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Abstract: We investigate the effect of sampling on linearization for continuous time systems. It is shown that the discretized system is 
linearizable by state coordinate change for an open set of sampling times if and only if the continuous time system is linearizable by 
state coordinate change. Also, it is shown that linearizability via digital feedback imposes highly nongeneric constraints on the 
structure of the plant, even if this is known to be linearizable with continuous-time feedback. For n = 2, we show, under the 
assumption of completeness of adFG, that if the discretized system is lineariable by state coordinate change and feedback, then the 
continuous time affine complete analytic system is linearizable by state coordinate change only. Also, we suggest a method of proof 
when n > 3. 
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1. Introduction 

An area of research that has attracted some recent interest is that of determining the effect of digital 
implementation of nonlinear control laws for continuous-time smooth systems. Specifically, there have 
been characterizations of the preservation of controllability (Sontag [10,12]) and observability (Sontag [11]) 
under zero-th order hold sampled control, and questions have been raised concerning the effect of such 
sampling on linear equivalence and feedback linearization techniques. This paper deals with the latter 
topic. 

The problem of linearization of a nonlinear system is that of finding a (nonlinear) state coordinate 
change (and feedback) such that the resulting closed-loop system behaves as a linear system under the new 
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coordinates. Once such a linearizing transformation and feedback are obtained, we can then use linear 
system theory in order to control the original system. Thus, linearization when applicable is an extremely 
powerful technique for the development of efficient control laws for nonlinear systems (e.g., see Tarn et al. 
[16]). 

The linearization problem for continuous time systems has been studied extensively (see, e.g., the 
references in Lee et al. [7]). However, the complexity of the control laws makes almost mandatory the use 
of computers to perform the necessary on-line calculation. The effect of the discretization on the 
linearization process has not been fully researched. For example, suppose that a continuous time system 
(e.g., a robot manipulator) is linearizable by state coordinate change and feedback. Then if a desired 
feedback is applied, the resulting discretized closed-loop system is no longer a linear one under the new 
coordinates. This is because the control input is a constant between the sampling times. 

Necessary and sufficient conditions for linearizability of the discrete-time system by state coordinate 
change (and feedback) can be found in Grizzle [2], Jakubzyk [5], Lee et al. [7], and Lee and Marcus [8]. 
Some work on the effects of sampling on linearizability has been reported in Grizzle [2] and Grizzle and 
Kokotovic [3]. Much of the research in this area has been stimulated by the work of J. Grizzle. In 
particular, he has conjectured the following [2]. 

Conjecture [2]. Let ~: Yc = f ( x ,  u) be a single-input analytic control system on R ' ,  n > 2, such that 
f(O, O) = O, and let ~h: Xk+l =fh(  Xk, Uk ) be its sampled data representation for a sampling interval h. Then 
Y"h is locally feedback linearizable for an open set of sampling times (i.e., it is sampled feedback linearizable ) 
if and only if ~, is state-equivalent to a controllable linear system. 

This conjecture is incorrect if we consider a general nonlinear system of the form £ = f ( x ,  u). (Sup- 
pose that k = F ( x ) +  G ( x ) u  is state-equivalent to a controllable linear system. Let f ( x ,  u ) =  F ( x ) +  
G(x ) (u  + u3).) Thus we consider an affine control system of the form ~ --- F ( x )  + G ( x ) u  and furthermore, 
we assume that F(x )  and G(x)  are analytic vector fields. 

In Section 2, we define our notation and review some background material. In Section 3, it is shown 
that the discretized system is linearizable by state coordinate change for an open set of sampling times if 
and only if the continuous time system is linearizable by state coordinate change. In Section 4, we show 
that sampled feedback linearizability implies that the continuous time system is also lineariable by state 
coordinate change and feedback, and we derive an interesting necessary condition for sampled feedback 
linearizability. Finally, under the assumption of the completeness of adFG, we show that J. Grizzle's 
conjecture is true for affine control systems when n = 2 and suggest a method of proof when n > 3. Some 
preliminary aspects of this work were reported in [22]. 

2. Preliminaries and definitions 

Consider a nonlinear continuous time control system of the form 

~ ( t )  = r ( x ( t ) )  + G ( x ( t ) ) u ( t )  (2.1) 

where x ~ R n, u ~ R, and F(x) ,  G(x )  are analytic vector fields with F(0) = 0. Then the discretized system 
of (2.1) with sampling interval h > 0 is as follows: 

x ( t  + h) = f h ( x ( t ) ,  u ( t ) )  (2.2) 

where fh(x,  u) = ¢~+~a(x),  with c x  denoting the flow of X. Notice that fh(O, O) = O. 

Definition 2.1. The discrete time system (2.2) (or the continuous time system (2.1)) is linearizable by state 
coordinate change if there exists a smooth state coordinate change around 0 ~ R" which transforms it into 
a reachable linear system. 
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Definition 2.2. The discrete time system (2.2) (or the continuous time system (2.1)) is linearizable by state 
coordinate change and feedback if there exists a smooth nonsingular feedback u = 7(x, o) such that the 
closed-loop system is linearizable by state coordinate change. 

Definition 2.3. The system (2.1) is sampled linearizable by state coordinate change if there exists 6 > 0 such 
that for every h ~ (0, 6), the system (2.2) is linearizable by state coordinate change. 

Definition 2.4. The system (2.1) is sampled feedback linearizable if there exists 6 > 0 such that for every 
h e (0, 6), the system (2.2) is linearizable by state coordinate change and feedback. 

Since the problem of linearization is essentially local in nature, the results presented here will be 
primarily in terms of local coordinates. Define, for k > 1, 

Since fh( ' ,  u) is a diffeomorphism for each h, u, Vhk( • , U) is a (locally) well-defined vector field on R ~ for 
each h, u (similar vector fields are also used in Sontag [11] and Jacubczyk and Sontag [13]). Now (see 
Goodman [1], Normand-Cyrot [9], Sontag [12], Varadarajan [17], Jakubczyk and Normand-Cyrot [18], 
Monaco and Normand-Cyrot [19-21]), 

V~(-, u ) =  
( -  1)'h '+1 oo 

i 
i=0 ( i +  1)! adF+u6G= E uJflj(h) • (2.3) 

j~0 

The vector fields flj(h) take the form 

= ~ i+lhil~i j > O, f l j(h) L.., ( - 1 )  -- t-.,,, 
i=j+l 

where fl~ = (I/i!)ad~-IG, i >_ 1, and flj = (1/i)(adFflj-' + ad6flj-~), j >_ I, i _>j + 2, with fl/+' = 0 for 
j>_l. 

From the characterization of linear equivalence and feedback linearizability for discrete time systems 
given in Grizzle [2], Jakubczyk [5], and Lee et al. [7], we have the following basic results. 

Theorem 2.1. The system (2.1) is sampled linearizable by state coordinate change if and only if there exists 
6 > 0 such that, for every h ~ (0, 6), 

(i) (Vht(0, 0), 112(0, 0) , . . . ,  Vh~(0, 0)) are linearly independent; 
(ii) Vl (x ,  Ul) = Vl(x ,  u2) for all (x, Ul), (x, u2) in a neighborhood of (0, 0); 

(iii) [Vh' , V ~ ] = O f o r l < i ,  j < n + l .  

Theorem 2.2. The system (2.1) is sampled feedback linearizable if and only if there exists 8 > 0 such that, for 
every h ~ (0, 6), 

(i) { I11(0, 0), I12(0, 0) . . . . .  V~(0, 0)} are linearly independent; 
(ii) Vhl( -, Ua) and VI(  • , u2) are parallel for all u 1, u 2 near 0; 

(iii) span{ V 1, Vh2,..., V~ } are involutive distributions for 1 < i < n - 1. 

Remark 2.1. Since ~hr( • ) is a diffeomorphism, the following follows easily: if Vl(x ,  u) is not a function of 
u in a neighborhood of (0, 0), then the same is true of VhP(x, u). Similarly, if V2(., u) are parallel for 
every u near 0, then for p < 2, Vfl( -, u) are also parallel for every u near 0. 

Remark 2.2. Proofs of Theorems 2.1 and 2.2 follow easily from the results of [7] once we notice that 
(i) ~f f+U6(x) I . (0 /0u)  is a well-defined vector field if and only if V~(x, u) is not a function of u; 

(ii) ~ + U a ( x ) [ . ( s p ( 0 / 0 u } )  is a well-defined distribution if and only if V~(x, Ul) and Vl(x ,  u2) are 
parallel for all u I and u 2. 
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3. Sampled linear equivalence 

It is evident that if the system (2.1) is linearizable by state coordinate change only, then the discretized 
system (2.2) is linearizable by the same state coordinate change. The following theorem establishes a 
converse to this fact. 

Theorem 3 . 1 . / f  the system (2.1) is sampled linearizable by state coordinate change, then the system (2.1) /s 
linearizable by state coordinate change. 

Proof. Suppose that (2.1) is sampled linearizable by state coordinate change. Then, by Theorem 2.1 and 
Remark 2.1, there exists 8 > 0 such that, for every h ~ (0, 8), VP(x, u) is not a function of u in a 
neighborhood of (0, 0) and is thus a well-defined vector field on R" for p ___ 1. Define the vector field, for 
p>_l ,  

y~:=  ~ ~_. (hi  _ 1 )  i+1 ( pi_ ( p _  1), }ad~-aG. (3.1) 
i = 1  " 

Then it is easily seen (Varadarajan [17]), that for p > 1, Vh p = Yh p. Thus for p > 1, 

P h i 1)i+ 
XP:= y" V~= ~ 7 ( ( -  lpiad~-lG. 

j=l  i = 1  " 

Since the coefficients of ( X  p, p = l  . . . . .  n} in terms of ((hP/p!)adPF 1G, p =  1 . . . . .  n} form a Van- 
dermonde matrix, Theorem 2.1(i) implies that ( X  p, p = l  . . . . .  n) ,  and hence {G(0), (adFG)(0) . . . . .  
(ad~-1G)(0) ) are linearly independent. Also, from (2.3) we see that Theorem 2.1(ii) implies that ill(h) = 0 
for every h ~ (0, 8). Since 

1 
f13 = ~.v ada(adFG)  ' 

it follows ada(adF G) = 0. Now assume that ada(ad~G ) = 0 for 1 < i < k. Then 

fl~+3 1 ada (adkF.. 1G ) 
(k + 3)! 

Hence ada(ad/FG)= 0 for i >  1. This and the linear independence of (G(0), (adFG)(0) . . . .  ,(ad~-lG)(0)} 
imply that (2.1) is locally linearizable by state coordinate change (Sussmann [15]). [] 

However, if the system (2.1) is not locally linearizable by state coordinate change but is locally 
linearizable by state coordinate change and feedback, then the discretized system (2.2) is no longer 
guaranteed to be locally linearizable by state coordinate change and feedback. This is because the control 
u(t) must be a constant between the sampling times. When n = 1, (2.2) is locally linearizable by state 
coordinate change and feedback if G(0) 4: 0. Thus, in the next section we assume n > 2 and investigate the 
effect of sampling on linearizability by state coordinate change and feedback. 

4. Necessary conditions for sampled feedback linearizability 

Theorem 4.1. If the system (2.1) is sampled feedback linearizable, then the system (2.1) is feedback 
linearizable. 

Proof. For the controllability condition, see Theorem 3.1. Consider Vhe(X, U), for p >__ 1; Theorem 2.2(ii) 
and Remark 2.1 do not imply that this is a well-defined vector field on R", but that it is a well defined 
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distribution, and it is easily seen that, for (x, u) in a neighborhood of (0, 0) and p > 1, 

span{ VP(x ,  u))  = span( Y P ( x ) } ,  

where (YP}  is the vector field defined in (3.1). Now, let X--:= Y.~=IY j for 1 < p  < n. Then it follows, as in 
the proof of Theorem 3.1, that Theorem 2.2 (iii) implies that {G, adrG . . . . .  ad) -2G)  is an involutive 
distribution. Hence, the system (2.1) is feedback linearizable (Hunt, Su, and Meyer [4], Jakubczyk and 
Respondek [6], and Su [14]). [] 

Condition (ii) of Theorem 2.2 has not been used fully in deriving the necessity of the conditions in 
Theorem 4.1. In the following, we obtain stronger necessary conditions by further using condition (ii) of 
Theorem 2.2. 

T h e o r e m  4.2. I f  the system (2.1) is sampled feedback linearizable, then adaadFG = alG for some analytic 
scalar function a 1, and ad2adF G --- 0. 

Proof. By (ii) of Theorem 2.2 and (2.3), the vector fields { tip(h), p > 0} are parallel for every h ~ (0, 8). In 
this theorem, we use only the fact that/30,/31, and/32 should be parallel. Using the fact that/30 and/31 are 
parallel, it follows that adaadFG = alG for some analytic scalar function al. Note that 

f13= l a d a a d F G =  1 1 I (2LF + 2aladFG) ' . _~.(aa,G) ' /34 = 4 (adF/33 + ada/303) = ( a , ) G  

/324= lada /33  = ~.LG(Otl)G, 
1 4 1 

f125= ~ (adF/32 + ada/34) = - ~ . ( ( L F L G ( a , ) +  2 L a L F ( a l ) +  2a2)G + 3Lq(a , )adFG ) . 

Now using the fact that /3o and /32 are parallel, and the fact that the determinant of a matrix is a 
multilinear function of the columns, it follows that 

0 = det[flo /32 ad~G ad3FG - . .  ad~- 'G]  
2 

= - h  5 det[fl01 /3~ a d 2 G - . - a d ~ - l G ]  + h 6 ~ ]  det[/3~ /36-, a d Z G . . ,  ad~- 'G]  + O ( h  7) 
i = l  

for every h ~ (0, 8). Thus 

2 

0 = Y'~ det[/3~ /36-, a d % O . . ,  ad~- 'G]  = 1 ~-~.2La(al) det[G adFG ad2FG -- .  ad%-lG]. 
i = 1  

Since det[G adF G • • • ad~-lG] 4: 0, La(aa) = 0, which implies that a d 2 a d r  G = 0. [] 

By using a simple induction argument and the Jacobi identity, we can conclude the following. 

Corollary 4.3. I f  the system (2.1) is sampled feedback linearizable, then every Lie bracket with two more G's 
than F ' s  must vanish identically. 

5. A spec ia l  c a s e  

In this section, we assume that adFG is a complete vector field and show that Grizzle's conjecture is 
true for affine control systems when n = 2 and suggest a method of proof when n >_ 3. As a by-product, we 
obtain stronger necessary conditions than those in Section 4 for sampled feedback linearizability. 
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Lemma 5.1. Suppose that (2.1) is sampled feedback linearizable, and assume that ad FG is a complete vector 
fieM. Then adGad'FG = 0 for 1 < i < 2. 

Proof. By Theorem 4.2, f14 = 0 and f12 s = (1/5!)(2LGLF(al)  + 2a~)G. By using the Jacobi identity, it can 
be easily shown that 

adGadGad3F G = adGad Fad¢ad2FG - ad~adad~aad2F G 

= adGadFadGad~G- adaaraadGad2F G + adad~z;adGadFG. 

Thus adaadGad3F G = q G + 3LGLF(al)adFG for some scalar function q .  Now, note that 

fl~ = ~.(adFflll 4 + a d a f l 4 ) =  ~1 ( 2 L ~ ( a l ) G + 4 L F ( e q ) a d r G +  2a~ad%G + adaad3G) .  

Thus f16 = (1/6)(adFf152 + adGfl~) = c2G + (1/6!)(9L~LF(a~) + 4a2)adF G for some scalar function c2. 
Now consider 

0 = det[fl0 f12 ad~G . . - a d ~ - l G ]  
2 

= h 6 det[fl~ f125 ad2G --.  ad~:-lG] - h 7 E det[fl~ flT-i ad2FG . . .  ad~-lG] + O(h8). 
i = l  

Thus 

2 

0 =  E det[fl~ fl7-i ad2G . . .  ad%-'G] = ~ . ( 3 L G L F ( a , ) - -  24~) det[G adFG . . .  a d T ' G ] .  
i = l  

T h e r e f o r e ,  LGLF(Otl ) = 341.22 Since Laar~(al) = LFLG(Otl)-- LGLF(al)  and L G ( C t l )  = 0, Lad~(Cq) = 
2 2 

- ~a l . By assumption, adeG is a complete vector field. Therefore, a l (x  ) = O, which implies adGadrG = O. 
By the Jacobi identity, 

adaad2F G = adradaadFG - adadrGadFG = adFadGadFG = O. [] 

Remark 5.1. By using the Jacobi identity, it can be easily shown that adGad'rG = 0 for 1 < i < 2 implies 
that every bracket with the same number or more G's than F ' s  must vanish identically. 

In order to show that sampled feedback linearizability implies feedback linearizability of (2.1), we must 
prove that adGad}G = 0 for j > 1; Lemma 5.1 shows this for j = 1, 2. We would like to prove this for all 
j > 1 by induction; so we assume that it holds for j >_ k, and derive the consequences. 

Lenuna 5.2. Suppose that (2.1) is sampled feedback linearizable. Let k > 2 and assume adGad~G = 0 for 
i < k. Then 

(i) fl{ = 0 for i < k + 2 and fl~+3 = (1 / (k  + 3)!)adGadk+ 1G; 
(ii) ad a adk+ 1G = ak + 1 G for some analytic function a k + 1; 

(iii) LG(ak+a) = O. 

Proof. (i) and (ii) are obvious. By using the Jacobi identity, it is easy to show that adGadk÷2G= 
½(k + 2)adFadaad k÷l. Note that 

flf+3 1 ill,+ 4 1 k + 4 { ~ L r ( a k + , ) G +  k + 4  • - - ~ a k + l a d v G ) ,  
(k + 1)! ak+'a '  ( k  + 4)! 

~k+i 0 for i < 3, ~k+4 1 1 2 = - = k+---~adafl~ +3 ( k + 4 ) ! L G ( a k + l )  G, 
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1 (adFfl~+4 + adcfllk+4 } 
k + 5  

1 (LFL a k + 4  . ) ) G +  k + 6  + -~L~(cek+l )adFG}"  ( k  5)!  { (O/k+1) q- T L G L F ( O I k + I  

379 

Now consider 

0 =det[f l0 f12 a d E G " "  ad~ -1G] 

2 

= h 6  det[fl  1 fiE 5 ad2F G ' ' "  a d 7  ~G] - h7  E det[flg fiE 7-i ad~G .. • adT~G] + O(h8).  
i=1 

Thus 

= 
2 

~[] det[ fl~ fl~+6-i adZFG . . .  ad~- aG] 
i=1 

15)!2LG(ak+l) det[G adFG "." ad~-aG]. (k+ 

Hence L G (a k + 1 ) = 0. [] 

Remark 5.2. Under the assumption of Lemma 5.2, if we can show that O/k+ 1 = 0, then (2.1) is locally 
linearizable by state coordinate change. Now we show that ak+ ~ = 0 when n = 2 and k = 2. 

Theorem 5.3. Let n = 2, and assume that adFG is a complete vector fieM. The system (2.1) is sampled 
feedback linearizable if and only if it is locally linearizable by state coordinate change only. 

Proof. (Sufficiency) Obvious by Theorem 3.1. 
(Necessity) By Lemma 5.1, ad6ad~G = 0 for 1 < i _< 2. By Lemma 5.2, adcad3G = et3G and Lc(et3) --- 0. 

Therefore fl~ = 0 for i < 6 and f17 = (1/7!)  ( 3L G L F (a 3) G ). Let flq = E2= 1¢ qad'r- 1G and flq = ~=1Xqad'r - ~G. 
--  ~ i = l  By considering 0 - 3 det[fl~ fl8-i] we obtain 

1 + ) adFG)  f17= ~. (c3G-I- (2~ LF(Ot3) 420t3 ' 3  

for some scalar function c 3. Thus 

fls = l ( c4G + 2---~ Lc Lv ( a3 )adr G) 

for some scalar function c4, because Lc(a3)  = 0 and LG(¢~) = 0. By considering 

= 
2 

E det[fl~ f12 q-'] = 3 8~.2v. LcLF( a3) det[G adFG],  
i=1 

it follows LGLe(ct3) = 0. Since LG(a3) = 0, LadFG(Ot3) ---- 0. Therefore 0/3 is a constant. Using the Jacobi 
identity, it can be easily shown that 

1(2 ) 
f18 = ~ E adGad~-adcad~--'G = 0, 

i=0  

Consider 

1 ( 3 ad di 6-i / 1 fl9=~-.v Y'. Ga Fadcad  F G = (18a2G}.  
k i = 0  ) " 

O= 
5 

E det[fl~ fl]o-i] = 
i=1 

5 
y,  [~lr~Er , , lO- i_  c~XalO-i } det[G adFG ]. 

~=1 
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Note  that (~ = 1, ,~ = 0, q2 = 0, and ¢~ = ½. Thus 

5 5 5 
0 E '  , , , 0 - ,  , xlO-, = - E 

i=1 i=3 i=3 

Thus, 

and 

5 5 
5-" i ' t lO-i  

e l ^  2 
i=3 i=3 

5 5 5 5 
, , o - ,  C ' X  ' o - ' -  X'°- ' ) .  L ~ ( X 9 ) = ½ L 6 ( X ] )  + E L c ( ' ~ ) X ~  ° - ' +  E ' 2 L G ( X 1  ) -  E 6 ( ' , )  E , i L c (  

i=3 i=3 i=3 i=3 

Since/3 q = 0 for q < 8, LG(X~ ° - i )  = r tX10-ia = - ~G~ 2 ) 0 for 3 < i < 5. Also, since a d ~ a d ~ G  = 0, a d ~ a d 3 G  = a3G, 
and adGad~G = 2a3adFG, it follows L6( ,~ )  = LG(,32) = 0, LG(¢ 4) = a3/4!, LG(,~)  = 0, L6 ( ,~ )  = 0, and 
LG(,52) = 2a3 /5! .  Also note  that X~ = 2a3 /5 !  and X 6 = a3/5!2 .  Thus  Lc(X 9)  = 7Lc(~1 ) 1  8 _ a32/5!5!2. Since 
#9 ___l~adG~18 = 18/9!a~G, it follows L6(X 8) = (18/8!)a~.  Therefore,  

1 9 /321 ° =  ~ ( a d r f l  2 + a d J ~  9) 

= --~csG + 
432 

t~ 3 2 a d  F G ,  

2 fl~,_,] = - 1 8  2 de t [G adFG] .  0 = E det[   
i=1 

Therefore  ot 3 = 0, i.e. a d 6 a d 3 G  = 0. Hence,  (2.1) is locally linearizable by state coordinate  change 
(Sussmann [15]). [] 

Remark 5.3. We conjecture that when n >__ 3 (and with the assumption of completeness of ad~G, 
j = 1 . . . .  , n - 1), Theorem 5.3 is true and that the same method of proof works. 
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