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1. Introduction 

In a recent paper [3], Helmke showed how results of Donaldson [1] in Yang-Mills theory are closely 
related to system theoretic notions, in particular to what are sometimes called 'multirate systems'. He then 
went on to provide a number of results on the topology of the space of framed instantons and of a certain 
space in which they can be naturally embedded. In this note we simply remark that it is also possible to 
view in a natural way these same objects as bilinear systems, or equivalently, via minimal representations 
of matrix power series. An advantage of this alternative interpretation is that the machinery of Hankel 
matrices can then be applied to understand the structure of the corresponding moduli space. In particular, 
we obtain one natural representation of this quotient space as a quasi-affine variety. For  motivation and 
for a discussion of the origin of the problem being considered, see [3] and the references given there. 

2. Framed instantons 

We shall use the conclusion of [3], Theorem 2.2, as our starting point. Thus we shall be concerned with 
the set ~t '(n, m) (or, more precisely, M(SU(m),  n) in [3]) obtained as follows for all positive integers n and 
m.  

First let ~ ( n , m )  be the set of all quadruples 

(A1, A2, B,  C)  ~ C nXn X C nXn X C nXm X C mXn 

that satisfy the following three conditions: 
(1) A2A 1 =AxA 2 + BC, 
(2) rank ~(A1, A2, B, n - 1) = n, and 

# 

(3) rank ~ ( A ; ,  A;, C ,n - 1) = n. 
Here prime indicates transpose; for each k and all matrices X1, X 2 and Y of sizes n × n, n × n, and 

n × m respectively, the expression ~ ( X  1, X 2, Y, k) stands for the block matrix 

[ r ,  xlY, x2Y, x}Y, x, x2 r  ... . .  xor,  .... x r]. 
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Each block has size n X m. There a r e  2 k + l  - 1 such blocks indexed by the possible sequences a of l 's  and 
2's of length at most k (including the empty sequence h) ordered lexicographically, and 

,, 

for each ot = (a 1 . . . . .  al). Note that the columns of ~ ( X  1, X 2, Y, n - 1) span the smallest subspace of C" 
which contains the columns of Y and is both X 1- and X2-invariant; thus property 2 is equivalent to the 
rank of ~ ( A  1, A 2, B, j )  being n for any j > n, and similarly for property 3. 

Now consider the following natural algebraic action of GL(n,  C) on the variety N(n ,  m), 

(,41, A2, B, C) (t-'Air, r-lA2r, r-lB, cr ) .  

Then .,g(n, m) is defined topologically as the quotient space of ~ ( n ,  m) under this action. We shall show 
how, as a quotient space of a variety under an algebraic group, hence in particular also as a topological 
space, ~¢(n,  m) is isomorphic to a subset of C k (k an integer depending on n, m) defined by certain 
polynomial equalities and inequalities, that is, a quasi-affine variety, and more interestingly, how this 
follows from the facts in the representation theory of noncommutative power series. The study of the latter 
was initiated by Schiatzenberger and Fliess, who developed the foundational results. Expositions can be 
found in [2] and [4], [5]; here we follow and refine the material in [7], Section 19, and [8]. 

A system-theoretic interpretation of the set ~ ( n ,  m) is, modifying Fliess [6], via continuous-time (or 
discrete-time) bilinear systems 

Yc(t) f ( A  l + u ( t ) A 2 ) x ( t  )+ Bo(t) ,  x(O)=O, 

y ( t ) = C x ( t ) ,  

where the complex state x is n-dimensional, and there are m + 1 independent inputs u, o = (01 . . . . .  o,,) 
and an m-dimensional output. In the case of [6], there is no independent v-control, but the initial state is 
not necessarily zero. Thus we are really looking at the somewhat more general class of state-affine systems 
introduced in [7], Section 20. 

Conditions 2 and 3 in the definition of ~ ( n ,  m) correspond to span reachability and observability of the 
system. The  latter is the usual concept, and the former means that there is no proper subspace of the state 
space C" which contains the set reachable from the origin. 

Condition 1 appears not very natural in this context, but becomes easy to handle in an input /output  
sense. The input /output  behavior of such systems is described uniquely by the set of impuls-response 
coefficient matrices, each m × m: 

H~ = CA~IA~2 . . .  A~IB (2.1) 

where a is a sequence of l 's  and 2's, that is, an element of the free monoid (of 'words'  in the 'letters' 1,2) 
W--  (1,2}*. Note that condition 1 in the definition of N(n ,  m) implies that 

H~21~ = H~,12fl + H,H¢ for all words a, fl ~ W. (2.2) 

Conversely, under the span rechability and observability properties 2 and 3, property (2.2) implies 
property 1, as we remark later. The impulse response coefficients are invariant under the change-of-basis 
action of GL(n,C) used in obtaining the quotient .,¢[(n,m), and the canonical realization theory of state 
affine systems tells us that they are complete invariants, in a precise sense to be reviewed below. In 
particular, by partial rezliTation theory, we can embed the space .,¢t(n,m) in a truncated space of 
impulse-response coefficient matrices. Moreover, property (2.2) will in fact tell us that we can restrict 
attention to a much smaller space of rational power series in two commutative variables, corresponding to 
what in  image processing are called 'separable' 2D recursive filters. All these interpretations are of course 
used only fo r  motivation; the results to follow are purely algebraic. 
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3. Impulse-response matrices 

From now on, fix n, m and let B := ..~(n,m) and M :=¢¢t'(n,m). Let N := m2(2 2"+1 - 1). We view C N 
as the set of all sequences 9 f  of m × m matrices 

(Hx,  H1, H 2 . . . . .  H ,  . . . . .  /-/22. ) 

indexed lexicographically by the words in ~ of length at most  2n. To any such 9~' and positive integers i, 
j with + i + j  < 2n, we associate the (generalized) Hankel or behavior matrix Hankel(oVF, i , j ) .  The latter is 
defined as follows. It  is a block matrix, with blocks of size m x m; the block rows and columns are indexed 
respectively by the words in ~ of length at most i and j respectively, again ordered lexicographically. I n  
block position (a, fl), we place the entry H,¢,  where the concatenation aft of 

a = ( a ~ , . . . ,  a~) and f l=( f l a  . . . .  , fit) 

is the sequence 

(~  . . . . .  ~ , ,  ~1 . . . . .  fl~) 

(in the case in which a = X, the empty word, this is just fl, and similarly if fl = X). Thus Hankel(9~ ' , i , j )  
has the pattern 

~ ~ 2  ~ ~ 2  - . .  ~2J 
~1  ~ 2  ~ ~a2 - - .  ~ , ÷ '  

/-/2, H2,1 n~,., H2,11 H2,12 ... n2,- 

Given an element 9~ of C N, we shall say that 9~ is of degree n iff the following condition holds: 

rank H a n k e l ( g ,  n - 1, n - 1) = rank Hankel(,g#, n, n)  = n. (3.1) 

Note  that, since rank = n means that an n x n minor must be nonzero and all minors of size n + 1 must 
vanish, the set of all 9~ of degree n can be seen as a Zariski-open subset of the algebraic set consisting of 
all ~ for which Hankel (gf ' ,n ,n)  has rank at most n. Thus the set of 9~ of degree n is a locally closed 
subset of C iv, that is, a quasi-affine subvariety. Finally, we consider the subset ~/" of C N consisting of all 
the sequences 9~' of degree n for which the condition (2.2) holds for all words al2f l  of length at most 2n. 
This set is again a quasi-affine variety, because it is obtained by adding the quadratic equations (2.2) to the 
above minor conditions. 

Given an element ~ = (A 1, A 2, B, C) ~ 8 ,  the formula (2.1) allows us to define an element y(~:) ~ C A'. 
Since for each i and j it holds that 

Hankel(~,(~) ,  i, j ) = ~ ( A [ ,  A'2, C' ,  i ) ' ~ ( A  1, A 2, B, j ) ,  

y(N) has degree n. Further, A2A 1 = A1A 2 + BC implies that 

CA,A2A~A#B -~ CA,A~A2ABB + CA,BCAflB 

for all words a, fl, so that -/(2:) is in fact in ~ .  
Conversely, given a sequence 9~'~ ~/ ' ,  we now show how to build an element 2: ~ ~ that maps into it. 

First we consider the n-dimensional vector subspace f f  of C "(2"-~) spanned by the columns of 
Hankel(gff, n - 1, n). Because of the assumption that ./~ has degree n, :~ is spanned also by  the columns 
of the submatrix Hankel(af ' ,  n - 1, n - 1). 

Let At, /~ = 1,2, be the linear operator defined on the generators of ~r as follows. In  general, let v~j 
(respectively, g¢,,.) be the i-th column (1 < i <  m) of the block of columns of H a n k e l ( ~ , : , n - 4 , : n )  
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(respectively, Hankel(9~, n, n)) indexed by/3. Then, if/3 has length at most n - 1 (so that v/~.; is a column 
of Hankel(9~, n - 1, n - 1)), let 

altv[j.i := Vllfl, i . 

Since these generators do not necessarily form a basis, it must be checked that any relation among them 
is preserved by A, .  Assume that there are complex numbers c,. i such that 

Ec,.,o,,,= o, (3.2) 

where the sum is taken over i = 1 . . . . .  m and over all words ,r of length < n. We wish to show that then it 
must also hold that 

E c,,io,,.i = O. (3.3) 

letting ~/be the column vector whose entries are the c , j ' s  in an appropriate order, equation (3.2) can be 
restated as 

Hankel(9~,  n - 1, n - 1)71 = 0. (3.4) 

Write Hankel(9~, n, n - 1) in partitioned form 

Hankel(9~,  n, n - 1 ) =  (Hanke l ( . ,~ ,  Yn-1 ,  n -  1 ) ) .  

Because of condition (3.1), the rows of Y are linearly dependent on those of Hankel(9~', n - 1, n - 1), so 
there is a matrix X such that 

r = X Hankel(9~,  n - 1, n - 1). (3.5) 

It  follows from equations (3.4) and (3.5) that Y~ = 0, so that also Hankel(9~,  n, n - 1)7/= 0. Thus (3.2) 
holds also for the longer columns, 

Ec,./O,.i = 0. (3.6) 

In terms of the entries of the 6,,;'s, (3.6) means that 

Ec, . ,H~, , , - - -  0 (3.7) 

for all a of length < n, where Haa denotes the i-th column of the matrix H a. Now consider the desired 
relation (3.3). In terms of block entries, it is required that 

E c, . iH, , , . i  = O (3.8) 

for all a of length at most n - 1 (rather than n). Since for such a, the word ag  has length at most n, (3.8) 
is a particular case of the known equalities (3.7). We conclude that the mappings A t are indeed 
well-defined. 

We now complete the construction of ~ by  defining B and C. Let B : C "  ~ ,  e ~  vv, i (e;---i-th 
canonical basis element) and let C : ~ r ~  C "  be the projection on the first m components.  Choosing any 
basis for ~ ,  there results a quadruple 

~ = ( A  1, A 2, B , C )  

that satisfies properties 2 and 3. Assume for a moment  that we proved that ~/(~) = ~ .  We now show that 
then property 1 is satisfied too. More generally, we wish to establish that A 2 A  1 = A~A 2 + B C  follows i f  
properties 2 and 3 hold and property (2.2) holds for all a, /3 of length at most n - 1. Letting 

L := . [A  2, Aa] = A 2 A  1 - A I A  2, N ~ = B C ,  
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it is enough to establish that 

C,'I , ,LA I3 B = C A ~ N A  Ij B (3.9) 

for all such ~x, fl implies that L -- N. 
But the equation (3.9) implies that 

t 
~(A~ ,  Ai ,  C ' ,  n - 1 ) ' L ~ ( A , ,  A2, B, n - 1 ) = ~ ( A ~ ,  A 2, C ' ,  n - 1 ) ' N ~ ( A 1 ,  A2, B, n - 1 ) .  

It  follows from the full rank assumptions 2 and 3 that indeed L = N. Thus Z ~ ~ ,  as desired. 
We now establish the claim that ) , ( Z ) = 9 ~ .  Since 

rank Hankel(~,~, n - 1, n) = r a n k  Hanke l ( J t ' ,  n - 1, n - 1), 

it follows that the j - th  column of the block with index fl, length of f l - - n ,  is in the span of those with 
shorter indexes. Thus for each such fl, j there are complex numbers c~ ' / such  that 

Y ' c t Jdv  , (3.10) O B , j =  ~.~ ~, i  "r,i 

the sum over all the indices i = 1 . . . . .  m and all the words ~- of length less than n. We now de f ine  elements 
Vo,j for o of length larger than n in the following way. Let (~ be any such word, and factor it as Off, with fl 
of length n. Now use the formula 

X- 'cadv  , (3.11) Vofl , j  = ll.a "t,i 0 . , i  

inductively on the length of 0. We claim that A~Vo,j = V~o,j for each/~ = 1,2 and each a, j .  This is true by 
definition of the linear maps A~ when the length of a is at most n. For other a it follows by induction on 0 
when applying A~ to both sides of (3.11). When restricted to each block of m rows, equation (3.10) says 
that 

H o . .  i = E c]'/Ho,,, (3.12) 

(H~, i denotes the i-th column of Ha) for each fl of length n and each 0 of length at most n. By 
construction we know that 

CVo,j = Ho , j  

for all a of length at most n. We claim that this is true for a of length up to 2n. Decomposing o = Off as 
above, the claim follows by induction on the length of 0: 

Cvo#.j = CAovp.j = E c~.'/CAov.~.i = E c#..;/Cvo,., = E c#,jH,.~.i = Ho#.j. 

the last two steps by induction and by (3.12) respectively. This establishes the claim. From this it follows 
that 

( C A a B  ) i = CA~,vx, i = Co,,,i = H a d  

and hence that h(~)=,9~ ' ,  as desired. 
From standard realization theory (see e.g., [7], Section 19) the map "r is one-to-one on ~ up to the 

above action of GL(n,  C) (elements of ~ are 'minimal '  or 'canonical '  realizations of ~P). We have 
therefore proved that "r induces a bijection between ,At' and j tf .  We now establish that (,/i f ,  3') is a 
quotient in the category of varieties as well. 

Consider any variety ~ and a morphism f :  ~ - ~  cff constant on orbits. There is a unique map 

g : ~4f~ cd 

so that g * "y - - f ,  and the problem is to show that this map is a morphism. To show this, it is sufficient to 
cover ,A f by Zariski-open sets in such a way that the restriction of g to each such open is a morphism. For 
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each possible n-minor of Hankel(M', n - 1, n - 1), consider the open set where this is nonzero. In each 
such set, the ~ constructed above can be obtained by rational functions of the entries of the matrices o~#~; 
this is basically Cramer's rule, see [8], realization algorithm 2.8. Let h be the morphism on the 
corresponding open set which assigns E to the given .g'. Then, 

g = f  *h 

on this open set, which is a morphism as desired. We summarize the above discussion with: 

Theorem 3.1. The mapping y: ~ ~ Jg" is a quotient of ~ under the action of GL(n, C). 

4. Some simplifications 

The space C N in which the quasi-affine variety ~ was defined is of unnecessarily high dimension. 
Indeed, it is also possible to build a quotient as follows. Let K'.= m2("~1). We view elements of C r as 
matrix polynomials 

L(x, y)= E Li,// ,  
i+j<n 

by listing all coefficient matrices in any fixed order. Now, given any ~ satisfying (2.2), it is possible to 
'straighten' each word fl into a commutative product li2 j, with i (respectively, j )  being the number of l 's  
(respectively, 2's) appearing in r ,  modulo words of smaller length. More precisely, there exist for all words 
fl of length at most 2n, polynomials Pa in K variables such that, for each M'~ Jg', 

up =,,e(ae(x, y)), 

where M'(x, y) denotes the matrix polynomial with L,. j = H1,2~. 
It follows that the quasi-affine subvariety J~/" of C r consisting of all ( . .~(x, y), ~,~:~.W'} is 

isomorphic to IV'. 
For any M'(x, y) G.W", consider the corresponding M' and pick any Z with ,/(~) =M'.  We may now 

define 

/-/= -'= CA~B 

for all words ct ~ ~q/'. The corresponding sequence of all possible such H~ is a rational multiset or 
noncommutative power series, in the sense of automata theory (see [2,4,5,7,8]). Its restriction (Hadamard 
product) to the set of indices of the type 1;2 j is hence also rational as a noncommutative power series. 
Thus the matrix power series in commuting variables 

i,j=O 

is recognizable ([4], page 1.2.26). Recall that a recognizable matrix power series can be represented as an 
(m × m) matrix of rational functions 

y) 
ql(x)q2(Y)  ' 

and that these appear in image processing; see for instance [9], Section IV. It follows that the quotient 
space ~t' can be naturally represented in terms of a set of recognizable matrix power series. It might be of 
some interest to understand this representation in some detail. 
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