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Abstract

We speculate that incoherent feedforward loops may be phenomenologically involved in self/nonself
discrimination in immune-infection and immune-tumor interactions, acting as “change detectors”.
In turn, this may result in logarithmic sensing (Weber phenomenon) and even scale invariance
(fold-change detection).

Introduction

A number of authors have proposed that lymphocytes mount a sustained response only when faced
when a sufficiently fast increase in their level of stimulation (antigen presentation, proliferation
rates of infected cells or tumors, stress signals). In contrast, even when a new motif triggers an
immune response, its chronic presence may result in adaptation: downregulation or even com-
plete termination of the inflammatory response. This dynamic feature is thought to complement
discrimination mechanisms based on the self/nonself dichotomy.

One of the earliest such suggestions originated in work by Grossman and Paul [5], who in 1992 pos-
tulated the “tunable activation threshold” model for immune responses: effector cells in the innate
or adaptive systems should become tolerant to continuously expressed motifs, or even gradually
increasing ones, but should induce an effector response when a steep change is detected. Among
notable recent variations upon this theme are the “discontinuity theory” postulated by Pradeu,
Jaeger, and Vivier [10], and the “growth threshold conjecture” due to Arias, Herrero, Cuesta,
Acosta, and Ferndndez-Arias [2]. (We will briefly discuss the mathematical models proposed in
these references.) Evidence toward this role of dynamics include the examples of natural killer cells
decreased activation under chronic receptor activation, endotoxin tolerance in macrophages, and B
and T cell anergy. The tolerance of self —as well as non-self such as commensal bacteria— is consis-
tent with this view, as is the tolerance of slow-growing tumors and even the treatment of allergies
by slow desensitization through antigen exposure. This hypothesis remains to be tightened and
experimentally verified. Obviously, the existence of autoimmune diseases argues against it, though
Pradeu, Jaeger, and Vivier posit that possible explanations for chronic autoimmune disorders might
be intermittent (as opposed to constant) exposure to antigens, or autoantigenic drift.

Our purpose in this note is not to argue pro or against the merits of the hypothesis, but merely
to propose a very simple class of mathematical models that might achieve this type of dynamic
discrimination. We provide a phenomenological “toy” model, and suggest possible biological mech-
anisms. Our model is based on incoherent feedforward loops (IFFLs), the incoherent path being
implemented for example by natural Treg cells at a population level, or by ITIM/ITAM opposing
controls at the intracellular level. We speculate that the change-detection features of IFFLs are
involved in self vs non-self immune distinctions, thus complementing mechanisms such as kinetic
proofreading. This phenomenology might help explain tolerance to self-antigens and immune reac-
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tion to both tumors and acute infections. More interestingly, our model predicts behaviors (Weber
law, scale invariance) that could be in principle experimentally tested.

Feedforward motifs

Several variants of the feedforward loop (FFL) “motif” (Fig. 1) describe instances of cell popu-
lation interactions as well as of intracellular metabolic pathways, signaling networks, and genetic
circuits [1]. FFLs play a role in systems ranging from bacterial chemotaxis and microRNA regula-
tion to bacterial carbohydrate uptake via the carbohydrate phosphotransferase system, and also in
mammalian cells as control mechanisms that regulate stress responses to free radicals, bacterial or
viral infections, and cancer, and in the regulation of meiosis, mitosis, and post-mitotic functions in
differentiated cells. They are statistically over-represented in natural systems (Fig. 1). In an inco-
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Figure 1: Left: four types of coherent (top) and incoherent (bottom) FFL’s. Blunt arrows -
indicate repression, normal arrows — activation. Right: FFL’s are over-represented in E. coli
transcriptional networks compared to random graphs. Both figures from [1].

herent feedforward loop (IFFL), an external cue or stimulus X activates or inactivates (represses)
an intermediate molecular species Y which, in turn, activates or inactivates a downstream species
Z. Through a different path, the signal X activates or inactivates the final species Z, in such a way
that the net effect is opposite from that of the indirect path. This antagonistic (“incoherent”) effect
endows the IFFL motif with powerful signal processing properties [1]. Specifically, an TFFL such
as the “Type I” one shown in the bottom left panel of Fig. 1 has, for an appropriate mathematical
model of interactions, a dynamical behavior that allows detection of change. Intuitively, a signal
from the top node, X, will activate the bottom node, Z. An indirect path, through an auxiliary
node Y, will —with some delay due to the signal processing by Y— eventually de-activate Z. Thus,
a persistent activation of X will trigger only a short burst of activity in Z, thus making this motif a
“change detector” that returns to a default value after activation. Obviously, this intuitive descrip-
tion is critically dependent on the precise mathematical form of the interactions, and we describe
two such forms next.

We prefer to write the state of activation of the input mode X as u (as done in control theory for
inputs), the activation of the output or reporter node Z as y, and the intermediate or regulatory
node Y as z (an internal state in control formalism). With these notations, the Type I IFFL
can be written schematically as in the middle diagram in Fig. 2. The conceptual diagram may
describe, in fact, various alternative molecular realizations. Different molecular realizations of the
given motif can differ significantly in their dynamic response and, ultimately, biological function.
Two realizations of the diagram in the middle of Fig. 2 are shown in that same figure. To be more
precise, we study the simplest ordinary differential equation (ODE) models for these processes, in
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Figure 2: An incoherent feedforward loop (middle) and two instantiations, one through repression
of production (left) and another one through enhancement of degradation (right). (Constitutive
degradations of z and y not shown.)
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which the concentrations of the input v and species x and y are described by scalar time-dependent
quantities. For the left reaction, we use the model

r = oau-—ox

where dot indicates time derivative, the variables u, z,y and constants «, 3,9, are assumed posi-
tive, and the repression term 1/z is thought of as a quasi-steady state approximation of a binding
event, or alternatively a Michaelis-Menten enzymatic reaction, that resulted in a term 1/(K + x)
with K < 1. For the right reaction, we use

r = au-—ox
y = Pu—yay

for suitable constants. For any given input function u(-) and initial values z(0) and y(0), the solution
can be found by first solving the linear ODE for z(¢), and then viewing the y equation as a linear
ODE (with time-dependent coefficients). For constant inputs u(t) = ug > 0, both systems have
the globally asymptotically stable steady state z = “5% and y = g—i Observe that the steady state
output value y is independent of the particular value of the constant input ug, meaning that both
systems are perfectly adapting in the sense that the output approaches the same value irrespective
of the input, provided that the input is constant. Of course, the transient behavior of y will depend
on the initial conditions as well as the particular input being applied. For example, suppose that
we consider a step signal that switches from u(t) = 1 to u(t) = 2 at time t = 5. Fig. 3(left) shows
the brief activation behavior, followed by a return of the output to its adapted value. (In this and
other simulations, we just take the constants « = = § =y =1, so that y = 1 at steady state.)

In our context, we may think of the output ¥ as the activation level of an immune system component,
for example, a population if CD8+ effector T cells, systemically or in a particular microenvironment,
and of x as the level of activation of a regulatory population, for example, a class of Treg cells. The
input « is thought of as the level of presentation (by a specialized APC or perhaps a tumor) of a
certain antigen.

For both of these model systems, the activation of the immune component will be at a “default”
hypoactivated value, irrespective of the input u, provided that the activation signal u is constant.
An increase in u will lead only to a brief spike of activity, unless the change persists.

Not only for constant inputs but also for “slowly varying” changes in activation there is only a
spike in activity followed by return to default values: for linear growth, y(¢) approaches its default
value as t — co. An illustration is given in the middle panel of Fig. 3, which shows an input that
switches from w(t) = 1 to u(t) = 1+ ¢. Convergence back to the default value of y is slower than
for constant inputs, so we use a larger interval.

On the other hand, the response attains a larger “excitation” value when the input increases at
a fast rate. For example, if the input switches from a constant level u(t) = 1 to an exponential
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Figure 3: Simulations of both systems with « = 8 = § =« = 1. Initial conditions are z(0) = y(0) =
1. Horizontal axis is time (arbitrary units). Left: Step input w switches from u(t) = 1 to u(t) = 2
at time t = 5. After transient, output y returns to “hypoactivated” value 1. Middle: Input u
switches from wu(t) = 1 to u(t) = 1+t, at time ¢ = 100, Output converges again to “hypoactivated”
value 1. Right: Input u switches from u(t) = 1 to u(t) = e*, at time ¢t = 5, with A\ = 1. Value of
output converges now to 1 + A = 2.

growth u(t) = e, A > 0, then the system output y(t) approaches a value that exceeds its default
(hypoactivated) value by an amount proportional to this rate of growth A. Fig. 3(right) shows the
switch to a more activated value. (For a larger rate A, the effect will be more marked; we used a
small value of A to make the plots visually easier to compare.)

We also remark that periodic excitations leads to entrainment to excitations of the same frequency,
see Fig. 4. This is consistent with Pradeu, Jaeger, and Vivier’'s argument of how intermittent
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Figure 4: Simulations of both systems with « = 8 = § = v = 1, subject to periodic excitations.
Input w switches from w(t) = 1 to u(t) = 1+ 0.1sint at time ¢ = 25. Initial conditions are

2(0) = y(0) = 1.

exposure to antigens might explain certain chronic autoimmune disorders.

Obviously, our models so far have ignored the feedback of the immune system on the infection
or tumor. Yet, even without the feedback effects, we have already some interesting and perhaps
puzzling predictions. For example, IFFL change detectors would lead to a persistent immune
excitation only for exponentially growing infection or tumor challenges. Any infection or tumor
that achieves an equilibrium state (for example due to carrying-capacity limitations leading to
logistic, Gompertz, etc., growth) would stop inducing an immune response.

A feature for future study is the addition of immune recruiting terms and positive feedback, perhaps
by means of explicitly modeled cytokine and specifically chemokine signaling. Even a cascaded
excitable system would lead to a permanent response if the signal from the IFFL detector is large
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enough in magnitude and duration.

Treg cells as a possible regulatory node

Our analysis is merely a phenomenological “toy model” which does not specify immune components.
Nonetheless, one might speculate that, as far as T cell activation and deactivation, regulatory T
cells (Treg’s) may play a role as a regulating intermediate variable z. Treg’s are a type of CD4"
cell that play “an indispensable role in immune homeostasis” [6]. They express surface CD4 and
CD25 and internally express the transcription factor FoxP3. Treg’s arise during maturation in the
thymus from autoreactive cells (“natural Treg’s”), or are induced at the site of an immune response
in an antigen-dependent manner (“induced Treg’s”). They are thought to play a role in limiting
cytotoxic T-cell responses to pathogens, and Treg™ mice have been shown to suffer from extreme
inflammatory reactions. It is known from animal studies that Treg’s inhibit the development of
autoimmune diseases such as experimentally induced inflammatory bowel disease, experimental
allergic encephalitis, and autoimmune diabetes [9]. Fig. 5 from [13] describes known mechanisms
for Treg suppression of CTL’s.
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Figure 5: Schematic depicting the various regulatory T (Treg)-cell mechanisms arranged into four
groups centered around four basic modes of action, from [13]. (1) Inhibitory cytokines. (2) Cytol-
ysis. (3) Metabolic disruption. (4) Targeting dendritic cells.

Perfect adaptation, Weber phenomenon, and scale-invariance

The property in which y(t) asymptotically returns to a pre-stimulus value under continuous stimula-
tion is an example of the phenomenon called “perfect adaptation” in the theory of sensory systems,
and is exhibited by systems processing light, chemical, and other signals. It has been extensively
investigated both experimentally and mathematically [1, 7]. This notion can be refined in various
ways, as we discuss next.

Suppose that we consider two step inputs u; and us which are scaled versions of each other:
uz2(t) = puq(t), for some positive number or scale factor p, as in Fig. 6(a). The perfect adaptation
property requires that, whether excited by u; or wug, the output signal will asymptotically return
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Figure 6: (a) Scaled step inputs and corresponding responses: (b) perfect adaptation; (¢) Weber-like
(same peak amplitude responses); (d) scale-invariance (same transient responses)

to the same value, as shown in Fig. 6(b). One stronger version of adaptation is the Weber-Fechner
or “log sensing” requirement that, in addition, when starting from the corresponding adapted
states, the maximum amplitude of the responses to the two scaled inputs should be the same,
as illustrated in Fig. 6(c). A stronger property yet is the requirement that the two responses be
identical as functions of time, again when starting from the corresponded adapted states. This last
property is scale invariance or “fold change detection” of the response, and it was studied in some
detail in [12, 11]. Recent interest in these properties was largely triggered by a pair of papers [4] and
[3] published in late 2009, in which fold-change detection behavior was experimentally observed in
a Wnt signaling pathway and an EGF pathway, respectively; these are highly conserved eukaryotic
signaling pathways that play roles in embryonic patterning, stem cell homeostasis, cell division,
and other central processes. Later, the paper [12] predicted scale invariant behavior in E. coli
chemotaxis, a prediction which was subsequently experimentally verified [8].

In our discussion of IFFLs, we introduced two circuits that implement Type I IFFLs (Fig. 2) and
remarked that both lead to perfectly adapting systems. It is notable that only one of these exhibits
scale invariance. Suppose that (z(t),y(t)) is any solution corresponding to the input u(t), for the
system

T = ou-—ox

. u

y = B=——y
xr

associated to Fig. 2(left). It is then immediate to verify that (px(t), y(t)) is a solution corresponding
to the input pu(t), ¢ > 0, for any nonzero constant p. Thus, this system responds with the same
output signal y(¢) to two inputs that only differ in scale (provided that the initial state z(t) had
already adapted to the input at time ¢t < 0). In other words, given a step input that jumps from
u(t) = up for t < 0 at time ¢t = 0 and an initial state at time ¢ = 0 that has been pre-adapted to
the input u(t) for ¢t < 0, (0) = aug/J, the solution is the same as when instead applying pu(t) for
t > 0, but starting from the respective pre-adapted state paug/d. In contrast, scale invariance is
false for the the degradation-induced inhibition described by the equations

T = au-—ox
y = Pu—yxy

since multiplying v and x by p leads to a time-scale change in the output. See Fig. 7 for an
example. Notwithstanding the extreme over-simplification represented by our model, it would be
very interesting to test experimentally the response to scaled versions of antigen presentation, to
help reverse engineer possible mechanisms.

A remark on feedback

Let us now add a term that affects the input (thought of as a pathogen load). We denote the
pathogen population size (or a density in a particular environment) again by u(t), and assume that
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Figure 7: Simulations of degradation system with « = § = = v = 1, comparing the responses to
an input u(¢) and an input pu(t), p = 10. Input u switches from u(t) = 1 to u(t) = 2 at time ¢ = 5.
Initial conditions are z(0) = y(0) = 1.

u evolves according to one of the following two possible differential equations:

= A—Kuy (linear growth rate)

= A\u— Kuy (exponential growth rate)

where A\ and k are positive constants. The mass-action term xuy is a killing effect due to the
immune system. Reasoning informally, we may expect based on our previous discussion that in the
linear growth case the immune reaction will be too weak to eliminate the pathogen: if y converges to
its adapted value y = 1 (assuming for simplicity &« = § = v = 0 = 1 as earlier) then we expect that
4(t) = A — ku and u(t) might converge to A/k. On the other hand, in the exponential growth case,
we expect based on our previous discussion that y will converge to some higher value, related to
the effective growth rate of u (under feedback, so perhaps less than \), and therefore & = (A — ky)u
means that, if y(¢) > A\/k for all ¢, then u(t) — 0. Simulations agree with this informal reasoning,
see Fig. 8. Thus, at least in this example, a pathogen that grows exponentially will be eliminated,
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Figure 8: Simulations of the production inhibition and the degradation system, with a = =6 =
v=1and A =1, k = 2. Left two panels: linear growth. Right two panels: exponential growth.

but a slower linearly growing one might not. A follow-up paper will describe theory.
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A few other models

We next briefly discuss our interpretation of some existing models for change detection in immune
systems, and compare them to the IFFL model.

Tunable Activation Threshold (TAT)

This model was suggested by Grossman and Paul [5] in 1992, motivated by the realization that
“self /nonself discrimination may be much more complex than the simple failure of competent
lymphocytes to recognize self-antigens”. The authors argued that for a stimulus to cause cell
activation, the excitation level must exceed an activation threshold, and when engaged in persistent
sub-threshold interactions, cells are protected against chance activation. In the TAT model, an
activation threshold for an immune cell is dynamically modulated by an environment-dependent
recent excitation history. This history is summarized by an excitation indezx, which we will denote as
x(t), which computes a sort of weighted average of the cell’s past excitation levels. Given temporal
excitation events, which we denote by u(t), it is assumed that the cell undergoes perturbations
that depend on the difference between wu(t) and the memory variable z(t). The key assumption
is that such a perturbation, which we write as y(¢) := u(t) — z(t), must exceed a fixed critical
value, which we denote by 6, in order to cause activation. In other words, it must be the case
that u(t) — z(t) > 0, or equivalently, u(t) > z(t) + 6 (this is how we interpret the statement in [5]
that “the activation threshold equals the excitation index plus that critical value”) for activation
to occur. Cells maintained at a high level of excitation z(t) therefore are relatively insensitive to
activation, thus being in some sense anergic. The authors deduce from their model that “upon
gradual increase in the levels of excitation...a cell is not likely to be activated...it will become
progressively anergic” which is intuitively equivalent to our remark about the lack of continued
excitation under slow increases in antigen presentation. With our notations, the model suggested
in [5] is:
= au(u — x)

for some constant a, and the output would be y = v — z. (No explicit population-based nor
signaling mechanism was given.) Notice that we then can derive a differential equation for y:

y = u(t/u - ay)

and this means, roughly, that y should approach /u, the logarithmic derivative of the input u, so
that a “log sensing” property is satisfied by the output. Moreover, when the input is constant, the
output converges to the same value (zero), independently of the actual value of the input, so we
have perfect adaptation. Moreover, we expect y to be small (and thus not exceeding the threshold
) unless u changes fast in the sense that its logarithmic derivative is large. For example, for u(t)
increasing linearly, @ would be a constant, so 4/u = 0 and therefore y(t) — 0 as ¢ — co. On
the other hand, for an exponentially increasing u(t), y(t) converges to a value proportional to the
exponential rate. These properties are analogous to those satisfied by our model.

Discontinuity theory of immunity

This model was suggested by Pradeu, Jaeger, and Vivier [10] in 2013 as a “unifying theory of
immunity”. Their key hypothesis is that effector immune responses are induced by an “antigenic
discontinuity” by which they mean a “sudden” modification of molecular motifs with which immune
cells interact. The authors present evidence that natural killer (NK) cells and macrophages are
activated by transient modifications, but adapt (ceasing to be responsive) to long-lasting modifica-
tions in their environment, and then propose to extend this principle to other components of the
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immune system, such as B cells and T cells. They also argue that although tumors give rise to
effector immune responses, “a persistent tumour antigen diminishes the efficacy of the antitumor
response”. In summary, their criterion of immunogenicity is the phenomenological antigenic discon-
tinuity and not the nature of the antigen, including both “discontinuities” arising from self motifs
such as tumors as well as from non-self motifs such as bacterial or viral infections. As examples
of mechanisms for desensitization they mention receptor internalization, degradation or inactiva-
tion of signaling proteins. A concrete example of the latter is the dephosphorylation triggered by
immunoreceptor tyrosine-based inhibition motif (ITIM)-containing receptors antagonizing kinases
triggered by immunoreceptor tyrosine-based activation motif (ITAM)-containing receptors. The
authors also mention Treg population dynamics.

Using our notations, the model in [10] starts by computing a running average of the absolute value
of consecutive differences in inputs presented at discrete times on a sliding window K time units
long:

LXK
Au(t) := EZ lu(t —i+1) —u(t —1)|
i=1

and then taking as the output y = ©(Au), where O is a sigmoidal saturating function. The authors
employ

@
o) = T

but one could equally well (and perhaps easier to justify mechanistically) employ a Hill-type function

O(x) = K‘,ff;n . In continuous time, and assuming that the input is differentiable, we could interpret

t
Aut) ~ [li-all, = [ fiGs)] ds.

where the right hand term is the total variation of the input on this sliding window. Note the
absolute value, which means that, in this model, activation is symmetrically dependent on increases
or decreases of the excitation.* As with our model, slow variations in the input will lead to small
y(t), with the threshold function © resulting in an ultrasensitive, almost binary, response (provided
that p or n are large, in the two suggested functions O).

Growth threshold conjecture

This model was suggested by Arias, Herrero, Cuesta, Acosta and Ferndndez-Arias [2] in 2015 as
“a theoretical framework for understanding T-cell tolerance” based on the hypothesis that “T cells
tolerate cells whose proliferation rates remain below a permitted threshold”. As in the other works,
the authors postulate that T cells tolerate cognate antigens (irrespectively of their pathogenicity)
as long as their rate of production is low enough, while those antigens that are associated with
pathogenic toxins or structural proteins of either infectious agents or aggressive tumor cells are
highly proliferative, and therefore will be targeted as foes by T cells. In summary, once again the
postulate is that a strong immune response will be mounted against against fast-growing populations
while slow-growing ones will be tolerated. The model in [2] is not one of change detection as such,
but it is a closed-loop system that includes both detection and a killing effect on pathogens. To
compare with our previous models, let us again denote the pathogen population size (or a density
in a particular environment) by u(t) and the effector cell population by y(¢). The authors give for y
a second order equation §j = —dy + au, modeled on a spring-mass system that balances a “restoring

*Decreases may help with “missing self” recognition: the expression of a “self” marker suddenly decreases, trig-
gering a response by NK cells and other immune components (Thomas Pradeu, personal communication).
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to equilibrium force” to its activation by pathogens. We prefer to write the system as a set of first
order ODE’s. Thus, we let x := g, and write:

uw = (A—kKyu
T = au-—0dy
y = x.

The u equation has an exponential growth term balanced by a kill rate that depends on the effector
population. The effector population integrates the amount of z (which we might interpret as an
intermediate type of cell); the growth of z is driven by pathogens, with a negative feedback from
y (in essence an integral feedback on x), but there is no obvious biological mechanism for this
model. Observe that when there is no pathogen, this results in a harmonic oscillator for z and v,
with sustained oscillations and even negative values. In any event, the authors computationally
obtain a bifurcation-like diagram in the (A, k) plane, dividing this plane into two regions, labeled
“tolerance” (of infection, hence, failure of the immune system) and “intolerance”. These regions
show how to trade off the growth rate A of the pathogen versus the parameter x, which represents
a combination of affinity and clearance rate, and various conclusions regarding evasion strategies
and the role of fever and even Treg cells are qualitatively derived from there.

10
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