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For classes of concepts defined by certain classes of analytic functions
depending on n parameters, there are nonempty open sets of samples of
length 2n + 2 that cannot be shattered. A slighly weaker result is also
proved for piecewise-analytic functions. The special case of neural net-
works is discussed.

1 Introduction

The generalization capabilities of neural networks are often quantified in
terms of the maximal number of possible binary classifications that could
be obtained, by means of weight assignments, on any given set of input
patterns. Obviously the larger the number of such potential classifications,
the lower the predictability that is possible on the basis of a partial assign-
ment (“loading of training data”) already achieved. Thus, it is of interest to
obtain useful upper bounds on this number and in particular to study the
Vapnik-Chervonenkis (VC) dimension, which is the size of the largest set of
inputs that can be shattered (arbitrary binary labeling is possible). Recent
results (cf. Koiran and Sontag in press and also Maass 1994 for closely re-
lated work and a survey) show that the VC dimension grows at least as fast
as the square n2 of the number of adjustable weights n in the net, and this
number might grow as fast as n4 (Karpinski and Macintyre in press). These
results are quite pessimistic, since they imply that the number of samples
required for reliable generalization, in the sense of PAC learning, is very high.

On the other hand, it is conceivable that those sets of input patterns that
can be shattered are all in some sense “special” and that if we ask instead,
as done in the classical literature in pattern recognition, for the shattering of
all sets in “general position” (e.g., Cover’s work on capacity of perceptrons,
Cover 1988), then an upper bound of O(n) might hold. Strong evidence for
this possibility was provided by Adam Kowalczyk (in press), who showed
that this indeed happens for the (very special) case of hard-threshold neural
networks with a fully connected first layer. In this article, I establish a linear
upper bound for arbitrary sigmoidal (as well as threshold) neural nets,
proving that in that sense, the perceptron results can be recovered in a
strong sense (up to a factor of two).
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There is potential relevance of the results to variations of PAC learning
when one weakens the requirement that generalization capabilities must
hold with respect to all possible input distributions; this will be the subject
of future work. The estimate is also useful in the very different context of
understanding computational abilities; as an illustration, note that the main
result is being employed by Maass (in press) for contrasting the computa-
tional power of spiking neurons (Maass 1996) with that of sigmoidal neural
networks.

1.1 Parametric Classes, Shattering. Assume given two positive integers
n and m and a function

β: Rn ×Rm → R .

In this context we will call n the number of parameters, elements of Rn

parameter vectors (or weights), m the input dimension, elements of Rm

input vectors, and β a response function. We think of β(x, u) as a function
of the inputs u for each parameter vector x. For each integer k, a k-tuple of
the form

Eu = (u1, . . . , uk) ∈ (Rm)k = Rmk

will be called an (ordered) sample of length k.
We want to measure how rich the set of functions {β(x, ·), x ∈ Rn} is for

binary classification purposes. Consider a sample Eu = (u1, . . . , uk) of length
k. A sequence Eε = (ε1, . . . , εk) ∈ {−1, 1}k will be said to be assignable to Eu
(with respect to the given response function) if there exists some parameter
vector x so that

sign (β(x, ui)) = εi, i = 1, . . . , k,

where we are defining sign (y) = 1 if y > 0 and −1 otherwise. We will say
here that a sample Eu of length k is ±-shattered (by β) if, for each Eε ∈ {−1, 1}k,
either Eε or −Eε is assignable to Eu.

For each k, let Sk be the subset of (Rm)k = Rmk, possibly empty, consisting
of those samples that are ±-shattered. We define

µ = µβ := sup
{

k ≥ 1 | Sk is a dense subset of Rmk
}

.

Our goal is to show that under reasonable assumptions on β, necessarily
µ ≤ 2n + 1.

The organization of this article is as follows. Section 2 discusses the pre-
cise statement of the result, for functions β that are analytic and “definable”
as well as the fact that this bound is optimal. Section 3 provides a proof of the
result, which is based on material on analytic functions and especially on
new results from the theory of exponentials, which are reviewed briefly in
the Appendix. Section 4 shows how to generalize the result to the piecewise
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analytic definable case, which allows the consideration of neural networks
with discontinuous activation functions.

2 Precise Statements and Remarks

Note that 2n+1 is the best possible upper bound, assuming that one wants to
prove a result that includes at least all polynomially parameterized classes.
To show this, we must exhibit for each integer n > 0 a polynomial response
function β: Rn × Rmn → R with the property that S2n+1 is dense in R2n+1.
In fact, we give, for each n, a β with mn = 1 so that every sample of length
2n + 1 consisting of distinct vectors can be ±-shattered:

β((x1, . . . , xn), u) := (u − x1)
2 (u − x2)

2 . . . (u − xn)2 .

Take any Eu ∈ R2n+1 with all ui distinct. The claim is that this is ±-shattered.
Indeed, pick any Eε = (ε1, . . . , ε2n+1) ∈ {−1, 1}2n+1. Without loss of generality,
we assume that there are s ≤ n elements “−1” in the sequence Eε (otherwise,
we assign −Eε instead) and these are εi1 , . . . , εis . Let xj := uij for j = 1, . . . , s
and pick xs+1, . . . , xn to be any elements not in the set {u1, . . . , u2n+1}. We
have that β(x, u) = 0 for each u = uij , j = 1, . . . , s, and β(x, u) > 0 for all
other u ∈ R. Thus sign (β(x, ui)) = εi for all i.

The question we address next is what are “reasonable” assumptions on
the classβ so that an upper bound like 2n+1 holds. It is not difficult to see that
merely asking β to be an analytic function is not sufficient even to guarantee
finiteness. This is illustrated trivially by the example β(x, u) = sin(xu),
which has n = m = 1 but for which µβ = +∞ (this is a consequence of
the fact that if the numbers u1, . . . , uk, π are linearly independent over the
rationals, then the set of vectors (sin(`u1), . . . , sin(`uk)), as ` ranges over
the positive integers, is a dense subset of [−1, 1]k). In fact, it is possible to
define a fixed analytic function β, with m = 1, for which Sk consists of all
sequences of k distinct elements of R, not merely dense in Rkm, for all k (see
Sontag 1992).

Thus, analyticity is in itself not enough to obtain nontrivial bounds. We
will assume that β is analytic and definable. The Appendix recalls the defini-
tion and basic facts about (“exp-RA”) definable functions. Informally, these
are functions that can be defined in terms of any first-order logic sentence
built out of the standard propositional connectives, existential and universal
quantification, and which involve rational operations and exponentiation.
(Also allowed in the formulas are certain restricted analytic functions, for
instance, arctan(x), but sin(x) is not included.) In particular—and this is of
interest in the context of applications to “artificial neural networks”—any
response of a “multilayer sigmoidal network” with “activation function”
1/(1 + e−x) is definable in this sense because it is obtained by iterative com-
positions and polynomial combinations involving the activation function,
which in turn is constructed by means of rational operations involving ex-
ponentiation.
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Theorem 1. If β: Rn × Rm → R is an analytic definable response, then µβ ≤
2n + 1.

This result is proved in the next section.

Remark 2.1. In computational learning theory, one defines shattering of a
sample Eu by the requirement that each Eε be assignable, and studies the
set S+

k consisting of all those samples that are shattered. For our results, it
seems more natural to look at ±-shattering because we then obtain a best-
possible bound. In any case, the two concepts are almost identical. Since
S+

k ⊆ Sk for all k, the upper bound 2n + 1 will also apply in particular to
sup{k ≥ 1|S+

k is a dense subset ofRkm}. (Conversely, if Eu can be ±-shattered,
then the new response function with n + 1 parameters, and defined for
parameters vectors (x0, x1, . . . , xn) ∈ Rn+1 by β0((x0, x), u) := 1 − x0β(x, u),
shatters the same sample Eu.) In learning theory and statistical estimation, the
Vapnik-Chervonenkis (VC) dimension is defined as the supremum of the
integers k such that S+

k is nonempty; here we are asking questions regarding
shattering of arbitrary sets of points in “general position,” a concept that
appears in Cover’s and in other classical pattern recognition work. For the
best-known (obviously larger) upper bounds for VC dimension, for closely
related classes of responses, see Karpinski and Macintyre (in press) and
see also Maass (1994) and Koiran and Sontag (1996) for superlinear lower
bounds.

3 Proof of Main Result

We need to show that if k ≥ 2n + 2 then Sk is not dense; that is, there is some
nonempty open subset Q ⊆ Rmk so that Q

⋂
Sk = ∅. It will be enough to

show this when k = 2n + 2. In fact, we will establish a much stronger fact:
for each nonempty open subset W0 ⊆ Rm(n+1), there is a nonempty open
subset Q ⊆ W2

0 such that Q
⋂

S2n+2 = ∅.
For any integer `, we introduce the following subset of Rm`:

A` := {(u1, . . . , u`) | ∃ x st β(x, ·) 6≡ 0, β(x, u1) = · · · = β(x, u`) = 0} .

By corollary A.1, it follows that A` has a dimension strictly less than m`

whenever ` = n + 1. The content of that lemma is totally intuitive: for each
fixed x, except those for which the map β(x, u) is identically zero, the set of
u1’s so that β(x, u1) = 0 is of dimension at most m − 1 (since this set is the
set of zeroes of a nontrivial analytic function); and similarly for each of u2,
. . . , u`. Thus, for each such x, the Cartesian product of these sets, namely,
the set of vectors (u1, . . . , u`) so that β(x, u1) = · · · = β(x, u`) = 0, has
dimension at most `(m−1). If we now let x range over the whole parameter
space Rn (but not including those x for which β(x, ·) ≡ 0), the set A` is
obtained as a union of an n-parameter family of sets, each of which is of
dimension ≤ `(m − 1), from which it follows that A` has dimension at most
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n + `(m − 1), which is less than m` provided ` = n + 1. The technicalities
have to do only with defining precisely the meaning of “dimension”—this
will mean the maximum possible dimension of a submanifold of the set—
and establishing the obvious formulas, such as the fact that the union of an
n-parameter family of sets of dimension ≤ s has dimension ≤ n + s.

Let W0 be any open subset ofRm(n+1). The fact that β is definable implies,
by lemma A.2, that there are only two possibilities for each set A`: either it
contains some open set, or it is nowhere dense. Since when ` = n+1 this set
does not have full dimension, as shown in the previous paragraph, the first
alternative cannot hold, so it must be nowhere dense. That is, its closure has
an empty interior, which implies that W0 \ clos An+1 is a nonempty open
set. Thus there is some open set V of W0 ⊆ Rm(n+1) of the special product
form V = V1 × · · · × Vn+1, for some nonempty connected open subsets
V1, . . . , Vn+1 of Rm, so that V

⋂
An+1 = ∅.

Now let Q ⊆ W2
0 ⊆ R2m(n+1) be the open set defined as follows:

Q := V × V.

The claim is that Q
⋂

S2n+2 = ∅. To establish this fact, we take an arbitrary
element

(u1, . . . , un+1, v1, . . . , vn+1)

of Q and show that it cannot be ±-shattered; that is, there is some sequence
Eε = (ε1, . . . , ε2n+2) ∈ {−1, 1}2n+2 for which neither Eε nor −Eε is assignable.
Consider the following sequence:

Eε := (1, . . . , 1︸ ︷︷ ︸
n+1

, −1, . . . ,−1︸ ︷︷ ︸
n+1

) .

Assume that there would exist some parameter vector x so that this vector
is assigned:

β(x, ui) > 0, i = 1, . . . , n + 1, β(x, vi) ≤ 0, i = 1, . . . , n + 1.

Observe that, in particular, it holds that β(x, ·) 6≡ 0 for this x. For each
i = 1, . . . , n + 1, let

γi : [0, 1] → Vi ⊆ Rm

be a continuous function so that

γi(0) = ui and γi(1) = vi .

(Recall that Vi is connected.) Since β(x, γi(t)) is a continuous function of t,
we conclude that for each i there is some ti so that β(x, γi(ti)) = 0. Writing
wi := γi(ti), this says that Ew := (w1, . . . , wn+1) ∈ An+1, which contradicts the
fact that Ew ∈ V1 ×· · ·× Vn+1 = V and that V was picked so that it is disjoint
from An+1. Thus Eε is not assignable. If −Eε would be assignable, we would
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have an x such that β(x, ui) ≤ 0 for i = 1, . . . , n + 1 and β(x, vi) > 0 for
i = 1, . . . , n + 1, and the same argument leads once more to a contradiction.

Remark 3.1. Observe that the definability property is used when proving
that An+1 cannot be dense. If instead one would pick, for instance, β(x, u) =
sin(xu), the property is false. For this example, A2 is the union of all the lines
in R2 that pass through (0, 0) and have a rational slope (plus the y-axis), so
A2 in this case is a dense set with an empty interior.

Remark 3.2. As remarked during the proof, a stronger result is established.
In particular, for each nonempty open subset W ⊆ Rm, there is a nonempty
open subset Q ⊆ W2n+2 such that Q

⋂
S2n+2 = ∅. (Apply with W0 := Wn+1.)

4 Discontinuous Responses

The main theorem requires that the response function β be analytic as well as
definable. It is possible, however, to extend its validity to some other classes
of responses, including those obtained by considering neural networks that
use “heaviside” activation functions

H(v) =
{

0 if v ≤ 0
1 if v > 0

as well as sigmoidal activations. Such responses are a particular case of a
piecewise-analytic definable response, meaning a response that is described
by a (possibly different) definable analytic function in each piece of a parti-
tion of the space of parameters and inputs. The partition in turn is assumed
to be determined by the signs of a finite number of definable analytic func-
tions. We now make this concept precise.

The map β: Rn ×Rm → R is a piecewise-analytic definable response if there
is some integer p and there exist p + 2p analytic definable functions

φ1, . . . , φp : Rn ×Rm → R

and {
ψα : Rn ×Rm → R, α ∈ {0, 1}p}

such that the following property holds: for each (x, u) ∈ Rn ×Rm, letting

α(x, u) := (
H(φ1(x, u)), . . . , H(φp(x, u))

)
,

then

β(x, u) = ψα(x,u)(x, u).

(That is, in each of the components of the partition of the (x, u) space de-
termined by the possible signs of the functions φi, β is expressed by an
appropriate ψα .)
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Corollary 4.1. If β is piecewise analytic definable, then µβ ≤ 2n + 3.

The proof will be based on the construction of an analytic definable re-
sponse

β ′ : Rn+1 ×Rm → R

with the following property: if a given sequence Eε = (ε1, . . . , εk) ∈ {−1, 1}k

is assignable to a sample Eu = (u1, . . . , uk), with respect to the response β,
then it is also assignable to the same sample with respect to the response β ′.
This means that if a sample Eu is ±-shattered with respect to β, then it is also
±-shattered with respect to β ′, so we have µβ ≤ µβ ′ . By the main theorem
we know that µβ ′ ≤ 2(n + 1)+ 1, so the desired conclusion follows. We now
show how to construct β ′.

As a preliminary step, we establish a simple fact regarding the approxi-
mation of piecewise constant functions by sigmoidal combinations. We first
introduce some additional notations. Given any vector r = (r1, . . . , rp) ∈ Rp,
we let γ (r) := (H(r1), . . . , H(rp)). Consider the function

θ : Rp ×R2p → R : (r, s) 7→ sγ (r)

(where we are indexing the coordinates of s ∈ R2p
by vectorsα = (α1, . . . , αp)

∈ {0, 1}p). Now let σ : R → R be the function σ(v) = (1 + e−x)−1 and,
denoting σ1 := σ , σ0 := 1 − σ , consider, for each positive real number ρ, the
(definable and analytic) function:

χρ : Rp ×R2p → R:

(r, s) 7→
∑

α∈{0,1}p

σα1(ρ
2r1 − ρ) . . . σαp(ρ

2rp − ρ)sα . (4.1)

Lemma 4.1. For each pair (r, s) ∈ Rp ×R2p
,

lim
ρ→∞ χρ(r, s) = θ(r, s) (4.2)

and

θ(r, s) = 0 ⇒ lim
ρ→∞(1 + ρ2)χρ(r, s) = 0 . (4.3)

Proof. Observe that we can rewrite θ as follows:

θ(r, s) =
∑

α∈{0,1}p

Hα1(r1) . . . Hαp(rp)sα ,

where H1 := H, H0 := 1 − H. Thus the first conclusion of the lemma is an
immediate consequence of the fact that limρ→∞ σ(ρ2r − ρ) = H(r) for each
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r ∈ R. Now assume that (r, s) is such that θ(r, s) = sγ (r) = 0. This means
that the term corresponding to the index α = γ (r) does not appear in the
sum (cf. equation 4.1) defining χρ(r, s). Fix any other index α; we claim that

lim
ρ→∞(1 + ρ2)σα1(ρ

2r1 − ρ) . . . σαp(ρ
2rp − ρ) = 0

(from which the second conclusion will follow). Indeed, since α 6= γ (r),
there must exist some j ∈ {1, . . . , p} for which αj 6= H(rj); fix one such j. If
αj = 1, then H(rj) = 0 means that rj ≤ 0, and therefore (1+ρ2)σ (ρ2rj−ρ) → 0
as ρ → ∞; since the other terms are bounded, it follows that their product
converges to zero. If instead αj = 0, then H(rj) = 1 means that rj > 0, and
thus (1 + ρ2)(1 − σ(ρ2rj − ρ)) → 0 as ρ → ∞; again since the other terms
are bounded, the product goes to zero.

Equation 4.3 implies in particular that when θ(r, s) = 0,

χρ(r, s) − 1
1 + ρ2 < 0

for all ρ large enough. Together with equation 4.2, this means that

sign
(

χρ(r, s) − 1
1 + ρ2

)
= sign θ(r, s)

as ρ → ∞, for each (r, s) ∈ Rp ×R2p
.

We now prove corollary 4.1. Let β, φ1, . . . , φp, and the ψα’s be as in
the definition of piecewise-analytic definable response. Denote 8(x, u) :=
(φ1, . . . , φp) and let 9(x, u) ∈ R2p

be the vector whose αth component is
ψα(x, u). Then β(x, u) = θ(8(x, u), 9(x, u)). We define

β ′((ρ, x), u) := χρ(8(x, u), 9(x, u)) − 1
1 + ρ2 .

Thus

sign β ′((ρ, x), u) = sign β(x, u)

as ρ → ∞, for each (x, u) ∈ Rn × Rm. Now assume that the sequence
Eε = (ε1, . . . , εk) ∈ {−1, 1}k is assignable to the sample Eu = (u1, . . . , uk) with
respect to the response β. This means that there is some parameter vector
x ∈ Rn so that sign(β(x, ui)) = εi for each i = 1, . . . , k. For large enough
ρ, then, also sign(β ′((ρ, x), ui)) = εi for all i, so we conclude that Eε is also
assignable to the same sample with respect to the response β ′.

Remark 4.1. The bound 2n + 3 can be reduced to 2n + 1 provided that
the classes of functions φi(x, ·) and ψ(x, ·) are closed under scaling and
translation (as is the case commonly when dealing with artificial neural
networks, where these are affine functions and the parameters x correspond
to the coefficients of linear combinations [weights] and constant term [bias]).
In that case, the parameter ρ can be absorbed into the remaining parameters.



Shattering All Sets of k Points in “General Position” 345

Appendix

We first review some elementary facts regarding real-analytic geometry. If
M is any (analytic, second-countable) manifold, by a σ -analytic subset Z of
M we mean one that can be decomposed into a countable union of embed-
ded analytic submanifolds; for such a set Z, we define dim Z as the largest
dimension of a submanifold appearing in such a union. (The dimension is
well defined, in the sense that it does not depend on the particular decom-
position.)

Consider now any analytic map π : M → N between two manifolds. For
each y ∈ N, the “fiber” My = {x ∈ M | π(x) = y} provides an example of a σ -
analytic subset (and if M is connected, either My = M or dim My < dim M).
Now take any σ -analytic subset Z of M. Then the image π(Z) is a σ -analytic
subset of N, having dim π(Z) ≤ dim Z, and the following inequality holds:

dim Z ≤ dim π(Z) + max
y∈π(Z)

dim
[
My

⋂
Z

]
. (A.1)

(This inequality is a simple consequence of stratification theory; it is proved
in the appendix of Sontag 1996. Note, incidentally, that a strict inequality
may hold, as illustrated by the case M = R2, N = R, π = projection on first
factor, and Z = the union of the x and y axes.)

We prove the following fact, which is basically theorem 1 in Sontag (1996).
(That theorem could also be applied more directly, but the slight general-
ization given here should be useful for other purposes.)

Lemma A.1. Let X,U1, . . . ,U` be (analytic, second countable) manifolds, with
dimensions n, m1, . . . , m` respectively, and each Ui connected. Assume given `

analytic maps

βi : X×U1 × · · ·Ui → R, i = 1, . . . , `

so that the following property holds for each i = 1, . . . , `:

∀ x ∈ X, ∀ u1 ∈ U1, . . . ,∀ ui−1 ∈ Ui−1, ∃u ∈ Ui so that

βi (x, u1, . . . , ui−1, u) 6= 0. (A.2)

Let

G` := {(x, u1, . . . , u`) ∈ X×U1 × · · · ×U` | β1(x, u1) = · · ·
= β`(x, u1, . . . , u`) = 0} .
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Then this is a σ -analytic set with

dimG` ≤ n +
∑̀
j=1

mj − ` .

Proof. Define Gi := {(x, u1, . . . , ui) ∈ X × U1 × · · · × Ui | β1(x, u1) = · · · =
βi(x, u1, . . . , ui) = 0} for each i = 1, . . . , `, and G0 := X; we prove by induc-
tion on i that dimGi ≤ n + ∑i

j=1 mj − i. For i = 0 the result holds, so we now
assume it has been proved for i and show the case i + 1. Let

π : X×U1 × · · · ×Ui+1 → X×U1 × · · · ×Ui

be the projection on the first 1+i factors. Write Z := Gi+1. Note that π(Z) ⊆ Gi
by definition of these sets, so in particular it holds by inductive hypothesis
that

dim π(Z) ≤ n +
i∑

j=1

mj − i . (A.3)

For each fixed y = (x, u1, . . . , ui) ∈ π(Z), π−1(y)
⋂

Z = {x} × {u1} × · · · ×
{ui} × Q, where

Q(x,u1,...,ui)
:= {

u ∈ Ui+1 | βi+1(x, u1, . . . , ui, u) = 0
}
.

Property A.2 implies that dim Q(x,u1,...,ui)
≤ mi+1−1. Thus from equation A.1

and using equation A.3, we conclude that

dim Z ≤ n +
i∑

j=1

mj − i + mi+1 − 1 = n +
i+1∑
j=1

mj − (i + 1) ,

and the induction is complete.

Corollary A.1. Let β : Rn ×Rm → R be analytic, and consider for any integer
` the set

A` := {(u1, . . . , u`) | ∃ x st β(x, ·) 6≡ 0, β(x, u1) = · · · = β(x, u`) = 0}.

Then this is a σ -analytic set of dimension at most n + `(m − 1).

Proof. Let X = {x ∈ Rn | β(x, ·) 6≡ 0}; this is an open subset of Rn and hence
a submanifold. (IfX = ∅, there is nothing to prove.) Apply lemma A.1 with
βi(x, u1, . . . , ui) := β(x, ui) (and allUi = U); observe that property A.2 holds
by definition ofX. Then dimG` ≤ n+ `(m−1), and the same bound applies
to its projection A` on the U components.
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Finally, we review several facts about exp-RA definable functions. This
discussion is based on recent work in model theory due to Gabrielov, Van
den Dries, Wilkie, and many others; see Macintyre and Sontag (1993) and
Sontag (1996) for more details and extensive bibliographical references.

A restricted analytic (RA) function Rq → R is any function that is real
analytic on some compact subset C of Rq and is zero outside C (examples:
the functions sin and cos, which equal sin and cos on [−π/2, π/2] and are
zero outside this interval). Formally, consider the structure

L = (R, +, ·, <, 0, 1, exp, { f, f ∈ RA}),
and the corresponding language for the real numbers with addition, multi-
plication, and order, as well as one function symbol for real exponentiation
and one for each restricted analytic function. An (exp-RA) definable set is
any subset ofRk defined by a first-order formula over L with k free variables.
A definable function is a function β : M → N whose graph is a definable set
in this sense, and where N and M are definable subsets of two spacesRl1 and
Rl2 , respectively. For example, any function obtained by compositions of ra-
tional operations and taking exponentials is definable, such as 1/(1 + e−x);
also definable is the function arctan(x), because its graph is characterized
by the formula “y = arctan(x) iff −π/2 < y < π/2 and sin(y) = x cos(y).”
Notice that any set obtained from a function β by logical operations (such
as the set A` in corollary A.1) is definable provided that β is definable. The
following fact is a nontrivial consequence of the work in logic cited above;
see precise references in Sontag (1996):

Lemma A.2. Let S be a definable subset of Rq for some q. Then either S contains
an open subset, or it is a finite union of connected embedded submanifolds of Rq

(and in particular is nowhere dense).
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