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Abstract—
The notion of input to state stability (iss) is now rec-

ognized as a central concept in nonlinear systems analy-
sis. It provides a nonlinear generalization of finite gains
with respect to supremum norms and also of finite L2 gains.
It plays a central role in recursive design, coprime factor-
izations, controllers for non-minimum phase systems, and
many other areas. In this paper, a newer notion, that of
integral input to state stability (iiss), is studied. The notion
of iiss generalizes the concept of finite gain when using an
integral norm on inputs but supremum norms of states, in
that sense generalizing the linear “H2” theory. It allows to
quantify sensitivity even in the presence of certain forms of
nonlinear resonance. We obtain here several necessary and
sufficient characterizations of the iiss property, expressed in
terms of dissipation inequalities and other alternative and
nontrivial characterizations. These characterizations serve
to show that integral input to state stability is a most natu-
ral concept, one which might eventually play a role at least
comparable to, if not even more important than, iss.

Keywords— input to state stability, nonlinear systems, fi-
nite gain, dissipation inequalities, tracking

I. Introduction

One of the main issues in control design concerns the
study of closed-loop sensitivity to disturbances, and, more
generally, of the dependence of state trajectories on ac-
tuator and measurement errors, magnitudes of tracking
signals, and the like. In linear systems theory, classical
frequency-domain measures of performance such as root
loci and gain-phase characteristics have led to the modern
theories of “H∞” control and its variants.

During the last 10 years or so, the notion of input to state
stability (iss) was formulated (in [23]), and quickly became
a foundational concept upon which much of modern non-
linear feedback analysis and design rest. As an illustra-
tion, let us point out Kokotovic’s recent survey paper [10],
intended as a summary of current work and future direc-
tions on nonlinear design, in which the notion of iss plays
a central unifying concept. Several current textbooks and
monographs, including [12], [13], [14], [21], make use of the
iss notion and results, sometimes in an essential manner.

Applications of input to state stability are now
widespread. Besides the many applications to recursive de-
sign in the above-mentioned books, let us merely cite a few
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additional references: singular perturbation analysis [3],
powerful global small-gain theorems [11], foundations of
tracking design [19], supervisory/switching adaptive con-
trol [6], observers [8], almost-disturbance decoupling for
non minimum-phase systems [9], and feedback stabilization
with bounded controllers [29]. Moreover, this concept has
many equivalent versions, which indicates that it is math-
ematically natural: there are characterizations in terms of
dissipation, robustness margins, and classical Lyapunov-
like functions; see e.g. [25], [26].

As remarked in [24], input-to-state stability is a non-
linear generalization both of finite gain with respect to
supremum norms and of finite L2 gain (“nonlinear H∞”);
this property takes account of initial states in a manner
fully compatible with classical Lyapunov stability, and re-
places finite linear gains, which represent far too strong a
requirement for general nonlinear operators, with “nonlin-
ear gains”.

A system which is iss exhibits low overshoot and low to-
tal energy response when excited by uniformly bounded or
energy-bounded signals respectively. These are highly de-
sirable qualitative characteritics. However, it is sometimes
the case that feedback design does not render iss behavior,
or that only a weaker property than iss is verified in a step
in recursive design.

One such weaker, but still very meaningful, property was
given the name of integral input to state stability, iiss for
short, in the recent paper [24]. This property reflects the
qualitative property of small overshoot when disturbances
have finite energy , and provides a qualitative analog of
“finite H2 norm” for linear systems. This is a property
with obvious physical significance and relevance. The pa-
per [24] showed that iiss is, in general, strictly weaker than
iss, and provided a very conservative Lyapunov-type suffi-
cient condition. The present paper provides several foun-
dational results, showing that the iiss property is a most
natural one to be expected for well-behaved nonlinear sys-
tems, being equivalent to the combination of well-known
dissipation and detectability properties, and admitting el-
egant Lyapunov-theoretic characterizations. We are confi-
dent that, once that the results in this paper become more
widely known, iiss will play a role at least as prominent as
the one that iss currently has.

In fact, the notion of iiss, and the results in this pa-
per, which were previously announced in electronic preprint
form, have already played a role in several recent control
works. For example, the iiss property appears in the lat-
est approaches to supervisory design in adaptive control.
In the paper [7], Hespanha and Morse — citing preprints
of this work — studied the closed-loop system obtained



when a high-level supervisor directs the switching among
a family of candidate controllers for an uncertain plant.
Their convergence analysis was based on the assumption
that each controller stabilizes the respective plant in an
iiss sense with respect to an input which is related to a
measure of estimator performance, their motivation being
that it is natural to define performance signals using inte-
grals of output estimation errors. Another example of the
use of the iiss concept can be found in the recent work of
Liberzon [15], who approached the task of achieving distur-
bance attenuation in the iiss sense for nonlinear systems
using bounded controls. He derived a universal formula
based on hysteresis switching, in the context in particular
of switched and hybrid systems. The notion of integral in-
put to state stability played a key role in this work. Yet
another direct motivation for the study of the iiss property
is as follows.

Tracking Problems

In the paper [19], Marino and Tomei proposed the refor-
mulation of tracking problems by means of the notion of
input to state stability. Their goal was to strengthen the ro-
bustness properties of tracking designs, and they found the
notion of iss to be instrumental in the precise characteriza-
tion of performance. In fact, they emphasized the novelty
of using the iss notion in this role. It turns out, however,
that a typical passivity-based tracking design may well not
result in iss behavior, as we illustrate now by means of an
example in robotic control.

Consider the manipulator shown in Fig. 1. A simple
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Fig. 1. A Manipulator

model is obtained considering the arm as a segment with
mass M and length L, and the hand as a material point
with mass m. If we denote with r the position of the hand
and with θ the angle of the arm, the equations for such a
system are:

(mr2 + ML2/3) θ̈ + 2mrṙθ̇ = τ

mr̈ −mrθ̇2 = F ,
(1)

where F and τ indicate external torques. We now study
the closed-loop system which is obtained by choosing τ and
F as:

τ = −kd1 θ̇ − kp1(θ − θd)
F = −kd2 ṙ − kp2(r − rd) ,

(2)

with kp1 , kp2 , kd1 , kd2 > 0. (For notational simplicity, we
will also write q = [θ, r]T ). This represents a typical
passivity-based tracking design, when we think of rd and
θd as signals to be followed by r and θ.

Normally, one establishes tracking behavior, as well as
the closed-loop stability of the system when the reference
signal qd = (θd, rd) is constant; for such signals, one obtains
q′ → 0 and q → qd as t → +∞. In the spirit of input-to-
state stability, however, it is natural to ask what is the
sensitivity of the design to additive measurement noise.
That is, suppose that the input applied to the system is,
instead of (2):

τ = −kd1(θ̇ + d11)− kp1(θ + d12 − θd)
F = −kd2(ṙ + d21)− kp2(r + d22 − rd) ,

where the dij(t)’s are observation errors. The closed-loop
system that results is then as follows:

(mr2 + ML2/3)θ̈ + 2mrṙθ̇ = u1 − kd1 θ̇ − kp1θ

u2mr̈ −mrθ̇2 = u2 − kd2 ṙ − kp2r,
(3)

or equivalently, in classical first-order control system form
(denoting q̇ by z),

q̇1 = z1,
q̇2 = z2,

ż1 = −2mq2z1z2−kp1q1−kd1z1
mq2

2+ML2/3
+ kp1u1

mq2
2+ML2/3

,

ż2 = q2z
2
1 −

kp2q2
m − kd2z2

m + kp2u2

m ,

(4)

where
u1 = −kd1d11 − kp1(d12 − θd)

and
u2 = −kd2d21 − kp2(d22 − rd)

can be though of as external inputs to the closed-loop sys-
tem.

The goal stated earlier is to qualitatively analyze the
sensitivity of the full state (q, z) as a function of the mea-
surement errors dij . As these errors are potentially arbi-
trary functions, this problem amounts to the study of sta-
bility properties with respect to arbitary input functions
u = (u1, u2).

It is worth pointing out that we are led to exactly the
same mathematical problem if interested, instead, in an-
other very obvious question, namely, in the analysis of the
behavior of the state (q, z) in response to attempts to fol-
low time-varying tracking signals, even in the absence of
observation errors. Indeed, in that case the dij ’s would
be zero, but the different possible tracking functions θd
and rd would still give rise to potentially arbitrary inputs
u1 and u2. In summary, either of these two basic control
questions: sensitivity to measurement error, or analysis of



time-varying (instead of merely constant) tracking signals,
gives rise to the problem of studying stability of the system
with respect to the inputs u.

As in current nonlinear control studies, and specifically
as in [19] for tracking problems, one may ask then if the sys-
tem (4) is iss when u is taken as an input. (The authors
of [19] required tracking controllers to have an iss prop-
erty with respect to disturbances acting on the system. In
the special case when the disturbances are matched to the
control, this amounts to the problem studied here.) In par-
ticular, if the system were to be iss, then bounded inputs
u should result in bounded trajectories (iss is a stronger
property than “bounded-input bounded-state” stability).
However, there are bounded inputs which produce nonlin-
ear resonance behavior, resulting in unbounded state tra-
jectories, which implies that this system is not iss. Indeed,
the input shown in Figure 2 has the property that, for a

Fig. 2. Input Signal

suitable initial state, the ensuing trajectory is unbounded.
Figure 3 shows the “r” component of the state of a certain
solution which corresponds to this input (in Appendix A-C,

Fig. 3. Nonlinear Resonance

we explain how this input and trajectory were calculated).
In conclusion, the tracking system behavior exhibits un-

stable behavior with respect to measurement disturbances
and/or with respect to time-varying reference signals. One
might hope, however, given the simplicity and common use
of these designs, that some sort of robustness property is
verified for this system. The study of this question, for
this example, led to the work reported in the present pa-
per. The answer turns out to have wide applicability. We

discovered that the weaker but still very useful property
of iiss is always satisfied for the passivity controller in our
robotic example, even though iss is not. This property is
defined precisely in the next section; after stating the main
results, we will show why it holds for the example.

Outline of Paper

In this paper, we provide a complete, necessary and suf-
ficient, Lyapunov-like characterization of the iiss property.
Just as the equivalences for iss, which have found wide
applicability and serve to justify the iss concept, are de-
rived from its Lyapunov characterization, we expect that
the current paper will be the first step in the understanding
of which system properties are equivalent to iiss. In addi-
tion, the characterizations allow one to consider “LaSalle”
types of dissipation inequalities (semidefinite derivatives),
filling-in a theoretical gap in the iss literature.

Section II discusses the main concepts and states the
main results. It also explains how the notion presented here
represents the obvious generalization of “finite H2 gain”
under nonlinear coordinate changes. After that, we return,
in Section III, to the robotics example discussed earlier,
and we verify, using the characterizations presented in the
paper, why the system indeed satisfies the iiss property.
Then, in Section IV, we provide the main proofs of this pa-
per. In Section V, we provide a counterexample to the con-
jecture (which would seem true at first) that iiss might be
equivalent to simply forward completeness plus 0-gas. Sec-
tion VI discusses several related remarks for dual notions
of observability. Section VII summarizes the conclusions of
the paper. Finally, the Appendix collects some technical
lemmas and the details on the numerical calculations that
led to Figures 2 and 3.

II. Definitions and Statements of Main Results

Consider the system

ẋ = f(x, u) (5)

with states x(t) evolving in Euclidean space Rn. Here,
controls (or inputs) are measurable and locally essentially
bounded functions u : R≥0 → Rm, and f : Rn × Rm → Rn
is assumed to be locally Lipschitz.

Given any control u and any ξ ∈ Rn, there is a unique
maximal solution of the initial value problem ẋ = f(x, u),
x(0) = ξ. This solution is defined on some maximal open
interval, and it is denoted by x(·, ξ, u).

Definition II.1: ([24]) System (5) is integral input-to-
state stable (iiss) if there exist functions∗ α ∈ K∞, β ∈ KL,
and γ ∈ K, such that, for all ξ ∈ Rn and all u, the solution

∗We use standard terminology, cf. [5]: K is the class of functions
[0,∞) → [0,∞) which are zero at zero, strictly increasing, and con-
tinuous, K∞ is the subset of K functions that are unbounded, L is the
set of functions [0,+∞)→ [0,+∞) which are continuous, decreasing,
and converging to 0 as their argument tends to +∞, KL is the class
of functions [0,∞)2 → [0,∞) which are class K on the first argument
and class L on the second argument. A positive definite function
[0,∞)→ [0,∞) is one that is zero at 0 and positive otherwise.



x(t, ξ, u) is defined for all t ≥ 0, and

α(|x(t, ξ, u)|) ≤ β(|ξ| , t) +
∫ t

0

γ(|u(s)|) ds (6)

for all t ≥ 0, where |·| denotes the standard Euclidean
norm. 2

Observe that a system is iiss if and only if there exist
functions β ∈ KL and γ1, γ2 ∈ K such that

|x(t, ξ, u)| ≤ β(|ξ| , t) + γ1

(∫ t

0

γ2(|u(s)|) ds

)
(7)

for all t ≥ 0, all ξ ∈ Rn, and all u.
Also note that if system (5) is iiss, then it is 0-gas, that

is, the 0-input system

ẋ = f(x, 0)

is globally asymptotically stable (gas). (That is, the zero
solution of this system is globally asymptotically stable.)

Definition II.2: A continuously differentiable function
V : Rn → R is called an iiss-Lyapunov function for sys-
tem (5) if there exist functions α1, α2 ∈ K∞, σ ∈ K, and a
continuous positive definite function α3, such that

α1(|ξ|) ≤ V (ξ) ≤ α2(|ξ|) (8)

for all ξ ∈ Rn, and

DV (ξ)f(ξ, µ) ≤ −α3(|ξ|) + σ(|µ|) (9)

for all ξ ∈ Rn and all µ ∈ Rm. 2

Note that the estimate (8) amounts to the requirement
that V must be positive definite (i.e., V (x) > 0 for all
x 6= 0 and V (0) = 0), and proper (i.e, radially unbounded,
namely, V (x)→∞ as |x| → ∞).

Notice the difference between Definition II.2 and the dis-
sipation characterization of iss (cf. [25], [26]): the iss prop-
erty is equivalent to the existence of a V as here but for
which α3 is required to be unbounded (in fact, class K∞).
As an example, consider the one dimensional system:

ẋ = − arctan x + u.

Let V (x) = x arctanx. Then, DV (ξ)f(ξ, µ) equals
arctan ξ (− arctan ξ + µ) + ξ

1+ξ2 (− arctan ξ + µ), which is
≤ −(arctan |ξ|)2+2 |µ|, showing that V is an iiss-Lyapunov
function for the system. But in the estimate (9) we have
α3(r) = (arctan r)2, which is not of class K∞, so one does
not have an iss-type estimate. Indeed, this system does
not admit any iss-Lyapunov function, since the system is
not iss (the trajectory with x(0) = 1 and u(t) ≡ π/2 is
unbounded).

Our main result will establish that the existence of a
smooth iiss-Lyapunov function is necessary as well as suf-
ficient for the system to be iiss.

This fact will be stated in several essentially equivalent
ways. One possibility is to relax the positive definiteness
requirement on α3 to just nonnegativity, or simply omit it,
but to assume explicitly that the system is 0-gas.

Another possibility is to deduce the 0-gas property from
LaSalle’s invariance principle. This last variant is of consid-
erable interest in applications such as the robotics example
discussed in Section III, and it may be stated using con-
cepts of detectability, as is by now standard in the nonlin-
ear dissipation literature (see, e.g. [30], section 3.2). Let us
say that an output for the system (5) is a continuous map
h : Rn → Rp (for some p), with h(0) = 0. For each initial
state ξ ∈ Rn, and each input u, we let y(t, ξ, u) be the corre-
sponding output function, i.e., y(t, ξ, u) = h(x(t, ξ, u)) (de-
fined on some maximal interval [0, Tξ,u)). The system (5)
with output h is said to be weakly zero-detectable if, for
each ξ such that Tξ,0 =∞ and y(t, ξ, 0) ≡ 0, it must be the
case that x(t, ξ, 0) → 0 as t → ∞. Finally, we will say for
the purposes of this paper that the system (5) with output
h is dissipative if there exists a continuously differentiable,
proper, and positive definite function V (a storage function
for the system), together with a σ ∈ K and a continuous
positive definite function α4, such that

DV (ξ)f(ξ, µ) ≤ −α4(|h(ξ)|) + σ(|µ|) (10)

for all ξ ∈ Rn and all µ ∈ Rm. If this property holds with
a V which is also smooth, we say that the system (5) with
output h is smoothly dissipative. Finally, if (10) holds with
h = 0, i.e., if there exists a (smooth) proper and positive
definite V , and a σ ∈ K, so that

DV (ξ)f(ξ, µ) ≤ σ(|µ|) (11)

holds for all ξ ∈ Rn and all µ ∈ Rm, we say that the
system (5) is zero-output (smoothly) dissipative.

We are now able to state the main conclusions of this
paper.

Theorem 1: For any system (5), the following properties
are equivalent:
1. The system is iiss.
2. The system admits a smooth iiss-Lyapunov function.
3. There is some output which makes the system smoothly
dissipative and weakly zero-detectable.
4. The system is 0-gas and zero-output smoothly dissipa-
tive.

The main step of the proof of Theorem 1 is given in
Section IV, where we show 1⇔2 and also we prove Propo-
sition II.5 (see below), which characterizes the 0-gas prop-
erty. The implication 4⇒2 will be immediate from Propo-
sition II.5. The remaining implications are routine, so we
can dispose of them immediately, as follows. First of all,
notice that 2⇒3. To see this, take the iiss-Lyapunov func-
tion V as a storage function, and consider the inequality
in (9). We introduce the output function h(x) := α3(|x|).
The system is weakly zero-detectable (in fact, it is even
“zero-observable”), because h(x) = 0 implies x = 0, since
α3 is positive definite. Moreover, with α4 equal to the
identity, we have that α4(|h(ξ)|) = α3(|ξ|), so (10) is the
same as (9). Finally, we show that 3⇒4. Suppose that (10)
holds. With µ = 0, we take V as a Lyapunov function for
the zero-input system ẋ = f(x, 0). The zero-detectability
condition means that the LaSalle invariance principle, with



the Lyapunov function V , can be applied, and we conclude
0-gas. And since −α4(h(ξ)) ≤ 0, also (11) holds.

Remark II.3: We stated Theorem 1 requiring that the
corresponding functions V (iiss-Lyapunov, storage) be
smooth, that is, infinitely differentiable. This makes the
existence of such V ’s, which is the hardest part to prove,
more interesting. The sufficiency parts of the proofs do not
require smoothness, however. In other words, system (5)
is iiss if it admits an iiss-Lyapunov function, or if it has
an output which makes the system dissipative and weakly
zero-detectable or if it is 0-gas and zero-output dissipative.
2

Remark II.4: We used the adjective “weak” when defin-
ing zero-detectability in order to distinguish this notion
from true detectability, or “(zero-input) output to state
stability”, cf. [27] and also Section VI below, where one
asks that “small output (when u ≡ 0) implies small state”,
as opposed to merely asking that “zero output implies small
state” as here. 2

A Characterization of 0-GAS Control Systems

In the proof Theorem 1, we utilize the following charac-
terization of 0-gas systems. It is in itself a result of some
interest.

We call a positive definite function W : Rn → R≥0 semi-
proper if there exist a function π(·) of class K and a proper
positive definite function W0 such that W = π ◦W0. (It
is easy to see that a continuous positive definite V : Rn →
R≥0 is semiproper if and only if, for each r in the range of
V , the sublevel set {x |V (x) ≤ r} is compact.)

Proposition II.5: System (5) is 0-gas if and only if there
exist a smooth semi-proper function W , a σ ∈ K, and a
continuous positive definite function ρ : R≥0 → R≥0, such
that

DW (ξ)f(ξ, µ) ≤ −ρ(|ξ|) + σ(|µ|) (12)

for all ξ ∈ Rn and all µ ∈ Rm.
The sufficiency part follows from the standard Lyapunov

results for autonomous systems: if (12) holds with W = π◦
W0, then W0 is a Lyapunov function for the 0-input system.
(This is because (12) implies that DW0(ξ)f(ξ, 0) < 0 for
all ξ 6= 0.) The necessity implication will be proved in
Section IV.

Proof of 4⇒2 in Theorem 1. Let the functions V and
σ be so that (11) holds. Since the system is 0-gas, by
Proposition II.5, there exists a smooth semi-proper, posi-
tive definite function V0 such that

DV0(ξ)f(ξ, µ) ≤ −ρ0(ξ) + σ0(|µ|), ∀ ξ ∈ Rn, ∀µ ∈ Rm

for some continuous positive definite function ρ0 and some
K-function σ0. Let V1(ξ) = V (ξ)+V0(ξ). It then clear that
V1 is an iiss-Lyapunov function: it is proper because V0 is,
and

D(V + V0)(ξ)f(ξ, µ) ≤ −ρ0(ξ) + σ0(|µ|) + σ(|µ|)

gives an estimate as in (9).

Motivation: Finite-Gain under Coordinate Changes

As mentioned in the Introduction, we wish to explain
briefly how the notion of iiss arises in an extremely nat-
ural manner when generalizing linear L2 to L∞ gains
(sometimes called “H2 gains”) to nonlinear systems. (See
also [24], which explains why, when we apply the same rea-
soning to “L2 to L2 stability” or to “L∞ to L∞ stability,”
we recover input to state stability, as well as [4] for more
on changes of coordinates and iss.)

For linear systems, one defines finite-gain stability, with
respect to square norm on inputs and sup norm on states,
by requiring the existence of constants c and λ, with λ > 0,
so that, for each input u(·) and each initial state ξ, the so-
lution x(t) of ẋ = Ax+Bu, x(0) = ξ, satisfies the following
estimate:

|x(t)| ≤ ce−λt |ξ| + c

∫ t

0

|u(s)|2 ds for all t ≥ 0 . (13)

(Actually, most textbooks omit the initial state, but this is
the appropriate estimate if nonzero initial states are taken
into account.) In a nonlinear context, it is natural to re-
quire that notions of stability should be invariant under
(nonlinear) changes of variables. Let us see what this leads
us to. Suppose that we take an origin-preserving state
change of coordinates x = T (z) and an origin-preserving
change of variables u = S(v). That is, T : Rn → Rn
and S : Rm → Rm are invertible, and they, as well as
their inverses, are continuous; furthermore, we suppose
that T (0) = 0 and S(0) = 0. Then, there are two func-
tions α1, α2 ∈ K∞ so that

α1(|z|) ≤ |T (z)| ≤ α2(|z|)

for all z ∈ Rn, and, similarly, we can write |S(v)|2 ≤ γ(|v|)
for each v ∈ Rm, for some γ ∈ K∞. Therefore, the esti-
mate (13) gives us, in terms of z and v:

α1(|z(t)|) ≤ ce−λtα2(|ζ|) + c

∫ t

0

γ(|u(s)|)2 ds ∀ t ≥ 0 ,

when x(t) = T (z(t)) and u(t) = S(v(t)) for all t, and ζ =
z(0) = T−1(ξ). In other words,

|z(t)| ≤ β(|ζ| , t) + α−1
1

(∫ t

0

2c γ(|u(s)|)2 ds

)
∀ t ≥ 0 ,

where we let β(r, t) := α−1
1 (2cα2(r)e−λt). This is precisely

as in the estimate (7), except that β has what appears
to be a very special form. Surprisingly, however, any KL
function β can be majorized by a function of this special
form, see [24], so indeed one obtains the general notion of
iiss with this reasoning.

III. The Robotics Example is iiss

In this section we verify the iiss property for the robotics
system (3) discussed earlier. (The same example was used,
for a different purpose — namely, to illustrate a different
nonlinear tracking design which produces iss, as opposed to



merely iiss, behavior — in the paper [1].) One interesting
feature of this example, which in fact motivated much of
the research reported here, is that it illustrates the use of
the LaSalle-type condition that we obtained.

To prove the iiss property, we introduce, as usual for
mechanical manipulators, the following matrix notation:

H(q)=
[

mr2 + M L2

3 0
0 m

]
, C(q, q̇)=mr

[
ṙ θ̇

−θ̇ 0

]
where H(q) is the inertia matrix, and C(q, q̇) expresses the
Coriolis torques. Then (3) can be rewritten as

H(q)q̈ + C(q, q̇)q̇ = −Kp(q − qd)−Kdq̇,

where Kp = diag{kp1 , kp2}, Kd = diag{kd1 , kd2}, and qd =
[θd, rd]T . We take the mechanical energy of the system as
a candidate Lyapunov function:

V (q, z) =
zTH(q)z + qTKpq

2
=

q̇TH(q)q̇ + qTKpq

2
.

(14)
Taking derivatives in (14) with respect to time along tra-
jectories of (3) yields the following passivity-type estimate
for d

dtV (q(t), z(t)):

q̇(t)TH(q(t))q̈(t) +
1
2
q̇(t)T

˙︷ ︷
H(q(t)) q̇(t) + q(t)TKpq̇(t)

= −q̇(t)TKdq̇(t) + q̇(t)TKpqd(t) (15)
≤ −c1|q̇(t)|2 + c2|qd(t)|2 = −c1|z(t)|2 + c2|u(t)|2,

for some sufficiently small number c1 > 0 and some suffi-
ciently large number c2 > 0. Inspection of the equations
shows that, when u ≡ 0 and z ≡ 0, necessarily q ≡ 0 as
well. Thus, thinking of z as an output, the system is weakly
zero-detectable and dissipative; applying Theorem 1, one
concludes that the system is iiss.

IV. Main Proofs

The following Lemma will be needed several times during
the proofs.

Lemma IV.1: Let ρ : R≥0 → R≥0 be a continuous pos-
itive definite function. Then there exist ρ1 ∈ K∞ and
ρ2 ∈ L such that:

ρ(r) ≥ ρ1(r) ρ2(r). (16)
The Lemma will be proved in the appendix; it is used in

establishing the following comparison theorem.
Lemma IV.2: Given any continuous positive definite

function ρ : R≥0 → R≥0, there exists a KL-function β with
the following property. Suppose that for some 0 < t̃ ≤ ∞,

v : [0, t̃)→ R≥0 and y : [0, t̃)→ R

are, respectively, a continuous and a (locally) absolutely
continuous function with y(0) ≥ 0. Assume further that

ẏ(t) ≤ −ρ
(
max{y(t) + v(t), 0}

)
(17)

holds for almost all t ∈ [0, t̃). Then, letting ‖vt‖∞ be the
supremum of the restriction of v to the interval [0, t), the
following estimate holds:

y(t) ≤ max {β(y(0), t), ‖vt‖∞} for all t ∈ [0, t̃) . (18)

Proof: We start by picking ρ1 ∈ K, ρ2 ∈ L as in
Lemma IV.1, for the function ρ. Without loss of general-
ity, we may assume that ρ1 and ρ2 are locally Lipschitz.
Otherwise, we may always pick locally Lipschitz functions
ρ̃1 ∈ K and ρ̃2 ∈ L that are majorized by ρ1 and ρ2 respec-
tively to replace ρ1 and ρ2 respectively.

A standard comparison principle asserts the existence
of a function β ∈ KL having the following property: if
q : [0, T ]→ R≥0 is any absolutely continuous function that
satisfies the differential inequality q̇ ≤ −ρ1(q)ρ2(2q) almost
everywhere, then it must be the case that q(t) ≤ β(q(0), t)
for all t ∈ [0, T ]. (See for instance Lemma 4.4 in [16];
the statement in that reference applies to q defined on all
of [0,∞), but exactly the same proof works for a finite
interval. One choice for β(s, t) is β(s, t) = z(t), where
z is the solution of the scalar initial value problem ż =
−ρ1(z)ρ2(2z), z(0) = s.)

Let now v and y be as in the statement of the Lemma,
and define

t0 := min{t ≥ 0 | y(t) ≤ ‖vt‖∞}

(with t0 := t̃ if y(t) > ‖vt‖∞ for all t ∈ [0, t̃)). For all t ≥ t0
(if t0 < t̃), y(t) ≤ ‖vt‖∞ (because y is nonincreasing, since
ẏ(t) ≤ 0 for all t, and s 7→ ‖vs‖∞ is nondecreasing), so (18)
holds for all t ≥ t0.

Pick now any t ∈ [0, t0). We have then that y(t) >
‖vt‖∞ ≥ v(τ) for all τ ∈ [0, t] (the last inequality by defi-
nition of ‖vt‖∞). Since y is nonincreasing, this means that
also y(τ) ≥ y(t) > v(τ) for all such τ . Therefore

0 ≤ y(τ) ≤ y(τ) + v(τ) ≤ 2y(τ)

for all τ ∈ [0, t]. From (17) and the fact that ρ1 is nonde-
creasing, we conclude that

ẏ ≤ −ρ1(y) ρ2(2y) (19)

almost everywhere on [0, t]. Since t ∈ [0, t0) was arbitrary,
(19) holds on [0, t0) a.e. By the choice of β, it follows that
y(t) ≤ β(y(0), t) for all t ∈ [0, t0). Thus (18) holds for all
such t as well.

The following is a consequence of Lemma IV.2.
Corollary IV.3: Given any continuous positive definite

function ρ : R≥0 → R≥0, there exists a KL-function β with
the following property. For any 0 < t̃ ≤ ∞, and for any
(locally) absolutely continuous function y : [0, t̃) → R≥0

and any measurable, locally essentially bounded function
v : [0, t̃)→ R≥0, if

ẏ(t) ≤ −ρ(y(t)) + v(t) (20)

holds for almost all t ∈ [0, t̃), then the following estimate
holds:

y(t) ≤ β(y(0), t) +
∫ t

0

2v(s) ds for all t ∈ [0, t̃) . (21)



Proof: First observe that one may always assume that
the function ρ is locally Lipschitz, for otherwise one may
replace ρ by any such function majorized by ρ. Take now
any y, v as in the statement, and consider the solution w(t)
to the following initial value problem:

ẇ(t) = −ρ(|w(t)|) + v(t), w(0) = y(0) .

It follows from the standard comparison principle that 0 ≤
y(t) ≤ w(t) for all t ∈ [0, t̃). In particular, we can write
ρ(w(t)) instead of ρ(|w(t)|) in the above equation. Now
define v1 and w1 as follows:

v1(t) =
∫ t

0

v(s) ds, w1(t) = w(t)− v1(t).

Taking the derivative of w1 with respect to t yields

ẇ1(t) = −ρ(w(t)) = −ρ(max{w1(t) + v1(t), 0})

for almost all t ∈ [0, t̃), where the last equation holds be-
cause w is nonnegative. Let β be a KL-function as in
Lemma IV.2 for this ρ. It follows that

w1(t) ≤ max {β(w1(0), t), ‖v1t‖∞} ∀ t ∈ [0, t̃),

from which it follows that

y(t) ≤ w(t) ≤ β(w(0), t) + ‖v1t‖∞ +
∫ t

0

v(s) ds

= β(y(0), t) +
∫ t

0

2v(s) ds

for all t ∈ [0, t̃).
We also need the following result in our proofs.
Let N denote the class of all functions k : R → R that

are:
1. nondecreasing,
2. continuous, and
3. unbounded below (i.e., infx∈R k(x) = −∞).

We will prove:
Proposition IV.4: Suppose that c : R2 → R is such that

c(·, y) ∈ N for each y ∈ R and c(x, ·) ∈ N for each x ∈ R.
Then, there exists some function k ∈ N such that

c(x, y) ≤ k(x) + k(y)

for all (x, y) ∈ R2.
This result generalizes the one given in [24], which ap-

plied only to functions of the form c(x, y) = g(x + y) with
g ∈ N . We will need the “exponential” form of this result,
which is as follows:

Corollary IV.5: Suppose that γ : R2
≥0 → R is such that

γ(·, s) ∈ K for each s ∈ R≥0 and γ(r, ·) ∈ K for each
r ∈ R≥0. Then, there exists some function σ ∈ K such
that

γ(r, s) ≤ σ(r)σ(s)

for all (x, y) ∈ (R≥0)
2.

Proof: Consider c(x, y) := ln γ(ex, ey); then c is a class
N function with respect to both arguments. Let k ∈ N be

as in Proposition IV.4; without loss of generality, we may
assume that k is strictly increasing. Then σ(r) := ek(ln r)

(and σ(0) = 0) establishes the Corollary.
The proof of Proposition IV.4 will be given in the ap-

pendix.

Proof of 2⇒1 in Theorem 1

We first prove that existence of a (just continuously dif-
ferentiable, cf. Remark II.3) iiss-Lyapunov function V im-
plies iiss. So pick V so that (8)-(9) hold. Let ρ1 ∈ K∞ and
ρ2 ∈ L be functions as in Lemma IV.1 for α3. We let ρ̃
be any positive definite function which is locally Lipschitz
and satisfies

ρ̃(r) ≤ ρ1

(
α−1

2 (r)
)
ρ2

(
α−1

1 (r)
)

for all r ≥ 0. By equation (8) we have:

DV (ξ) f(ξ, µ) ≤ −ρ1(|ξ|) ρ2(|ξ|) + σ(|µ|)
≤ −ρ̃(V (ξ)) + σ(|µ|) (22)

for all ξ and µ.
Now pick any trajectory x(·) corresponding to a control

u(·). Equation (22) says that

V̇ (x(t)) ≤ −ρ̃(V (x(t))) + σ(|u(t)|)

for almost all t, We let β be associated to ρ̃ as in Corol-
lary IV.3. It then holds that

V (x(t)) ≤ β(V (x(0)), t) +
∫ t

0

2σ(|u(s)|) ds

for all t ≥ 0. Hence,

α1(|x(t)|) ≤ V (x(t))

≤ β(V (0), t) +
∫ t

0

2σ(|u(s)|) ds

≤ β(α2(|x(0)|), t) +
∫ t

0

2σ(|u(s)|) ds

for all t ≥ 0, and so the sufficiency proof is complete.

Proof of 1⇒2 in Theorem 1

We first remark that the proof of Lemma 3.1 in [16] can
be used to show the following:

Lemma IV.6: For each given KL-function β, there exists
a family of mappings {Tr}r>0 with:
• for each fixed r > 0, Tr : R>0

onto−→ R>0 is continuous and
is strictly decreasing;
• for each fixed ε > 0, Tr(ε) is (strictly) increasing as r
increases and limr→∞ Tr(ε) =∞;
such that

β(s, t) < ε

for all s ≤ r, all t ≥ Tr(ε). 2

Assume now that system (5) is iiss with α, β, γ as in
Definition II.1. Let ϕ be any smooth K∞-function such



that γ(ϕ(s)) ≤ α(s) for all s ≥ 0. Consider the following
system:

ẋ(t) = f(x(t), d(t)ϕ(|x(t)|)) , (23)

where we restrict the inputs d, thought of here as “dis-
turbances”, to have values in the closed unit ball: d(·) :
[0,∞) → B̄, where B̄ denotes the closed unit ball {µ ∈
Rm : |µ| ≤ 1} in Rm. We let M denote the set of all
such inputs, and we let xϕ(t, ξ, d) denote the trajectory
of (23) corresponding to the initial state ξ and the func-
tion d. This is defined on some maximal interval [0, T+

ξ,d)
with 0 < T+

ξ,d ≤ ∞. It then follows from (6) that, for any
given ξ, d, and each t ∈ [0, T+

ξ,d), and defining β0 := β(·, 0):

α(|xϕ(t, ξ, d)|) ≤ β(|ξ| , t)

+
∫ t

0

γ(|d(s)|ϕ(|xϕ(s, ξ, d)|)) ds

≤ β0(|ξ|) +
∫ t

0

γ(ϕ(|xϕ(s, ξ, d)|)) ds

≤ β0(|ξ|) +
∫ t

0

α(|xϕ(s, ξ, d)|) ds.

It thus follows, using Gronwall’s inequality, that

α(|xϕ(t, ξ, d)|) ≤ β0(|ξ|) et

for all 0 ≤ t < T+
ξ,d. Hence the maximal solution stays

in a bounded set (the ball of radius β0(|ξ|) exp(T+
ξ,d)) if

T +
ξ,d <∞. Thus, T+

ξ,d = +∞. In conclusion:
Lemma IV.7: If system (5) is iiss, then there exists a

smooth K∞-function ϕ such that system (23) is forward
complete, that is, xϕ(t, ξ, d) is defined for all t ≥ 0, all
ξ ∈ Rn, and all d ∈M. 2

Because of forward completeness, this follows from [16]
(c.f. Propositions 5.1 and 5.5 of [16]):

Lemma IV.8: Assume system (5) is iiss, and let ϕ be
given as in Lemma IV.7. For any fixed T > 0 and any
compact K ⊂ Rn, there is a compact K1 ⊂ Rn such that
xϕ(t, ξ, d) ∈ K1 for all t ∈ [0, T ], all ξ ∈ K and all d ∈
M. Furthermore, there is a constant C > 0 (which only
depends on T and the set K) such that

|xϕ(t, ξ, d)− xϕ(t, η, d)| ≤ C |ξ − η|

for any ξ, η ∈ K, any 0 ≤ t ≤ T , and any d ∈M. 2

We now continue with the proof of the implication 1⇒ 2
of Theorem 1. Without loss of generality, one may assume
that α is a smoothK∞-function. Otherwise, one can always
replace α by a smooth K∞-function α̃ majorized by α. We
will first prove the result under the assumption that γ is a
smooth K∞-function, and then we show how to prove the
result without this assumption.

Define g : Rn → R≥0 by

g(ξ) = sup{z(t, ξ, d) : t ≥ 0, d ∈M} , (24)

where for each ξ ∈ Rn and d ∈M, z(·, ξ, d) is defined by

z(t, ξ, d) = α(|xϕ(t, ξ, u)|)

−
∫ t

0

γ(|d(s)|ϕ(|xϕ(s, ξ, d)|)) ds . (25)

Note that this function is well defined, and

α(|ξ|) ≤ g(ξ) ≤ β0(|ξ|) (26)

for all ξ ∈ Rn. In particular, g(0) = 0.
Let Tr(ε) be defined as in Lemma IV.6. Then one sees

that if 0 < r1 < |ξ| < r2, then

g(ξ) = sup{z(t, ξ, d) | 0 ≤ t ≤ Tr2 (α (r1)) , d ∈M}.

Lemma IV.9: The function g is locally Lipschitz on Rn \
{0} and continuous everywhere.

Proof: Fix any ξ0 6= 0, and let s0 = |ξ0|. Let K0 =
B̄(ξ0, s0/2), the closed ball centered at ξ0 and with radius
s0/2. Let T = T2s0 (α(s0/2)). Then

g(ξ) = sup {z(t, ξ, d) : t ∈ [0, T ], d ∈M}

for all ξ ∈ K0. According to Lemma IV.8, one knows that
there exists some L > 0 such that

|xϕ(t, ξ, d)| ≤ L

for any ξ ∈ K0, any t ∈ [0, T ], and any d ∈ M. Since γ
is smooth, and in particular locally Lipschitz, there exists
C1 > 0 such that

|γ(r1)− γ(r2)| ≤ C1 |r1 − r2|

for all r1, r2 ∈ [0, L]. Consequently,

|γ(|d(s)|ϕ(|xϕ(s, ξ, d)|))− γ(|d(s)|ϕ(|xϕ(s, η, d)|))|

≤ C1 |ϕ(|xϕ(s, ξ, d)|)− ϕ(|xϕ(s, η, d)|)|
for all ξ, η ∈ K0, all t ∈ [0, T ], and all d ∈ M. Since
α and ϕ are smooth, and xϕ(s, ξ, d) is locally Lipschitz
in ξ uniformly in t ∈ [0, T ] and in d ∈ M (this is what is
asserted by the last statement in Lemma IV.8), there exists
some C2 such that

|α(|xϕ(t, ξ, d)|)− α(|xϕ(t, η, d)|)| ≤ C2 |ξ − η| ,

and

|ϕ(|xϕ(s, ξ, d)|)− ϕ(|xϕ(s, η, d)|)| ≤ C2 |ξ − η|

for all ξ, η ∈ K0, all t ∈ [0, T ], and all d ∈ M. It then
follows that the difference∫ t

0

γ(|d(s)|ϕ(|xϕ(s, ξ, d)|)− γ(|d(s)|ϕ(|xϕ(s, η, d)|) ds

is upper bounded in absolute value by C3 |ξ − η| for all
ξ, η ∈ K0, all t ∈ [0, T ], all d ∈ M, where C3 = C1C2T .
This implies that

|z(t, ξ, d)− z(t, η, d)| ≤ C4 |ξ − η|

for all ξ, η ∈ K0, all t ∈ [0, T ], all d ∈ M, where C4 =
C2 + C3.

Pick any ε > 0. Then for each ζ ∈ K0, there is some
tζ,ε ∈ [0, T ] and dζ,ε ∈M such that

g(ζ) ≤ z(tζ,ε, ζ, dζ,ε) + ε.



Let ξ, η ∈ K0. Then

g(ξ)− g(η) ≤ z(tξ,ε, ξ, dξ,ε) + ε− z(tξ,ε, η, dξ,ε)
≤ C4 |ξ − η|+ ε. (27)

Note that (27) holds for all ε > 0, so it follows that

g(ξ)− g(η) ≤ C4 |ξ − η| .

By symmetry, g(η)− g(ξ) ≤ C4 |ξ − η|. This proves that

|g(ξ)− g(η)| ≤ C4 |ξ − η|

for all ξ, η ∈ K0. Thus, g is locally Lipschitz on Rn \ {0}.
To show that g is continuous at ξ = 0, note that g(0) = 0,

and g(ξ) ≤ β0(ξ) → 0 as ξ → 0. Thus g is continuous
everywhere.

We next show that g cannot increase too fast along tra-
jectories. Pick any ξ 6= 0, h > 0, and |µ| ≤ 1. Let dµ
denote the constant function d(t) ≡ µ. Then

g(xϕ(h, ξ, dµ))

= sup
t≥0,d∈M

{
α (|xϕ(t, xϕ(h, ξ, dµ), d)|)

−
∫ t

0

γ(|d(s)|ϕ(|xϕ(s, xϕ(h, ξ, dµ), d)|)) ds

}
= sup
t≥0,d∈M

{
α
(∣∣∣xϕ(t + h, ξ, d̃)

∣∣∣)
−
∫ t

0

γ
(
|d(s)|ϕ

(∣∣∣xϕ(s + h, ξ, d̃)
∣∣∣)) ds

}
= sup
τ≥h,d∈M

{
α
(∣∣∣xϕ(τ, ξ, d̃)

∣∣∣)
−
∫ τ

h

γ
(
|d(s1 − h)|ϕ

(∣∣∣xϕ(s1, ξ, d̃)
∣∣∣)) ds1

}
≤ sup
τ≥0,d∈M

{
α
(∣∣∣xϕ(τ, ξ, d̃)

∣∣∣)
−
∫ τ

0

γ
(∣∣∣d̃(s1)

∣∣∣ϕ(∣∣∣xϕ(s1, ξ, d̃)
∣∣∣)) ds1

}
+
∫ h

0

γ (|µ|ϕ (|xϕ(s1, ξ, dµ)|)) ds1

≤ g(ξ) +
∫ h

0

γ (|µ|ϕ (|xϕ(s1, ξ, dµ)|)) ds1,

where d̃ is the concatenation of dµ and d: d̃(t) = µ if
0 ≤ t ≤ h, and d̃(t) = d(t − h) if t > h. Let fµ(ξ) =
f(ξ, µϕ(|ξ|)). Since g is locally Lipschitz on Rn \ {0}, it is
differentiable almost everywhere on Rn \ {0}, and hence,
for any |µ| ≤ 1,

Lfµg(ξ) = lim
h→0+

g(xϕ(h, ξ, dµ))− g(ξ)
h

≤ lim
h→0+

1
h

∫ h

0

γ (|µ|ϕ (|xϕ(s1, ξ, dµ)|)) ds1, a.e. .

It then follows that

Lfµg(ξ) ≤ γ(|µ|ϕ(|ξ|))

almost everywhere.
Observe that, since an iiss system is necessarily 0-gas,

it follows from Proposition II.5 that there exists a smooth
semi-proper function V0 satisfying (12) with some continu-
ous positive definite function ρ and some K-function σ. Let
V1 : Rn → R be defined by V1(ξ) = V0(ξ) + g(ξ). Then V1

is locally Lipschitz on Rn \{0} and continuous everywhere.
Furthermore,

α(|ξ|) ≤ V1(ξ) ≤ ᾱ2(|ξ|)

for some ᾱ2 ∈ K∞, and it holds that, for all |µ| ≤ 1,

DV1(ξ)f(ξ, µϕ(|ξ|)) ≤ −ρ(|ξ|) + γ1(|µ|ϕ(|ξ|))

almost everywhere, where γ1(s) = σ(s)+γ(s). By Theorem
B.1 in [16], one sees that there exists a continuous function
V2, smooth on Rn \ {0}, such that

α(|ξ|)
2
≤ V2(ξ) ≤ 2ᾱ2(|ξ|), ∀ ξ ∈ Rn,

and

DV2(ξ)f(ξ, µϕ(|ξ|)) ≤ −ρ(|ξ|)
2

+ γ1(|µ|ϕ(|ξ|))

for all ξ 6= 0, all |µ| ≤ 1. By Proposition 4.2 in [16], one
sees that there exists some smooth K∞-function p such that
p′(s) > 0 for all s > 0 and p ◦ V2 is smooth everywhere.
Without loss of generality, one may assume that p′(s) ≤
1 for all s > 0. Otherwise, one may replace p by any
smooth K∞-function p̃ with the property that p̃′(s) = p′(s)
in a neighborhood of 0 where p′(s) ≤ 1 and and p̃′(s) ≤
1 everywhere else. Finally, we let V = p ◦ V2. Then V
satisfies (8) for some α1, α2 ∈ K∞, and

DV (ξ)f(ξ, µϕ(|ξ|))
≤ −p′(V2(ξ))ρ(|ξ|)/2 + p′(V2(ξ))γ1(|µ|ϕ(|ξ|))
≤ −α3(|ξ|) + γ1(|µ|ϕ(|ξ|))

for all ξ ∈ Rn, all |µ| ≤ 1, where α3 is any continuous
positive definite function with the property that α3(|ξ|) ≤
p′(V2(ξ))ρ(|ξ|)/2 (e.g., α3(s) = p′(α(s)/2)ρ(s)/2). It then
follows that

DV (ξ) f(ξ, ν) ≤ −α3(|ξ|) + γ1(|ν|)

for all ξ ∈ Rn, all |ν| ≤ ϕ(|ξ|). To show that V satisfies an
estimate of type (9), we let χ = ϕ−1, and let

κ̂(r) := max
|ξ|≤χ(|ν|),|ν|≤r

{DV (ξ)f(ξ, ν) + α3(|ν|)},

and
κ(r) = max{κ̂(r), γ1(r)}.

Then κ ∈ K, and for all ξ ∈ Rn and all ν ∈ Rm,

DV (ξ) f(ξ, ν) ≤ −α3(|ξ|) + κ(|ν|)

(consider the two cases: |ξ| ≤ χ(|ν|) and |ξ| ≥ χ(|ν|)).
This shows that V is indeed an iiss-Lyapunov function for
system (5).



Finally we show how to obtain the result without as-
suming that γ is smooth. First of all, one may always
assume that γ(r) ≥ r for all r. (Otherwise, replace γ(r)
by γ(r) + r.) Pick any K∞-function θ such that θ(

√
s) is

smooth and θ(s) ≤ γ−1(s) for all s ≥ 0. Consider the
system

ẋ(t) = f̂(x(t), u(t)) := f(x(t), σ(u(t))θ(|u(t)|)), (28)

where σ : Rm → R is defined by σ(µ) = µ
|µ| if |µ| 6= 0, and

σ(µ) = 0 if |µ| = 0. Since θ is continuously differentiable
and θ(0) = θ′(0) = 0, it follows that σ(ν)θ(|ν|) is C1, and
hence, f̂ is also a locally Lipschitz map. We let xθ(t, ξ, u)
denote the trajectory of this system corresponding to the
initial state ξ and the input u. It then holds that

α
(∣∣xθ(t, ξ, u)

∣∣) ≤ β(|ξ| , t) +
∫ t

0

γ(θ(|u(s)|)) ds

≤ β(|ξ| , t) +
∫ t

0

|u(s)| ds

for all ξ and all u. Hence, the system ẋ = f̂(x, u) is iiss
with a smooth “gain”-function (which is the identity func-
tion). Applying the above proved result to this system, one
sees that there exists a smooth iiss-Lyapunov function V
satisfying

DV (ξ)f(ξ, σ(µ)θ(|µ|)) ≤ −α3(|ξ|) + κ2(|µ|)

for some continuous positive definite function α3 and some
K-function κ2. Observe that

ν = σ(ν)θ(θ−1(|ν|))

for all ν ∈ Rm. Hence,

DV (ξ)f(ξ, ν) ≤ −α3(|ξ|) + κ2(θ−1(|ν|))

for all ξ ∈ Rn, all ν ∈ Rm.

Proof of Proposition II.5

To prove Proposition II.5, we need the following result:
Lemma IV.10: System (5) is 0-gas if and only if there

exist a smooth function V : Rn → R, K∞ functions
α1, α2, α3, and K-functions λ and δ, such that, for all
ξ ∈ Rn and µ ∈ Rm,

α1(|ξ|) ≤ V (ξ) ≤ α2(|ξ|), (29)

and
DV (ξ)f(ξ, µ) ≤ −α3(|ξ|) + λ(|ξ|)δ(|µ|). (30)

Proof: Again, one direction of the implication is easy
to prove by the Lyapunov direct method applied to system
(5) for u = 0. The reverse is more interesting. Assume
(5) is 0-gas. Then we have f(0, 0) = 0, and by a converse
Lyapunov argument (see e.g. [16]), there exist a smooth
V : Rn → R and functions α1, α2, α3 in K∞ such that

α1(|ξ|) ≤ V (ξ) ≤ α2(|ξ|) (31)

for all ξ ∈ Rn, and

DV (ξ)f(ξ, 0) ≤ −α3(|ξ|). (32)

Consider now the following function:

γ̃(r, s) := max
|ξ|≤r,|µ|≤s

|f(ξ, µ)− f(ξ, 0)− f(0, µ)| . (33)

Notice that γ̃(r, s) is continuous, nondecreasing with re-
spect to each argument, and vanishes for r = 0 or s = 0
(since f(0, 0) = 0). Hence, it can be majorized by a
function γ(r, s) separately of class K (e.g., we can take
γ̃(r, s) + r + s). We pick σ as in Corollary IV.5. Then, it
follows from (32) and Corollary IV.5 that:

DV (ξ)f(ξ, µ)
= DV (ξ)[f(ξ, µ)− f(ξ, 0)] + DV (ξ)f(ξ, 0)
≤ DV (ξ)[f(ξ, µ)− f(ξ, 0)− f(0, µ)]

+DV (ξ)f(0, µ)− α3(|ξ|)
≤ |DV (ξ)| γ(|ξ| , |µ|)

+ |DV (ξ)| |f(0, µ)| − α3(|ξ|)
≤ |DV (ξ)|σ(|ξ|)σ(|µ|)

+ |DV (ξ)| |f(0, µ)| − α3(|ξ|). (34)

It follows from (31) that ξ = 0 is a global minimum for V (ξ)
and hence DV (0) = 0; so, since V is smooth, continuity of
DV gives that

κ(r) = r + max
|ξ|≤r

|DV (ξ)| (35)

is a class K function. By local Lipschitz continuity of f(·, ·),
also |f(0, µ)| ≤ χ(|µ|) for some χ ∈ K. Thus, recalling
equations (34) and (35) we have,

DV (ξ)f(ξ, µ)
≤ −α3(|ξ|) + κ(|ξ|)σ(|ξ|)σ(|µ|) + κ(|ξ|)χ(|µ|)
≤ −α3(|ξ|) + λ(|ξ|)δ(|µ|) ,

with λ(r) = κ(r)σ(r) + κ(r) and δ(r) = σ(r) + χ(r).
Remark IV.11: The same result can also be obtained

along different lines, exploiting a result appeared in [22]. It
is shown there that the 0-gas property for system (5) im-
plies the existence of an everywhere nonzero smooth func-
tion G(x) such that ẋ = f(x,G(x)v) is iss with respect to
v. Then, the result follows from the Lyapunov characteri-
zation of input-to-state stability. 2

We now can complete the proof of Proposition II.5. De-
fine π(·) of class K as follows:

π(r) =
∫ r

0

ds

1 + χ(s)
, (36)

with χ a suitable class K function to be defined later. It
follows from 0-GAS that there exists a smooth V (ξ) as in
Lemma IV.10. Composing π with V and taking derivatives
yields:

D[(π ◦ V )(ξ)] f(ξ, µ) =
DV (ξ)f(ξ, µ)
1 + χ(V (ξ))

≤ −α3(|ξ|)
1 + χ(V (ξ))

+
λ(|ξ|)δ(|µ|)
1 + χ(V (ξ))

.



Then, letting χ(r) = λ◦α−1
1 , W = π◦V , and recalling (29)

we obtain:

DW (ξ) f(ξ, µ) ≤ −ρ(|ξ|) + δ(|µ|) , (37)

where ρ is the continuous positive definite function defined
as

α3(r)
1 + λ

(
α−1

1 (α2(r))
) .

V. A Counter-Example

As already remarked in section 2, iiss implies 0-gas. The
converse is easily seen to be false, taking any 0-gas sys-
tem that exhibits a finite escape time for some constant
input signal u 6= 0. In fact, it follows by definition (6)
that iiss implies forward completeness of the control sys-
tem (5), viz., for any control u and any ξ ∈ Rn, the unique
maximal solution of the initial value problem ẋ = f(x, u),
x(0) = ξ, is defined over the interval [0,+∞). It is reason-
able to conjecture that iiss might be equivalent to simply
forward completeness plus 0-gas. This would make the
iiss concept less interesting. In this section, we provide
a counter-example to this conjecture, exhibiting a system
that is forward complete and 0-gas, but is not iiss. In
other words, this example shows that, even when restrict-
ing attention to forward complete systems, iiss is a strictly
stronger property than 0-gas.

We begin the construction with a differential equation

ẋ = f(x)

which evolves in R2 and satisfies:
1. it is gas;
2. |f(x)| ≤ 1 for all x ∈ R2; and
3. there is a sequence of states

x0, z0, x1, z1, x2, z2, . . .

so that x(Tk, xk) = zk for each k, for some sequence of pos-
itive numbers {Tk}, (where x(·, p) denotes the trajectory of
the system with initial value p,) and

xk =
(

4k
∗

)
, zk =

(
4k + 3
∗

)
for each k, where “∗” is arbitrary.
It is easy to construct such differential equations. For ex-
ample, one may start with a linear system ẋ = Ax, having
an A matrix which is Hurwitz with non-real eigenvalues,
and constructed so that its orbits are clockwise-turning
converging spirals. One then scales the equation so that
sequences of points as claimed exist, and finally one di-
vides Ax by 1+ |Ax|2 in order to guarantee that |f(x)| ≤ 1
for all x.

Let us denote ∆k := max
{∣∣xi+1 − zi

∣∣ : 0 ≤ i ≤ k
}
, k =

0, 1, 2, . . ., and pick any scalar function ϕ : R → R which
satisfies the following properties:
1. ϕ(r) = 0 when r ∈ [4k +1, 4k +2], for all k = 0, 1, 2, . . .,
2. ϕ(r) = 2k∆k + 1 when r ∈ [4k + 3, 4(k + 1)], for all
k = 0, 1, 2, . . .,

3. 0 ≤ ϕ(r) ≤ 2k∆k+1 if r ≤ 4(k+1), for all k = 0, 1, 2, . . .,
4. ϕ(r) = 0 if r ≤ 0.
The hypotheses imply that ϕ(r) ≤ M(r) for all r, where
M is some increasing function which is zero for negative r
(all we need, for r > 0, is M(r) ≥ 2k∆k + 1, where k is the
least positive integer so that r < 4(k + 1)). See Fig. 4 for
an illustration of the orbits of f and ϕ. Now we let G(x) =

r

ϕ(r)

0

0

1

1

2

2
3

3

x

x

x
x

z
z

z
z

Fig. 4. Flow f and function ϕ for example of forward complete,
0-gas but not iiss system

ϕ(x1)I (that is, G depends only on the first coordinate)
and consider the two-input system ẋ = f(x) + G(x)u. We
will show that this system is complete but is not iiss; it is
0-GAS by construction.
Claim: This system ẋ = f(x) + G(x)u is complete.
Proof: Let x(·) be a maximal trajectory corresponding to
a given control u and initial condition x(0), and suppose
that x is defined on an interval [0, T ), with T < ∞. Let
K be an upper bound on the supremum norm of u (con-
trols are locally essentially bounded, by definition). We
will show that the trajectory is bounded, thus contradict-
ing T <∞. We look at the first coordinates x1 of the states
along this trajectory. There are two cases to consider:

(i) {x1(t), t ∈ [0, T )} is bounded above.

Suppose that x1(t) ≤ L for all t. Then, since |G(x)| =
ϕ(x1) ≤ M(x1) for all x, the velocities are bounded by
1 + M(L)K and so the trajectory stays in the ball about
x(0) of radius (1 + M(L)K)T .

(ii) {x1(t), t ∈ [0, T )} is not bounded above.

There must be an infinite number of intervals of the form
[4k+1, 4k+2] which are transversed by x1(t). That is, there
are a countable set of disjoint closed intervals J1, J2, . . .
included in [0, T ), each Ji = [si, ti], so that x1(si) = 4ki+1



and x1(ti) = 4ki + 2, for some ki’s. We claim that every
Ji has length at least one, which then contradicts T <∞.
Indeed, take any interval Ji and suppose that ti − si < 1.
Observe that, on Ji, ϕ ≡ 0, so the system equations are
ẋ = f(x). By the Mean Value Theorem,

1 ≤ |x(ti)− x(si)| ≤ |f(x(t))| (ti − si) < 1 ,

a contradiction. This completes the proof of completeness.
Claim: This system is not iiss.
Proof: We will show that there is an initial state ξ and a
control u so that |x(t, ξ, u)| → ∞ as t → ∞, where u has
the following property: there is some increasing sequence
tk → +∞ so that

|u(t)| ≤ 1 if t ∈
[
tk, tk + 2−k

]
and u(t) = 0 otherwise; moreover, the sequence is also
assumed to satisfy tk+1 − tk > 2−k.

The existence of such ξ, u means that the system cannot
be iiss. To see this, suppose that the system would be iiss.
Then, for some α, γ ∈ K∞, it holds that

lim sup
t→∞

α(|x(t, ξ, u)|) ≤
∫ ∞

0

γ(|u(s)|) ds

≤
∞∑
k=0

∫
[tk,tk+2−k]

γ(1) ds = 2γ(1) <∞ ,

but this contradicts the fact that |x(t, ξ, u)| → ∞ as t→∞.
We start with ξ = x1, and let u ≡ 0 on [0, t1], where

t1 := T1. So, x(t1, ξ, u) = z1, and t1 ≥ 1 because of the
assumption that |f(x)| ≤ 1. Next we continue building the
control u and the trajectory x(·) = x(·, ξ, u), inductively
on the intervals

[tk, tk+1] .

We do the construction in such a fashion that

x (tk) = zk

and
x
(
tk + 2−k

)
= xk+1

for k = 1, 2, . . .. The idea is to switch between an uncon-
trolled motion on every interval of the form [tk+2−k, tk+1]
and appropriate control motions on the small intervals. To
clarify the construction, we first do separately the case
k = 1.

The control on the interval [t1, t1 + 1/2] is defined as
follows. We wish to force

x(t) = z1 + 2(t− t1)
(
x2 − z1

)
, t ∈ [t1, t1 + 1/2]

so that we go from x(t1) = z1 to x(t1 + 1/2) = x2 along a
straight line. The equation ẋ = f + Gu along this line is:

2(x2 − z1)− f(x(t)) = G(x(t))u(t) = (2∆1 + 1)u(t)

so we may let

u(t) :=
2(x2 − z1)− f(z1 + 2(t− t1)(x2 − z1))

2∆1 + 1
.

Since
∣∣x2 − z1

∣∣ ≤ ∆1 (by definition of the ∆k’s) and
|f(x(t))| ≤ 1 for all t, we conclude that |u(t)| ≤ 1 on
[t1, t1 + 1/2], as was desired. Finally, we let u(t) = 0 for
t ∈ [t1 + 1/2, t2], where t2 := T2 + (t1 + 1/2), which makes
x(t2) = z2.

Now we do the case of arbitrary k. We pick the curve:

x(t) = zk + 2k(t− tk)
(
xk+1 − zk

)
, t ∈

[
tk, tk + 2−k

]
so that we go from x(tk) = zk to x(tk + 2−k) = xk+1 along
a line, and the equation along this line becomes:

2k
(
xk+1 − zk

)
− f(x(t))

= G(x(t))u(t) =
(
2k∆k + 1

)
u(t)

so we may let u(t) be as follows

2k
(
xk+1 − zk

)
− f(zk + 2k(t− tk)(xk+1 − zk))

(2k∆k + 1)
.

Since
∣∣xk+1 − zk

∣∣ ≤ ∆k and |f(x(t))| ≤ 1 for all t, we have
|u(t)| ≤ 1 for all t in this interval of length 2−k. Finally,
we let

u(t) = 0 for t ∈
[
tk + 2−k, tk+1

]
,

where tk+1 := Tk+1 +
(
tk + 1

2k

)
, so that we have x (tk+1) =

zk+1, as needed for the induction step.

VI. Comments on Related Notions

The notion of iiss differs from iss in its use of “
∫

γ(|u|)”
instead of “sup γ(|u|).” The same substitution may be used
to define analogues of input/output stability and of de-
tectability notions. We briefly discuss some of these now.
Reasons of space preclude a detailed discussion, but proofs
of the various claims are not difficult to obtain by follow-
ing steps like those used in the rest of the paper. In this
section, we deal with systems with outputs

ẋ = f(x, u) , y = h(x) , (38)

where, as earlier, the output map h : Rn → Rp is assumed
to be continuous and h(0) = 0. For each ξ ∈ Rn and
each input u, we let y(t, ξ, u) be the output function of
the system, i.e., y(t, ξ, u) = h(x(t, ξ, u)) (defined on some
maximal interval [0, Tξ,u)).

Consider the following type of estimation:

α(|x(t, ξ, u)|) ≤ β(|ξ| , t) (39)

+
∫ t

0

γ1(|y(s, ξ, u)|) ds +
∫ t

0

γ2(|u(s)|) ds

for all t ∈ [0, Tξ,u), where β ∈ KL, α ∈ K∞, and γ1, γ2 ∈ K.
If (39) holds for every trajectory of (38), then we say that
system (38) is integral input-output-to-state stable (iioss).
This is a notion of detectability: inputs and outputs are
“small” implies that states are also small; see [27] for the
corresponding notion of (sup-norm) ioss. We say that a
smooth function V is an iioss-Lyapunov function for sys-
tem (38) if there exist functions α1, α2 ∈ K∞, σ1, σ2 ∈ K,
and a continuous positive definite function α3, such that

α1(|ξ|) ≤ V (ξ) ≤ α2(|ξ|) (40)



for all ξ ∈ Rn, and

DV (ξ)f(ξ, µ) ≤ −α3(|ξ|) + σ1(|h(ξ)|) + σ2(|µ|) (41)

for all ξ ∈ Rn and all µ ∈ Rm. A proof analogous to
that of Theorem 1, by virtue of Corollary IV.3, shows the
following: If a system admits an iioss-Lyapunov function,
then the system is iioss.

The area of input-to-output (as opposed to input-to-
state) stability deals with properties which may be de-
scribed, informally, as “small inputs produce small out-
puts.” Such properties appear naturally in regulation prob-
lems. In particular, one may define a concept of ios (input-
to-output stability), see [23] and [28]. This is yet another
obvious candidate for the replacement of sup norms by in-
tegrals. So let us call system (38) integral input-to-output
stable (iios) if there exist α ∈ K∞, β ∈ KL, and γ ∈ K
such that

α(|y(t, ξ, u)|) ≤ β(|ξ| , t) +
∫ t

0

γ(|u(s)|) ds (42)

holds on the maximal interval [0, Tξ,u) for every trajectory
of the system. Correspondingly, we may define a Lyapunov
concept as follows. A smooth function V is called an iios-
Lyapunov function for system (38) if there exist functions
α1, α2 ∈ K∞, σ ∈ K, and a continuous positive definite
function α3, such that

α1(|h(ξ)|) ≤ V (ξ) ≤ α2(|ξ|) (43)

for all ξ ∈ Rn, and

DV (ξ)f(ξ, µ) ≤ −α3(V (ξ)) + σ(|µ|) (44)

for all ξ ∈ Rn and all µ ∈ Rm. Again, by virtue of Corol-
lary IV.3, one can prove: If a system adimits an iios-
Lyapunov function, then the system is iios.

Note that the difference between (8) and (43) is that
the function V in (8) is proper (i.e., radially unbounded),
while in (43) the function V only majorizes a K∞-function
of |y|. It is also interesting to consider the following type
of condition on V :

α1(|h(ξ)|) ≤ V (ξ) ≤ α2(|h(ξ)|) (45)

for some K∞-function α1, α2. It then follows, again ap-
pealing to Corollary IV.3, that if system (38) admits a V
satisying (45) and (44), then the following holds for all tra-
jectories of the system:

α(|y(t, ξ, u|)

≤ β(|y0| , t) +
∫ t

0

γ(|u(s)|) ds, ∀ t ∈ [0, Tξ,u),

for some α ∈ K∞, β ∈ KL and γ ∈ K, where y0 = y(0, ξ, u).

VII. Conclusions

The iiss notion was introduced and motivated both as a
natural mathematical concept, generalizing finite H2 gain,

and through a tracking problem and other applications.
We proved a necessary and sufficient Lyapunov-like char-
acterization of the iiss property, as well as a characteri-
zation based on a LaSalle-type dissipation inequality and
detectability notions. We also provided a counterexample
showing that iiss is not just the conjunction of forward
completeness and 0-gas. We are confident that the results
presented here, besides their intrinsic interest, will motivate
much further research into the theory and applications of
iiss.

Appendix

I. Appendices

A. Proof of Lemma IV.1

Assume without loss of generality that ρ(r) → 0 as
r → +∞ (otherwise one can always consider ρ̃(r) =
min{ρ(r), 1/(1+ r)}). Then the function ρ admits a global
maximum over the interval [0,+∞). Let M = maxr≥0 ρ(r),
and define ρ̂(r) = ρ(r)/M . Pick now rM > 0 such that
ρ̂(rM ) = 1. Then, we can define the following functions:

ρ̂1(r) =
{

min r≤s≤rM ρ̂(s) for r ≤ rM
1 for r > rM ,

(46)

ρ̂2(r) =
{

1 for r < rM
min rM≤s≤r ρ̂(s) for r ≥ rM .

Notice that ρ̂1, (ρ̂2) is a non-decreasing (non-increasing)
function, and, by equation (46), considering separately the
cases r > rM and r ≤ rM ,

ρ̂(r) ≥ ρ̂1(r) ρ̂2(r) . (47)

Then, we can choose ρ1 and ρ2 according to:

ρ1(r) = Mρ̂1(r)r
ρ2(r) = ρ̂2(r)/(1 + r) .

Notice that ρ1 ∈ K∞ and ρ2 ∈ L. Taking into account (47)
we have:

ρ(r) = Mρ̂(r) ≥Mρ̂1(r)ρ̂2(r) ≥ ρ1(r)ρ2(r) (48)

for all r ≥ 0.

B. Proof of Proposition IV.4

Proposition IV.4 will follow from the following result.
Lemma A.1: Let c be as in the statement of Proposi-

tion IV.4. Then, there exists a function g ∈ N such that,
for each y ∈ R,

c(x, y)− g(x) → −∞ as |x| → ∞ . (49)
Proof: We will assume without loss of generality that

c(0, 0) > 0. (If c(0, 0) < 0, we simply pick any constant
a so that a < c(0, 0), apply the Lemma to c′ := c − a to
obtain some function g′, and then let g := g′ + a). Let

x̄ := sup
x∈R
{x | c(x, 0) = 0} .



(Note that, since c(·, 0) is continuous, unbounded below,
and achieves the some positive value, there is indeed at
least one x so that c(x, 0) = 0; and by continuity, c(x̄, 0) =
0). Now introduce the following set:

G :=
{
(x, y) ∈ R2 | y ≥ 0, c(x, y) + y = 0

}
.

Claim: G is the graph of a continuous, nonincreasing,
onto function

g0 : (−∞, x̄]→ [0,∞) .

To establish this claim, we first prove that, if x2 ≤ x1

and (x1, y1) ∈ G, then there is a y2 so that (x2, y2) ∈ G, and
any such y2 must satisfy y1 ≤ y2. Consider the function
C(y) := c(x2, y) + y. As

C(y1) = c(x2, y1) + y1 ≤ c(x1, y1) + y1 = 0

and C(y) → +∞ as y → +∞ (because c(x2, ·) is nonde-
creasing), we conclude, using continuity of C, that there is
some y2 so that C(y2) = 0, as required. And, given any y2

so that (x2, y2) ∈ G, if it were the case that y1 > y2 then
it would hold that

0 = c(x1, y1) + y1 > c(x2, y2) + y2 = 0 ,

a contradiction. Thus, as stated, y1 ≤ y2.
In particular, it follows that if (x, y1) and (x, y2) are both

in G then necessarily y1 = y2 (apply with x1 = x2 = x), so
G is the graph of some function g0, and g0 is nonincreasing.

Next, we note that the projection of G on the x coordi-
nate (that is, the domain of the function g0) is (−∞, x̄].
Pick any (x, y) ∈ G. Suppose that x > x̄. Then,
c(x̄, 0) ≤ c(x, 0) ≤ c(x, y) + y = 0 = c(x̄, 0) (using that
c is nondecreasing in each variable, and y ≥ 0). Then,
c(x, 0) = 0, so x ≤ x̄ by maximality of x̄, a contradiction.
Thus, x ≤ x̄. Conversely, given any x ≤ x̄, we may apply
again the argument given earlier (now with x2 = x and
x1 = x̄) to obtain that there is some y so that (x, y) ∈ G.

The projection of G on the y coordinate is [0,∞). Indeed,
pick any y ≥ 0; as c(x̄, y) + y ≥ c(x̄, 0) = 0 and c(·, y) is
continuous and unbounded below, there is some x so that
c(x, y) + y = 0.

To complete the proof of the claim, we need to see that
g0 is continuous. But this is an immediate consequence of
the fact that g0 is monotonic and onto an interval.

Finally, we define

g(x) :=
{
− 1

2g0(x) if x ≤ x̄
c(x, x)− c(x̄, x̄) + x− x̄ if x > x̄ .

By construction, g ∈ N . We show the desired limit prop-
erty. Pick any y ∈ R.

For x ≥ max{x̄, y},

c(x, y)− g(x) = c(x, y)− c(x, x)− x + c ≤ c− x

where c := x̄+c(x̄, x̄), so c(x, y)−g(x)→ −∞ as x→ +∞.

On the other hand, for any x ≤ x̄ such that g0(x) > y,

c(x, y)− g(x) = c(x, y) +
1
2
g0(x)

≤ c(x, g0(x)) + g0(x)− 1
2
g0(x) = −1

2
g0(x)

and − 1
2g0(x)→ −∞ as x→ −∞.

We now complete the proof of Proposition IV.4. Let
g be as in Lemma A.1, and define the following function
h : R→ R:

h(y) := sup
x∈R

[c(x, y)− g(x)] .

(As c(·, y) − g is continuous, and is negative for large |x|,
the supremum is indeed finite.)

Since h is the sup of a family {c(x, ·) − g(x), x ∈ R} of
continuous functions, h is itself continuous, and since each
member of this family is nondecreasing, h is also nonde-
creasing. We prove now that h(y) → −∞ when y → −∞,
which will then allow us to conclude that h ∈ N .

Pick any K ∈ R. For this K, we pick a ρ > 0 so that
c(x, 0) − g(x) < K whenever |x| > ρ. Next we pick an
L ≤ 0 so that c(ρ, L) < K + g(−ρ). (Such an L exists
because c(ρ, ·) is unbounded below.) We claim that

y < L ⇒ h(y) < K .

Take one such y, and any x ∈ R; we need to see that
c(x, y)− g(x) < K. Consider first the case |x| ≤ ρ; then

c(x, y)− g(x) ≤ c(ρ, L)− g(−ρ) < K .

If instead |x| > ρ, then also

c(x, y)− g(x) ≤ c(x, 0)− g(x) < K

(using that y < L ≤ 0).
So we have constructed g and h in N such that

c(x + y) ≤ g(x) + h(y)
≤ max{g(x), h(x)}+ max{g(y), h(y)}

(50)

for all x and y. Thus, k := max{g, h} is as wanted for
Proposition IV.4.

C. Resonance example

We explain here how the bounded control and the tra-
jectory leading to r(t) in Figures 2 and 3 were generated.
To obtain this trajectory, we did as follows. We started
with the initial state (0, 0.1, 0, 0.1)′, and took the feedback
control u1 = 3tanh(z1) (= 3tanh(θ̇)) and u2 = 0. Since
|tanh(x)| ≤ 1 for all x ∈ R, the input signal, resulting from
this destabilizing feedback, shown in Fig. 3, is bounded.
Note that a sort of “non-linear resonant behavior” is ob-
tained. (It is worth pointing out that a similar effect is met
also for vanishing references, if the convergence of u1 to 0
is sufficiently slow.) The simulation used the parameters
values shown in the next table, and were obtained using the



ode23 MATLAB routine, with tolerance 0.001 and initial
condition [0, 0.1, 0, 0.1]′.

Parameter Value Parameter Value
m 1 ML2 3
kp1 2 kd1 2
kp2 1 kd2 1
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