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Abstract. This paper continues the study of the integral input-to-state stabigig) property. Itis shown that the

IIss property is equivalent to one which arises from the consideration of mixed norms on states and inputs, as well
as to the superposition of a “bounded energy bounded state” requirement and the global asymptotic stability of
the unforced system. A semiglobal versionis$is shown to imply the global version, though a counterexample
shows that the analogous fact fails for input to state stabilitg).( The results in this note complete the basic
theoretical picture regardings andiss.
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1. Introduction and Basic Definitions

We consider continuous time nonlinear systems of the following form:
x = f(x,u) (1)

with statesx evolving inR" and inputsu taking values ifR™. Inputsu are measurable,
locally essentially bounded functions of time. The miapR" x R™ — R" is assumed
to satisfy f (0, 0) = 0, and to be locally Lipschitz. Given any stdte R" and any input
u: [0, 00) — R™ we denote by (t, &, u) the uniqgue maximal solution of the system (1),
which is defined on some maximal interval fRax(¢, u)). The system is said to erward
completef tmax(&, U) = +oo for all £ andu. We use the notatioft | for Euclidean norm
of vectorsg, and||ul|, for (essential) supremum of a function of time.

This paper continues the study of the input-to-state stabibits) property (cf. [4], [6],
[71,[8], [9], [10], [11], [15], [14], [16], [17], [19], [20], [21], [22]) as well as its variant, the
integral input-to-state stabilityss) property (cf. [1], [2], [12], [18]). Recall that the first
of these is the natural extension to nonlinear systems (under arbitrary coordinate changes
in states and inputs) of the notion of external stability known as “finitenes®" afain”
(that is, finite operator norm from> to £°°), while the second one extends to nonlinear
systems the notion of finite*{, gain” (that is, finite operator norm froi? to £>°). Precise
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statements will make use of the standard terminology of comparison func(igns,,
andKL).

It was shown in [18] that thess property is equivalent to the following “integral to
integral” stability concept: the system (1) is forward complete, and there are gome
ando € K such that, for all initial states and inputau, the following estimate holds for
allt € [0, tmax(€, U)):

t t
foaux(s,s,umdss x<|s|)+/o o(u©)) ds @

In particular, for example, a system which has “firifitg, norm” (i.e., operator norm from
£? to £2), meaning that an estimate such as

t : t :
(/(; (|X(5757U)|)qd3> §<|S\p+/(; 0(|U(S)|)pd5> (3

holds withp = q = 2, is necessariliss. (Actually, in a sense evergssystem satisfies an
estimate of this form, under coordinate changes; see [5].) The estimate (3) witlp = 2
(or, more generally, for anp = q) gives rise to an estimate as in (2) simply by raising
both sides to thgth power. Howevermixednormsp # q give rise, after raising to the
pth power, to the more general type of estimate:

t t
y (/0 oe(\X(s,é,U)\)dS> < x(IEI)+/0 o(lu(s)))ds (4)

with all comparison functions of clags,,. Alternative ways of stating such a condition
arise by taking’ ~1, leading to an estimate such as

/Ota(IX(S, g, wphds<y (X(ISI) + /0[ U(IU(S)DdS) (5)
(we wrotey ~* again as/), which could also be written as

/Ota(lx(& g, whds=x(§h +v (/Ot U(IU(S)DdS) (6)
(justlety(r) := y(2x(r)) andy(r) := y(2r)), or even as:

/Otaax(s,s, W) ds < x (|s| " /Otoqu(s)nds) @

holding for somey, x, ando € K (takey := x + 7). Note that an estimate of this type

“,n

in turn implies again an estimate as in (4), if one takes= x ! (and “x” is the identity

in (4)).



FURTHER EQUIVALENCES AND SEMIGLOBAL VERSIONS 129

Given the apparent similarity between on the one hand (2) and on the other (4) and its
equivalent versions (5)—(7), it seems natural to conjecture that this latter property is also
equivalent tass. Surprisingly, however, and this is one of the main results of this paper,
this equivalence turns out to be false, and (4) is in fact equivaléntégral input-to-state
stability (11ss). Recall that a system is said to h&s if there exist functions, o of class
Koo, andp of classk L, such that

t
a(|x(t, &, wh < BUEL D +/(; o(Ju(s)) ds ®

holds along all trajectories. Observe that asg system is necessarily forward complete,
because (|x(t, &, u)|) isbounded by (|&], O)+f0T o (Ju(s)|) dsonanyinterval [0 T), with
T < tmax(€, U), on which the trajectory is defined (so maximal trajectories stay bounded,
and are therefore everywhere defined).

The concept ofiss is very natural; among other characterizations, it was shown in [2]
thatiissis equivalent to the existence of a proper and positive definite smooth funttion
which satisfies a dissipation inequality of the following kind:

DV(X)f(x,u) < —p(IX]) +o(Ju)) VYxeR", VueR™ 9)

for some positive definite functiop and somer of classK.,. (In contrast, the strictly
strongenssproperty is equivalent to the existence of a dissipation inequality of this general
form, but wherep is required to be clas§..)

We may weaken the requirements in ttgs definition by not asking that the effect of
initial conditions decay, replacing(|¢],t) by just an upper boung (|£]), and even by
allowing an additional additive constant. This leads to the following notion: a system is
uniformly bounded energy bounded staiBeBS) if, for somex, ¥, ando € K., and some
positive constant, the following estimate holds along all trajectories:

t
a(Ix(t, £, W) < y(|s|>+fo s(lu()) ds+c. (10)

Another apparently weaker notion of stability, which will be used in Section 3 in order to
deal with semi-global versions o$s, is given by estimates of this type, which mix integral
and sup norms:

t
a(x(t, & wh < BUELYD + / a(Ju)) ds+ y([lupglleo)s (11)
0
understood as holding for songeof classKCL and somex, o, andy of class .

Our main equivalence results, to be proved in Section 2, can be summarized as follows. In
addition to the “integral to integral stability” equivalences, we also state a sort of “separation”
theorem foniss, which allows to decompose the property into global asymptotic stability

of the zero-input system = f (x, 0) (theo-GAS property) plus the “bounded input-energy
bounded state” propertysess.
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THEOREM1 For any system (1), the following facts are equivalent:

1. The system igss.

2. The system is-GAS and UBEBS.

3. The system is forward complete and satisfies an estimate as in (7).
4

The system satisfies an estimate as in (11).

We turn now to a “semiglobal” version of thiss property, in which estimates are only
required to hold for bounded initial states and inputs.

Definition 1.1. A system (1) issemigloballyiiss if for eachM > 0 there are functions
Bm € KL, andyy anday in K, such that the following estimate:

t
am(IX(t, &, W) < pm(sl 1) +/(; om(lu(s))) ds (12)

holds for all initial states and inputsu such that|é|] < M and|u| < M, for all
t € [0, tmax(§, W)).

Note that such a system is cleatyGAs, because whem = 0, B¢ (|£],t) — Oast — oo
implies thatx(t, &, 0) — O (attractivity), and applying witiv = 1 one establishes stability.
The main result in that respect will be as follows.

THEOREM?2 A system (1) is semiglobalixs if and only if it isnss.

This is proved in Section 3. Interestingly, the respective result does not hold frasthe
property, in so far as initial states are concerned; see Section 4.

2. Proof of Theorem 1

We will first show that 1< 2. It is obvious that 1= 2, but the converse requires the
following steps: first we establish the existence of a lower-semicontinuous Lyapunov-like
functionV, under the assumption that aBeBs-like estimate holds, and then we combine
thisV with a function as in the characterization®mf;As given in [2] to obtain a non-smooth
dissipation inequality; the final step is to show that iise property can be deduced from
this inequality.

Next we establish that £& 3. This implication makes essential use of the Lyapunov
characterization ofss given in [2].

We then turn to showing that3> 2. The proof of the implication is heavily based upon
the Lyapunov characterization of forward completeness which was recently given in [3].
(As a matter of fact, the original motivation for that paper was in trying to provide the main
technical step required in this proof.) The fact that (7) together with forward completeness
is a sufficient condition foo-GAs was already shown in [19] (see the proof of Theorem 1
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in that paper, applied to the special case when 0). Hence, we are only left to show that
aUBEBS estimate holds.

Since it is clearly true that 1 implies 4, we are only left to show that the converse is also
true; we do this in Section 2.4.

21 12

The implication 1= 2 follows easily simply considering th@t(|&],t) < B(|&[, 0) and
recalling that8 (-, 0) is aXC function. The converse implication is more interesting.

As a preliminary step, we show that, if a systenoisAs and UBEBS, we may always
reduce to the special case= 0. Moreover, we show that a weaker estimate is also possible.

LEMMA 2.1 Suppose that a system (1)dszAs. Then the following properties are equiva-
lent:

e The system satisfies along all trajectories an estimate of the following type, for suitable
maps of clas&.:

t
ar(IX(t, &, W) < as(l5]) + x (/; K(IU(S)I)dS> . (13)

e The system satisfies along all trajectoriesuBEBS-like estimate with e= 0:

t

a([x(t, &, w)) < J/(ISIH—/O o1(lu(s))) ds. (14)

e The system iSBEBS.

Proof: If an estimate of the type (13) holds along all trajectories, we simply introduce
aa(r) := x~1(r/2), so that (14) holds witly = a4 0 a3 andy (r) = as(2x3(r)). Clearly,
if an estimate of type (14) holds, then the systemBEgBs (just takec = 0). Thus, all that
we need to prove is that amyGAs andUBEBS system satisfies an estimate of type (13).

By virtue of Lemma 4.10 in [2], we have thatGas implies the existence of a smooth
functionV: R" — R.g, two classCo, functionse; such that (18) holds, and sorfigs of
classK,, so that

DV(x) f(x,u) <@(x])s(u)) VxeR" YueR™ (15)

Taking the integral of this inequality in both sides yields the following estimate:

t
V(X(t, &, u) < V(S)-i—fo 6(Ix(s, &, whs(lus)h ds (16)

along all possible solutions corresponding to initial stgtaad controlsl. We now exploit
theuBeBsproperty in order to show that we can always reduce ourselves to the eafe
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In general, for any clask-mape, we have that(a + b+ ¢) < «(3a) + «(3b) + «(3c).
Applying this observation to (10), we obtain the following estimate along all solutions:

o(Ix(s, &, wWh < a@By (D) +a (/(; 30(|U(T)|)df> +a(30), (17)

wherea(r) := 0 o a~%(3r). Majorizingd(|x(s)|) in the right hand side of (16) according
to (17), we obtain:

V(x(t, & w) — V(&)
t s
S/O {&(V(Iél))+5é(/0 G(IU(T)I)dt)+5t(C)} s(Ju(s)hds

t t
S/O {&(J/(ISI))+&</O U(IU(T)I)dT>+&(C)} S(lus)h ds
t t
={&(V(|§|))+&</o U(IU(S)I)dS»)—i—&(C)} _/0 s(lu(s)hds

t
< [asm] +x (/O K(IU(S)I)dS>

wherex (r) = maxo (r), §(r)} andy (r) = r2+a(c)r +a(r)r. Now letes andas, be such
that (18) holds. Then we have an estimate of the type (13) holding along all trajectories,
with with a3 := ap + [@(y ()] ]

Thus, we assume from now on that an estimate (14) holds. The next step is to obtain a
Lyapunov-like property.

LEMMA 2.2 Suppose that system (1) satisfies an estimate (14). Then, there exist functions
a1, oz, andoy of classK, and a lower semicontinuous function R" — R such that

ar(Ix]) = V(X) < ax(|X]) (18)

holds for all x, so that along all trajectories the following estimate is satisfied:
t
V(x(t, & w) — V(&) S/ or(Ju(s)) ds. (19)
0
Proof: Take asVv the following function:

t
V(§) = sup {Ot(IX(t,S,U)I)—/; 01(|U(S)|)d5}- (20)

t>0,u(-)

Lower-semicontinuity ofV follows by a routine argument from the continuity of
a(|x(t, -, u)]). By definition of uBeBs in (10), V is finite-valued and (18) is satisfied
with o1 = o anda, = y.
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We show next that, along trajectories of the syst¥hsatisfies (19). In fact

t
VX, & u) = SOUI?)IX(T, X(t, &, U),v)l—/0 o1(Jv(s)]) ds
t
= sup |x(tr +t,$,u#v)|—/ o1(lv(s)]) ds
>0,v(-) 0
t+t
= |: sup |x(r+t,$,u#v)|—/ al(|u#v(s)|)ds}
>0,v(") 0
t
+/ oi(lu(s)|) ds
0
T t
< { sup [X(7, &, )] —f Ul(|ﬁ(5))d5i| +/ a1(Ju(s)) ds
£20,5() 0 0
=<

t
V() +/0 o1(Ju(s)) ds,

whereu#v denotes the concatenation inpuftv (t) = u(t) fort < r andv(t—t) otherwise.
[ ]

To complete the proof that the systemi&s, we take a functiorV; as in Lemma 2.2.
In [2], it is shown that, for each-GAs system there exists some smooth, positive definite,
and “semi-proper” functioW,: R" — R.q so that, for some, € K., and some continuous
positive definite functiop: R-o — Rxo,

DV2(x) f (x, u) < —p(Ix]) + o2(Ju)) (21)

holds for allx € R" and allu € R™. (Semiproper was defined in that paper as: for each
r in the range ofV,, the sublevel sefx|V2(x) < r} is compact.) Consider the function
V := Vi + VL. This function is such that (18) holds for & for suitablewx;, o, of class
K, and also there is@ of classkC,, (hamely, we may pick = o1+ 02) and a continuous
positive definite functiom, such that

t

t
V(x(t, &, w) SV(€)+/O G(IU(S)I)dS—/(; p(Ix(s, &, wl)ds (22)

holds along all trajectories. (Note theix(t, &, u)) is Lebesgue measurable as a function
of t, becauseV is lower semicontinuous, so the integral makes sense.) Thus the proof
will be completed once that we show the following non-smooth version of the sufficiency
condition foriss established in [2].

LEMMA 2.3 Consider a system (1), and suppose that there exists a functi®f V> R,
functionsu, a2, o of classC,, and a continuous positive definite functjersuch that (18)
holds for all x, and so that Yk(t, &, u)) is Lebesgue measurable as a function of t, and (22)
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holds for allé € R", all input signals u, and all = 0. Then the system is Integral Input-
to-State Stable.

Proof: We apply Lemma 3.1 in [2] to the continuous positive definite funciiorio
conclude the existence pf € K, andp, € £ such that:

p(r) = p1(r) p2(r) (23)
holds for allr > 0. We define

() = pae; () pa(ag (1))
and we pick a continuous positive definite and locally Lipschitauch that

p*(r) < p1(r/2) pa(r)

for all r, wherep; € K, andp, € L are as given by Lemma 3.1 in [2] applieddo
Thus, for allx € R" we have:

p(X1) = pa(IXDp2(1X]) = p1(es (V) p2(a; LV (X)) = A(V (X)). (24)

From (22), taking into account (24), we have that

t

t
V(x(t, &, u) SV(€)+/(; U(IU(S)I)dS—/0 p(V(X(s,§, u))ds (25)

along all trajectories. We also note for future reference, thagtisfies the following “no
upper jumps” properties:

limsupV(x(t)) < V(X(t)) (26)
t—ty
liminf V(x(t)) > V(X(to)). (27)
t~>t0’

along all trajectories, for ath > 0.
Now pick any initial stat& and any inputi, and consider the (unique, sing&is locally
Lipschitz) solution of the following initial value problem:

w=o(u]) —p*(w), w0 =V(E). (28)

CLAIM

VX, &, u) <w() Vt=>D0. (29)

In order to prove this, we first fix an arbitraey> 0, and we consider the initial value
problem

w=o(u]) - p*(w), w0 =VE)+e. (30)
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We will we show that (29) holds for this modified problem, for each suchhen the result
will follow for the original problem by lettingg — 0 and using the fact that, for eath
the solutionw(t) depends continuously an Note that, sincev(0) > 0 for the modified
problem, alsaw(t) > 0 for all t, by a comparison principlei (t) > —p*(w(t)) for all t,
and the equation = —p*(v) has unique solutions and has zero as an equilibrium.

Assume, by way of contradiction that there would exist some) such thaV (x(t, &, u)) >
w(t). Let:

T :=inf{t > 0: V(X(t, &, 1) > w(t)}. (31)

To simplify notation, we write from now or(t) instead ofx(t, &, u). By definition oft
and (26), we have

w(t) < limsupV (x(1)) < V(X(1)). (32)

t—tt

SinceV (¢) < w(0), necessarily > 0.
Observe thaV (x(t)) < w(t) for allt < t, so in particular, using (27) and continuity of
w(t):

w(t) > limsupV (x(t)) > Iitmirjf V(x(t)) > V(x(1)). (33)

t—1-

Putting together (33) and (32) gives

w(t) = V(X(1)) = t"m— V(x(1)),
so there exists some> 0 such tha@ < V(X)) < w(t) for everyt € [t — 8, 7). We
also have the fact that

p(r) > p1(r)pa(r) > p1(S/2)pa(S) > p*(S)

whenevers/2 < r < s. We thus obtain a contradiction:

Vx(1)) = V(X(f—5))+/ EU(IU(S)I)dS—/ Bﬁ(V(X(S)))dS

A

w(r—é)Jr/r (r(|u(s)|)ds—/r p*(w(s))ds
T8 T—§

= w(7).

This completes the proof of the claim.

By Corollary 4.3 in [2], associated to the positive definite continuous fungtidhere is
some functiorg of class/CL with the following property: iiis aninputandb is the solution
of w = o (Ju]) — p*(w) with initial conditionwyg, thenw(t) < B(wo, t) + fg o(lu(s)))ds
for all t. It follows from our claim that

t
ar(Ix(t, &, u) = V(X(t, 5, 1) = w®) < V(). 1) +fo o(jus)hds. (34)

This proves that the systemiiss. u
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22. 1=3

We show next that 1 implies 3. We must show the estimate in (7). By virtue of the converse
Lyapunov characterization o§scited earlier, there exists a smooth functionR" — R
so that (18) holds for suitabtg anda,, such that (9) holds. Integrating, we obtain that (22)
holds along all solutions. In particuldx(t, &, u)| < «1(|€]) + Kg(f(; o (lu(s)ds), where
we have defined;(s) = a;* o 2a2(S) andia(s) = a;* 0 2s. We apply Lemma 3.1 in [2]
to the continuous positive definite functian to conclude the existence pf € K, and
p2 € L such that (23) holds for atl > 0. Then,
t

V(X(t, &, ) SV($)+/O o(ju(s)))ds

t t
—[/O pl(IX(s,s,U)l)dS] [ﬂz <K1(I$|)+xz (/0 a(IU(S)I)dS>>] (35)

Define now the functiory as
1 1
p2(t)  p2(0)
Notice thaty is of classC.,. Moreover, we also to define the following clasdunctions:

x1(r) = max{y o 21 (r), ea(r)}
x2(r) = max(y o 2k(r), r}. (37)
It follows from (35) and (37) that

y(@r) = (36)

t
/O p1(IX(s, &, w)| ds

1 t t
< [— +y (n(l%l) + K2 (/ a(IU(S)I)dS>>] [V(SH/ cr(IU(S)I)dS]
02(0) 0 0

1 t t
< [— +y(21(I€]) + ¥ o 22 (/ U(IU(S)I)dS>] [Olz(ISI) +/ U(lu(S)I)dS]
02(0) 0 0

t 2

- d t

- 2(15D) + Jo o (Ju(s)hds + <X1(|5|) + x2 (/ J(IU(S)|)>>
p2(0) 0

t
< @2(1€1)/02(0) + 2x1(IED? + (x2/p2(0) + 2x3) o ( fo a<|u(s)|>) .

This is an estimate of type (6), as wanted.

23. 3=2

As mentioned earlier, the fact that (7) together with forward completeness is a sufficient
condition foro-Gas was already shown in [18]. So we must show thaBass estimate
holds.
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We start by recalling a result in [3]. It is shown there that forward completeness of (1)
implies (and is, in fact, equivalent to) there being an estimate of the following type along
all trajectories:

t
[X(t, &, W] < w2 (t) + k2(I]) + 3 (/O V(IU(S)I)dS> +c (38)

holding for somec ,k2,k3,y Of classk,, and some > 0. We choose functions like this,
and letx, x, ando be as in the estimate (7). We also introduce

§:=max{y,o}.

We also define, for eaah> 0:

+0o0
m(r) ;= sup{|x(t,.§, wl:t=0 1§ < r,/ s(ueds =< r}.
0

Note thatm is a nondecreasing function. The main technical step is in showing that
m(r) < oo:

LEMMA 2.4 For eachr> 0O,

x(2r)

m(r) < Kl( )

)+/<2(r) + k3(r)+cC. (39)

Proof: Pick anyr > 0 and denote for simplicity the right-hand side of (39M§). Pick
any statef and inputu so that|&| <r andf0+°°8(\u(s)|) ds < r. We need to show that,
forall t, |x(t, &, u)| < M(r). Assume that is not the case, so there is sdme 0 so that
IX(T, & u)] > M(r). Let

Ti=supt < T: X, & w| <r},

so that|x(t, &, u)| > r forallt € [z, T]. It follows from (7) that

a(r)(T —1)

IA

.
/ a(x(s, &, w)))ds

IA

.
/0 a(|x(s, &, u)l)ds

]
y (r +/ o(|u(s>|)ds)
0

x(@2r).

IA

IA

With the notations

'I~"=T—1:<X(2r)

= O((r) ) 5 = X(Tv ga u)? U(') = u( - T)
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we have that
IX(T, &, u)| = [X(T, &, 0)] < k1(T) +k2(r) + x3(r) + ¢ = M(r),
a contradiction. |

Now pick any& andu, and let

+00
ri= max{|§|,/ 6(|u(s)|)ds}.
0
By definition ofm,

X, &, u(Nl =mr) < x(r)+c

forallt > 0, wherey is any class<,, function andc is any constant such thai(r) <
x(r) + cfor allr (suchy andc exist becausen is nodecreasing and finite-valued). With
a = (2x)~1, we conclude that

a(IX(t, & u()D =1 + a(20),

for all t, which gives us aBEBS estimate, as wanted.

24, 4=1

In order to prove the result, we need to appeal to the “small gain” argument used in the
proof of the converse Lyapunov theorem fiss in [2]. We review here the key technical
steps needed from that argument, in a manner not stated explicitly in [2].

In general, for any system (1), and any given smagth function ¢, we consider the
following auxiliary system:

x = f(x, de(x))), (40)

where we restrict the inputbto have valuesin the closed unit ball, id;): [0, +00) — B,
whereB denotes the sdiu € R™ |u| < 1}). We let M denote the set of such inputs.
For eactt andd, we usex?(t, &, d) to denote the trajectory of (40) corresponding to initial
statet and inputd, defined in some maximal interval,[G,ax(&, d)).

Suppose given, for the system (40), mapy, andy of classKC,,, such that is smooth,
and denote, for eache R", eacht > 0, and eacld € Mg,

t

z(t,§,d) ;= &(IX‘”(I,E,d)I)—/O y ({d(8)lp(Ix?(s, &, d)])) ds
and for eacls,

g(f) = Suqz(ts 57 d) te [07 tmax(gv d))? d € MB}
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(possibly= +00). Suppose also givenfy € K so that

z(t,§,d) < Bo(IE]) V&, d, t €0, tmax(§, d)). (41)

Notice that, under this assumptianis finite-valued, and

a(l§)) = 9(§) = Po(lED

for all £ € R". Finally, assume that for eachOr; < r, there is ar (r1, rz) > 0 such that
the following property holds:

r<|él<rz = g¢) =supzt,&d): 0<t<T(rs,r2), de Mg} (42)

Then, the proof of the main theorem in [2] contains a proof of this fact:

ProOPOSITION2.5 If the system (1) i®-GAs, and if the above assumptions hold, then the
system (1) isiss.

We now apply this result to show that a system which satisfies an estimate (11) is neces-
sarilyss. Note that such a systemdsGAs. Assume without loss of generality that= ¢
in (11), i.e., the system satisfies the following estimate:

t
a(Ix(t, & W) < B(EL D) +/0 y(us)h ds+ y (U, lleo) (43)

forallt > 0, all initial conditionst € R", and all measurable locally essentially bounded
u(-). Lety be any smootliC., function such that
y(9(s) < ”‘TS) Vs> 0.

We will establish the properties needed for applying Proposition 2.5 with the gaane
@, & = «a/2,andBy := B(-,0). (The only minor technical problem in applying the result
is the requirement that be smooth; smoothness at the origin is needed due to the method
of proof used in [2]. It is possible, however, to assume this fact with no loss of generality,
employing the same trick as in [2] to produce a related system for which (11) holds with
smoothy.)

We start by establishing (41).

LEMMA 2.6 Forall £, d, and te [0, thax(&, d)),

t
a(Ix?(t, &, d)) < 20(15) +2/0 y (d(®)|e(Ix?(s, &, d))) ds. (44)

Proof: Forallt € [0, t], write u(t) := d(t)p(|x¥(t, &, d)|), so that

a(Ix?(r, &, d)))

y(u@D = y(e(x?(r,§ d) < 5

(45)
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for all T, and thus also
a(lle‘(}),l—) lloo)
2

for all 7, where we are denoting W‘[%,r) lloo the sup norm ok? (-, &, d) over the interval
[0, 7]. Now applying (43) with thisu, we have

Y (IUp.n)lleo) <

a(Ix*(z, &, d))) < B(EL Y + /OT y(uhds+ %2”“0&- (46)
Now taking the supremum overe [0, t] we obtain:

(X o) < Boll&]) +/Oty<|u(s)|>ds+ w
so that we conclude

(X ) < 2Bo(lE]) + 2/0t y(lu())) ds.
Equation (44) follows from (|x?(t, &, d)|) < a(”X[%’t)”oo)- u

In order to obtain th& (r1, r)’s as in (42), we need a simple observation. For éaahd
d, we letG(&, d) denote the set dfe [0, tmax(&, d)) for which

X¥(t, £, d)] = 11X o oo

where we again usiex[%’t) |l to indicate the sup norm of* (-, &, d) over the interval [Ot].

LEMMA 2.7 For eaché, d, and t € [0, thax(&, d)), there is some € G(¢, d) such that
[x#(t, & d)| = [x*(z, &, d)| andT < t.

Proof: Just letr := min{s € [0,t]: |x¥(s,&,d)| > |x%(t,&,d)|}. By definition ofz,
IX?(s, &,d)| < |x¥(z,&,d)| forall s € [0, 7). |

We use this remark as follows. Given angndd, and anyt, we pickr as in the Lemma.
As T <t andy is nonnegative,
t T
—/ y({d(®)e(IX*(s, &, d)))ds < —/ y(d(9)e(IX?(s, &, d)])) ds,
0 0
and it follows thatz(t, &, d) < z(z, &, d). Thus, for eacly,
g(&) =supz(t,&,d): t € G(&,d), d e Mg}
Fort € G(¢, d), the estimate (46) gives
RIE AN

2

t
ﬁ<|s|,t>+/o Y (1d©p(Ix*(s. £, d))) ds,

a(Ix?(t, &, d)))

a(Ix¥(t, &, d)) —

IA
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i.e.,z(t, &, d) < B(|€],t). Sinceg(é) > a(|€]), we may pick asl (rq, ry) anyt such that
B(ra,t) < a(r1). This completes the verification of the conditions needed in order to apply
Proposition 2.5.

3. Proof of Theorem 2

Fortechnical reasons, itis convenient to introduce properties separating semiglobal behavior
with respect to inputs or states respectively.

We say that a system gemiglobaliss with respect to inputd, for eachM > 0 there
are functiong8y € KL, andyy anday in K, such that the estimate (12) holds for all
initial statest and all those inputa for which |ull,, < M. The system isemiglobaliss
with respect to initial stateff, for eachM > 0 there are functiongy € KL, andyy
anday in K, such that the estimate (12) holds for all inputand for all those initial
statest such thaté| < M. We could ask in these definition¥t* € [0, tmax(€, U))” or
“vt > 0”; it amounts to the same thing since either property implies forward complete-
ness, i.etmax(&, U) = +oo. Note also that if a system satisfies either of these properties
then it iso-GAS (the argument is exactly the same as the one given earlier for semiglobal
11SS).

The property of being semiglobaligs with respect to inputs can be equivalently restated
as the requirement that every saturated-input system

X = f(x, sat(U)), (47)

where saj; (u) indicates the projection afinto the ball of radiusvl in R™, beliss, for each
M > 0. Indeed, asking for each such system tag®amounts to asking that the required
estimation functions exist.

We will first prove this:

ProOPOSITION3.1 The following facts are equivalent:
1. System (1) isss.
2. System (1) is semigloballgs with respect to inputs.

3. System (1) is semigloballgs with respect to initial states.

Then, we shall prove a variant of the equivalence of 4ie@sdn Theorem 1. We replace
the estimate (11) by an estimate as follows:
t
a(Ix®, & wh < pollED +/O o(us)D) ds+ y([lup,glle). (48)
understood as holding for sonfl, «, o, andy of classK.., along all trajectories. Of

course, an estimate (11) implies also an estimate of this type, just gging:= B(r, 0).
So aniiss system always satisfies this. The converse is less obvious:
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PrROPOSITION3.2 System (1) isssif and only if itiso-GAsand it satisfies an estimate (48).
The key calculation is contained in the following fact, to be proved after we show how
the main conclusions follow from it.
LEMMA 3.3 Assume given three families of functions
{Bu.M eN} S KL, (6w, M eN} S K, {7m, M €N} € K,
as well as two nondecreasing functions
a;: [0,00) > [0,00), i=12

Then, there are a claskxL functiong and classk,, functionsy, y», 81, andé, such that,
forall T >0,

.
Bras(R+a291 (R, T) + Vias(Ri+en(9 (/O Olos(R+ax(9)] (<P(S))d3>

T
< BRT) + yi(@1(R) + y2(a2(9) + 61 </ S2(¢(s)) dS)
0

forall R > 0, all S > 0, and all measurable functions [0, T] — Rxo.

Here we are usingr ] to denote the “ceiling” of € R, i.e., the smallest integer larger or
equal tharr. In the following we will also make use of the “floor” functioly; |, defined
as the largest integer smaller or equal than

Letus see how Proposition 3.1 follows from this. Suppose firstthat the systemis semiglob-
ally nss with respect to inputs. Thus there are familigg and gy so that (12) holds
whenevelu|,, < M, for all ¢ andt. Applying a,\’,,l to both sides, we obtain:

t
IX(t, &, Wl < Bu (], ) + Pm <_/0 5M(|U(S)|)d5) ; (49)

where we definegiy () = oy (2r) andpu (r, t) = ay'(28m (T, ). We apply Lemma 3.3
to these families of maps (restricting attention to integer valugg pfwith o3 = 0 and
a2(S) = S. With the functions given by that Lemma, take now anyu, andt. Let
S:= U], M :=TS], andR := |&]. As y1(¢1(R)) = y1(0) = 0, we have

t
Ix(t, &, Wl < B(I&]. 1) + y2(llullo) + 81 (/O 52(|U(S)|)d5) :

Applying to both sides (-), wherex (351(r)) = r, we get rid of the$; function and recover
the estimate in part 4 of Theorem 1, so that the system is indeed

Suppose now that, instead, the system is semiglolabiywith respect to initial states.
Thus, there are familiesy andBy so that (12) holds whenevgr| < M, for all u andt.
Applying cml to both sides, we obtain again an estimate like (49). This time, we apply the
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Lemma withe, = 0 anda;(R) = R. With the functions given by the Lemma, take &@ny
u, andt. LetS:= |lully, R:=|&], andM := [R]. As y2(«¢1(S)) = 0, we have

t
Ix(t, &, wl < B, 1) + yi(I5]) + 81 (/O 52(|U(S)|)d5)

t
< Y(ED + 61 </0 S2(lu(s)) d8> ,

wherey (r) = B(|r|,0) + y1(Ir ). Applying to both sides(-), wherea(25:(r)) =r, we
get rid of thed; function and recover anBeBs-estimate; together with the fact that the
system is0-GAs, Theorem 1 guarantees that the system is indeedThis ends the proof
of Proposition 3.1.

Let us now prove Proposition 3.2. Suppose an estimate (48) holds for all trajectories.
Because of Proposition 3.1, it is sufficient to show semiglaBalwith respect to inputs,
or equivalently that each system (47)iiss. Fix any M. The estimate (48), applied to
inputs bounded b, gives us that theBeBs property holds, witlt = y (||ujo,¢lle) @and
y = Bo. Thus the system (47) isss, as follows from Theorem 1 applied to that saturated
system.

Finally, we prove Theorem 2. We assume that there are familjeand gy so that (12)
holdswheneveg| < M, |lu]l, < M, and alk. Applyingo@1 to both sides, we obtain again
an estimate like (49). We apply once more Lemma 3.3, now wjthlR) = a2(R) = R.
With the functions given by the Lemma, take now anyu, andt. Let S := ||ul|,

M :=[S], andR := |&|]. Then we obtain an estimate as follows along all solutions:

t
Ix(t, &, wl = [BU&], 0) + »1(1ED] + y2(llullo) + 62 (/0 S2(lu(s))) dS>.

Applying to both sides (-), wherex (351(r)) = r, we once more eliminate ttég function
and recover an estimate (48), so Proposition 3.2 gives us that the system isliagdeed
To summarize, we are only left with proving Lemma 3.3.

3.1. Proof of Lemma 3.3
Let us state several facts abdli and/C,, functions, to be proved below.

LEMMA 3.4 Lgt {BM}MeN be a family of clas¥CL functions. Then there exist functions
71 € Ko and B € KL such that

A, t) < pa(M) B(r, 1)

forallr,t > 0andall M > 0.

LEMMA 3.5 Let{;?M}MEN and{om }men be two families of clask,, functions. Then, there
exist three functiong,, 81, ands, of classk, such that, for all T> 0 and measurable



144 ANGELI, SONTAG AND WANG

functionsyp: [0, T] — Rso,

T T
M (f &Mw(s))ds) < 72(M) 4 (/ 52<¢<s>>ds).
0 0

Lemma 3.3 follows immediately from these two lemmas, sifgg(R) + a2(S)] <
a1(R) + a2(S) 4+ 1 and using the facts that

Pr(@1(R) +a2(S) + 1) < p1(Bea(R)) + p1(32(9)) + 71(3)
(and similarly fory,) andab < a2 + b2. One gets
BR.T)=7(3)BR T)+2[BR T,

() =[G + [760]%,
81(r) = P2(3) 81(r) + 2[81(N]?,

and the same,.
So we must prove these two lemmas. Let us collect first three useful facts/faand
K functions.

LEMMA 3.6 (Corollary 10 and Remark 11 in [18].) For each € K, thereis ac € K
such thaty (rs) < o(r)o(s) forallr,s > 0.

LEMMA 3.7 (Proposition 7 in [18].) For eachB € KL there exisp; and 6, in o such
that 8(r, t) < 61(62(s)e™") forallr,t > 0.

LeEMMA 3.8 (Corollary 4.5 in [2].) Suppose that: Rgo — Ris suchthat (-, s) € K for
each se R.gandy(r,-) € K foreachr e R.o. Then, there exists some functiens 1C
such that

y(r,s) <o(r)o(s)

forall (x,y) € Rx0)?.

We prove one more result of this type:

LEMMA 3.9 Let {ym}men be a family of clas¥C,, functions. Then, there existssain K
such that

ym(T) <o(M)o(r) vr > 0,VM € N.

Proof: We first makeyy } into a monotonically increasing family of functions, by defining

ym(r) = max y(r). (50)
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We then lety: RZ, — R be as follows

7s(r) ifseN
P r) =1 Psi()(JS1 —9) + s (r)(s—[s]) ifs>1lands¢ N (51)
n@r)s ifsel0,1).

By construction.y is a function of clas#CXC, so we may apply to it Lemma 3.8, obtaining
o so that

@) <ym() < P(M,r) <o(M)o(r) (52)

holds for allM, r. [ |
Let us prove Lemma 3.4. LéPBm}men be a family of classCL functions. We apply

Lemma 3.7 to eaclfy, obtaining families{gy,} and {63} in Ko such thatBu(r,t) <

9n1/| (9n2/| (e Y forallr,t > 0and allM. Next we apply Lemma 3.9 to each of the families

{63} and{63}, obtaining functions; ando>, and tao; we apply Lemma 3.6 to géte K
such that:

Bu(.t) < o1(M)oy (02(M)oa(r) ™)
01(M) 0 (02(M)) 6 (o2(r) €7")
—z_’s—/_z

y(M) B(s,t)

A

IA

as desired.

Finally, we prove Lemma 3.5. We apply Lemma 3.9 to each of the fantifig$v <y and
{om }men, Obtaining functions; ando, and too; we apply Lemma 3.6 to géte K, such
that:

;
M ( / am(e(s)) dS>
0

IA

]
o1(M) oy ( /O 02(M) 02(6(9)) ds)

IA

N
01(M) 01 (Gz(M)/; crz((p(S))dS>

IA

.
01(M) 6 (52(M)) 6 (/ 02(@(8))(15)
0

so the conclusions of Lemma 3.5 hold with with{ M) := 1(M) 0 (o2(M)), §1:=0,and
8o 1= 0.

4. A Remark on Semiglobaliss

For Iss, in contrast taliss, the corresponding semiglobal property is strictly weaker, as
shown by a counterexample in Section 4.1. If only inputs are restricted, however, a positive
result exists, as we discuss next.
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We say that a system sgemigloballyiss with respect to inputff for eachM > 0 there
are functiong8y € KL, andyy in K, such that

Ix(t, &, Wl < Am (&, 0 + ymlullec) (53)

holds for all initial stateg and all those inputs for which |Ju, < M.
We will estabilish the following result:

THEOREM3 System (1) isssif and only if it is semigloballyss with respect to inputs.

Proof: We will prove the result exploiting theim property” characterization e$sgiven
in [19]: 1ssis equivalent to Lyapunov stability of the unforced syster f (x, 0) plus the
following asymptotic gain condition on all solutions of (1):

liminf [x(t, & Wl < y (ull). (54)

for some functiory of class. Stability is clearly implied by semiglob&dswith respect
to inputs; in fact the unforced system is cleashgAs. Suppose that, for aM, the functions
Bm € KL andyy in Ko are as in the definition. We apply lemma 3.9 to the fanijly }
to obtain as as there, and define

y(@) =y +Dy),

which is clearly of clas¥C.,. We claim that (54) holds. Indeed, pick afyandu, and let
M = [lulls1. Then, for allt,

IX(t, &, Wl < Bu(El. ) + o (M)o(ulle) < Bu(E] D) + ¥ (IUllo)-

from which (54) follows. ]

4.1. Counter-example

We now provide a system which is “semiglobais with respect to initial states” in the
obvious sense but which is nsts. Consider the system:

X1 = —X1(1—sinxy),

Xo = —Xp+U. (55)

Claim 1. The system is not ISSuppose that the system is ISS. Then there exists some
B € KL and some € K such that

Ix(t, &, Wl < B(&1. O + y(llulleo)

forallt > 0, all initial state€ and allu. Consequently,

lim supIx(t, &, Wi = ¥ (lullo) (56)
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forall&. Considertheinitial state = (y (r/2)+1, 7 /2) and the input given by (t) = 7 /2.
The corresponding trajectory is

X1(t) = y(r/2) + 1, Xo(t) = 7/2, vt>0.

Property (56) fails to hold for this trajectory. This shows that the system is not ISS.

Claim 2. There is alC£L-function 8 such that, for eacM > 0, there is aC-function yy
such that

Ix(t, &, Wl < BEL 1) + ymlulleo) vt >0,

forall |£] < M and allu.
The trajectories of the system are given by:

Xl(t) _ 516/0( —(1-sinxy(s))ds
t
Xo(t) = gge“+e“/ e’u(s)ds.
0
For thex; part, one has the following estimation:

IX2(B)] < 1621€7" + [[Ulloo- (57)

The estimation for the; is a bit more complicated than the part. First of all, we note
that, for alls > 0,

ISinXa(S)| < sin[%'ze_s—i-e‘s/ €"u(o) do]
0
= sin[éze*5+e*5/ €°u(o) do]
0
S S
= sin(sze‘s)cos(e‘s/ e"u(a)dcr)+cos(§2e‘s)sin(e‘3/ €’ u(o) do)
0 0
< |sin&e%)| + sin(e*S/ €“u(o) do)
0
S
< |&| + [sine / € u(o) do)|,
0
o)

t .
()] < [r]etelo!Smedlds

t R . S
|§1|e\§2|e7tef0\sm(e Sfo e’ u(o)do)|ds

IA

Observe that

S t
sin (e*S/ e"u(a)do)‘ < min{e*S/ €”|u(o)| do, 1}.
0 0
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Hence, whenju||», < 1/2, one has

t S t S
/|sin(e*5/ e’ u(o)do)|ds < / e*S-/ € ||U]leo do ds (58)
0 0 0 0
t f—
< / e‘s(es—l)dsgt/z, (59)
o 2
and when|u|» > 1/2, one has
t S t
/ sin(e*S/ e’ u(o)do) dsg/ ds=t.
0 0 0

Consequently, whefu] < 1/2,

)] < [1]e%le'e/? = | [ele /2,
and whenju| > 1/2,

Ix1(D)] < |&r]€®le e = |&y]e.

Let B(s, t) = s€e /2, and, for eactM > 0, letj»y be anyK function such thafy (r) >
MeM for allr > 1/2. Then the above shows that

Ixa®] < BUEL D) + Pmllullo), vt>0,

for all £ andu. Combining this with (57), one sees that Claim 2 is true.
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Notes

1. We use standard terminology, cf. [9% is the class of functions [@0) — [0, co) which are zero at zero,
strictly increasing, and continuous . is the subset of functions that are unboundedljs the set of functions
[0, +00) — [0, +00) which are continuous, decreasing, and converging to 0 as their argument tefsts to
KL is the class of functions [@0)? — [0, co) which are classC on the first argument and clagson the
second argument. A positive definite functiong0) — [0, oo) is one that is zero at 0 and positive otherwise.
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