with the property that

¿…¹† ˆ 1; if j¹j ¶ 3»…jh…¹†j†

0; if j¹j µ 2»…jh…¹†j†

»

and ¿ is non±zero elsewhere. It is easy to see that
jr¿…x†j is bounded above by a K function ¸2 of jxj out-
side the unit ball centered at 0. One can also ®nd a
smooth, strictly increasing function ¸1: ‰0; 1Š ! ¶0,
such that ¸1

…0† ˆ 0 and jr¿…x†j µ 1=¸1
…jxj† for all x

such that 0 < jxj µ 1.
Our next goal is to ®nd a K-function F whose deri-

vative F
0

is also in K such that for the function

V2: ! ¶0

given by

V2
…¹† ˆ ¿…¹†F…V0

…¹†† ‡ …1 ¡ ¿…¹††F…j¹j2† …42†

there exists some K-function ¬5 such that, for any ¹ 2
and d 2 MO, the estimate

V2
…x…½; ¹; d†† ¡ V2

…x…¼; ¹; d†† µ
…

½

¼
¬5

…jx…t; ¹; d†j† dt

…43†

holds on any interval ‰¼; ½ Š ³ ‰0; tmax
†. (Strictly speak-

ing, the de®nition (42) makes no sense on D, because
V0 is not de®ned there, however, since ¿ ² 0 on D,
this does not matter).

Once this is accomplished, the inequality

V2
…x…½; ¹; d†† ¡ V2

…x…¼; ¹; d††

µ
…

½

¼

‰¡F
0…¬…jx…t; ¹; d†j††’…jx…t; ¹; d†j†

‡ F
0…¬…4»…jh…x…t††j†††’…4»…jh…x…t††j††

‡ ¬5
…4»…jx…t†j††Š dt …44†

will hold for any ¹ and d on any subinterval
‰¼; ½ Š » ‰0; tmax

†, so that V2 will be a UOSS-Lyapunov-
like function for system (6), as in De®nition 2, with

¬3
ˆ F

0…¬…¢††’…¢† …45†

® ˆ ¬5
…4»…¢†† ‡ F

0…¬…4»…¢†††’…4»…¢†† …46†
and

¬1
ˆ min fF…j ¢ j2†; F ¯ ¬g

¬2
ˆ max fF…j ¢ j2†; F ¯ ¬g

9
=

; …47†

Indeed, pick ¹ 2 and d 2 MO and let x…¢† ˆ x…¢; ¹; d†.
Since f is locally Lipschitz in x uniformly in d, x…t† 6ˆ 0
for all t 2 ‰0; tmax

†. Consider some interval
‰¼; ½ Š » ‰0; tmax

†. The sets E
2 and D

2 are open and
E

2
[ D

2
ˆ n f0g, so, for every t 2 ‰¼; ½ Š, there will be

an open (relative to ‰¼; ½ Š) interval I
t, containing t and

such that the corresponding piece of trajectory is con-
tained entirely in at least one of the sets E

2 or D
2. By

compactness, we may pick from fI
t
g a ®nite subcover-

ing f‰¼0; ½0
†; …¼k; ½k

Š; …¼i; ½i
†; i ˆ 1; 2; . . . ; k ¡ 1g of ‰¼; ½ Š.

By shrinking the intervals if necessary, we may assume
that for every integer j such that 0 µ j µ k ¡ 2, we have

¼j‡1 < ½j < ¼j‡2, and for any j between 2 and k we have

½j¡2 < ¼j < ½j¡1. Then the interval ‰¼; ½ Š is partitioned as

¼ ˆ ¼0 < ¼1 < ½0 < ¼2 < ½1 < ¼3 < ¢ ¢ ¢

< ¼j < ½j¡1 < ¼j‡1 < ¢ ¢ ¢ < ¼k < ½k¡1 < ½k
ˆ ½

For each subinterval ‰tj; tj‡1
Š in this partition, the corre-

sponding piece of trajectory lies entirely in at least one
of the sets E

2 and D
2. Split the trajectory into these

pieces. By de®nition of V2, V2
² V1

ˆ F ¯ V0 on the
closure of E

2, so, on any piece of trajectory, which lies
entirely in E

2, the function V2 satis®es the inequality (40),
from which (44) trivially follows with ¼; ½ replaced by

¼j ; ½j respectively. On the other hand, if a piece of tra-
jectory is contained in D

2 on ‰¼j; ½j
Š, then (43) implies

V2
…x…tj

†† ¡ V2
…x…tj‡1

†† µ
…

tj‡1

tj

¬5
…4»…jh…x…t††j†† dt …48†

which in turn implies (44) (with ¼ and ½ replaced by tj

and tj‡1) , because on D
2

F
0…¬…4»…jh…x…t††j†††’…4»…jh…x…t††j††

¡F
0…¬…jx…t; ¹; d†j††’…jx…t; ¹; d†j† ¶ 0

Characterizations of detectability notions 893

Figure 1. Partitioning of the trajectory.
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Adding the estimates of type (44) we obtained for each
of the subintervals, we conclude that (44) holds on the
whole interval ‰¼; ½ Š.

To construct the function F we need, take any ¹ and
d, let x…¢† ˆ x…¢; ¹; d†, and consider the di� erence

V2
…x…½†† ¡ V2

…x…¼†† ˆ ¿…x…½††F…V0
…x…½†††

¡ ¿…x…¼††F…V0
…x…¼†††

‡ F…jx…½†j2† ¡ F…jx…¼†j2†

‡ ¿…x…¼††F…jx…¼†j2†

¡ ¿…x…½††F…jx…½†j2† …49†

Next we get upper bounds for each of the three terms
in the right side of (49). Recall that ¿…¹† ˆ 0 if

¹ 2 n F …2»†, and V0 is decreasing along x…t† when
x…t† 62 D (and hence, so is F ¯ V0 if F 2 K). Arguing as
before, we can partition the interval ‰¼; ½ Š into a disjoint
union of subintervals [k

0
‰tj; tj‡1

Š so that for each sub-
interval ‰tj; tj‡1

Š the corresponding piece of trajectory
lies entirely in at least one of the sets n F…2»† or
F …»†. If x…t† 2 n F …2»† for all t 2 ‰tj; tj‡1

Š, then

¿…x…tj‡1
††F…V0

…x…tj‡1
††† ¡ ¿…x…tj

††F…V0
…x…tj

†††

ˆ 0 ˆ
…

tj‡1

tj

F…V0
…x…t††† d¿…x…t††

On the other hand, if x…t† 2 F …»† for all t 2 ‰tj ; tj‡1
Š,

then, by Lemma 11, we get

¿…x…tj‡1
††F…V0

…x…tj‡1
††† ¡ ¿…x…tj

††F…V0
…x…tj

†††

µ
…

tj‡1

tj

F…V0
…x…t††† d¿…x…t††

Summing the estimates obtained on each subinterval, we
get, on the whole interval ‰¼; ½ Š

¿…x…½††F…V0
…x…½††† ¡ ¿…x…¼††F…V0

…x…¼†††

ˆ
Xk

jˆ0

¿…x…tj‡1
††F…V0

…x…tj‡1
††† ¡ ¿…x…tj

††F…V0
…x…tj

†††

µ
…

½

¼

F…V0
…x…t†††d ¿…x…t††

ˆ
…

½

¼

F…V0
…x…t†††‰r¿…x…t†† ¢ _xx…t†Š dt

µ
…

½

¼

F…¬…jx…t†j††jr¿…x…t††jj f …x…t†; d…t††j dt …50†

For the second term, we have

F…jx…½†j2† ¡ F…jx…¼†j2†

ˆ 2

…
½

¼

F
0…jx…t†j2†‰x…t† ¢ f …x…t†; d…t††Š dt …51†

and for the last term, we have

¿…x…¼††F…jx…¼†j2† ¡ ¿…x…½††F…jx…½†j2†

µ
…

½

¼

F…jx…t†j2† d¿…x…t†† ‡
…

½

¼

F
0…jx…t†j2† d

dt
jx…t†j2 dt

µ
…

½

¼

F…jx…t†j2†jr¿…x…t††jj f …x…t†; d…t††j dt

‡2

…
½

¼

F
0…jx…t†j2†jx…t†jj f …x…t†; d…t††j dt …52†

Let ¸3 be a K-function such that
maxd2O j f …¹; d†j µ ¸3

…j¹j†. Take any smooth function

º1: ‰0; ¬…1†Š ! ¶0 with º
0
1
…s† > 0 for all s 2 …0; ¬…1††,

such that

º1
…¬…r††
¸1

…r† < s…r†; º1
…r2†

¸1
…r† < s…r†

for some K-function s and all 0 < r µ 1. Let º2 be any
K-function such that º2

…r† µ º
0
1
…r† for all non-negative

r µ 1.
Let F…r† ˆ

„
r

0 º2
…r1

† dr1. Then F…r† µ º1
…r† for all

r µ 1, so that F…¬…r††=¸1
…r† < s…r† and F…r2†=¸1

…r† <
s…r† for all r 2 …0; 1Š. Hence, the following K bounds
can be obtained for the integrands in (50), (51)
and (52) respectively

F…¬…j¹j††jr¿…¹†jj f …¹; d†j

µ maxfs…j¹j†; F…¬…j¹j††¸2
…j¹j†g¸3

…j¹j†

2F
0…j¹j2†‰¹ ¢ f …¹; d†Š µ 2º2

…j¹j2†j¹j¸3
…j¹j†

and

F…j¹j2†jr¿…¹†jj f …¹; d†j ‡ 2F
0…j¹j2†j¹jj f …¹; d†j

µ max fs…j¹j†; F…j¹j2†¸2
…j¹j†g¸3

…j¹j† ‡ 2º2
…j¹j2†j¹j¸3

…j¹j†

The functions in the right sides of the last three
inequalities are all of class K. De®ne

¬5
…¢† :ˆ 4º2

…j ¢ j2†j ¢ j¸3
…j ¢ j†

‡ 2 max fs…j ¢ j†; F…¬…j ¢ j††¸2
…j ¢ j†; F…j ¢ j2†¸2

…j ¢ j†g

£ ¸3
…j ¢ j†

By the previous discussion, V2 is a UOSS-Lyapunov-like
function for the system (6). &

5. Proof of necessity in Theorem 2

We now show how to reduce Theorem 2 to the par-
ticular case of systems with no controls. Since this was
done in detail in Krichman et al. (2001), we will only
sketch the main steps here. Let 1 denote the closed unit
ball fu 2 : juj µ 1g in .

De®nition 8: System (13) is said to be robustly output
to state stable (ROSS) if there exists a locally

894 M. Krichman and E. D. Sontag
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Lipschitz K1-function ¢, called a stability margin,
such that the system

_xx…t† ˆ g…x…t†; d…t†† :ˆ f …x…t†; du
…t†¢…jx…t†j†; w…t†† …53†

with disturbances d :ˆ ‰du; wŠ 2
1

£ G and outputs
y ˆ h…x† is UOSS.

Note that the set 1
£ G is a compact subset of

mu
‡mw . We will denote it by O in this section.

Observe also that the dynamics g of system (53) are
locally Lipschitz in x uniformly in d , and also
g…0; d† ˆ 0 for all d 2 O.

The following lemma, linking ROSS and UIOSS
properties, was proved in Krichman et al. (2001) via a
small gain argument.

Lemma 13 (see Lemma 3.2 in Krichman et al.
2001): If a system …13† is UIOSS, then it is ROSS.

We show now how the necessity part of Theorem 2
follows from the necessity part Theorem 1.

Lemma 14 (see Lemma 3.5 in Krichman et al.
2001): Suppose a system S of type …13† is ROSS. Let
V be a UOSS-Lyapunov-like function for the system
…53† associated with S. Then V is an UIOSS-Lyapunov-
like function for S.

Proof: Let ¢ be a stability margin for S. Since V is a
UOSS-Lyapunov-lik e function for (53), inequalities (8)
and (9) hold with some ¬1, ¬2, ¬3 and ®. Pick an initi-
al state ¹, control u, and disturbance w, and write
x…t† :ˆ x…t; ¹; u; w†. Take ½ , ¼ 2 ‰0; tmax…¹; u; w††. If for
all t 2 ‰¼; ½ Š we have jx…t†j ¶ ¢

¡1…ju…t†j†, then
u…t† ˆ ¢…jx…t†j†du…t† for some du 2 M

1 , that is, x…t† is
a trajectory of the UOSS system (53) corresponding to
S, with the disturbance d ˆ ‰du; wŠ. Along this trajec-
tory, the estimate (16) for the function V is the same
as (9). So, V is a UIOSS-Lyapunov-like function for
S, with À ˆ ¢

¡1, and ¬i and ® as before. &

6. Example: transistor networks

In the following example, treated in detail in Rouche
et al. (1977), a non±smooth (yet continuous) Lyapunov
function is used to establish the global asymptotic sta-
bility of a transistorized network. The setup is sketched
next, and then we will modify the example to illustrate
how OSS and IOSS properties can be proved, assuming
that some components of the state can be observed and/
or some parameters can serve as inputs.

Consider a network of n transistors, plugged into a
linear resistive port, as on the ®gure 2. The state
x ˆ …x1; x2; :::; x2n¡1; x2n

† of the system consists of vol-
tages …x2i¡1; x2i

†; i ˆ 1; . . . ; n, on each of the transistors.
The system is described by the equations

C…x† _xx ˆ ¡TF…x† ¡ Gx ‡ b …54†

with

. a block-diagonal matrix

T ˆ diag
p1

¡r1
¡r1 q1

³ ´
; . . . ;

pn
¡rn

¡rn qn

³ ´µ ¶

where, for each integer i ˆ 1; . . . ; n, the positive
parameters pi; qi and ri describe, correspondingly,
resistors and voltage controlled current sources,
constituting the ith transistor,

. a vector function F…¢† ˆ … f1
…¢†; . . . ; f2n

…¢††T
, where

fj: ! are strictly increasing continuous func-
tions (such as exponentials, which are used in typi-
cal transistor models), each pair … f2i¡1; f2i

† of
which describes the ith transistor,

. a diagonal matrix

C…x† ˆ diag ‰C1
…x1

†; . . . ; C2n
…x2n

†Š

with continuous functions Cj : ! , such that
there exists a positive " satisfying

Cj
…v† ¶ "

for all v and all positive integers j µ 2n. For each
positive integer i µ n, the pair …C2i¡1; C2i

†
describes the capacitors in the ith transistor (see
®gure 3).
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Figure 2. Transistor network.
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. a 2n £ 2n constant matrix G ˆ fgj;k
g2n

j;kˆ1 and a 2n-
vector b, describing the resistive n-port.

Coordinatewise equations of the system will then
read as follows for 1 µ i µ n

_xx2i¡1
ˆ L2i¡1

…x† :ˆ

Á

¡ pi f2i¡1
…x2i¡1

† ‡ ri f2i
…x2i

†

¡
X2n

jˆ1

gj;2i¡1xj
‡ b2i¡1

†
!

=C2i¡1
…x2i¡1

†

_xx2i
ˆ L2i

…x† :ˆ
Á

ri f2i¡1
…x2i¡1

† ¡ qi f2i
…x2i

†

¡
X2n

jˆ1

gj;2ixj
‡ b2i

!

=C2i
…x2i

†

Suppose there exists an equilibrium point ¹ ˆ
…¹1; ¹2; . . . ; ¹2n

†, i.e. a point satisfying

¡TF…¹† ¡ G¹ ‡ b ˆ 0 …55†

(Generally speaking, such an equilibrium point is not
guaranteed to exist.) We are interested in exploring the
stability of the system with respect to ¹.

Let

Vj
…xj

† ˆ

…

xj

¹j

Cj
…v† dv

; 1 µ j µ 2n

and consider

V…x† ˆ
X2n

jˆ1

djVj
…xj

† …56†

where dj are some arbitrary positive numbers (we will
later decide how to choose them).

By routine computations it can be shown that

V…x† ¶ "
X2n

jˆ1

dj
jxi

¡ ¹i
j …57†

so that V is indeed proper and positive de®nite. Notice
also that V is not di� erentiable at any x such that xj

ˆ ¹j

for some j 2 f1; 2; . . . ; 2ng, although (see Rouche et al.
(1977) for an explicit calculation) the directional deriva-
tive along L does exist for all x and the following dis-
sipation inequality holds for V

LLV…x† µ ¡
Xn

iˆ1

……d2i¡1pi
¡ d2iri

†

£ j f2i¡1
…x2i¡1

† ¡ f2i¡1
…¹2i¡1

†j

‡ …¡d2i¡1ri
‡ d2iqi

†j f2i
…x2i

† ¡ f2i
…¹2i

†j†

¡
X2n

jˆ1

djgj; j
¡

X

1µkµ2n
k6ˆj

dk
jgk;j

j
0

@

1

Ajxj
¡ ¹j

j …58†

Recall that a matrix A 2 n£n
is said to be column-

sum dominant if

ajj
¡

X

i 6ˆj

jaij
j > 0

for all j ˆ 1; 2; . . . ; n. It is easy to see from (58) that in
order to establish the negative-de®niteness of LLV (and
thus to prove the global asymptotic stability of the tran-
sistor network with respect to the equilibrium ¹), it is
su� cient to ®nd positive numbers dj, 1 µ j µ 2n, such
that the matrices ¢

T
:ˆ diag ‰d1; . . . ; d2n

ŠT and
¢

G
:ˆ diag ‰d1; . . . ; d2n

ŠG are column sum dominant.
This fact can be seen as a version of Sandberg’s theorem
(cf. Sandberg 1969).

Now suppose that, for some given T , F , and G, it is
in fact impossible to ®nd coe� cients dj to establish the
desired global asymptotic stability property, that is, the
matrices ¢

T and ¢
G cannot be made column sum domi-

nant with any choice of D (this will happen, for example,
if the matrix G is singular). However, assume that it is
possible to ®nd a set of d1; . . . ; d2n¡2 so that ¢

T
2n¡2 and

¢
G
2n¡2, the upper left …2n ¡ 2† £ …2n ¡ 2† minors of ¢

T

and ¢
G, are column sum dominant. Suppose also that

the voltages x2n¡2 and x2n on the nth transistor can be
observed, that is, in our notation, take

y1
ˆ h1

…x† ˆ x2n¡1
¡ ¹2n¡1

y2
ˆ h2

…x† ˆ x2n
¡ ¹2n

Since ¢
G
2n¡2 is column-sum dominant, we can ®nd posi-

tive d2n¡1 and d2n small enough so that

djgj; j
¡

X

1µkµ2n
k6ˆj

dk
jgk; j

j > 0 8j µ 2n ¡ 2 …59†
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i i

xx

2i-1ir  f      (x     )2i-1r  f    (x    )i

B

2i2i

p  f     (x     )
i 2i-1 2i-1

q f   (x   )
2i 2ii

2i2i-1

2i2i-1

C     (x     )
2i-1 2i-1

C   (x   )
2i 2i

CE

Figure 3. The ith transistor.
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Let ~®® be a K1-function, majorizing deviations of f2n¡1

from its value at ¹2n¡1 and deviations of f2n from its
value at ¹2n

~®®…jx2n¡1
¡ ¹2n¡1

j† ¶ j f2n¡1
…x2n¡1

† ¡ f2n¡1
…¹2n¡1

†j

and

~®®…jx2n
¡ ¹2n

j† ¶ j f2n
…x2n

† ¡ f2n
…¹2n

†j

(such ~®® is possible to ®nd by the continuity of fj). Now
de®ne V as in (56). Then V is proper because of (57),
and, chopping o� the last two terms in each of the sum-
mations in (58), we obtain the following bounds on the
increments of V

LLV…x†

µ ¡
Xn¡1

iˆ1

……d2i¡1pi
¡ d2iri

†j f2i¡1
…x2i¡1

† ¡ f2i¡1
…¹2i¡1

†j

‡…¡d2i¡1ri
‡ d2iqi

†j f2i
…x2i

† ¡ f2i
…¹2i

†j†

¡
X2n¡2

jˆ1

djgj;j
¡

X

1µkµ2n
k6ˆj

dk
jgk; j

j
0

@

1

Ajxj
¡ ¹j

j

¡jx2n¡1
¡ ¹2n¡1

j ¡ jx2n
¡ ¹2n

j

‡jx2n¡1
¡ ¹2n¡1

j ‡ jx2n
¡ ¹2n

j …60†

‡…jd2n¡1pn
j ‡ jd2nrn

j†j f2n¡1
…x2n¡1

† ¡ f2n¡1
…¹2n¡1

†j

…61†

‡…jd2n¡1rn
j ‡ jd2nqn

j†j f2n
…x2n

† ¡ f2n
…¹2n

†j† …62†

‡
X2n

kˆ1

dk
jgk;2n¡1

j
Á !

jx2n¡1
¡ ¹2n¡1

j …63†

‡
X2n

kˆ1

dk
jgk;2n

j
Á !

jx2n
¡ ¹2n

j …64†

The terms (60), (61), (62), (63), and (64), which account
for the voltages on the n-th transistor, can be bounded
above by

…jd2n¡1pn
j ‡ jd2nrn

j ‡ jd2n¡1rn
j ‡ jd2nqn

j†~®®…jyj†

‡2
X2n

kˆ1

dk
jgk;2n¡1

j ‡
X2n

kˆ1

dk
jgk;2n

j ‡ 1

Á !
jyj

Take the functions ¬3
…¢† and ¼2

…¢† such that

¬3
…s† µ s min 1; min

1µ jµ2n¡2
djgj; j

¡
X

1µkµ2n
k 6ˆj

dk
jgk; j

j
0

@

1

A

0

@

1

A

0

@

1

A

…65†

¼2
…s† ¶ …jd2n¡1pn

j ‡ jd2nrn
j ‡ jd2n¡1rn

j ‡ jd2nqn
j†~®®…s†

‡ 2
X2n

kˆ1

dk
jgk;2n¡1

j ‡
X2n

kˆ1

dk
jgk;2n

j ‡ 1

Á !

s …66†

so that V satis®es

LLV…x† µ ¡¬3
…jx ¡ ¹j† ‡ ¼2

…jyj†

Thus, V is a non±di� erentiable OSS-Lyapunov-like
function for the transistor network with the voltages
on the last transistor serving as an output. Thus, we
arrive at the following result (Sandberg’s Theorem for
the output-to-state stability of a transistor network).

Theorem 3: Suppose a transistor network S, governed
by equation …54†, has an equilibrium at a point ¹. Sup-
pose furthermore that measurements of the voltages on
the last k transistors are available, that is, for all
i ˆ 1; 2; . . . ; k

h2i¡1
…x† ˆ x2…n¡k‡i†¡1

¡ ¹2…n¡k‡i†¡1

h2i
…x† ˆ x2…n¡k‡i† ¡ ¹2…n¡k‡i†

Then S will be OSS with respect to output h if there exist
positive coe� cients d1; d2; . . . ; d2…n¡k† so that ¢

T
2…n¡k† and

¢
G
2…n¡k† are column-sum dominant.

Remark 3: The argument above proves this theorem
for the case of 1 observed transistor. Similar argu-
ments will work for any number k (k < n) of observed
tranistors.

Remark 4: If we further assume that the parameters
rn; pn and qn can serve as controls, we can use the
function V to show that the system is in fact IOSS
with respect to these controls. Indeed, let

u1 :ˆ pn

u2 :ˆ rn

u3 :ˆ qn

and ®nd a K-function ¼1 such that

…jd2n¡1
jju1

j ‡ jd2n
jju2

j ‡ jd2n¡1
jju2

j ‡ jd2n
jju3

j†2
=2

µ ¼1
…juj†

Then

…jd2n¡1pn
j ‡ jd2nrn

j ‡ jd2n¡1rn
j ‡ jd2nqn

j†~®®…s†

µ ¼1
…juj† ‡ ~®®…s†2

=2

so that

LLV…x† µ ¡¬3
…jx ¡ ¹j† ‡ ¼1

…juj† ‡ ¼2
…jyj†

with ¼1 as above

Characterizations of detectability notions 897

D
ow

nl
oa

de
d 

by
 [

R
ut

ge
rs

 U
ni

ve
rs

ity
] 

at
 0

9:
36

 0
7 

O
ct

ob
er

 2
01

4 



¼2
…s† :ˆ …~®®…s††2

=2

‡ 2
X2n

kˆ1

dk
jgk;2n¡1

j ‡
X2n

kˆ1

dk
jgk;2n

j ‡ 1

Á !

s

and ¬3 as in (65).

6.1. Numerical example

Consider a network with two transistors with the
following coe� cients:

. p1
ˆ q1

ˆ p2
ˆ q2

ˆ 1;

. r1
ˆ r2

ˆ 1=2;

. b ˆ …1=2; 1=2; 1=2; 1=2†,

. Ci
…s† ² 1; i ˆ 1; 2; 3; 4,

. G ˆ
11 ¡10 10 ¡11

¡10 11 ¡11 10
10 ¡11 11 ¡10

¡11 10 ¡10 11

2

664

3

775,

. f1
…s† ˆ f2

…s† ˆ f3
…s† ˆ f4

…s† ˆ e
s=10

Thus, the equations of the system are

_xx1
ˆ ¡e

x1=10 ‡ e
x2=10

=2

¡ …11x1
¡ 10x2

‡ 10x3
¡ 11x4

† ‡ 1=2

_xx2
ˆ ex1=10

=2 ¡ ex2=10

¡ …¡10x1
‡ 11x2

¡ 11x3
‡ 10x4

† ‡ 1=2

_xx3
ˆ ¡e

x3=10 ‡ e
x4=10

=2

¡ …10x1
¡ 11x2

‡ 11x3
¡ 10x4

† ‡ 1=2

_xx4
ˆ e

x3=10
=2 ¡ e

x4=10

¡ …¡11x1
‡ 10x2

¡ 10x3
‡ 11x4

† ‡ 1=2

Note that, while the matrix T is column-sum dominant,
the matrix G is singular, and thus ¢

G
cannot be made

column-sum dominant with any choice of D.
The system has a equilibrium at 0. Since ¢

G
cannot

me made column-sum dominant with any choice of D,
we are unable to apply the `classical’ Sandberg’s theo-
rem to establish the global asymptotic stability of this
system. However, if we are able to measure the voltages
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Figure 4. x1
…0† ˆ 1, x2

…0† ˆ 15, x3
…0† ˆ x4

…0† ˆ 0, 0 µ t µ 0:5. Large unobserved component decays until bounded by the
output gain.
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x3 and x4 on the second transistor, we can use Theorem 3
to show that the system is OSS with respect to the out-
puts y1 :ˆ x3 and y2 :ˆ x4. Indeed, the upper left minor

G2
ˆ 11 ¡10

¡10 11

µ ¶

of G, is column-sum dominant, and so is

T2
ˆ 1 ¡1=2

¡1=2 1

µ ¶

Let D ˆ diag ‰1; 1; 1=100; 1=100Š (notice that (59) holds
for G under this de®nition of D). De®ne a Lyapunov
function V as in (56), i.e.

V…x† ˆ jx1
j ‡ jx2

j ‡ …jx3
j ‡ jx4

j†=100

To show that V is an OSS-Lyapunov function for
our network, we next calculate the gains for its dissipa-
tion inequality.

According to (65), the dissipation rate ¬3
…s† must

minorize

11 ¡ 10 ¡ 10 ‡ 11

100

³ ´
s ¶ s

2

so, we can take

¬3
…s† :ˆ s=2

The output gain ¼2
…s† can be computed according

to (66), majorizing

1

100
‡ 1

200
‡ 1

200
‡ 1

100

³ ´
…es=10 ¡ 1†

‡ 2…10 ‡ 11 ‡ 21=100 ‡ 1†s

thus we can take

¼2
…s† :ˆ …es=10 ¡ 1† ‡ 100s

According to our predictions, if jx1
…0†j and jx2

…0†j
(unobserved components) are large enough, and jx3

…0†j
and jx4

…0†j (the outputs) are small enough, the
Lyapunov function must decrease along a trajectory as
long as
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Figure 5. x1…0† ˆ 1, x2…0† ˆ 15, x3…0† ˆ x4…0† ˆ 0, 0 µ t µ 15. Long term behaviour.
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¬3
…jxj† ¶ ¼2

…jyj† …67†

The following simulation shows the behaviour of the
system when the initial voltages on the ®rst transistor
are x1

…0† ˆ 1 and x2
…0† ˆ 15, and the second, `observed’

transistor starts with zero voltage (x3
…0† ˆ x4

…0† ˆ 0).
Since (67) holds in the beginning, V…x…t†† must decrease.
As expected, the largest voltage x2 on the ®rst, unob-
served, transistor is steadily decreasing, and x1 decreases
after a small overshoot. The observed states x3 and x4

increase until they dominate x1 and x2 in magnitude.
The plots in ®gures 4 and 5 show the overshoot and
long-term behaviour of the system.
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The views expressed are those of the author(s) and
do not re¯ect the o� cial policy or position of The
MITRE Corporation.

References
Angeli, D., Ingalls, B., Sontag, E. D., and Wang, Y.,

2001, Asymptotic characterizations of IOSS. Proceedings
of the IEEE Conference on Decision and Control, Orlando,
FL, December (IEEE Publications), pp. 881±886.

Boothby, W. M., 1986, An Introduction to Di� erentiable
Manifolds and Riemannian Geometry, 2nd edn (New York:
Academic Press).

Clarke, F. H., Ledyaev, Yu. S., Stern, R., and Wolensky,
P., 1998, Nonsmooth Analysis and Control Theory (New
York: Springer-Verlag).

Jiang, Z.-P., Teel, A., and Praly, L., 1994, Small-gain the-
orem for ISS systems and applications. Mathematical
Control, Signals, and Systems, 7, 95±120.

Krener, A. J., 1999, A Lyapunov theory of non-linear obser-
vers. In Stochastic Analysis, Control, Optimization and
Applications (Boston, MA: BirkhaÈ user Boston), pp. 409±
420.

Krichman. M., and Sontag, E. D., 1998, A version of a
converse Lyapunov theorem for input±output to state stabi-
lity. Proceedings of the IEEE Conference on Decision and
Control, Tampa, FL, USA, pp. 4121±4126.

Krichman, M., Sontag, E. D., and Wang, Y., 2001, Input-
output-to-state stability, SIAM Journal of Control and
Optimization, 39, 1874±1928.

KrsticÂ , M., Kanellakopoulos, I., and KokotovicÂ , P. V.,

1995, Nonlinear and Adaptive Control Design (New York:
John Wiley).

Leonessa, A., Haddad, W. M., Chellaboina, V. S., 2001,
Hierarchical Nonlinear Switching Control Design with
Applications to Propulsion Systems, Lecture Notes in
Control and Information Sciences Series, Vol. 255 (Berlin:
Springer-Verlag).

Liberzon, D., Morse, A. S., and Sontag, E. D., 2002,
Output±input stability and minimum-phase non-linear
systems. IEEE Transactions on Automatic Control, 47,
422±436.

Lu, W. M., 1995, A state-space approach to parameterization
of stabilizing controllers for non-linear systems. IEEE
Transactions on Automatic Control, 40, 1576±1588.

Morse, A. S., 1995, Control using logic-based switching. In
A. Isidori (Ed.) Trends in Control: A European Perspective
(London: Springer), pp. 69±114.

Rouche, N., Habets, P., and Laloy, M., 1977, Stability
Theory by Liapunov’s Direct Method (Berlin: Springer-
Verlag).

Sandberg, I. W., 1969, Some theorems on the dynamic
response of non-linear transistor networks. Bell Systems
Technical Journal, 48, 35±54.

Sontag, E. D., 1989 a, Smooth stabilization implies coprime
factorization. IEEE Transactions on Automatic Control, 34,
435±443.

Sontag, E. D., 1989 b, Some connections between stabiliza-
tion and factorization. Proceedings of the IEEE Conference
on Decision and Control, Tampa, FL, USA, pp. 990±995.

Sontag, E. D., 1998 a, Comments on integral variants of
input-to-state stability. Systems Control Letters, 34, 93±100.

Sontag, E. D., 1998 b, Mathematical Control Theory:
Deterministic Finite Dimensional Systems, 2nd edn (New
York: Springer-Verlag).

Sontag, E. D., and Wang, Y., 1995, On characterization of
the input-to-state stability property, Systems Control
Letters, 24, 351±359.

Sontag, E. D., and Wang, Y., 1996, Detectability of non-
linear systems. Proceedings of the Conference on
Information Science and Systems (CISS 96), Princeton,
NJ, USA, pp. 1031±1036.

Sontag, E. D., and Wang, Y., 1997, Output-to-state stability
and detectability of non-linear systems, Systems Control
Letters, 29, 279±290.

900 M. Krichman and E. D. Sontag

D
ow

nl
oa

de
d 

by
 [

R
ut

ge
rs

 U
ni

ve
rs

ity
] 

at
 0

9:
36

 0
7 

O
ct

ob
er

 2
01

4 


