Srochasnes, 1984, Vol 11, pp 159 172
QOO AL RE 1104-01 50 S1R SO0
¢« Gordon and Rreach Saience Publishers Ine . 1984

Ponted v Gireat Britun

Characterizing Innovations
Realizations for Random
Processes

CARLA A. SCHWARTZt and BRADLEY W. DICKINSONt

Department of Electrical Engineering and Computer Science, Princeton
University, Princeton, NJ 08544

and

EDUARDO D. SONTAG¢

Department of Mathematics, Rutgers University, New Brunswick, NJ
08903

(Accepted for publication August 4 1983)

In this paper we are concerned with the theory of second order (linear) innovations
for discrete random processes. We show that of existence of a finite dimensional linear
filter realizing the mapping from a discrete random process {y:}% o to its innovations
is equivalent to a certain semiseparable structure of the covariance sequence of the
process. We also show that existence of a finite dimensional realization (linear or
nonlinear) of the mapping from a process to its innovations implies that the process
have this semiseparable covariance sequence property. In particular, for a stationary
random process, the spectral density function must be rational.

1. INTRODUCTION

The innovations filter for a discrete-time (m-vector) random process,
{y,}" o is a causal whitening filter which performs the Gram-
Schmidt orthogonalization of the process, {y,}iZo producing an
uncorrelated process, {v,}®,, such that the two processes generate
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the nested set of same linear spaces; I.e.

spiveli-o=sp{vili-0. 520, (N
}\'llcrc sp{-! denotes closed linear span of the components. The
input/output maps of innovations filters are intrinsically linear, being
dctermined by the orthogonality principle of linear least squares
gs(imution [1, chapter 3]. However, even for a stationary process, the
input/output map is generally time varying.

We assume that {y,}* . is a full rank, zero mean, second order
process so that R, ;= E[y,;] is finite for all nonnegative integers k
and I Informally, we may regard the matrix R=[R; ;]7;-0 as a
positive definite symmetric linear operator. However, since R may be
an unbounded operator, specification of its domain is needed to
make R well defined [2]. Analogously, it is necessary to introduce a
nondegeneracy condition on the covariance in order for the
innovations filter for the process to be well defined. Following
Rissanen and Barbosa [3] we assume that for each N, there exists
a positive constant o, independent of N, such that aly.ySRy=
[R,;1¥; o This is equivalent to existence of a constant >0 such
that I <R. in the sense that R—pBI is positive definite, which is
stronger than simply assuming that R is positive definite. In the
terminology of [2], R is lower semibounded.

In this paper we will consider the characterization of discrete-time
r‘zmdom processes which admit finite dimensional realizations of the
!|r1c:|r. .timc varying input/output map associated with their
mn.ovullons representations. In section 2 we show that a process has
a lincar finite dimensional realization of its innovations filter if and
only if its covariance sequence is semiseparable. This property of a
covuriun‘cc sequence concerns its representation in the following way:
there cxist matrix functions M(*), ®(-,-), and N(-), mxn, nxn, and
n x m respectively, for some fixed n, such that

R, = MK)®KDNDOUK-D+ NV HMDHUI-k-1)
x Ok, [)y=®(k,y®(r,]) I1<r<k (2)

where R, ; =E}{yp ). an m xm matrix, U(-) is the unit step function,
and ’ denotes transpose.
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Our result differs from those in [4. (Theorems 1 and 2 with
corollarics)] in two important ways. First. we do not assume that the
function ®(-,-) appearing in (2) is invertible. Second, we deal with
innovations represcntations on the infinite time interval 051 <@,
and in order to show that a process with covariance satisfying (2)
can be obtained as the output of a finite dimensional linear time
varying state spacc model, we must consider the infinite matrix R,
and conditions for existence of its Cholesky factorization as HH',
where H is lower triangular with a bounded inverse (in a suitable
sense if H is unbounded).

These differences are important ones. The first one is motivated by
noting that in the stationary casc, (i, j)=A" 7 for some matrix A4,
whose characteristic values determine the poles of the spectral
density of the stationary process. We don't wish to exclude processes
for which A is not invertible, such as moving average processes. The
second difference highlights the importance of the technical
assumption that R is bounded below, as described above. When
necessary properties (positive definiteness of Ry) for existence of the
Cholesky factorization of Ry as HyHj. where H is an invertible and
lower triangular finite matrix, are assumed in [4], only the finite
matrix Ry for fixed N is considered. This is used to show existence
of a lumped state space model for the process, a condition necessary
in the hypotheses of the theorems in [4], which, along with (2),
implies existence of a finite dimensional lincar statc space
innovations filter realization for the process. In contrast, we consider
the infinite matrix R, in order to show existence of the innovations
filter for the entire sequence {y }/~o The lower semibounded
property of R is sufficient for this purpose. In the usual case that the
innovations process covariance matrix is a bounded operator with
bounded inverse, our condition is equivalent to the bounded input-
bounded output stability of the prediction filter for the process [3,5]

In section 3 we consider a more general class of finite dimensional
state space realizations for the innovations filter of discrete random
processes, a class of smooth, time varying nonlinear realizations, in
order to see what covariance structures arc associated with processes
whose innovations representations are realized by this type of model.
We show that existence of a finite dimensional discrete time
innovations realization in this class of nonlinear models, implies the
existence of a finite dimensional linear realization, and so the
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senmviseparable covariance structure described above. If. in addition,
the process is stationary, then the existence of any finite dimensional
discrete time innovations realization, which may be nonlinear and/or
time varying, implies that the process has a rational spectral density
function. Hence, for finite dimensional models, we need not consider
a more gencral class of state space models than linear ones.

2. LINEAR STATE SPACE MODELS FOR INNOVATIONS
REPRESENTATIONS

Let 1y, ) o satisfy the assumptions described in section 1, and let
¥i); be the best linear estimate of y; given y,,....y;. Our first result
shows that the semiseparable structure (2) characterizes processes
with lincar, finite dimensional innovations realizations.

Turorem 1 There exists a finite dimensional, time varying, invertible,
causal linear system taking yg.vy. Vs, ... into the innovations process

VooV
Vo=Yo (3a)
Vi=Yi—VYiio 1, 021 (3b)
if and only if (2) holds.

Proof « Assuming R, , satisfies (2) and represents a positive
definitc mxm covariance sequence for k, >0, then there exists a
causal impulse matrix h; ;, such that a system with {h; ;} as impulse
responsc, has covariance sequence E(z,z;)=R, , at the output, (for
output scquence z,), when the system is excited by white noise. In
other words,

o0 min(i, j)

Ri.j= Z hi.k ;‘.k= kZO hi.kh},k (4)

k=0

since h; ; =0, i<j. This result is true since, by the assumption I <R,
the infinite positive definite matrix R can be factored as R=HH’,
where H is a lower triangular oo x oo block matrix with m x m block
entries, h, ;. (Taking h; ; to be lower triangular with positive

CHARACTERIZING INNOVATIONS REALIZATIONS 163

diagonal elements, H is unique) It follows that H is invertible, and
its lower triangular inverse, V. is a bounded lincar operator,
satisfying H=RV". If V takes the form

50 tio - - Tko
?
0 vy
0 .
V' = , (5)
0 v,
0

then h; ;=Y o R, v}, Using the causality of h and the form of V',
given above,

b =M(i)d)(i.j)[kio(b(i.k)N(k)"}.k]U("“ﬂ

=M@H)PG,j) LHU(i—)) (6)

where
LA . B
L{(j)= Z O, k)N(k)v; &
k=0

and therefore, h; ; is the impulse response sequence for a finite
dimensional time varying system:

Xy =Ok+ L)X+ Lk+ Dy (N
ye=M(K) X,. (8)
This model, along with the following conditions,
Xo=x, E[xy]=0.
E[xott]=0; E[xoxs1=T1, and ho o= M(O)TTY2,

provides a model for the process y,, where {1} is a zero mean, unit
variance white noise, E(y,v})=R, , and T1}/? is the lower triangular



164 C. A SCHWARTZ, B. W DICKINSON AND F. D. SONTAG

Cholesky factor of I, which exists by the positive definiteness of
i,

Having shown that {y,}/~, can be obtained as the output of a
finite dimensional linear model, we can now appcal to theorem |
and its corollary in [4], to infer existence of a finite dimensional,
causal. causally invertible time varying linear innovations filter for
the process {y,},Zo. The hypotheses of this theorem which yields a
lincar innovations model for the process, are only that the process,
¥, have a positive definite covariance satisfying (2), and that y, arise
from some lumped model, as above; theorem | of [4] does not
require invertibility of ®(i, j).

»Supposc there exists a finite dimensional causal and causally
invertible linear system taking {y, |2 to {v,};%q: {v.}/20 Tepresents
the Gram-Schmidt orthogonalization of {y,}™.,. Then there exist
maps Voi(ve - vi)—= v and H,: (vy - v )=y, defined by

k k
"k=‘z VeV Y= D, by, 9
io j=o

;Irld sinpe {h._;} is the input/output sequence for a time varying finite
dimensional linear system, there exist matrices M(i), ®(i, j), and L(i)
of appropriate dimension so that

hy, j=M(K)®(k, ) L()) U (k —j). (10
So. for k=1,

li(."k,‘v;):‘Rk.’ (ll)
[
= M(k)[ ‘ZO Ok, )HL(j)o? L(jH (!, j)]M’(l)
i=
1
= M(k)D(k, l)[ Z( O(L ) L(j)ai L(HP'(L)) M'(I)J
i=0
=MK)D(k,)N(I)

]
NIDZ Y UNLDGT LNV UNM () of =E(spy)  (12)
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and for k<!

k
R, = M(k)[ Y, ®(k.)) L(,i)ﬂfﬂ(,i)q”(l._i)]M'(l)
ji-o

k
= M(k)[ Y ®k ) Lo} li(j)(b'(k-j)]‘b'(l. kKyM'(h
jizo

=N'(kyd (L kyM'(1) (13)

so therefore R, , satisfies (2).

3. FINITE DIMENSIONAL INNOVATIONS REALIZATIONS
FOR STATIONARY PROCESSES

The goal of this section is to show that even when time varying,
non-linear realizations are considered, a stochastic process admits a
finite dimensional innovations realization only when its covariance
function takes the semiseparable form of (2). In addition, if the
process is stationary, its spectral density function must be rational.
Our proofs of these results are purely system-theoretic, relying on a
fundamental property of realizations of linear time varying
input/output maps.

We begin by introducing the class of nonlinear systems to be
considered and some associated notation. We follow [6] in this
regard. The space of input values, U, and output values, ¥, may be
taken to be differentiable manifolds; in our application U =Y =R"™

DerINITION A system T is characterized by (X P k=00 4Gk tez 00O
where

X is a differentiable manifold of states,
0, the initial state, is an element of X,
Py X xU—X is a continuously differentiable map for all k=0,

qv: X x U—Y is a continuously differentiable map for all k= 0.
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The state equations that comprise the system are:
X =pdxnu), k=20, x,=0 (14)
Ye=qu(xp ), k=0. (15)
We say that ¥ is finite dimensional if its associated state manifold,
X. is finite dimensional.

Let P,v,-:).( x .U"—»X denote the j-step state transition map for the
system starting in state x at time t = 0. This is defined for j=0 by

P, o(0)=x, (16)
Pr.l(x~ u)=p,(x. u) “7)

Pr.j+I(-"J‘lw--v“:+j):pt*j(Pr.j(xJ‘n----u14j - l)’ul+j)9 ]go “8)

The corresponding output map is Q, ;: X x U/ > Y, defined for j>1
by B

Q,_,-(x,u,....,u,”,,)=q,+j‘,(P,_j,l(x.u,,....u,+j_2).u,+j_,), j2 1

(19

For k20 we deﬁ.ne Sosilug, .., w)=Qo 4+ 1(0,uq,...,u,). The set
of these maps constitutes an external, or input/output description of
the system X. We say that T is a realization of its input-output
description.

. Now.lel us turn to the use of these systems for generating
innovations  processes. Suppose we have a finite dimensional
nonlincar system providing a model for the innovations of {y,}7  of
the folowing form:

Xyvq =P,(X,, )
v =q,(x, ).

The input/output description of the system consists of linear maps,
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i.c.. v, is a lincar function of the input, so

we can write

¢t 1
V=0, Yt Z Uy s¥s
s=0

-1
—_n ! ,
Vi=U o} Vi Z Uy sVs |
i s=0

For t=1, x,=Py (O.yp.....y, ) and g, is linear in y, 1ie
0q,(x,, v,)/0y,=v, ,, a constant. Thus

or

q,(x,. ,Vl) =0, W +gl(x()

for some continuously differentiable function g,(-), and so
_ A
Y= vl.tl (v, —g(x)]1=5s,v. x,).

This equation may be substituted into the state equation, giving x,
in terms of x, and v,. Consequently we have shown that existence of
a finite dimensional nonlinear innovations realization for a given
discrete stochastic process implies the existence of a finite
dimensional nonlinear modeling (shaping) filter rcalization for the
process.

We are now ready to state and prove the main result of this
section.

THEOREM 2 Suppose there exists a finite dimensional nonlinear
realization, having dimension n, for the linear time varying input/output
map of the innovations representation for a random process, {y,};" o,
which satisfies the conditions described in the introduction. Then the
covariance of {y,}% is semiseparable.

Proof By the argument above, we know that there is a finite
dimensional system X which plays the role of a modecling (shaping)
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filter. whose inputs are the innovations and whose outputs are the
process 1y, 17 . Its input/output relationship is characterized by
lincar maps which take the form y, =/, (u,,...,u,)= fTohk.jzzj.
where {h; ;} is related to the covariance through (4). For every r20,
we define a map F” from the space of input values
UxUx...xU=U""" to the infinite product space of output values
Y let o=, 4. U, 4;), 1<iSr<oo, be a fixed nested set of
input strings, and let wm, be the empty string, where u; e U for each j.

For 1 i<, the ith component of F'"* ™ is given by
Fi=0Q, 1, i(Po,r1(Oug,....u) u, o ) (20)

The superscripts on F; and w;_, are deleted for convenience. Each
component map is the composition of the state transition and
output maps associated with the realization of the modeling filter.
Thus F' ™ factors through the map P,,,, whose image is
contained in the n-dimensional manifold X, and so

J(Ir- ) = Jacobian F"'m)z']([Qr*l.l""er+Lr+lﬂ"']')‘](Pr+l.0)

has rank at most n. The components of F"*™' may be expressed in
terms of the input/output map of the modeling filter:

r+1
Fi= Z hooy i ju; (21
i<o

Now the Jacobian can be evaluated, giving

P_f_. oF, aF,
u, u, , 7 du,
J(F"-™Y= [ F, 0F, JoF,
du, u, T dug
Thee by e B
= hr+l,r hr*l‘rl hru.o . (22)

The rank of J(F" ™) is less than or equal to n for every r. We will
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use a result of Fliess [7]. independently obtained by Ferrer and
Kamen [8], to infer that the sequence {h; ;} is the impulsc response
sequence of an n dimensional linear system. Then the semiseparable
form, (2), of the covariance follows from Theorem 1, and the proof is
complete.

The result proved by Fliess in [7] concerns realization of bilinear
systems, and there it is bricfly indicated how the result specializes to
the case of linear systems. Since the linear case may bc easily
described without introducing the tools of noncommutative
generating series, we will describe the construction of a linear
realization here. We emphasize that the details may be obtained by a
straightforward simplification of the construction for the bilincar
case. In particular, the bounded rank condition on J(F" ™)) is
exactly the bounded homogeneous rank condition on the Hankel
matrix associated with the noncommutative generating series of [7].

An n dimensional linear realization is obtained from the series of
matrices J(F" "), for r=0, as follows: The state manifold, X, is a
fixed (arbitrary) n dimensional vector space. Let C, denote the span
of the columns of J(F"*). For each r, define a 1-1 map ¢,:C,-X.
This map is uniquely defined except in cases where the dimension of
C, is less than n. Define the linear map W(r):C,—C, .y, to be the
upward shift operator on the columns of J(F"-=Y, the (i+ th
element of a column becomes the ith element of the image column,
and the first element is discarded. Thus ¥(r) maps the kth column of
J(F" ™) to the (k+ Nth column in J(F"* " ™). This defines ‘¥(r) for
all r=0. For r>0, the second column of J(F" ™) will be p(r—1), a
map from a scalar input into C, in the obvious way. Take a(r) to be
the mapping from C, into a scalar output defined by the first
component of a column. Finally, take d(r) to be h, ,. Then the maps
[A(), b(-).¢(-)] are obtained as solutions of the cquations

A(r)(pr:(pr+1‘p(r)w r%o
br— = flr—-1), rzl
c(Ne, =al(r), r=0.

It is casily checked that h; ;=c()A(i—1)...A(j+ )b i>j+ 1. and
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I, ciybi-- 1). The following linear realization is obtained:

X, =AM x, +b(r)u,
v, =c(r)x, +d(r)u,.
From Theorems 1 and 2, we have the immediate corollary, in

which linearity is removed from the statement of Theorem 1.

Coror1ary | There exists a finite dimensional, time varying,
invertible, causal system mapping the process |y} ¢ to its innovations
if and only if the covariance of {y, )" o is semi-separable.

By employing the factorization of the covariance matrix R=HH',
developed in the previous section, we may again write

J
hi ;= Z Ri x%5 % (23)
k=0

1

where V=H "' is given by (5). Applying this relation to (22) gives

Rr.r Rr,O U’." 0 (.)
JIF""N=1 R oy, ... R.io 0 éRHank(r)i?'
o - ... Ug 0_, (24)

Since ¥ is clearly invertible, the combination of Theorem 1 and the
realizability results of [7,8] give the following result.

Tueorem 3 A lower semibounded covariance is semiseparable if and
only if for every r 20 the matrices Ry,,.(r) have rank at most n.

As an important special case, when {y,} is a stationary process,
R; ; is a function only if |i—j|, and from (24) we have the following
corollary of Theorem 2.

Corovtary 2 If a discrete stationary process {y, )& o, whose spectral
density function is bounded away from 0, has a finite dimensional non-
linear innovations filter realization, its spectral density function is
rational.
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Proof 1In the stationary case, the matrix Ry, {r) in (24) is a
(block) Hankel matrix, and because its rank is less than n for all r,
the conclusion is a standard result of linear system theory [9], since
the spectral density function is the z-transform of the covariance
sequence, evaluated on the unit circle in the complex plane.

By applying Corollary 2, we may specialize Corollary 1 to the
stationary case.

CoRrOLLARY 3 A discrete-time stationary process {y,};".o has a finite
dimensional innovations representation if and only if it has a rational
spectral density function.

4. CONCLUDING REMARKS

The results described in this paper resolve the question of existence
of finite dimensional innovations realizations for discrete-lime
random processes. Semiseparability is a necessary and sufficient
condition and this, in turn, is equivalent to a sequence of finite rank
conditions. For the stationary case, the condition is rationality of the
power spectral density function. We have shown that linear
realizations are the only ones that need to be considered when
looking for finite dimensional innovations realizations.

We should comment briefly on the connection between our results
and the theory of stochastic realization for stationary processes; the
discrete-time theory may be found in references [10 12], for
example. Stochastic realization theory includes the problem of
obtaining the innovations process for {y,}" .. In this case. the
elements of the state vector of the innovations model form a basis
for the predictor space, the image of the orthogonal projection of the
RHilbert space gencrated by {y,},2, onto the closed linear span of
{y.}i- _ .. The resulting innovations filter is time invariant bccause
the process is stationary, and it follows directly from function
theoretic arguments that the predictor space is finite dimensional if
and only if the process has a rational spectral density [10].
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