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Abstract. This paper continues the study of the integral input-to-state stability (IISS) property. It is shown that the
IISS property is equivalent to one which arises from the consideration of mixed norms on states and inputs, as well
as to the superposition of a “bounded energy bounded state” requirement and the global asymptotic stability of
the unforced system. A semiglobal version ofIISS is shown to imply the global version, though a counterexample
shows that the analogous fact fails for input to state stability (ISS). The results in this note complete the basic
theoretical picture regardingIISS andISS.
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1. Introduction and Basic Definitions

We consider continuous time nonlinear systems of the following form:

ẋ = f (x,u) (1)

with statesx evolving inRn and inputsu taking values inRm. Inputsu are measurable,
locally essentially bounded functions of time. The mapf : Rn × Rm → Rn is assumed
to satisfy f (0,0) = 0, and to be locally Lipschitz. Given any stateξ ∈ Rn and any input
u: [0,∞) → Rm we denote byx(t, ξ,u) the unique maximal solution of the system (1),
which is defined on some maximal interval [0, tmax(ξ,u)). The system is said to beforward
completeif tmax(ξ,u) = +∞ for all ξ andu. We use the notation|ζ | for Euclidean norm
of vectorsζ , and‖u‖∞ for (essential) supremum of a function of time.

This paper continues the study of the input-to-state stability (ISS) property (cf. [4], [6],
[7], [8], [9], [10], [11], [15], [14], [16], [17], [19], [20], [21], [22]) as well as its variant, the
integral input-to-state stability (IISS) property (cf. [1], [2], [12], [18]). Recall that the first
of these is the natural extension to nonlinear systems (under arbitrary coordinate changes
in states and inputs) of the notion of external stability known as “finiteness ofL1 gain”
(that is, finite operator norm fromL∞ to L∞), while the second one extends to nonlinear
systems the notion of finite “H2 gain” (that is, finite operator norm fromL2 toL∞). Precise
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statements will make use of the standard terminology of comparison functions1 (K,K∞
andKL ).

It was shown in [18] that theISS property is equivalent to the following “integral to
integral” stability concept: the system (1) is forward complete, and there are someα, χ ,
andσ ∈ K∞ such that, for all initial statesξ and inputsu, the following estimate holds for
all t ∈ [0, tmax(ξ,u)):∫ t

0
α(|x(s, ξ,u)|)ds≤ χ(|ξ |)+

∫ t

0
σ(|u(s)|)ds. (2)

In particular, for example, a system which has “finiteH∞ norm” (i.e., operator norm from
L2 toL2), meaning that an estimate such as

(∫ t

0
(|x(s, ξ,u)|)q ds

) 1
q

≤
(
|ξ |p +

∫ t

0
σ(|u(s)|)p ds

) 1
p

(3)

holds withp = q = 2, is necessarilyISS. (Actually, in a sense everyISSsystem satisfies an
estimate of this form, under coordinate changes; see [5].) The estimate (3) withp = q = 2
(or, more generally, for anyp = q) gives rise to an estimate as in (2) simply by raising
both sides to thepth power. However,mixednormsp 6= q give rise, after raising to the
pth power, to the more general type of estimate:

γ

(∫ t

0
α(|x(s, ξ,u)|)ds

)
≤ χ(|ξ |)+

∫ t

0
σ(|u(s)|)ds (4)

with all comparison functions of classK∞. Alternative ways of stating such a condition
arise by takingγ−1, leading to an estimate such as∫ t

0
α(|x(s, ξ,u)|)ds≤ γ

(
χ(|ξ |)+

∫ t

0
σ(|u(s)|)ds

)
(5)

(we wroteγ−1 again asγ ), which could also be written as∫ t

0
α(|x(s, ξ,u)|)ds≤ χ̃(|ξ |)+ γ̃

(∫ t

0
σ(|u(s)|)ds

)
(6)

(just letχ̃(r ) := γ (2χ(r )) andγ̃ (r ) := γ (2r )), or even as:∫ t

0
α(|x(s, ξ,u)|)ds≤ χ

(
|ξ | +

∫ t

0
σ(|u(s)|)ds

)
(7)

holding for someα, χ , andσ ∈ K∞ (takeχ := χ̃ + γ̃ ). Note that an estimate of this type
in turn implies again an estimate as in (4), if one takesγ := χ−1 (and “χ ” is the identity
in (4)).
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Given the apparent similarity between on the one hand (2) and on the other (4) and its
equivalent versions (5)–(7), it seems natural to conjecture that this latter property is also
equivalent toISS. Surprisingly, however, and this is one of the main results of this paper,
this equivalence turns out to be false, and (4) is in fact equivalent tointegral input-to-state
stability (IISS). Recall that a system is said to beIISS if there exist functionsα, σ of class
K∞, andβ of classKL, such that

α(|x(t, ξ,u)|) ≤ β(|ξ |, t)+
∫ t

0
σ(|u(s)|)ds (8)

holds along all trajectories. Observe that anyIISS system is necessarily forward complete,
becauseα(|x(t, ξ,u)|) is bounded byβ(|ξ |,0)+∫ T

0 σ(|u(s)|)dson any interval [0, T), with
T < tmax(ξ,u), on which the trajectory is defined (so maximal trajectories stay bounded,
and are therefore everywhere defined).

The concept ofIISS is very natural; among other characterizations, it was shown in [2]
that IISS is equivalent to the existence of a proper and positive definite smooth functionV
which satisfies a dissipation inequality of the following kind:

DV(x) f (x,u) ≤ −ρ(|x|)+ σ(|u|) ∀x ∈ Rn, ∀u ∈ Rm, (9)

for some positive definite functionρ and someσ of classK∞. (In contrast, the strictly
strongerISSproperty is equivalent to the existence of a dissipation inequality of this general
form, but whereρ is required to be classK∞.)

We may weaken the requirements in theIISS definition by not asking that the effect of
initial conditions decay, replacingβ(|ξ |, t) by just an upper boundγ (|ξ |), and even by
allowing an additional additive constant. This leads to the following notion: a system is
uniformly bounded energy bounded state(UBEBS) if, for someα, γ , andσ ∈ K∞, and some
positive constantc, the following estimate holds along all trajectories:

α(|x(t, ξ,u)|) ≤ γ (|ξ |)+
∫ t

0
σ(|u(s)|)ds+ c. (10)

Another apparently weaker notion of stability, which will be used in Section 3 in order to
deal with semi-global versions ofIISS, is given by estimates of this type, which mix integral
and sup norms:

α(|x(t, ξ,u)|) ≤ β(|ξ |, t)+
∫ t

0
σ(|u(s)|)ds+ γ (‖u[0,t ]‖∞), (11)

understood as holding for someβ of classKL and someα, σ , andγ of classK∞.
Our main equivalence results, to be proved in Section 2, can be summarized as follows. In

addition to the “integral to integral stability” equivalences, we also state a sort of “separation”
theorem forIISS, which allows to decompose the property into global asymptotic stability
of the zero-input systeṁx = f (x,0) (theO-GAS property) plus the “bounded input-energy
bounded state” propertyUBEBS.
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THEOREM1 For any system (1), the following facts are equivalent:

1. The system isIISS.

2. The system isO-GAS andUBEBS.

3. The system is forward complete and satisfies an estimate as in (7).

4. The system satisfies an estimate as in (11).

We turn now to a “semiglobal” version of theIISS property, in which estimates are only
required to hold for bounded initial states and inputs.

Definition 1.1. A system (1) issemigloballyIISS if for each M > 0 there are functions
βM ∈ KL, andγM andαM in K∞, such that the following estimate:

αM(|x(t, ξ,u)|) ≤ βM(|ξ |, t)+
∫ t

0
σM(|u(s)|)ds (12)

holds for all initial statesξ and inputsu such that|ξ | ≤ M and ‖u‖∞ ≤ M , for all
t ∈ [0, tmax(ξ,u)).

Note that such a system is clearlyO-GAS, because whenu ≡ 0,β|ξ |(|ξ |, t)→ 0 ast →∞
implies thatx(t, ξ,0)→ 0 (attractivity), and applying withM = 1 one establishes stability.

The main result in that respect will be as follows.

THEOREM2 A system (1) is semigloballyIISS if and only if it is IISS.

This is proved in Section 3. Interestingly, the respective result does not hold for theISS

property, in so far as initial states are concerned; see Section 4.

2. Proof of Theorem 1

We will first show that 1⇔ 2. It is obvious that 1⇒ 2, but the converse requires the
following steps: first we establish the existence of a lower-semicontinuous Lyapunov-like
functionV , under the assumption that anUBEBS-like estimate holds, and then we combine
thisV with a function as in the characterization ofO-GASgiven in [2] to obtain a non-smooth
dissipation inequality; the final step is to show that theIISS property can be deduced from
this inequality.

Next we establish that 1⇒ 3. This implication makes essential use of the Lyapunov
characterization ofIISS given in [2].

We then turn to showing that 3⇒ 2. The proof of the implication is heavily based upon
the Lyapunov characterization of forward completeness which was recently given in [3].
(As a matter of fact, the original motivation for that paper was in trying to provide the main
technical step required in this proof.) The fact that (7) together with forward completeness
is a sufficient condition forO-GAS was already shown in [19] (see the proof of Theorem 1
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in that paper, applied to the special case whenu = 0). Hence, we are only left to show that
a UBEBSestimate holds.

Since it is clearly true that 1 implies 4, we are only left to show that the converse is also
true; we do this in Section 2.4.

2.1. 1⇐⇒ 2

The implication 1⇒ 2 follows easily simply considering thatβ(|ξ |, t) ≤ β(|ξ |,0) and
recalling thatβ(·,0) is aK function. The converse implication is more interesting.

As a preliminary step, we show that, if a system isO-GAS andUBEBS, we may always
reduce to the special casec = 0. Moreover, we show that a weaker estimate is also possible.

LEMMA 2.1 Suppose that a system (1) isO-GAS. Then the following properties are equiva-
lent:

• The system satisfies along all trajectories an estimate of the following type, for suitable
maps of classK∞:

α1(|x(t, ξ,u)|) ≤ α3(|ξ |)+ χ
(∫ t

0
κ(|u(s)|)ds

)
. (13)

• The system satisfies along all trajectories anUBEBS-like estimate with c= 0:

α(|x(t, ξ,u)|) ≤ γ (|ξ |)+
∫ t

0
σ1(|u(s)|)ds. (14)

• The system isUBEBS.

Proof: If an estimate of the type (13) holds along all trajectories, we simply introduce
α4(r ) := χ−1(r/2), so that (14) holds withα = α4 ◦ α1 andγ (r ) = α4(2α3(r )). Clearly,
if an estimate of type (14) holds, then the system isUBEBS(just takec = 0). Thus, all that
we need to prove is that anyO-GAS andUBEBSsystem satisfies an estimate of type (13).

By virtue of Lemma 4.10 in [2], we have thatO-GAS implies the existence of a smooth
functionV : Rn → R≥0, two classK∞ functionsαi such that (18) holds, and someθ, δ of
classK∞, so that

DV(x) f (x,u) ≤ θ(|x|) δ(|u|) ∀x ∈ Rn, ∀u ∈ Rm. (15)

Taking the integral of this inequality in both sides yields the following estimate:

V(x(t, ξ,u)) ≤ V(ξ)+
∫ t

0
θ(|x(s, ξ,u)|) δ(|u(s)|)ds (16)

along all possible solutions corresponding to initial statesξ and controlsu. We now exploit
theUBEBSproperty in order to show that we can always reduce ourselves to the casec = 0.
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In general, for any class-Kmapα, we have thatα(a+ b+ c) ≤ α(3a)+ α(3b)+ α(3c).
Applying this observation to (10), we obtain the following estimate along all solutions:

θ(|x(s, ξ,u)|) ≤ α̃(3γ (|ξ |))+ α̃
(∫ s

0
3σ(|u(τ )|)dτ

)
+ α̃(3c), (17)

whereα̃(r ) := θ ◦ α−1(3r ). Majorizingθ(|x(s)|) in the right hand side of (16) according
to (17), we obtain:

V(x(t, ξ,u))− V(ξ)

≤
∫ t

0

{
α̃(γ (|ξ |))+ α̃

(∫ s

0
σ(|u(τ )|)dτ

)
+ α̃(c)

}
δ(|u(s)|)ds

≤
∫ t

0

{
α̃(γ (|ξ |))+ α̃

(∫ t

0
σ(|u(τ )|)dτ

)
+ α̃(c)

}
δ(|u(s)|)ds

=
{
α̃(γ (|ξ |))+ α̃

(∫ t

0
σ(|u(s)|)ds

)
+ α̃(c)

} ∫ t

0
δ(|u(s)|)ds

≤ [α̃(γ (|ξ |))]2+ χ (∫ t

0
κ(|u(s)|)ds

)
whereκ(r ) = max{σ(r ), δ(r )} andχ(r ) = r 2+ α̃(c)r + α̃(r )r . Now letα1 andα2 be such
that (18) holds. Then we have an estimate of the type (13) holding along all trajectories,
with with α3 := α2+ [α̃(γ (·))]2.

Thus, we assume from now on that an estimate (14) holds. The next step is to obtain a
Lyapunov-like property.

LEMMA 2.2 Suppose that system (1) satisfies an estimate (14). Then, there exist functions
α1, α2, andσ1 of classK∞, and a lower semicontinuous function V: Rn→ R≥0 such that

α1(|x|) ≤ V(x) ≤ α2(|x|) (18)

holds for all x, so that along all trajectories the following estimate is satisfied:

V(x(t, ξ,u))− V(ξ) ≤
∫ t

0
σ1(|u(s)|)ds. (19)

Proof: Take asV the following function:

V(ξ) := sup
t≥0,u(·)

{
α(|x(t, ξ,u)|)−

∫ t

0
σ1(|u(s)|)ds

}
. (20)

Lower-semicontinuity ofV follows by a routine argument from the continuity of
α(|x(t, ·,u)|). By definition of UBEBS in (10), V is finite-valued and (18) is satisfied
with α1 = α andα2 = γ .
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We show next that, along trajectories of the system,V satisfies (19). In fact

V(x(t, ξ,u)) = sup
τ≥0,v(·)

|x(τ, x(t, ξ,u), v)| −
∫ t

0
σ1(|v(s)|)ds

= sup
τ≥0,v(·)

|x(τ + t, ξ,u#v)| −
∫ t

0
σ1(|v(s)|)ds

=
[

sup
τ≥0,v(·)

|x(τ + t, ξ,u#v)| −
∫ t+τ

0
σ1(|u#v(s)|)ds

]

+
∫ t

0
σ1(|u(s)|)ds

≤
[

sup
τ̃≥0,ṽ(·)

|x(τ̃ , ξ, ṽ)| −
∫ τ̃

0
σ1(|ṽ(s)|)ds

]
+
∫ t

0
σ1(|u(s)|)ds

≤ V(ξ)+
∫ t

0
σ1(|u(s)|)ds,

whereu#v denotes the concatenation input:u#v(t) = u(t) for t < τ andv(t−τ)otherwise.

To complete the proof that the system isIISS, we take a functionV1 as in Lemma 2.2.
In [2], it is shown that, for eachO-GAS system there exists some smooth, positive definite,
and “semi-proper” functionV2: Rn→ R≥0 so that, for someσ2 ∈ K∞ and some continuous
positive definite functionρ: R≥0→ R≥0,

DV2(x) f (x,u) ≤ −ρ(|x|)+ σ2(|u|) (21)

holds for allx ∈ Rn and allu ∈ Rm. (Semiproper was defined in that paper as: for each
r in the range ofV2, the sublevel set{x|V2(x) ≤ r } is compact.) Consider the function
V := V1 + V2. This function is such that (18) holds for allx, for suitableα1, α2 of class
K∞, and also there is aσ of classK∞ (namely, we may pickσ = σ1+σ2) and a continuous
positive definite functionρ, such that

V(x(t, ξ,u)) ≤ V(ξ)+
∫ t

0
σ(|u(s)|)ds−

∫ t

0
ρ(|x(s, ξ,u)|)ds (22)

holds along all trajectories. (Note thatV(x(t, ξ,u)) is Lebesgue measurable as a function
of t , becauseV is lower semicontinuous, so the integral makes sense.) Thus the proof
will be completed once that we show the following non-smooth version of the sufficiency
condition forIISS established in [2].

LEMMA 2.3 Consider a system (1), and suppose that there exists a function V: Rn→ R≥0,
functionsα1, α2, σ of classK∞, and a continuous positive definite functionρ, such that (18)
holds for all x, and so that V(x(t, ξ,u)) is Lebesgue measurable as a function of t, and (22)
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holds for allξ ∈ Rn, all input signals u, and all t≥ 0. Then the system is Integral Input-
to-State Stable.

Proof: We apply Lemma 3.1 in [2] to the continuous positive definite functionρ, to
conclude the existence ofρ1 ∈ K∞ andρ2 ∈ L such that:

ρ(r ) ≥ ρ1(r ) ρ2(r ) (23)

holds for allr ≥ 0. We define

ρ̃(r ) := ρ1(α
−1
2 (r )) ρ2(α

−1
1 (r ))

and we pick a continuous positive definite and locally Lipschitzρ∗ such that

ρ∗(r ) ≤ ρ̃1(r/2) ρ̃2(r )

for all r , whereρ̃1 ∈ K∞ andρ̃2 ∈ L are as given by Lemma 3.1 in [2] applied toρ̃.
Thus, for allx ∈ Rn we have:

ρ(|x|) ≥ ρ1(|x|)ρ2(|x|) ≥ ρ1(α
−1
2 (V(x)))ρ2(α

−1
1 (V(x))) = ρ̃(V(x)). (24)

From (22), taking into account (24), we have that

V(x(t, ξ,u)) ≤ V(ξ)+
∫ t

0
σ(|u(s)|)ds−

∫ t

0
ρ̃(V(x(s, ξ,u)))ds (25)

along all trajectories. We also note for future reference, thatV satisfies the following “no
upper jumps” properties:

lim sup
t→t+0

V(x(t)) ≤ V(x(t0)) (26)

lim inf
t→t−0

V(x(t)) ≥ V(x(t0)). (27)

along all trajectories, for allt0 ≥ 0.
Now pick any initial stateξ and any inputu, and consider the (unique, sinceρ∗ is locally

Lipschitz) solution of the following initial value problem:

ẇ = σ(|u|)− ρ∗(w), w(0) = V(ξ). (28)

CLAIM

V(x(t, ξ,u)) ≤ w(t) ∀ t ≥ 0. (29)

In order to prove this, we first fix an arbitraryε > 0, and we consider the initial value
problem

ẇ = σ(|u|)− ρ∗(w), w(0) = V(ξ)+ ε. (30)
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We will we show that (29) holds for this modified problem, for each suchε. Then the result
will follow for the original problem by lettingε → 0 and using the fact that, for eacht ,
the solutionw(t) depends continuously onε. Note that, sincew(0) > 0 for the modified
problem, alsow(t) > 0 for all t , by a comparison principle:̇w(t) ≥ −ρ∗(w(t)) for all t ,
and the equatioṅv = −ρ∗(v) has unique solutions and has zero as an equilibrium.

Assume, by way of contradiction that there would exist somet > 0 such thatV(x(t, ξ,u)) ≥
w(t). Let:

τ := inf {t > 0: V(x(t, ξ,u)) ≥ w(t)}. (31)

To simplify notation, we write from now onx(t) instead ofx(t, ξ,u). By definition ofτ
and (26), we have

w(τ) ≤ lim sup
t→τ+

V(x(t)) ≤ V(x(τ )). (32)

SinceV(ξ) < w(0), necessarilyτ > 0.
Observe thatV(x(t)) < w(t) for all t < τ , so in particular, using (27) and continuity of

w(t):

w(τ) ≥ lim sup
t→τ−

V(x(t)) ≥ lim inf
t→τ−

V(x(t)) ≥ V(x(τ )). (33)

Putting together (33) and (32) gives

w(τ) = V(x(τ )) = lim
t→τ−

V(x(t)),

so there exists someδ > 0 such thatw(t)2 < V(x(t)) < w(t) for everyt ∈ [τ − δ, τ ). We
also have the fact that

ρ̃(r ) ≥ ρ̃1(r )ρ̃2(r ) ≥ ρ̃1(s/2)ρ̃2(s) ≥ ρ∗(s)
whenevers/2≤ r ≤ s. We thus obtain a contradiction:

V(x(τ )) ≤ V(x(τ − δ))+
∫ τ

τ−δ
σ (|u(s)|)ds−

∫ τ

τ−δ
ρ̃(V(x(s)))ds

< w(τ − δ)+
∫ τ

τ−δ
σ (|u(s)|)ds−

∫ τ

τ−δ
ρ∗(w(s))ds

= w(τ).

This completes the proof of the claim.
By Corollary 4.3 in [2], associated to the positive definite continuous functionρ∗ there is

some functionβ of classKLwith the following property: ifu is an input andw is the solution
of ẇ = σ(|u|)− ρ∗(w) with initial conditionw0, thenw(t) ≤ β(w0, t)+

∫ t
0 σ(|u(s)|)ds

for all t . It follows from our claim that

α1(|x(t, ξ,u|) ≤ V(x(t, ξ,u)) ≤ w(t) ≤ β(V(ξ), t)+
∫ t

0
σ(|u(s)|)ds. (34)

This proves that the system isIISS.



136 ANGELI, SONTAG AND WANG

2.2. 1⇒ 3

We show next that 1 implies 3. We must show the estimate in (7). By virtue of the converse
Lyapunov characterization ofIISScited earlier, there exists a smooth functionV : Rn→ R≥0

so that (18) holds for suitableα1 andα2, such that (9) holds. Integrating, we obtain that (22)
holds along all solutions. In particular,|x(t, ξ,u)| ≤ κ1(|ξ |)+ κ2(

∫ t
0 σ(|u(s)|)ds), where

we have definedκ1(s) = α−1
1 ◦ 2α2(s) andκ2(s) = α−1

1 ◦ 2s. We apply Lemma 3.1 in [2]
to the continuous positive definite functionρ, to conclude the existence ofρ1 ∈ K∞ and
ρ2 ∈ L such that (23) holds for allr ≥ 0. Then,

V(x(t, ξ,u)) ≤ V(ξ)+
∫ t

0
σ(|u(s)|)ds

−
[∫ t

0
ρ1(|x(s, ξ,u)|)ds

] [
ρ2

(
κ1(|ξ |)+κ2

(∫ t

0
σ(|u(s)|)ds

))]
. (35)

Define now the functionγ as

γ (r ) = 1

ρ2(r )
− 1

ρ2(0)
. (36)

Notice thatγ is of classK∞. Moreover, we also to define the following classK functions:

χ1(r ) = max{γ ◦ 2κ1(r ), α2(r )}
χ2(r ) = max{γ ◦ 2κ2(r ), r }. (37)

It follows from (35) and (37) that∫ t

0
ρ1(|x(s, ξ,u)|)ds

≤
[

1

ρ2(0)
+ γ

(
κ1(|ξ |)+ κ2

(∫ t

0
σ(|u(s)|)ds

))][
V(ξ)+

∫ t

0
σ(|u(s)|)ds

]
≤
[

1

ρ2(0)
+ γ (2κ1(|ξ |))+ γ ◦ 2κ2

(∫ t

0
σ(|u(s)|)ds

)][
α2(|ξ |)+

∫ t

0
σ(|u(s)|)ds

]

≤ α2(|ξ |)+
∫ t

0 σ(|u(s)|)ds

ρ2(0)
+
(
χ1(|ξ |)+ χ2

(∫ t

0
σ(|u(s)|)

))2

≤ α2(|ξ |)/ρ2(0)+ 2χ1(|ξ |)2+ (χ2/ρ2(0)+ 2χ2
2) ◦

(∫ t

0
σ(|u(s)|)

)
.

This is an estimate of type (6), as wanted.

2.3. 3⇒ 2

As mentioned earlier, the fact that (7) together with forward completeness is a sufficient
condition forO-GAS was already shown in [18]. So we must show that aUBEBS estimate
holds.
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We start by recalling a result in [3]. It is shown there that forward completeness of (1)
implies (and is, in fact, equivalent to) there being an estimate of the following type along
all trajectories:

|x(t, ξ,u)| ≤ κ1(t)+ κ2(|ξ |)+ κ3

(∫ t

0
γ (|u(s)|)ds

)
+ c (38)

holding for someκ1,κ2,κ3,γ of classK∞ and somec ≥ 0. We choose functions like this,
and letα, χ , andσ be as in the estimate (7). We also introduce

δ := max{γ, σ }.
We also define, for eachr ≥ 0:

m(r ) := sup

{
|x(t, ξ,u)|: t ≥ 0, |ξ | ≤ r,

∫ +∞
0

δ(|u(s)|)ds≤ r

}
.

Note thatm is a nondecreasing function. The main technical step is in showing that
m(r ) <∞:

LEMMA 2.4 For each r> 0,

m(r ) ≤ κ1

(
χ(2r )

α(r )

)
+ κ2(r )+ κ3(r )+ c. (39)

Proof: Pick anyr > 0 and denote for simplicity the right-hand side of (39) asM(r ). Pick
any stateξ and inputu so that|ξ | ≤ r and

∫ +∞
0 δ(|u(s)|)ds ≤ r . We need to show that,

for all t , |x(t, ξ,u)| ≤ M(r ). Assume that is not the case, so there is someT > 0 so that
|x(T, ξ,u)| > M(r ). Let

τ := sup{t ≤ T : |x(t, ξ,u)| ≤ r },
so that|x(t, ξ,u)| > r for all t ∈ [τ, T ]. It follows from (7) that

α(r )(T − τ) ≤
∫ T

τ

α(|x(s, ξ,u)|)ds

≤
∫ T

0
α(|x(s, ξ,u)|)ds

≤ χ

(
r +

∫ T

0
σ(|u(s)|)ds

)
≤ χ(2r ).

With the notations

T̃ := T − τ ≤ χ(2r )

α(r )
, ξ̃ := x(τ, ξ,u), ũ(·) := u(· − τ)
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we have that

|x(T, ξ,u)| = |x(T̃, ξ̃ , ũ)| ≤ κ1(T̃)+ κ2(r )+ κ3(r )+ c = M(r ),

a contradiction.

Now pick anyξ andu, and let

r := max

{
|ξ |,

∫ +∞
0

δ(|u(s)|)ds

}
.

By definition ofm,

|x(t, ξ,u(·))| ≤ m(r ) ≤ χ(r )+ c

for all t ≥ 0, whereχ is any class-K∞ function andc is any constant such thatm(r ) ≤
χ(r ) + c for all r (suchχ andc exist becausem is nodecreasing and finite-valued). With
α := (2χ)−1, we conclude that

α(|x(t, ξ,u(·))|) ≤ r + α(2c),

for all t , which gives us aUBEBSestimate, as wanted.

2.4. 4⇒ 1

In order to prove the result, we need to appeal to the “small gain” argument used in the
proof of the converse Lyapunov theorem forIISS in [2]. We review here the key technical
steps needed from that argument, in a manner not stated explicitly in [2].

In general, for any system (1), and any given smoothK∞ functionϕ, we consider the
following auxiliary system:

ẋ = f (x,dϕ(|x|)), (40)

where we restrict the inputsd to have values in the closed unit ball, i.e.,d(·): [0,+∞)→ B̄,
where B̄ denotes the set{µ ∈ Rm: |µ| ≤ 1}. We letMB̄ denote the set of such inputs.
For eachξ andd, we usexϕ(t, ξ,d) to denote the trajectory of (40) corresponding to initial
stateξ and inputd, defined in some maximal interval [0, tmax(ξ,d)).

Suppose given, for the system (40), mapsα̃, γ , andϕ of classK∞, such thatγ is smooth,
and denote, for eachξ ∈ Rn, eacht ≥ 0, and eachd ∈MB̄,

z(t, ξ,d) := α̃(|xϕ(t, ξ,d)|)−
∫ t

0
γ (|d(s)|ϕ(|xϕ(s, ξ,d)|))ds

and for eachξ ,

g(ξ) := sup{z(t, ξ,d): t ∈ [0, tmax(ξ,d)), d ∈MB̄}
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(possibly= +∞). Suppose also given aβ0 ∈ K∞ so that

z(t, ξ,d) ≤ β0(|ξ |) ∀ ξ, d, t ∈ [0, tmax(ξ,d)). (41)

Notice that, under this assumption,g is finite-valued, and

α̃(|ξ |) ≤ g(ξ) ≤ β0(|ξ |)
for all ξ ∈ Rn. Finally, assume that for each 0< r1 < r2 there is aT(r1, r2) ≥ 0 such that
the following property holds:

r1 < |ξ | < r2 ⇒ g(ξ) = sup{z(t, ξ,d): 0≤ t ≤ T(r1, r2), d ∈MB̄}. (42)

Then, the proof of the main theorem in [2] contains a proof of this fact:

PROPOSITION2.5 If the system (1) isO-GAS, and if the above assumptions hold, then the
system (1) isIISS.

We now apply this result to show that a system which satisfies an estimate (11) is neces-
sarily IISS. Note that such a system isO-GAS. Assume without loss of generality thatσ = γ
in (11), i.e., the system satisfies the following estimate:

α(|x(t, ξ,u)|) ≤ β(|ξ |, t)+
∫ t

0
γ (|u(s)|)ds+ γ (‖u[0,t)‖∞) (43)

for all t ≥ 0, all initial conditionsξ ∈ Rn, and all measurable locally essentially bounded
u(·). Letϕ be any smoothK∞ function such that

γ (ϕ(s)) ≤ α(s)
2

∀ s ≥ 0.

We will establish the properties needed for applying Proposition 2.5 with the sameγ and
ϕ, α̃ := α/2, andβ0 := β(·,0). (The only minor technical problem in applying the result
is the requirement thatγ be smooth; smoothness at the origin is needed due to the method
of proof used in [2]. It is possible, however, to assume this fact with no loss of generality,
employing the same trick as in [2] to produce a related system for which (11) holds with
smoothγ .)

We start by establishing (41).

LEMMA 2.6 For all ξ , d, and t∈ [0, tmax(ξ,d)),

α(|xϕ(t, ξ,d)|) ≤ 2β0(|ξ |)+ 2
∫ t

0
γ (|d(s)|ϕ(|xϕ(s, ξ,d)|)) ds. (44)

Proof: For all τ ∈ [0, t ], write u(τ ) := d(τ )ϕ(|xϕ(τ, ξ,d)|), so that

γ (|u(τ )|) ≤ γ (|ϕ(|xϕ(τ, ξ,d)|)) ≤ α(|x
ϕ(τ, ξ,d)|)

2
(45)
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for all τ , and thus also

γ (‖u[0,τ )‖∞) ≤
α(‖xϕ[0,τ )‖∞)

2

for all τ , where we are denoting by‖xϕ[0,τ )‖∞ the sup norm ofxϕ(·, ξ,d) over the interval
[0, τ ]. Now applying (43) with thisu, we have

α(|xϕ(τ, ξ,d)|) ≤ β(|ξ |, t)+
∫ τ

0
γ (|u(s)|)ds+ α(‖x

ϕ

[0,τ )‖∞)
2

. (46)

Now taking the supremum overτ ∈ [0, t ] we obtain:

α(‖xϕ[0,t)‖∞) ≤ β0(|ξ |)+
∫ t

0
γ (|u(s)|)ds+ α(‖x

ϕ

[0,t)‖∞)
2

so that we conclude

α(‖xϕ[0,t)‖∞) ≤ 2β0(|ξ |)+ 2
∫ t

0
γ (|u(s)|)ds.

Equation (44) follows fromα(|xϕ(t, ξ,d)|) ≤ α(‖xϕ[0,t)‖∞).

In order to obtain theT(r1, r2)’s as in (42), we need a simple observation. For eachξ and
d, we letG(ξ,d) denote the set oft ∈ [0, tmax(ξ,d)) for which

|xϕ(t, ξ,d)| = ‖xϕ[0,t)‖∞
where we again use‖xϕ[0,t)‖∞ to indicate the sup norm ofxϕ(·, ξ,d) over the interval [0, t ].

LEMMA 2.7 For eachξ , d, and t ∈ [0, tmax(ξ,d)), there is someτ ∈ G(ξ,d) such that
|xϕ(t, ξ,d)| = |xϕ(τ, ξ,d)| andτ ≤ t .

Proof: Just letτ := min{s ∈ [0, t ]: |xϕ(s, ξ,d)| ≥ |xϕ(t, ξ,d)|}. By definition ofτ ,
|xϕ(s, ξ,d)| < |xϕ(τ, ξ,d)| for all s ∈ [0, τ ).

We use this remark as follows. Given anyξ andd, and anyt , we pickτ as in the Lemma.
As τ ≤ t andγ is nonnegative,

−
∫ t

0
γ (|d(s)ϕ(|xϕ(s, ξ,d)|))ds≤ −

∫ τ

0
γ (|d(s)ϕ(|xϕ(s, ξ,d)|))ds,

and it follows thatz(t, ξ,d) ≤ z(τ, ξ,d). Thus, for eachξ ,

g(ξ) = sup{z(t, ξ,d): t ∈ G(ξ,d), d ∈MB̄}.
For t ∈ G(ξ,d), the estimate (46) gives

α̃(|xϕ(t, ξ,d)|) = α(|xϕ(t, ξ,d)|)− α(‖x
ϕ

[0,t)‖∞)
2

≤ β(|ξ |, t)+
∫ t

0
γ (|d(s)ϕ(|xϕ(s, ξ,d)|))ds,
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i.e., z(t, ξ,d) ≤ β(|ξ |, t). Sinceg(ξ) ≥ α̃(|ξ |), we may pick asT(r1, r2) any t such that
β(r2, t) < α̃(r1). This completes the verification of the conditions needed in order to apply
Proposition 2.5.

3. Proof of Theorem 2

For technical reasons, it is convenient to introduce properties separating semiglobal behavior
with respect to inputs or states respectively.

We say that a system issemiglobalIISS with respect to inputsif, for eachM > 0 there
are functionsβM ∈ KL, andγM andαM in K∞, such that the estimate (12) holds for all
initial statesξ and all those inputsu for which‖u‖∞ ≤ M . The system issemiglobalIISS

with respect to initial statesif, for each M > 0 there are functionsβM ∈ KL, andγM

andαM in K∞, such that the estimate (12) holds for all inputsu and for all those initial
statesξ such that|ξ | ≤ M . We could ask in these definitions “∀t ∈ [0, tmax(ξ,u))” or
“∀t ≥ 0”; it amounts to the same thing since either property implies forward complete-
ness, i.e.tmax(ξ,u) = +∞. Note also that if a system satisfies either of these properties
then it isO-GAS (the argument is exactly the same as the one given earlier for semiglobal
IISS).

The property of being semigloballyIISSwith respect to inputs can be equivalently restated
as the requirement that every saturated-input system

ẋ = f (x, satM(u)), (47)

where satM(u) indicates the projection ofu into the ball of radiusM inRm, beIISS, for each
M > 0. Indeed, asking for each such system to beIISS amounts to asking that the required
estimation functions exist.

We will first prove this:

PROPOSITION3.1 The following facts are equivalent:

1. System (1) isIISS.

2. System (1) is semigloballyIISS with respect to inputs.

3. System (1) is semigloballyIISS with respect to initial states.

Then, we shall prove a variant of the equivalence of 4 andIISS in Theorem 1. We replace
the estimate (11) by an estimate as follows:

α(|x(t, ξ,u)|) ≤ β0(|ξ |)+
∫ t

0
σ(|u(s)|)ds+ γ (‖u[0,t ]‖∞), (48)

understood as holding for someβ0, α, σ , andγ of classK∞, along all trajectories. Of
course, an estimate (11) implies also an estimate of this type, just usingβ0(r ) := β(r,0).
So anIISS system always satisfies this. The converse is less obvious:
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PROPOSITION3.2 System (1) isIISS if and only if it isO-GASand it satisfies an estimate (48).

The key calculation is contained in the following fact, to be proved after we show how
the main conclusions follow from it.

LEMMA 3.3 Assume given three families of functions

{β̃M ,M ∈ N} ⊆ KL, {σ̃M ,M ∈ N} ⊆ K∞, {γ̃M ,M ∈ N} ⊆ K∞,

as well as two nondecreasing functions

αi : [0,∞)→ [0,∞), i = 1,2.

Then, there are a class-KL functionβ and class-K∞ functionsγ1, γ2, δ1, andδ2 such that,
for all T ≥ 0,

β̃dα1(R)+α2(S)e(R, T)+ γ̃dα1(R)+α2(S)e

(∫ T

0
σ̃dα1(R)+α2(s)e(ϕ(s))ds

)
≤ β(R, T)+ γ1(α1(R))+ γ2(α2(S))+ δ1

(∫ T

0
δ2(ϕ(s))ds

)
for all R > 0, all S> 0, and all measurable functionsϕ: [0, T ] → R≥0.

Here we are usingdr e to denote the “ceiling” ofr ∈ R, i.e., the smallest integer larger or
equal thanr . In the following we will also make use of the “floor” function,br c, defined
as the largest integer smaller or equal thanr .

Let us see how Proposition 3.1 follows from this. Suppose first that the system is semiglob-
ally IISS with respect to inputs. Thus there are familiesαM andβM so that (12) holds
whenever‖u‖∞ ≤ M , for all ξ andt . Applyingα−1

M to both sides, we obtain:

|x(t, ξ,u)| ≤ β̃M(|ξ |, t)+ γ̃M

(∫ t

0
σ̃M(|u(s)|)ds

)
, (49)

where we defined̃γM(r ) = α−1
M (2r ) andβ̃M(r, t) = α−1

M (2βM(r, t)). We apply Lemma 3.3
to these families of maps (restricting attention to integer values ofM), with α1 ≡ 0 and
α2(S) = S. With the functions given by that Lemma, take now anyξ , u, and t . Let
S := ‖u‖∞, M := dSe, andR := |ξ |. As γ1(α1(R)) = γ1(0) = 0, we have

|x(t, ξ,u)| ≤ β(|ξ | , t)+ γ2(‖u‖∞)+ δ1

(∫ t

0
δ2(|u(s)|)ds

)
.

Applying to both sidesα(·), whereα(3δ1(r )) = r , we get rid of theδ1 function and recover
the estimate in part 4 of Theorem 1, so that the system is indeedIISS.

Suppose now that, instead, the system is semigloballyIISS with respect to initial states.
Thus, there are familiesαM andβM so that (12) holds whenever|ξ | ≤ M , for all u andt .
Applying α−1

M to both sides, we obtain again an estimate like (49). This time, we apply the
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Lemma withα2 ≡ 0 andα1(R) = R. With the functions given by the Lemma, take anyξ ,
u, andt . Let S := ‖u‖∞, R := |ξ |, andM := dRe. As γ2(α1(S)) = 0, we have

|x(t, ξ,u)| ≤ β(|ξ | , t)+ γ1(|ξ |)+ δ1

(∫ t

0
δ2(|u(s)|)ds

)
≤ γ̂ (|ξ |)+ δ1

(∫ t

0
δ2(|u(s)|)ds

)
,

whereγ̂ (r ) = β(|r | ,0) + γ1(|r |). Applying to both sidesα(·), whereα(2δ1(r )) = r , we
get rid of theδ1 function and recover anUBEBS-estimate; together with the fact that the
system isO-GAS, Theorem 1 guarantees that the system is indeedIISS. This ends the proof
of Proposition 3.1.

Let us now prove Proposition 3.2. Suppose an estimate (48) holds for all trajectories.
Because of Proposition 3.1, it is sufficient to show semiglobalIISS with respect to inputs,
or equivalently that each system (47) isIISS. Fix any M . The estimate (48), applied to
inputs bounded byM , gives us that theUBEBS property holds, withc = γ (‖u[0,t ]‖∞) and
γ = β0. Thus the system (47) isIISS, as follows from Theorem 1 applied to that saturated
system.

Finally, we prove Theorem 2. We assume that there are familiesαM andβM so that (12)
holds whenever|ξ | ≤ M ,‖u‖∞ ≤ M , and allt . Applyingα−1

M to both sides, we obtain again
an estimate like (49). We apply once more Lemma 3.3, now withα1(R) = α2(R) = R.
With the functions given by the Lemma, take now anyξ , u, and t . Let S := ‖u‖∞,
M := dSe, andR := |ξ |. Then we obtain an estimate as follows along all solutions:

|x(t, ξ,u)| ≤ [β(|ξ | ,0)+ γ1(|ξ |)] + γ2(‖u‖∞)+ δ1

(∫ t

0
δ2(|u(s)|)ds

)
.

Applying to both sidesα(·), whereα(3δ1(r )) = r , we once more eliminate theδ1 function
and recover an estimate (48), so Proposition 3.2 gives us that the system is indeedIISS.

To summarize, we are only left with proving Lemma 3.3.

3.1. Proof of Lemma 3.3

Let us state several facts aboutKL andK∞ functions, to be proved below.

LEMMA 3.4 Let {β̃M}M∈N be a family of classKL functions. Then there exist functions
γ̂1 ∈ K∞ andβ̂ ∈ KL such that

β̃M(r, t) ≤ γ̂1(M) β̂(r, t)

for all r , t ≥ 0 and all M > 0.

LEMMA 3.5 Let{γ̃M}M∈N and{σ̃M}M∈N be two families of classK∞ functions. Then, there
exist three functionŝγ2, δ̂1, andδ2 of classK∞ such that, for all T> 0 and measurable
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functionsϕ: [0, T ] → R≥0,

γ̃M

(∫ T

0
σ̃M(ϕ(s))ds

)
≤ γ̂2(M) δ̂1

(∫ T

0
δ2(ϕ(s))ds

)
.

Lemma 3.3 follows immediately from these two lemmas, sincedα1(R) + α2(S)e ≤
α1(R)+ α2(S)+ 1 and using the facts that

γ̂1(α1(R)+ α2(S)+ 1) ≤ γ̂1(3α1(R))+ γ̂1(3α2(S))+ γ̂1(3)

(and similarly forγ̂2) andab≤ a2+ b2. One gets

β(R, T) = γ̂1(3) β̂(R, T)+ 2[β(R, T)]2 ,

γ1(r ) =
[
γ̂1(3r )

]2+ [γ̂2(3r )
]2
,

δ1(r ) = γ̂2(3) δ̂1(r )+ 2[δ1(r )]
2 ,

and the sameδ2.
So we must prove these two lemmas. Let us collect first three useful facts aboutKL and
K∞ functions.

LEMMA 3.6 (Corollary 10 and Remark 11 in [18].) For eachγ ∈ K∞ there is aσ ∈ K∞
such thatγ (rs) ≤ σ(r )σ (s) for all r , s ≥ 0.

LEMMA 3.7 (Proposition 7 in [18].) For eachβ ∈ KL there existθ1 andθ2 in K∞ such
thatβ(r, t) ≤ θ1(θ2(s)e−t ) for all r , t ≥ 0.

LEMMA 3.8 (Corollary 4.5 in [2].) Suppose thatγ : R2
≥0→ R is such thatγ (·, s) ∈ K for

each s∈ R>0 andγ (r, ·) ∈ K for each r ∈ R>0. Then, there exists some functionσ ∈ K
such that

γ (r, s) ≤ σ(r ) σ (s)
for all (x, y) ∈ (R≥0)

2.

We prove one more result of this type:

LEMMA 3.9 Let {γM}M∈N be a family of classK∞ functions. Then, there exists aσ in K
such that

γM(r ) ≤ σ(M) σ (r ) ∀r ≥ 0,∀M ∈ N.

Proof: We first make{γM} into a monotonically increasing family of functions, by defining

γ̃M(r ) = max
i=1...M

γi (r ). (50)
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We then letγ̂ : R2
≥0→ R≥0 be as follows

γ̂ (s, r ) =
 γ̃s(r ) if s ∈ N
γ̃bsc(r )(dse − s)+ γ̃dse(r )(s− bsc) if s> 1 ands /∈ N

γ̃1(r )s if s ∈ [0,1).
(51)

By construction.γ̂ is a function of classKK, so we may apply to it Lemma 3.8, obtaining
σ so that

γM(r ) ≤ γ̃M(r ) ≤ γ̂ (M, r ) ≤ σ(M) σ (r ) (52)

holds for allM, r .

Let us prove Lemma 3.4. Let{β̃M}M∈N be a family of classKL functions. We apply
Lemma 3.7 to each̃βM , obtaining families{θ1

M} and {θ2
M} in K∞ such thatβ̃M(r, t) ≤

θ1
M(θ

2
M(r )e

−t ) for all r, t ≥ 0 and allM . Next we apply Lemma 3.9 to each of the families
{θ1

M} and{θ2
M}, obtaining functionsσ1 andσ2, and toσ1 we apply Lemma 3.6 to getθ ∈ K∞

such that:

β̃M(r, t) ≤ σ1(M)σ1
(
σ2(M) σ2(r )e−t

)
≤ σ1(M) θ (σ2(M))︸ ︷︷ ︸

γ̃ (M)

θ
(
σ2(r )e−t

)︸ ︷︷ ︸
β̃(s, t)

as desired.
Finally, we prove Lemma 3.5. We apply Lemma 3.9 to each of the families{γ̃M}M∈N and
{σ̃M}M∈N, obtaining functionsσ1 andσ2 and toσ1 we apply Lemma 3.6 to getθ ∈ K∞ such
that:

γ̃M

(∫ T

0
σ̃M(ϕ(s))ds

)
≤ σ1(M) σ1

(∫ T

0
σ2(M) σ2(ϕ(s))ds

)
≤ σ1(M) σ1

(
σ2(M)

∫ T

0
σ2(ϕ(s))ds

)
≤ σ1(M) θ (σ2(M)) θ

(∫ T

0
σ2(ϕ(s))ds

)

so the conclusions of Lemma 3.5 hold with withγ2(M) := σ1(M) θ (σ2(M)), δ̂1 := θ , and
δ2 := σ2.

4. A Remark on SemiglobalISS

For ISS, in contrast toIISS, the corresponding semiglobal property is strictly weaker, as
shown by a counterexample in Section 4.1. If only inputs are restricted, however, a positive
result exists, as we discuss next.
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We say that a system issemigloballyISS with respect to inputsif for eachM > 0 there
are functionsβM ∈ KL, andγM in K∞, such that

|x(t, ξ,u)| ≤ βM(|ξ |, t)+ γM(‖u‖∞) (53)

holds for all initial statesξ and all those inputsu for which‖u‖∞ ≤ M .
We will estabilish the following result:

THEOREM3 System (1) isISS if and only if it is semigloballyISSwith respect to inputs.

Proof: We will prove the result exploiting the “LIM property” characterization ofISSgiven
in [19]: ISSis equivalent to Lyapunov stability of the unforced systemẋ = f (x,0) plus the
following asymptotic gain condition on all solutions of (1):

lim inf
t→+∞ |x(t, ξ,u)| ≤ γ (‖u‖∞), (54)

for some functionγ of classK∞. Stability is clearly implied by semiglobalISSwith respect
to inputs; in fact the unforced system is clearlyO-GAS. Suppose that, for allM , the functions
βM ∈ KL andγM in K∞ are as in the definition. We apply lemma 3.9 to the family{γM}
to obtain aσ as there, and define

γ (r ) := γ (r + 1)γ (r ),

which is clearly of classK∞. We claim that (54) holds. Indeed, pick anyξ andu, and let
M := d‖u‖∞e. Then, for allt ,

|x(t, ξ,u)| ≤ βM(|ξ |, t)+ σ(M) σ (‖u‖∞) ≤ βM(|ξ |, t)+ γ (‖u‖∞),
from which (54) follows.

4.1. Counter-example

We now provide a system which is “semigloballyISS with respect to initial states” in the
obvious sense but which is notISS. Consider the system:

ẋ1 = −x1(1− sinx2),

ẋ2 = −x2+ u. (55)

Claim 1. The system is not ISS.Suppose that the system is ISS. Then there exists some
β ∈ KL and someγ ∈ K such that

|x(t, ξ,u)| ≤ β(|ξ |, t)+ γ (‖u‖∞)
for all t ≥ 0, all initial statesξ and allu. Consequently,

lim sup
t→∞

|x(t, ξ,u)| ≤ γ (‖u‖∞) (56)
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for all ξ . Consider the initial stateξ = (γ (π/2)+1, π/2)and the input given byu(t) ≡ π/2.
The corresponding trajectory is

x1(t) = γ (π/2)+ 1, x2(t) = π/2, ∀ t ≥ 0.

Property (56) fails to hold for this trajectory. This shows that the system is not ISS.

Claim 2. There is aKL-functionβ such that, for eachM > 0, there is aK-functionγM

such that

|x(t, ξ,u)| ≤ β(|ξ |, t)+ γM(‖u‖∞), ∀ t ≥ 0,

for all |ξ | ≤ M and allu.
The trajectories of the system are given by:

x1(t) = ξ1e
∫ t

0
−(1−sinx2(s))ds

,

x2(t) = ξ2e−t + e−t
∫ t

0
esu(s)ds.

For thex2 part, one has the following estimation:

|x2(t)| ≤ |ξ2|e−t + ‖u‖∞. (57)

The estimation for thex1 is a bit more complicated than thex2 part. First of all, we note
that, for alls ≥ 0,

|sinx2(s)| ≤
∣∣∣∣sin[ξ2e−s + e−s

∫ s

0
eσu(σ )dσ ]

∣∣∣∣
=
∣∣∣∣sin[ξ2e−s + e−s

∫ s

0
eσu(σ )dσ ]

∣∣∣∣
=
∣∣∣∣sin(ξ2e−s) cos(e−s

∫ s

0
eσu(σ )dσ)+ cos(ξ2e−s) sin(e−s

∫ s

0
eσu(σ )dσ)

∣∣∣∣
≤ ∣∣sin(ξ2e−s)

∣∣+ ∣∣∣∣sin(e−s
∫ s

0
eσu(σ )dσ)

∣∣∣∣
≤ |ξ2| +

∣∣∣∣sin(e−s
∫ s

0
eσu(σ )dσ)

∣∣∣∣ ,
so

|x1(t)| ≤ |ξ1|e−t e
∫ t

0
| sinx2(s)|ds

≤ |ξ1|e|ξ2|e−t e
∫ t

0
| sin(e−s

∫ s

0
eσu(σ )dσ)|ds

Observe that∣∣∣∣sin

(
e−s

∫ s

0
eσu(σ )dσ

)∣∣∣∣ ≤ min

{
e−s

∫ t

0
eσ |u(σ )|dσ, 1

}
.
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Hence, when‖u‖∞ ≤ 1/2, one has∫ t

0
| sin(e−s

∫ s

0
eσu(σ )dσ)|ds ≤

∫ t

0
e−s

∫ s

0
eσ‖u‖∞ dσ ds (58)

≤
∫ t

0
e−s (e

s − 1)

2
ds≤ t/2, (59)

and when‖u‖∞ ≥ 1/2, one has∫ t

0

∣∣∣∣sin(e−s
∫ s

0
eσu(σ )dσ)

∣∣∣∣ ds≤
∫ t

0
ds= t.

Consequently, when‖u‖ ≤ 1/2,

|x1(t)| ≤ |ξ1|e|ξ2|e−t et/2 = |ξ1|e|ξ2|e−t/2,

and when‖u‖ ≥ 1/2,

|x1(t)| ≤ |ξ1|e|ξ2|e−t et = |ξ1|e|ξ2|.

Let β̃(s, t) = sese−t/2, and, for eachM > 0, let γ̃M be anyK function such that̃γM(r ) ≥
MeM for all r ≥ 1/2. Then the above shows that

|x1(t)| ≤ β̃(|ξ |, t)+ γ̃M(‖u‖∞), ∀ t ≥ 0,

for all ξ andu. Combining this with (57), one sees that Claim 2 is true.
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Notes

1. We use standard terminology, cf. [9]:K is the class of functions [0,∞) → [0,∞) which are zero at zero,
strictly increasing, and continuous,K∞ is the subset ofK functions that are unbounded,L is the set of functions
[0,+∞)→ [0,+∞) which are continuous, decreasing, and converging to 0 as their argument tends to+∞,
KL is the class of functions [0,∞)2 → [0,∞) which are classK on the first argument and classL on the
second argument. A positive definite function [0,∞)→ [0,∞) is one that is zero at 0 and positive otherwise.
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