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Abstract

This paper deals with the regularity of solutions of the Hamilton–Jacobi inequality which arises in H∞ control. It shows
by explicit counterexamples that there are gaps between existence of continuous and locally Lipschitz (positive de�nite and
proper) solutions, and between Lipschitz and continuously di�erentiable ones. On the other hand, it is shown that it is always
possible to smooth-out solutions, provided that an in�nitesimal increase in gain is allowed. c© 2000 Elsevier Science B.V.
All rights reserved.
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1. Introduction

The so-called “H∞ control problem” is that of �nd-
ing a state (or more generally, a measurement-based)
feedback which stabilizes a given system, while sat-
isfying an energy-gain (L2 operator norm) constraint.
For linear systems, the problem has a long history, and
an elegant solution was provided in the by now clas-
sical paper [9]. The nonlinear version of this problem
has been the subject of intense research as well; see for
instance [4,5,11,14,21] among many others. A central
role in these studies is played by a partial di�erential
inequality, a Hamilton–Jacobi inequality (HJI) which

∗ Corresponding author.
E-mail addresses: lionel.rosier@math.u-psud.fr (L. Rosier), son-

tag@control.rutgers.edu (E.D. Sontag).
1 This research was supported in part by US Air Force Grant

F49620-98-1-0242.

is satis�ed by a “storage” or “energy” function V as-
sociated with the closed-loop system.
In this paper, we concern ourselves with the analy-

sis of the HJI for a system already in closed-loop form,
since we wish to make some remarks about the regu-
larity of solutions of this equation. Moreover, in order
to keep the discussion as simple as possible, we an-
alyze the case of full state measurements, but similar
conclusions could be drawn for the case when outputs
are of interest. Thus, the main focus of this paper will
be on systems, a�ne in inputs, of the following form:

ẋ = g0(x) +
m∑
i=1

ui gi(x) (1)

for which states x evolve in Rn, and inputs u =
(u1; : : : ; um) take values in Rm. We assume that the
vector �elds gi, i = 0; : : : ; m, are locally Lipschitz
in x. (These systems might be thought of having
been obtained from a more general class of systems
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ẋ = f(x; u; v) after applying a stabilizing feedback
v = k(x), but that interpretation is irrelevant to the
results that we give.) In this introduction, we restrict
attention to the above class of systems, but later we
will also provide several results valid for more general
systems, not necessarily a�ne in inputs, of the form

ẋ = F(x; u); (2)

with x(t)∈Rn and u(t)∈U. (As far as the de�nitions
are concerned, we do not need impose any technical
conditions onU andF .)We use |·| to denote Euclidean
norm inRn orRm. For systems (1), the HJIs of interest
are inequalities which are often expressed as:

3V (x) · g0(x) + 1
4


m∑
i=1

(3V (x) · gi(x))2 + |x|260;

(3)

where 
¿ 0 is the (square of the) “L2 gain” of the
system. Inequality (3) for nondi�erentiable V must
be interpreted in a generalized sense, as we discuss
below. The V ’s that arise, because of implicit stability
considerations, must be proper and positive de�nite.
Modulo some elementary calculus to do the implied

maximization over u, inequality (3) is equivalent to

3V (x) ·
(
g0(x) +

m∑
i=1

uigi(x)

)
6− |x|2 + 
|u|2;

(4)

understood as holding for all u. This latter form is
preferred, because it makes sense for arbitrary (not
necessarily input-a�ne) systems (2), and because the
theory then makes a natural contact with the theory of
dissipative systems developed by Willems and Moy-
lan and Hill (see e.g. [12,13,21,22]). It is well-known
(and we review this fact in the Appendix) that (4) is
equivalent to the following inequality:

V (x(b))− V (x(a))6
∫ b

a

|u(t)|2 − |x(t)|2 dt (5)

holding along all solutions (x(·); u(·)) of (1) with x(·)
absolutely continuous and u(·) measurable and essen-
tially bounded, for each a¡b in the domain of the so-
lution. Notice that (5) has the following consequence
for trajectories which start at x(0) = 0, and if V is
nonnegative: for all T ¿ 0 for which the solution is
de�ned, it must hold that∫ T

0
|x(t)|2 dt6


∫ b

a
|u(t)|2 dt:

This means that the map u(·) 7→ x(·) seen as a map be-
tween square-integrable functions, has operator norm

6
√

. Conversely, the theory relates such operator

norms back to the existence of V ’s solving the di�er-
ential inequality. We will not discuss this well-known
material any further, but rather consider the di�eren-
tial inequality as our object of study.
In general, it is not natural to impose the require-

ment that solutions to (4) should be smooth, so the HJI
must be interpreted in the viscosity sense (a “viscos-
ity supersolution”), (see e.g. [8,10]), or, in what is an
essentially equivalent manner, the proximal analysis
formalism found in [7]. Under suitable controllability
hypotheses, it does make sense to restrict attention to
continuous V ’s, see for instance [4]. Thus we will al-
ways assume in our study that V is at least continuous.
The main results in this note address the gap be-

tween continuous and C1 solvability. We give ex-
amples which show (a) that there may exist even
Lipschitz-continuous (proper and positive de�nite)
solutions, but no possible continuously di�erentiable
ones, and (b) there may exist continuous (proper and
positive de�nite) solutions but no possible locally
Lipschitz continuous ones. On the other hand, we
provide a smoothing result which shows that it is
possible to pass from C0 to C1 solutions as long as
an in�nitesimal increase in the gain 
 is allowed. A
last section treats the special case of one-dimensional
systems, where no gap exists. None of these facts is
unexpected, of course, but it would appear that the
corresponding counterexamples and proofs are not
available in the literature.

2. De�nitions and statements of results

Recall (cf. [7, Section 3.4]) that a vector �∈Rn is
a viscosity subgradient of a function V : Rn → R, at
the point x∈Rn, if

lim inf h→0
1
|h| [V (x + h)− V (x)− � · h]¿0: (6)

The (possibly empty) set of all viscosity subgradients
of V at x is called the viscosity subdi�erential, and
is denoted @DV (x). Observe that, if the function V is
di�erentiable at x, then @DV (x) = {3V (x)}.

De�nition 2.1. Suppose given a system � as in (2),
and a 
¿0. We say that a function V : Rn → R¿0
witnesses the gain 
 if the following condition holds:

� · F(x; u)6− |x|2 + 
|u|2 ∀�∈ @DV (x) (7)
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for all x∈Rn \ {0} and u∈U. The set of all those
continuous V which witness a given gain 
 for the
system � is denoted asW(�; 
).

We recall that a continuous function V : Rn →
R¿0 is said to be proper (or “radially unbounded”)
provided that every set of the form {x |V (x)6a} is
compact, for each a¿ 0 (equivalently, V (x)→ ∞ as
|x| → ∞), and is said to be positive de�nite if V (x)=0
if and only if x = 0. We denote

W∞(�; 
) := {V ∈W(�; 
) |V
is proper and positive de�nite}:

When V is C1, condition (7) means simply that
3V (x) ·F(x; u)6−|x|2+
|u|2 for all x 6= 0 and u. As
is well-known, asking for a globally C1 such function
which is also positive de�nite is overly restrictive. To
see this, consider an input-a�ne system with n = 1,
and take u=0. The inequality would force the bound
|x|2=|g0(x)|6|V ′(x)| for all x 6= 0. If V is positive
de�nite, it must have a local minimum at zero, so
V ′(0) = 0. Hence

|x|2 = o(g0(x)) as x → 0;

which is too strong a constraint on g0 (one would not
be able to study a system such as ẋ=−x3). Therefore,
it is routine (see, for instance, [20]) to drop the require-
ment of di�erentiability at the origin. We will denote
by C10 the set of continuous functions V : Rn → R¿0
whose restriction to Rn \ {0} is continuously di�eren-
tiable.
The �rst result consists of an example which

shows that there may exist a globally Lipschitz
V ∈W∞(�; 
), but no C10 such function (in fact, not
even merely a C10 proper, nor a C

1
0 positive de�nite,

function inW(�; 
)). Speci�cally, take the following
system �1:

ẋ1 = |x1|(−x1 + |x2|+ u1);

ẋ2 = x2(−x1 − |x2|+ u2):

Note that this system is of the form (1), with n=m=2.
Now consider the following function (basically, the
L1 norm):

V1(x) = 2|x1|+ 2|x2|:
This function is proper and positive de�nite, and glob-
ally Lipschitz. We prove in Section 3:

Proposition 2.2. For the above system �1; and unit
gain 
 = 1; we have V1 ∈W∞(�1; 1). On the other

hand; if V is any C10 function inW(�1; 1); then V is
not positive de�nite nor proper.

Remark 2.3. We chose to give example�1 because of
its simplicity. However, at the cost of added complex-
ity, one may easily provide similar examples which
are such that the vector �elds gi are not merely Lips-
chitz. For a C1 example, we may take

ẋ1 = |x1x2|3 + x1(−|x1|+ u1);

ẋ2 =−(x1x2)3 + x2(−|x2|+ u2):

The proof of the analog of Proposition 2.2, using the
same function V1 and gain 1, is virtually the same.

The second result produces an example showing
that there may exist a continuous V ∈W∞(�; 
), but
every locally Lipschitz function in W(�; 
) must be
either nonproper or non-positive de�nite. Speci�cally,
we will consider the following system �3:

ẋ1 =−x1 + x2 + u1;

ẋ2 = 3x
4=3
2 (−x1 − x2 + u2);

which is of the form (1), with n = m = 2. We will
consider the following function:

V3(x1; x2) := x21 + x2=32
which is proper, positive de�nite, and continuous. We
prove in Section 3:

Proposition 2.4. For the above system �3; and
unit gain 
 = 1; we have V3 ∈W∞(�3; 1). On the
other hand; if V is any locally Lipschitz function in
W(�3; 1); then V is not positive de�nite nor proper.

There is a general positive result as well. We show
that, for any system � as in (1), and any 
¿ 0,
W∞(�; 
) 6= ∅ implies that W∞(�; 
′) ∩ C10 6= ∅ for
each 
′ ¿
. In other words, it is always possible to
smoothly approximate a proper positive-de�nite con-
tinuous V by one that is continuously di�erentiable
away from zero (actually, the proof provides an in-
�nitely di�erentiable such approximation), provided
that we allow a negligible increase in gain. This is
summarized in the following statement, which we
also prove in Section 3:

Theorem 1. For any system � as in (1);

inf{
 |W∞(�; 
) 6= ∅}= inf{
 |W∞(�; 
) ∩ C10 6= ∅}:

This result is signi�cant in so far as the “inf” in
question is the one of interest in H∞ control problems.
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Remark 2.5. The result in Theorem 1 is stated for
input-a�ne systems. It is false in general for arbitrary
systems (2). One elegant statement can be made by
considering systems of the following special form, for
any p¿1:

ẋ = g0(x) +
m∑
i=1

up
i gi(x) (8)

(again assuming that the vector �elds gi, i= 0; : : : ; m,
are locally Lipschitz in x). We may interpret the
powers up, for negative u, either as “|u|p” or as
“sign u|u|p”; with either interpretation, we shall show,
also in Section 3, that Theorem 1 holds (for any
system of this form) if p62 and does not hold (for
some systems of this form) if p¿ 2.

Finally, we will analyze in Section 4 the special
case m=n=1. We will show that there is in that case
no gap between the locally Lipschitz and the di�eren-
tiable case, for systems a�ne in inputs, but that a gap
reappears if we deal with systems that are not input
a�ne.

3. Proofs of main results

We �rst prove Propositions 2.2 and 2.4. We then
prove Theorem 1 (in somewhat more generality), and,
�nally, we justify the claims made in Remark 2.5.

3.1. Proof of Proposition 2.2

In order to verify that V1 ∈W(�1; 1), we compute
its subgradients. At any point x = (x1; x2)∈R2 with
x1x2 6= 0, obviously

@DV1(x) = {3V1(x)}=
{
2
(

x1
|x1| ;

x2
|x2|
)}

;

so (7) becomes

3V1(x) ·
(
g0(x) +

m∑
i=1

uigi(x)

)

=2
x1
|x1| |x1|(−x1 + |x2|+ u1)

+ 2
x2
|x2|x2(−x1 − |x2|+ u2)

= 2u1x1 + 2u2|x2| − 2x21 − 2x22
6 |u|2 − |x|2;

as desired. Suppose now that x1=0 and x2 6= 0. Then, it
is an easy exercise with the de�nition of subgradients
to see that

@DV1(x) = [− 2; 2]×
{
2

x2
|x2|
}

;

so in this case, for any �=(�1; �2)∈ @DV1(x), we have

� ·
(
g0(x) +

m∑
i=1

uigi(x)

)

= �1 · 0 + 2 x2
|x2|x2(−|x2|+ u2)

= 2u2|x2| − 2x22
6 |u2|2 − |x2|26|u|2 − |x|2;

again as desired. (The actual form of �1 turns out to
be irrelevant.) The case (x1 6= 0; x2 =0) is similar. So
V1 ∈W(�1; 1).
We next show that, if W ∈W(�1; 1) is of class

C10, then it cannot be proper nor positive de�nite. So,
assume that

3W (x) ·
(
g0(x) +

m∑
i=1

uigi(x)

)
6|u|2 − |x|2 (9)

holds for all x 6= 0 and all u. Fix any number a¿ 0.
Consider any point of the form x = (x1; x2) = (a; x2),
with x2 6= 0. With the special choice u1 = x1 and
u2 = |x2|, we have |x| = |u|, so (using subscripts to
denote partial derivatives) inequality (9) reduces to

Wx1 (a; x2)− (sign x2)Wx2 (a; x2)60:

When x2¿ 0 this gives Wx1 (a; x2)−Wx2 (a; x2)60, so
taking the limit as x2 → 0+, we conclude

Wx1 (a; 0)−Wx2 (a; 0)60

for all a¿ 0. Arguing with negative x2 and taking
x2 → 0−, we get also

Wx1 (a; 0) +Wx2 (a; 0)60

for all a¿ 0. We conclude that Wx1 (a; 0)60 for all
a¿ 0. This means thatW (·; 0) must be bounded above
(and is nonnegative on R¿0), so W cannot be proper.
On the other hand, ifW (0)=0, this impliesW (a; 0) ≡
0, so W cannot be positive de�nite either. This com-
pletes the proof of Proposition 2.2.

3.2. Proof of Proposition 2.4

The intuitive idea of the construction of �2 and V2
is as follows. We start with Ṽ 2(x̃1; x̃2) = x̃21 + x̃22, the
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square norm in R2, (x̃1; x̃2) denoting the canonical co-
ordinates on R2, and consider the harmonic oscillator
motion, but with rescaled time so that the x̃1-axis con-
sists of equilibria: g̃(x̃1; x̃2)= (x̃2x̃

2
2;−x̃1x̃

2
2). Note that

Ṽ 2 is an integral for the motions of g. Next, we make
a change of coordinates which is a global homeomor-
phism but fails to be a di�eomorphism: x̃1 7→ x̃1=:x1;
x̃2 7→ x̃32 = : x2. In the new coordinates (x1; x2), V2,
the transformation of Ṽ 2, is no more locally Lip-
schitz. However, the transformation g of g̃ is locally
Lipschitz, and it is of course still true that V2 inte-
grates g. The key fact is this: for any locally Lips-
chitz W which is nonincreasing along trajectories of
g, W cannot be positive de�nite nor proper. (In other
words, there cannot be any locally Lipschitz “weak
Lyapunov function” for ẋ= g(x).) Finally, we add an
input-dependent term to g which provides the dissi-
pation property. When |u|= |x|, this dissipation prop-
erty reduces to the nonincreasing property mentioned
above, and hence leads to a contradiction for V locally
Lipschitz.
We de�ne the following locally Lipschitz vector

�eld g in R2:

g(x1; x2) =
(

x2
−3x1x4=32

)
and note that

� · g(x) = 0 ∀�∈ @DV2(x); ∀x∈R2: (10)

Indeed, pick any x=(x1; x2). If x2 6= 0 then necessarily
� = (2x1; (2=3)x

−1=3
2 ), so the claim is clear. If instead

x2 = 0, then g(x1; x2) = 0, so the claim holds as well.
Note that system �2 is of the form ẋ=f(x; u), where

f(x; u) = g(x) + h(x; u), with

h(x; u) :=
(

u1 − x1
3x4=32 (u2 − x2)

)
:

Now note that

� · h(x; u)6|u|2 − |x|2 ∀�∈ @DV2(x);

∀x∈R2; ∀u∈R2: (11)

To verify this, pick any x=(x1; x2). Take �rst the case
x2 6= 0. Since � must be equal to (2x1; (2=3)x−1=32 ), we
have that

� · h(x; u) = 2x1u1 − 2x21 + 2x2u2 − 2x226|u|2 − |x|2:
If instead x2 = 0, then �= (2x1; �2), for some �2, so

� · h(x; u) = 2x1u1 − 2x21 + �2 · 0
6 u21 − x216|u|2 − |x|2:

Together with (10), we have thus that �·f(x; u)6|u|2−
|x|2, so we have proved that V2 ∈W∞(�2; 1). Now

we show that we cannot have a locally Lipschitz
V ∈W∞(�2; 1).
For any V ∈W(�2; 1), setting u=x in the inequality

� ·f(x; u)6|u|2−|x|2, and using that h(x; x)=0, gives
that

� · g(x)60 ∀�∈ @DV (x); ∀x∈R2: (12)

We will show that no locally Lipschitz function V
can satisfy such a property and be positive de�nite or
proper. Suppose given such a V ; we will prove that, for
any positive number a at which the locally Lipschitz
function x1 7→ V (x1; 0) is di�erentiable, necessarily
Vx1 (a; 0)60. This means that V decreases along the
x1-axis, and the negative conclusion follows. Fix now
any such a, and denote �:=(a; 0)′. We will analyze the
behavior of V in a neighborhood of �, by considering
a curve which approaches � along an orbit of g.
Take the following parameterized curve:


 : [0; 1]→ R2 : t 7→
(

at
(a2 − (at)2)3=2

)

which has the property that 
(1)=
′(1)=�. Note also
that, for each t ∈ [0; 1],

g(
(t)) =
(

(a2 − (at)2)3=2
−3at(a2 − (at)2)2

)
= �(t)
′(t)

where �(t) = (1=a)(a2 − (at)2)3=2¿ 0 for all t ¡ 1.

Lemma 3.1. The function t ∈ [0; 1] 7→ W :=V (
(t))
is nonincreasing.

Proof. SinceW is locally Lipschitz, its derivative ex-
ists almost everywhere. We must prove thatW ′(t)60
for almost all t. This will follow from the following
statement, valid for all subgradients:

�60 for all t0 ∈ [0; 1) and all �∈ @DW (t0): (13)

The idea of the proof is as follows. If3V (
(t0)) exists,
then

W ′(t0) =3V (
(t0))
′(t0)

=
1

�(t0)
3V (
(t0))g(
(t0))60

where the last inequality follows from (12). However,
there is no reason for V to be di�erentiable at the
points in the image of 
. So we need to apply the
“approximate chain rule” for subgradients. Pick any
t0 ∈ [0; 1) and �∈ @DW (t0). Take any �¿ 0, and let
0¡�¡� be such that

|�| |g(x)− g(
(t0))|6��(t0) (14)
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for all �∈ @DV (x) and all x such that |x − 
(t0)|¡�
(using continuity of g, and noting that all such � are
bounded by a Lipschitz constant for V on a ball of
radius � about 
(t0)) and also so that

|�| |
′(t1)− 
′(t0)|6� (15)

whenever �∈ @DV (x) for any x as above and |t1 −
t0|¡� (using now the fact that 
∈C1).
We apply to � and � the chain rule in [7, Theo-

rem 2:2:5], but in its viscosity rather than subgradi-
ent form (the viscosity form follows from the version
given in that reference by applying the approxima-
tion theorem in [7, Proposition 3:4:5]). This tells us
that there exist t1, x, �, and �′ such that |t1 − t0|¡�,
|x − 
(t0)|¡�, �∈ @DV (x), and �′ ∈ @D(� · 
)(t1), so
that |
(t1)− 
(t0)|¡� and |�− �′|¡�.
Since 
 is di�erentiable, the scalar map � · 
 is too,

and hence �′ = (d=dt)(� · 
)(t1) = � · 
′(t1), so
�′ = � · 
′(t1) = � · (
′(t1)− 
′(t0)) + � · 
′(t0)
= � · (
′(t1)− 
′(t0)) +

1
�(t0)

� · g(
(t0))

= �+
1

�(t0)
� · g(x);

where

�= � · (
′(t1)− 
′(t0)) +
1

�(t0)
� · (g(
(t0))− g(x));

and therefore �′62� by (12), (14), and (15). So �63�.
As � was arbitrary, we conclude �60.

Since W (t)¿W (1) = V (�) for all t ¡ 1, for any
h¿0 the last term in the following expression is non-
positive:

1
h
(V (a; 0)− V (a− ah; 0))

=
1
h
(V (
(1− h))− V (a− ah; 0))

+
1
h
(W (1)−W (1− h)): (16)

Since V is locally Lipschitz, there is some constant L
such that (evaluating 
(1− h)):

1
h
|V (
(1− h))− V (a− ah; 0)|
6La3h1=2(2− h)3=2 → 0

as h → 0+. We conclude, by taking limits as h → 0+

in (16), that Vx1 (a; 0)60, as claimed.

3.3. Proof of Theorem 1

In order to be able to justify Remark 2.5, we will
prove Theorem 1 for a more general class of systems,
namely those of the following general form:

ẋ = g0(x) +
m∑
i=1

’(ui)gi(x) (17)

where ’(r) = |r|p or ’(r) = (sign r)|r|p (interpreting
’(0) = 0), and p is a �xed real number in the closed
interval [1,2]. Note that Theorem 1 as stated would
correspond to p= 1 and the second choice of ’. We
still suppose that states x evolve in Rn, and inputs
u=(u1; : : : ; um) take values in Rm, and that the vector
�elds gi, i = 0; : : : ; m, are locally Lipschitz in x.
The proof will be based upon the following general

technical fact:

Lemma 3.2. Assume that we are given:

• an open subset O of Rn;
• a continuous function � : O → R¿0;
• a continuous function � : O → R¿0;
• an �¿ 0;
• a continuous function V : O → R¿0 satisfying

� ·
(
g0(x) +

m∑
i=1

’(ui)gi(x)

)

6− �(x) + �(x)|u|2 ∀�∈ @DV (x) (18)

for all x∈O and u∈U.
Then; there exists a smooth W : O → R such that

|V (x)−W (x)|6 1
2V (x) (19)

for all x∈O; and

3W (x) ·
(
g0(x) +

m∑
i=1

’(ui)gi(x)

)

6− �(x) + [(1 + �)�(x) + �]|u|2 (20)

for all x∈O and u∈U.

Before proving the lemma, we explain how to obtain
Theorem 1 as a corollary.We pick a system� as in (1),
and any 
′ ¿
¿ 0. We suppose given a continuous
proper and positive de�nite V ∈W(�; 
), and we need
to show the existence of some W ∈W(�; 
′) which is
C1 on O = Rn \ {0}, in addition to being proper and
positive de�nite. We pick, in Lemma 3.2, �(x) ≡ 
,
�(x)= |x|2, and any �¿ 0 such that (1+ �)
+ �¡
′.
The lemma then applies to the restriction of V to O.
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We obtain aW as in the lemma, and extend it fromO to
Rn by de�ningW (0):=0. The approximation property
(19) insures thatW is proper and positive de�nite, and
it is continuous at zero as well.
The proof of Lemma 3.2 will be based upon a re-

duction to the following result, which we quote from
[16]:

Lemma 3.3. Let � : ẋ = f(x; d) be a system; with
x∈X = Rn; and d∈U; a compact metric space; so
that f(x; d) is locally Lipschitz in x uniformly on d
and jointly continuous in x and d. Assume that we
are given:

• an open subset O of X;
• a continuous; nonnegative function V : O → R
satisfying

� · f(x; d)6�(x; d) ∀x∈O;

�∈ @DV (x); d∈U (21)

with some continuous function � : O×U → R;
• two positive; continuous functions �1 and �2

on O.
Then; there exists a smooth V̂ : O → R such that
|V (x)− V̂ (x)|6�1(x) ∀x∈O (22)

and

3V̂ (x) · f(x; d)6�(x; d) +�2(x)

∀ x∈O; d∈U: (23)

The proof given in [16] employs tools from
nonsmooth analysis, borrowing in particular several
simple facts from [6,7,19] in order to pass from
continuous V to locally Lipschitz V , followed by a
standard smoothing argument as given in [17]. (To
be precise, the result is stated and proved in [16]
using the language of proximal subgradients rather
than viscosity subgradients. The proof, however, is
the same in both cases.)

Proof of Lemma 3.2. We de�ne

f(x; d) := (1− |d|2)g0(x)

+
m∑
i=1

’(di)(1− |d|2)1−p=2gi(x)

with U= unit ball in Rm. (If p= 2, we interpret the
coe�cient of gi as simply’(di).) Note that this system
satis�es the hypotheses of Lemma 3.3. We use the
same O and V , and let

�(x; d):=− (1− |d|2)�(x) + |d|2�(x):

We need to verify that (21) indeed holds. Pick any x
and �, and any d with |d|61. We treat separately the
cases |d|= 1 and |d|¡ 1.
Case 1: |d|= 1. If p¡ 2, then (21) holds trivially

(because f(x; d)=0 and �(x; d)=�(x)¿0). So sup-
pose p= 2. We must verify that

m∑
i=1

’(di) � · gi(x)6�(x) (24)

where ’(r) = r2, or ’(r) = r|r|, and d is a vector of
unit norm. We are assuming that (18) holds, that is,

� · g0(x) +
m∑
i=1

’(ui) � · gi(x)6− �(x) + �(x)|u|2

(25)

for all u. Now pick any u of the form (1=�)d, with
�¿ 0, so �2’(ui)=’(di) for each i. Multiplying both
sides of (25) by �2, we have that

�2� · g0(x) +
m∑
i=1

’(di) � · gi(x)6− �2�(x) + �(x);

so taking limits as � → 0 one obtains the desired
inequality (24).
Case 2: |d|¡ 1. Introduce, for such a d; u =

(u1; : : : ; um), where

ui:=
di√
1− |d|2 ; i = 1; : : : ; m:

Observe that

|u|2 = |d|2
1− |d|2 ; 1− |d|2 = 1

1 + |u|2 ;

’(di)(1− |d|2)1−p=2 =
’(ui)
1 + |u|2 (26)

for all i, so that

f(x; d) =
1

1 + |u|2
(
g0(x) +

m∑
i=1

’(ui)gi(x)

)

and thus (18) implies that � · f(x; d)6�(x; d) for all
�∈ @DV (x), as wanted. So, we apply Lemma 3.3 with

�1(x) :=
1− �
4

V (x)

and

�2(x) := �min{1; �(x)}
where �∈ (0; 1) is picked such that
1

1− �
61 + � and

�
1− �

6min
{
�;
1
4

}
:
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This provides a function V̂ . Now �x any u∈Rm, and
introduce

di:=
ui√
1 + |u|2 ; i = 1; : : : ; m:

Observe that the relations (26) hold, and hence also

|d|2 = |u|2
1 + |u|2 ¡ 1

holds. Furthermore, g0(x) +
∑m

i=1 ’(ui)gi(x) = (1 +
|u|2)f(x; d). Therefore, (23) gives

3V̂ (x) ·
(
g0(x) +

m∑
i=1

’(ui)gi(x)

)

6(1 + |u|2)(−(1− |d|2)�(x) + |d|2�(x)
+�min{1; �(x)})

=− �(x) + |u|2�(x) + �min{1; �(x)}
+|u|2�min{1; �(x)}

6− �(x) + |u|2�(x) + ��(x) + |u|2�
=− (1− �)�(x) + |u|2(�(x) + �)

and if we now let

W :=
1

1− �
V̂

we conclude that

|V −W |6 �
1− �

V +
1

1− �
|V − V̂ |61

2
V;

and

3W (x) ·
(
g0(x) +

m∑
i=1

’(ui)gi(x)

)

6− �(x) + |u|2 �(x) + �
1− �

6− �(x) + [(1 + �)�(x) + �]|u|2

as desired for the conclusions of Lemma 3.2.

Notice, incidentally, that W is smooth (C∞), not
merely C1.

3.4. Results for systems of form (8)

The positive claim in Remark 2.5, for p62, has
been proved already. To show that Theorem 1 does
not extend to systems (17) when p¿ 2, it will be
convenient to introduce the vector �eld corresponding
to what one might call an “L1 harmonic oscillator”.

Fig. 1. The vector �eld g.

This is the locally Lipschitz vector �eld on R2 de�ned
by

g(x1; x2) :=
( |x1|x2
−|x2|x1

)
: (27)

The 
ow of g leaves invariant the L1-balls around the
origin, see Fig. 1. Associated to g is the L1 norm, seen
as a proper, positive-de�nite Lipschitz function

V1(x1; x2):=|x1|+ |x2|:
Except for the fact that we do not now need
the factor “2”, this function is as before. So
@DV1(x) = {(x1=|x1|; x2=|x2|)} when x1x2 6= 0,
@DV1(x) = [ − 1; 1] × {x2=|x2|} when x1 = 0 and
x2 6= 0, and similarly if x2 = 0. Therefore,
� · g= 0 for all �∈ @DV1(x); x∈Rn: (28)

We also introduce the following vector �eld:

g0(x1; x2) :=
(−|x1|x1
−|x2|x2

)
: (29)

For the same V1,

� · g0 =−|x|2 for all �∈ @DV1(x); x∈Rn: (30)

Now �x any p¿ 2, and consider the following system
�p, which is de�ned in terms of the above vector
�elds:

ẋ = g0(x) + |u1|pg(x)− |u2|pg(x): (31)

This is a system of type (8) with m = 2, g1 = g, and
g2 =−g. In view of (28) and (30), we have that

� · (g0(x) + |u1|pg(x)− |u2|pg(x))6− |x|2
for all x∈R2 and u = (u1; u2)∈R2, and every
�∈ @DV1(x). This means that V1 ∈W∞(�p; 
), for
any 
¿ 0. We now see that the equality in Theorem
1 cannot hold. In fact, we prove the following far
stronger statement:

Proposition 3.4. For all V ∈C10 ; and all 
¿ 0; V =∈
W(�p; 
).
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Proof. Suppose that V ∈C10 and

3V (x) · (g0(x) + |u1|pg(x)− |u2|pg(x))
6− |x|2 + 
|u1|2 + 
|u2|2 (32)

for all x 6= 0 and all u = (u1; u2). Fix any x = � 6= 0.
Taking u = 0 gives that 3V (�) 6= 0. Since p¿ 2,
letting u2=0 and u1 → +∞ gives3V (�)·g(�)60. On
the other hand, u1 =0 and u2 → +∞ gives −3V (�) ·
g(�)60. So we conclude that 3V (�) ·g(�)=0 for all
� 6= 0.
Now �x an a¿ 0 and suppose that � has the form

(a; x2) with x2 6= 0. Then,3V (�) ·g(�)=0 means that

(sign x2)Vx1 (a; x2)− Vx2 (a; x2) = 0

Letting separately x2 → 0+ and x2 → 0− gives
Vx1 (a; 0)=Vx2 (a; 0)= 0, contradicting 3V (a; 0) 6= 0.

A variation of this example is as follows. Fix again
any p¿ 2. Instead of (31), we consider now the fol-
lowing system �′

p:

ẋ = g0(x) + sign u|u|pg(x) (33)

with m=1. It is also true that V1 ∈W∞(�p; 
), for any

¿ 0, and Proposition 3.4 again holds, simply taking
the separate limits as u → +∞ or u → −∞ in its
proof.

Remark 3.5. There is nothing very special about the
form (8). Mainly, we picked these systems in order
to illustrate with a speci�c class when the theorem
holds. But Theorem 1 holds also for a general class
of systems of subquadratic growth in inputs. Specif-
ically, we may consider systems of the general form
ẋ = g(x; u), where g is jointly continuous in x and u,
and satis�es, for some constant p∈ (0; 2) and some
continuous function h : Rn → R:

1. |g(x; u)|6h(x)(1 + |u|p) for every x and u;
2. |g(x; u)− g(y; u)|6c|x− y|(1 + |u|p) for every u,
and every x; y in some (arbitrary chosen) ball.

The proof is the same as for systems of the form
(8). One only needs to set

f(x; d) = (1− |d|2)g(x; d(1− |d|2)−1=2)

provided |d|¡ 1, and f(x; d)=0 otherwise, and to re-
place everywhere g0(x)+

∑m
i=1 ’(ui)gi(x) by g(x; u).

We omit the simple details.

4. One-dimensional systems

For one-dimensional systems, there is no gap be-
tween the locally Lipschitz and the C10 case:

Proposition 4.1. Suppose given a system � as in (1);
with n= 1. Assume that for some 
¿ 0 there exists
a locally Lipschitz V ∈W∞(�; 
). ThenW∞(�; 
) ∩
C10 6= ∅.

Proof. Pick a V as in the statement of the proposition.
By Rademacher’s theorem there exist a zero measure
(Borelian) set N ⊂R and a continuous positive func-
tion h such that

x =∈ N ⇒ V ′(x) exists and |V ′(x)|6 1
2h(x): (34)

We shall construct W only on R¿0, the construction
being similar on R60. If x =∈ N , @DV (x) = {V ′(x)},
hence

V ′(x)

(
g0(x) +

m∑
i=1

uigi(x)

)
6
|u|2 − x2 ∀u∈R:

(35)

Since the system ẋ=g0(x) is (globally) asymptotically
stable, g0(x)¡ 0 for each x¿ 0. It follows from (34)
and (35) (with u= 0) that

1
2h(x)¿V ′(x)¿

x2

|g0(x)| ¿ 0 for x¿ 0; x =∈ N:

(36)

Set for any x¿ 0

F(x):=

{
p¿0: p

(
g0(x) +

m∑
i=1

uigi(x)

)

6
|u|2 − x2 ∀u∈R
}

:

We claim that the (closed convex) set F(x) is
nonempty for any x¿ 0. Indeed, if x =∈ N ,
V ′(x)∈F(x). If x∈N we may pick a sequence (xn)
in R¿0 \ N such that xn → x as n → ∞. Since
|V ′(xn)|6 1

2h(xn)6c for some constant c, we may
extract a subsequence of (V ′(xn)) which converges
towards some p¿0. Clearly p∈F(x). Let us set

a :=
m∑
i=1

gi(x)2; b := 4
g0(x); c := 4
x2

and

�(p) := ap2 + bp+ c:
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It is a straightforward exercise to see that for anyp¿0,

p∈F(x)⇔ �(p)60: (37)

By the claim, �(p)60 for some p, whereas �(p)→
∞ as p → −∞ (since b¡ 0). It follows that � has
(at least) one real root, hence b2 − 4ac¿0. Set

p(x) :=




h(x) if a= 0;

min
{
h(x); −b+

√
b2−4ac
2a

}
if a 6= 0: (38)

Note that−b=4
|g0(x)|¿ 0 on x¿ 0, so when a → 0
the second expression in the minimum above becomes
unbounded; from here, it follows that p is continuous
on R¿0. We claim that

V ′(x)6p(x) ∀x∈R¿0 \ N: (39)

Pick any x∈R¿0 \ N . If a = 0, then (39) follows
from (36) and (38). If a 6= 0, since V ′(x)∈F(x), we
see that �(V ′(x))60 (by (37)), hence V ′(x)6(−b+√
b2 − 4ac)=2a which, combined with (36) and (38),

yields V ′(x)6p(x).
We are now ready to de�ne W on R¿0: we set

W (x) =
∫ x
0 p(s) ds for any x¿0. Since 06p6h, W

is a (well-de�ned) locally Lipschitz function on R¿0
which is C1 away from 0. Integrating in (39) we get
W (x)¿V (x)¿ 0 for any x¿ 0 and limx→∞W (x) =
∞. Finally we claim that
�(p(x))60 ∀x∈R¿0 \ N: (40)

Pick any x∈R¿0 \ N . If a= 0, then

�(p(x))6�(V ′(x)) (using b¡ 0 and (39))

6 0 (by (37)):

If a 6= 0, we are led to prove that

p(x)∈
[
−b−√

b2 − 4ac
2a

;
−b+

√
b2 − 4ac
2a

]
:

Owing to the de�nition of p(x), we only have to prove

h(x)¿
−b−√

b2 − 4ac
2a

:

But

−b−√
b2 − 4ac
2a

=
2c

|b|+√
b2 − 4ac

6
2c
|b| =

2x2

|g0(x)|6h(x);

by (36). This completes the proof of (40). Note that
(40) also holds true for any x¿ 0, by continuity of

� ◦ p. Using (37) it means that W ′(x) = p(x)∈F(x)
for all x¿ 0, i.e.

W ′(x)

(
g0(x) +

m∑
i=1

uigi(x)

)
6
|u|2 − x2 ∀u∈R:

The proof of the proposition is complete.

We now show that, for systems not a�ne in inputs,
there is again a gap between the Lipschitz and di�er-
entiable cases. In Proposition 2.2 we gave an example
of a system �1 and a Lipschitz V1 ∈W∞(�1; 1), such
that no V inW(�1; 1)∩C10 can be positive de�nite or
proper. The system was two dimensional (n= 2) and
had two-dimensional input (m=2). We now provide a
scalar (n=m=1) system �3 which has the following
properties: (a) it admits a Lipschitz V3 ∈W∞(�3; 1),
but (b) any W inW(�3; 1) must be nondi�erentiable.
Thus, the conclusions are even stronger than for �1;
on the other hand, �3 is not a�ne in inputs.
Before giving the form of �3, we start by consider-

ing the following two functions ’+ and ’− : R2 → R:
’+(s; t):=max{min{(s− t)=2; s}; 0}
and

’−(s; t):=−max{min{(−s− t)=2;−s}; 0}:
Both of these are Lipschitz, and ’+(0; t)=’−(0; t)=0
for all t. Thus, the function

’(s; t):=(sign s)max
{
min

{
1
2
(|s| − t); |s|

}
; 0
}

(with ’(0; t) ≡ 0) obtained by using ’+ for s¿0 and
’− for s¡ 0 is also Lipschitz.
As min{ 12 (|s| − t); |s|}6|s|, it follows that

|’(s; t)| ∈ [0; |s|]
for all (s; t). Since sign’(s; t)=sign s, this means that
’(s)∈ [0; s] when s¿0 and ’(s)∈ [s; 0] when s60.
When t¿|s|, min{ 12 (|s| − t); |s|}= 1

2(|s| − t), so

’(s; t) = 0 if t¿|s|:
If t6 − |s| then |s| = |s|=2 + |s|=26|s|=2 − t=2, so
min{ 12 (|s| − t); |s|}= |s|. Therefore
’(s; t) = s if t6− |s|:
The diagram in Fig. 2 summarizes this information
about the range of ’.
We de�ne now, for a; b¿0:

 (a; b):=1
2 [’(b− a; b+ a− 2) + (b− a)] :

As |b − a|6b + a − 2 if and only if both a¿1 and
b¿1,  (a; b) = 1

2 (b− a) for such a; b. Similarly, the



L. Rosier, E.D. Sontag / Systems & Control Letters 41 (2000) 237–249 247

Fig. 2. The range of ’.

Fig. 3. V3(x):=max{|x|; 2x − 1}.

properties of ’ also imply that  (a; b) = b− a when
a61 and b61, that  (a; b)∈ [b− a; 12 (b− a)] when
a¿b, and that  (a; b)∈ [ 12 (b− a); b− a] when a6b.
We are now ready to specify �3. We let:

f(x; u):=(|u|+ x)  (x; |u|)
for x¿0, and

f(x; u):=x2 + |u| (0; |u|)
for x¡ 0. This function is locally Lipschitz. Notice
that  (0; |u|)¿|u|=2¿0 for all u, so that f(x; u)¿x2

for x¡ 0. Observe the following properties, for all
x¿0:

1. x61 and |u|61⇒ f(x; u) = u2 − x2.
2. x61 and |u|¿1⇒ f(x; u)6u2 − x2.
3. x¿1 and |u|61⇒ f(x; u)6 1

2 (u
2 − x2).

4. x¿1 and |u|¿1⇒ f(x; u) = 1
2 (u

2 − x2).

Finally, the Lipschitz function V3 shown in Fig. 3.
We show that V3 ∈W∞(�3; 1), that is,

V ′(x)f(x; u)6u2−x2 for all x 6= 0 and all u. For x¡ 0
this is obvious, since V ′(x)f(x; u) = −f(x; u)6 −
x26u2 − x2 for all u. So we only need to analyze
the case x¿ 0. For any 0¡x¡ 1, V ′(x)f(x; u) =
f(x; u)6u2 − x2 (properties 1 and 2) while for x¿ 1
we have V ′(x)f(x; u) = 2f(x; u)6u2 − x2 as well
(properties 3 and 4). Finally, we deal with the nondif-
ferentiability point x = 1. An easy calculation shows
that @DV3(1) is the closed interval [1; 2]. Pick any
�∈ [1; 2]. When |u|61, f(x; u)=u2−x260, so �¿1
implies �f(x; u) = �(u2 − x2)6u2 − x2. Finally, if
|u|¿1, f(x; u) = 1

2 (u
2 − x2)¿0, then �62 implies

�f(x; u)6u2 − x2 as well.

We now show that any W in W(�3; 1) must be
nondi�erentiable. Suppose that there is some such W
which is di�erentiable. Fix u= 1. For any x, we must
have, since W ∈W(�3; 1):

W ′(x)f(x; 1)61− x2:

When x∈ (0; 1), f(x; 1) = 1 − x2¿ 0, so W ′(x)61.
On the other hand, for x¿ 1 we have f(x; 1) =
(1 − x2)=2¡ 0, so W ′(x)¿2 for such x. If W ∈C10,
this gives a contradiction as x → 1+ and x → 1−.
However, continuity of W ′ is not needed for the
contradiction, since we can argue as follows. By the
mean value theorem,

lim sup
x→1−

W (x)−W (1)
x − 1

61¡ 26 lim inf
x→1+

W (x)−W (1)
x − 1 ;

which contradicts the existence of W ′(1).

Further reading

The following reference is also of interest to the
reader: [18].
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Appendix A. Viscosity and integral formulations

We prove the equivalence between the integral
and viscosity formulations. This equivalence is
well-known, but we need to address a small technical
point due to the fact that we only de�ned the viscosity
condition at nonzero states x. (We did so simply for
technical reasons, in working out the examples; the
remarks given below show that it makes no di�erence
whether we consider the origin or not.) We need the
following simple fact �rst.
We assume given a system ẋ = F(x; u), where F :

Rn × Rm → Rn, as well as a closed set A⊆Rn (in
our application, the origin) and a continuous map w :
Rn × Rm → R such that w(x; u)¿0 for all x∈A (in
our application, −|x|2 + 
|u|2).
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By a solution of ẋ = F(x; u), given a measurable
locally essentially bounded u : [a; b]→ Rm, we mean
an absolutely continuous x : [a; b] → Rn such that
ẋ(t) = F(x(t); u(t)) for almost all t ∈ [a; b]. We also
assume given a continuous function V : Rn → R with
the property that V (x) = 0 for all x∈A.

Proposition A.1. Suppose that the following property:

V (b)− V (a)6
∫ b

a
w(x(s); u(s)) ds (A.1)

holds for all solutions x : [a; b] → Rn \A. Then; it
also holds for all solutions.

Proof. We �rst prove the conclusion under the
assumption that x(a)∈A and x(b)∈A. Since
then V (a) = V (b) = 0, we need to prove that,
for any such solution,

∫ b
a w(x(s); u(s)) ds¿0. Let

I :={t ∈ [a; b] | x(t)∈A} and J :={t ∈ [a; b] | x(t) =∈
A}. Note that∫
I
w(x(s); u(s)) ds=

∫
I
w(0; u(s)) ds¿0:

Since J is open, there is a countable (or �nite) se-
quence of disjoint open subintervals Jk = (ak ; bk) of
[a; b] such that J=

⋃∞
k=1 Jk and ak ; bk ∈ I for all k. Pick

any Jk . For all �; � such that ak ¡�¡�¡bk , since
the restriction of x(·) to [�; �] lies entirely outside
A, we have that V (�) − V (�)6

∫ �
� w(x(s); u(s)) ds,

so taking limits as � → ak and � → bk , and
using that V is continuous, we conclude that 0 =
0− 06 ∫Jk w(x(s); u(s)) ds. It follows that also∫
J
w(x(s); u(s)) ds=

∞∑
k=1

∫
Jk

w(x(s); u(s)) ds¿0

and we conclude that
∫ b
a w(x(s); u(s)) ds=

∫
J w(x(s);

u(s)) ds+
∫
I w(x(s); u(s)) ds¿0, as wanted.

We now take the general case. Pick any solution
de�ned on [a; b]. We assume without loss of general-
ity that x(t)∈A for some t ∈ [a; b], since otherwise
we are done by hypothesis. Let �:=min{t | x(t)∈A},
�:=max{t | x(t)∈A}.
On [a; �), we have a trajectory that does not enterA,

so, arguing as before by taking limits as we approach �,∫ �
a w(x(s); u(s)) ds¿V (�)−V (a). Similarly on [�; b].
The restriction to [�; �] is a trajectory which starts and
ends in A, so the �rst case considered in our proof
applies. In summary,

V (b)− V (a) = (V (�)− V (a)) + (V (�)− V (�))

+(V (b)− V (�))

6
∫ �

a
w(x(s); u(s)) ds

+
∫ �

�
w(x(s); u(s)) ds

+
∫ b

�
w(x(s); u(s)) ds

=
∫ b

a
w(x(s); u(s)) ds;

as desired.

Note that the tempting “proof” which starts by writ-
ing V (b)−V (a)=

∫ b
a [dV (x(t))=dt] dt and splits into

I and J will not work, since there is no reason for
V (x(t)) to be absolutely continuous (and, indeed, we
are interested in general continuous V ’s in our main
results).
We now suppose that F and w are continuous,

and locally Lipschitz on x uniformly with respect to
u on compacts. We consider the scalar-valued map
’(x; y):=V (x)− y on Rn ×R and introduce the new
system ẋ = F(x; u), ẏ = w(x; u), which we write as
ż = G(z; u) in terms of the state z = (x′; y)′ ∈Rn+1.
It is clear that inequality (A.1) holds for ev-

ery solution x : [a; b] → Rn \ A if and only if
’(z(b))6’(z(a)) for every solution of the extended
system ż = G(z; u) as a system on the state space
O:=(Rn \A)×R. Moreover, as inputs are essentially
bounded on �nite intervals, this is in turn equivalent
to asking that, for every given r ¿ 0, ’ must de-
crease along all solutions of ż = G(z; u), again as a
system in O but now with inputs satisfying |u(t)|6r
for almost all t ∈ [a; b], which is equivalent, by Filip-
pov’s Lemma, to having the corresponding decrease
property for all solutions of the di�erential inclusions
ż ∈Fr , for each r¿0, where

Fr(z):={G(z; u) | |u|6r}:
Now consider the convexi�cation F̃r(z) := coFr(z).
By standard relaxation results, e.g. [1], Corollary
10:4:5, any trajectory of ż ∈ F̃r(z) can be uniformly
approximated by trajectories of ż ∈Fr(z), so, since
’ is continuous, ’ decreases along trajectories of
ż ∈ F̃r(z) if it decreases along trajectories of ż ∈Fr(z)
(and viceversa).
In summary: inequality (A.1) holds, for every so-

lution x : [a; b] → Rn \ A, if and only if, for each
r ¿ 0 for every trajectory z : [a; b] → O of the
compact convex-valued and Lipschitz di�erential
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inclusion ż ∈ õFr(z), it holds that ’(z(b))6’(z(a)).
Using the characterization of strong invariance of
di�erential inclusions given in [7, Theorem 4:6:3],
this is equivalent 2 to the statement that � · v60 for
all z ∈O, all �∈ @D’(z), and all v∈ F̃r(z), or equiv-
alently (since the set {v | � · v60} is convex) for
all v∈Fr(z). As every �∈ @D’(z), z = (x′; y)′, has
the form � = (�′1;−1)′ with �1 ∈ @DV (x), and since
every v∈Fr(z) has the form (F(x; u); w(x; u)), the
decrease property amounts to the requirement that
�1 ·F(x; u)6w(x; u) for all x∈Rn \A, all u∈U, and
every �1 ∈ @DV (x). In summary:

Proposition A.2. The following are equivalent:

1. Inequality (A:1) holds for every solution x :
[a; b]→ Rn.

2. � · F(x; u)6w(x; u) for every x∈Rn; u∈U; and
�∈ @DV (x).

3. Inequality (A:1) holds for every solution x :
[a; b]→ Rn \A.

4. � · F(x; u)6w(x; u) for every x∈Rn \ A; u∈U;
and �∈ @DV (x).

Proof. We already proved the equivalence of the last
two statements, and the �rst two are also equivalent
(just take A = ∅). By Proposition A.1, the �rst and
third statements are equivalent.

Applying with V any positive de�nite continuous
function (so V (0) = 0, in particular), and, w(x; u) =
−|x|2 + 
|u|2, and A = {0}, we conclude that (4) is
equivalent to (5), as claimed in the introduction.
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