
Chapter 2
Random Dynamical Systems with Inputs

Michael Marcondes de Freitas and Eduardo D. Sontag

Abstract This work introduces a notion of random dynamical systems with inputs,
providing several basic definitions and results on equilibria and convergence. It
also presents a “converging input to converging state” (“CICS”) result, a concept
that plays a key role in the analysis of stability of feedback interconnections, for
monotone systems.

Keywords Pullback convergence • Random dynamical systems • Stochastic
dynamics

2.1 Introduction

In the late 1980s, Ludwig Arnold conceived an elegant and deep approach to the
foundations of random dynamics [3]. His paradigm of a random dynamical system
(RDS for short) is based on an ultimately simple idea: view an RDS as consisting
of two ingredients, a stochastic but autonomous “noise process,” and a classical
dynamical system that is driven by this process. The noise process is described by
a measure-preserving dynamical system. It is typically probabilistic, representing
for example environmental perturbations, internal variability, randomly fluctuating
parameters, model uncertainty, or measurement errors. But the formalism allows for
deterministic periodic or almost-periodic driving processes as well. The resulting
theory, developed since by many authors, provides a seamless integration of
classical ergodic theory with modern dynamical systems, giving a theoretical frame-
work parallel to classical smooth and topological dynamics (stability, attractors,
bifurcation theory, and so forth), while allowing one to treat ina unified way the most
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important classes of dynamical systems with randomness—random differential
or difference equations (basically, deterministic systems with randomly changing
parameters), or stochastic ordinary and partial differential equations (white noise
or, more generally, martingale-driven systems as studied in the Itô calculus). The
main goal of this chapter is to propose a new RDS-based formalism for random
control systems, that is, systems with inputs (and outputs), which we abbreviate
RDSI (or RDSIO).

Why Systems with Inputs and Outputs?

Our motivation for studying RDS with inputs and outputs arises from the need to
provide foundations for a constructive theory of interconnections and feedback for
stochastic systems, one that will eventually generalize successful and widely applied
deterministic approaches to the analysis and design of dynamic networks [17, 19,
20]. To motivate this need and in order to set the stage for our definitions, let us
start by recalling the basic paradigm of (deterministic) control theory. We use for
concreteness ordinary differential equations. (For a more abstract general dynamical
systems approach, see [30], as well as the definition of RDSIO’s in this chapter.) The
objects of study are systems with inputs and outputs:

Px1.t/ D f1.x1.t/; : : : ; xn.t/; u1.t/; : : : ; um.t//

:::

Pxn.t/ D fn.x1.t/; : : : ; xn.t/
„ ƒ‚ …

states

; u1.t/; : : : ; um.t/
„ ƒ‚ …

inputs

/

supplemented by a set of output variables y1; : : : ; yp that are functions of the state
vector x:

yj .t/ D hj .x.t//; j D 1; : : : ; p:

The inputs ui .t/ may be viewed as controls, forcing functions, external signals, or
stimuli, depending on the context. The outputs yj represent responses, typically
a partial read-out of the system state vector .x1; : : : ; xn/. Such a formalism, which
originated in the analysis of engineering systems, is also natural in biology. Cells are
not autonomous systems; they process external information, provided by physical
(UV or other radiation, mechanical, temperature) or chemical (drugs, growth
factors, hormones, nutrients) inputs. They also produce signals which we may
view as outputs, such as chemical signals sent to other cells, commands to motors
that move flagella or pseudopods, or the internal activation of transcription factors
which may be monitored by measurement technologies. Thus, the control-theory
formalism—in contrast to dynamical-systems theory, which deals with isolated
systems—is not only reasonable, but natural in biology.
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Fig. 2.1 A system viewed as
an interconnection of
subsystems with inputs and
outputs

There is also a somewhat different reason for considering systems with inputs and
outputs. Cells can be seen as composed of a large number of subsystems, networks
of proteins, RNA, DNA, and metabolites involved in various processes such as
cell growth and maintenance, division, and death. Indeed, one of the important
themes in current molecular biology [9,15,22] is that of understanding cell behavior
in terms of cascades and feedback interconnections of elementary “modules.”
The hope is that one should be able to decompose large systems into, hopefully
simpler, subsystems, and then study the emergent properties of interconnections.
Diagrammatically, one might represent this situation by a graph as in Fig. 2.1,
which shows an overall system as composed of four subsystems. In Fig. 2.1, there
are inputs and outputs for the overall system. However, even if the entire system
were autonomous (no arrows into or out of the large box), in order to be able to
define such interconnections, one must necessarily consider subsystems that admit
time-dependent input signals and which produce output signals. Thus, the control
theoretic formalism is a necessity even in the analysis of autonomous systems, when
using a decomposition-based approach. Observe that, if the behavior of subsystems
is subject to random effects, then it is imperative to allow inputs to be random
when studying subsystems: for example, the subsystem “2” in Fig. 2.1 has inputs
that depend on subsystems “1” and “4” and thus, if these are described by random
processes, the inputs to “2” are also random processes.

As an illustration of how these ideas play out in the deterministic case, consider
an inhibitory or activating cyclic structure

Px1 D f1.xn; x1/

Px2 D f2.x1; x2/

:::

Pxn D fn.xn�1; xn/;

as diagrammed in the left panel of Fig. 2.2. This is the “Goodwin model” of gene
expression, and appears as well in many other models in mathematical biology
(e.g. [14, 25]). It has been much studied mathematically, notably by Mallet-Paret
and others [13,24,27,28], which among other major results, established a Poincaré-
Bendixson theorem which tightly characterizes ˝-limit sets for such systems in
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� �� � ��x1 x2 xn x1 x2 xn

Fig. 2.2 A cyclic system (left), built by feedback from a cascade of n systems (right)

terms of periodic orbits and heteroclinic connections among equilibria. In the
present context, we wish to view the system as built out of n components xi ,
i D 1; : : : ; n. These components form a “cascade” or “series interconnection” when
the feedback connection is ignored (right panel of Fig. 2.2). This view has been
very successful when combined with tools from passivity theory [2], input-to-state
(ISS) stability [29], and monotone systems with inputs and outputs [1]. To be more
concrete, suppose, for example, that the system has the following special form, with
each xi scalar:

Px1 D b1�1.xn/� a1x1

Px2 D b2�2.x1/� a2x2

:::

Pxn D bn�n.xn�1/ � anxn;

where the ai ’s and bi ’s are (for the moment) positive constants. The functions
�i .xi�1/ represent the way in which the previous state in the cycle affects the given
state. “Opening up” the feedback loop amounts to studying the system:

Px1 D b1�1.u/� a1x1
Px2 D b2�2.x1/� a2x2

:::

Pxn D bn�n.xn�1/ � anxn;

in which now u represents an external input. We may, in turn, view this open system
as an interconnection of n subsystems

Px D bi�i .u/� aix:

The hope is to be able to conclude something interesting about the overall system by
the following two steps: (1) study the “open” system by recursively interconnecting
the systems Px D bi�i .u/�aix until the whole system is obtained, and then (2) study
the effect of “closing the loop” with feedback to recover the original system. The key
property needed in the first step, at least in order to recursively study stability, is the
CICS property: the state xi .t/ should converge to an equilibrium provided that the
input u.t/ converges to a limit. Obviously, in this simple example CICS is trivially



2 Random Dynamical Systems with Inputs 45

true (assuming that � is continuous), since we just have a forced linear system,
easily solved in closed form using variation of parameters. However, for general
nonlinear systems, CICS fails even for systems which are globally asymptotically
stable with respect to constant inputs. This motivated, for deterministic systems, the
introduction of the notions of ISS [29] and of monotone systems with inputs [1],
either of which allows one to obtain CICS types of theorems, and these approaches
coupled with what are generically called “small-gain theorems” (essentially, asking
that the feedback loop results in a contraction in an appropriate sense) allow one
to complete the program (step 2). In this work, we focus exclusively on the CICS
problem (step 1) for stochastic systems, and leave the study of small-gain theorems
for follow-up work.

Stochastic extensions of deterministic theory should take full advantage of the
power of ergodic theory. Suppose, continuing with the above simple example, that
we have the scalar linear system Px D bu �ax, where a and b are now not constants
but are randomly varying, a D a.!/, b D b.!/. Randomness might model the
effect of cell-to-cell variability in essential enzymes, or physical factors such as
temperature or pH. If a.!/ � �� < 0 for all ! (and b is, for example, bounded),
then stability will not be an issue. However, it may be that the only possible
assumption is that the expected value of a.!/ is negative, but a.!/ might take zero,
or even positive, values (for example, a might be a difference between an auto-
catalytic term of production and a degradation/dilution term). Then, ergodic theory
is needed in order to establish results on almost-sure stability (or convergence to
steady-state probability distributions). We feel, therefore, that an RDS-based theory
is most natural in this context.

Much work has been done on random control systems, but not employing an RDS
axiomatic approach. This includes the papers [11, 26] on stochastic stabilization, as
well as the papers [7, 8, 31] on feedback stabilization using noise to state stability
analogs of input to state stability. We believe, however, that an RDS approach is a
useful addition to the literature, for the reasons mentioned above. Also very relevant
is an extension [6] of RDS to allow (deterministic) inputs that are themselves
generated by a dynamical system (in the terminology of regulation and disturbance
rejection, one would say that inputs are generated by an “exosystem”).

Outline of Chapter

We first review the classical RDS theory. This material is not new; however, with
an eye to generalizations, we reformulate it in a slightly different language. We
next define our new concept of RDSI (and RDSIO), which extends the notion of
RDS to systems in which there is an external input or forcing function, which is
itself a stochastic process. A major contribution of this work lies upon the precise
formulation of this concept, particularly the way in which the stochastic argument
of the input is shifted in the semigroup (cocycle) property. Note that stochasticity
of inputs is essential if one is to develop a theory of interconnected subsystems,
as an input to one system in such an interconnection is typically obtained by
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using a combination of outputs (necessarily random) of other subsystems. After
establishing several basic results that provide a foundation for further study, we
turn to the question of “converging input to converging state” (CICS) properties.
Specifically, recent work by Chueshov [5] introduced the class of monotone RDS
(without inputs), a theory that provides us with the concepts needed to pursue the
generalization of the latter to RDSI. Thus, we introduce also a class of monotone
RDSI, and are able to formulate and prove a CICS theorem for monotone systems.
A follow-up of this work will provide a small-gain theorem for monotone RDSI,
generalizing [1], which follows from the CICS tools developed here. Separate work
in progress deals with generalizations of ISS. Space prevents giving many examples,
so we limit ourselves to a simple linear RODE (a pathwise random ODE). In
principle, however, our setup also allows one to study more complicated objects
including stochastic differential equations as in the Itô calculus. (A good reference
for RODE’s and SDE’s in the context of RDS is the original book by Arnold [3];
see also [18]).

Other chapters in this volume deal with concepts closely related to those
discussed in this chapter. Linear systems with inputs are considered, for example,
in Chap. 1, Example 1.4, when viewing the transcription factor activity f .t/ as
an input. Pullback limits are discussed in Example 1.7 of that same chapter, and
especially at the end of Sect. 1.6, where the significance of this concept is discussed.
Cascade flows (semi-direct products, skew-product flows) are described in Sect. 1.9.
The mass-action kinetics model of the JAK-STAT signal transduction pathway
described in Chap. 9, (9.7), can also be interpreted as a cascade closed under the
feedback of x4 into the first coordinate. It is in fact a monotone system. Finally,
the base model given in Chap. 8, Sect. 8.2.6 for hepatitis C virus viral kinetics
in chronically infected patients, can be interpreted as a closed-loop system. More
specifically, it can be viewed as the closed-loop obtained from a monotone stochastic
RDS (with cone R�0 �R�0 �R�0, and when the term T .t/ in the equation for I.t/
is viewed as an input), closed under “negative” feedback, when setting this input
again to T .t/.

2.2 Random Dynamical Systems

We first review the random dynamical systems framework of Arnold [3]. Along the
way we introduce a couple of pieces of terminology not found in [3], to facilitate
the discussion. Suppose given a measure preserving dynamical system1 (MPDS)

� D .˝;F ;P; f�tgt2T /I

1Arnold [3, p. 635] and Chueshov [5, p. 10, Definition 1.1.1] refer to such an object primarily as a
metric dynamical system. We find measure preserving, which Arnold also uses as a synonym, less
confusing and more informative.
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that is, a probability space .˝;F ;P/, a topological group .T ;C/, and a measurable
flow f�tgt2T of measure preserving maps˝ ! ˝ satisfying (T1)–(T3):

(T1) .t; !/ 7! �t!, .t; !/ 2 T �˝ , is (B.T /˝ F )-measurable,
(T2) �tCs D �t ı �s for every t; s 2 T (semigroup property),
(T3) P ı �t D P for each t 2 T (measure preserving2).

In this work T will always refer to either R or Z, depending on whether one is
talking about continuous or discrete time, respectively. In either case T�0 refers
to the nonnegative elements of T . We will occasionally need to make measure-
theoretic considerations about T or Borel subsets of it. If T D R, that is, in
continuous time, then we tacitly equip any Borel subset of T with the measure
induced by the Lebesgue measure on R. If T D Z, or in discrete time, then we
think of the counting measure in Z. When T D Z, it follows from (T2) that � is
completely determined by �1 D �.1; �/. In that case we will abuse the notation and
use the same � to denote both the underlying MPDS and �1.

In the context of a given MPDS � , a set B 2 F is said to be �-invariant if
�t .B/ D B for all t 2 T . We say that an MPDS � is ergodic (under P) if, whenever
B 2 F is �-invariant, then we have either P.B/ D 0 or P.B/ D 1.

Let X be a metric space constituting the measurable space .X;B/ when
equipped with the �-algebra B of Borel subsets of X . A (continuous) random
dynamical system (RDS) on X is a pair .�; '/ in which � is an MPDS and

' W T�0 �˝ �X �! X

is a (continuous) cocycle over � ; that is, a (B.T�0/ ˝ F ˝ B)-measurable map
such that

(S1) '.t; !/ WD '.t; !; �/ W X ! X is continuous for each t 2 T�0, ! 2 ˝ ,
(S2) '.0; !/ D idX for each ! 2 ˝ , and (cocycle property)

'.t C s; !/ D '.t; �s!/ ı '.s; !/; 8s; t 2 T�0; 8! 2 ˝:

The cocycle property generalizes the semigroup property of deterministic dynamical
systems. More specifically, RDS’s include deterministic dynamical systems as the
special case in which ˝ is a singleton.

Example 2.1 (RDS’s Generated by Random Linear Differential Equations). Given
an MPDS � , suppose AW˝ ! R

n�n is a random n � n real matrix such that, for
each ! 2 ˝ ,

2 Property (T3) is normally [32, Definition 1.1] stated as

P.��1
t .B// D P.B/; 8B 2 F ; 8t 2 T :

But since it follows from (T2) that �t is invertible with ��1
t D �

�t for each t 2 T , the two
formulations are equivalent in this context.
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t 7�! kA.�t!/k; t � 0;

is locally essentially bounded. For each ! 2 ˝ , let

�.�; �; !/WR � R ! R
n�n

be the fundamental matrix solution3 of the linear differential equation

P� D A.�t!/�; t 2 RI (2.1)

that is, for each fixed s 2 R, �.s; �; !/ is the unique absolutely continuous R !
R
n�n map such that

�.s; s; !/ D In WD

2

6

6

6

4

1 0 � � � 0
0 1 � � � 0
:::
:::
: : :

:::

0 0 � � � 1

3

7

7

7

5

and

d

dt
�.s; t; !/ D A.�t!/�.s; t; !/

for almost all t 2 R.
Let

˚ WR�0 �˝ � R
n �! R

n

.t; !; x/ 7�! �.0; t; !/ � x :

Then ˚.0; !; x/ D x for every .!; x/ 2 ˝ � R
n and

d

dt
˚.t; !; x/ D A.�t!/˚.t; !; x/

for almost all t � 0. Moreover, ˚.t; !; �/WRn ! R
n is continuous for each fixed

.t; !/ 2 R�0 �˝ , and it can be shown using existence and uniqueness of solutions
for (2.1) that ˚ has the cocycle property:

˚.t C s; !; x/ D ˚.t; �s!;˚.t; !; x//; 8.t; !; x/ 2 R�0 �˝ � R
n:

Thus .�; ˚/ constitutes an RDS, referred to as the RDS generated by the (homoge-
neous, linear) random differential equation (RDE) (2.1).

3The reason we are introducing the fundamental matrix solution as a function of .s; t / 2 R � R

rather than a function of just t 2 R (for each fixed ! 2 ˝) will become clear in Example 2.3. This
notation will make it easier to discuss the rate of growth of the fundamental matrix solution.
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In this work, we use linear (or affine) systems as a case study to illustrate the
theory developed. Such systems (and their discrete counterparts) may be interpreted
as “switched linear systems,” and include classes of systems of great interest in
applications such as iterated function systems. Throughout the remainder of the
chapter, we will be building upon the example above. Thus for any random matrix
A as in Example 2.1, the symbols “�” and “˚” will be reserved to carry the
meanings established in the example. We shall need the following two properties
of the fundamental matrix solution:

(F1) �.0; t; !/ � ��.0; s; !/��1 D �.s; t; !/, for all .s; t; !/ 2 R � R �˝ , and
(F2) �.s; t; ��!/ D �.�Cs; �Ct; !/, for all .s; t; !/ 2 R�R�˝ , for all � 2 R.

These properties also follow from uniqueness of solutions.

2.2.1 Trajectories, Equilibria and �-Stationary Processes

In the context of RDS’s, the analogue to points in the state space X for a
deterministic system are random variables ˝ ! X , that is, B-measurable maps
˝ ! X . We denote the set of all random variables on a metric space X by X˝

B .
We refer to a (B.T�0/˝ F )-measurable map q W T�0 �˝ ! X as a �-stochastic
process4 onX , and denote qt WD q.t; �/ for each t 2 T�0. The set of all �-stochastic
processes on a metric space X is denoted by S X

� .
Let .�; '/ be an RDS. Given x 2 X˝

B , we define the (forward) trajectory starting
at x to be the �-stochastic process �x 2 S X

� defined by

�xt .!/ WD '.t; !; x.!//; .t; !/ 2 T�0 �˝: (2.2)

The pullback trajectory starting at x is in turn defined to be the �-stochastic process
L�x W T�0 �˝ ! X defined by

L�xt .!/ WD '.t; ��t!; x.��t !//; .t; !/ 2 T�0 �˝: (2.3)

More generally, the pullback of a �-stochastic process q 2 S X
� is the �-stochastic

process Lq 2 S X
� defined by

Lqt .!/ WD qt .��t!/; .t; !/ 2 T�0 �˝:

So the pullback trajectory starting at x is simply the pullback of the forward
trajectory starting at x. We will always use the accent L to indicate the pullback
of the �-stochastic process being accented.

4A “� -stochastic process” is indeed a stochastic process in the traditional sense. We use the prefix
“� -” to emphasize the underlying probability space, as well as the time semigroup.
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We slightly modify the standard notion of equilibrium for RDS’s (see, for
instance, [5, p. 38, Definition 1.7.1]) to allow for the defining property to hold only
almost everywhere, as opposed to everywhere. So an equilibrium of an RDS .�; '/
is a random variable x 2 X˝

B such that

�xt .!/ D '.t; !; x.!// D x.�t!/; 8t 2 T�0; 8! 2 Q̋ ;

for some �-invariant Q̋ � ˝ of full measure.5 It is often not necessary to specify
the said Q̋ . So we say “for �-almost all ! 2 ˝” and write

‘ Q8! 2 ˝ ’

to mean “for all ! 2 Q̋ , for some �-invariant set Q̋ � ˝ of full measure.”
In view of the notion of pullback convergence with which we will be working

(see Sect. 2.2.3), it is more natural to think of the concept of equilibrium in terms of
pullback trajectories. Observe that a random variable x 2 X˝

B is an equilibrium of
the RDS .�; '/ if, and only if

L�xt .!/ D '.t; ��t!; x.��t!// D x.!/; 8t 2 T�0; Q8! 2 ˝:

The remaining of this section is devoted to interpreting the concept of equilibrium
for an RDS in terms of a shift operator in the set S X

� of all �-stochastic processes
on X . For each s 2 T�0, let

�s W S X
� �! S X

�

q 7�! �s.q/
(2.4)

be defined by

.�s.q//t .!/ WD qtCs.��s!/; .t; !/ 2 T�0 �˝: (2.5)

Definition 2.1 (�-Stationary Process). A �-stochastic process Nq 2 S X
� is said to

be �-stationary if

.�s. Nq//t .!/ D Nqt .!/;

for all s; t 2 T�0, for �-almost all ! 2 ˝ .

We use the prefix “�-” in “�-stationary” to emphasize the dependence on the
underlying MPDS � . Using the characterization of �-stationary processes given in

5That is, �t Q̋ D Q̋ for all t 2 T , and P. Q̋ / D 1.
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Lemma 2.1 below, it is not difficult to show that a �-stationary �-stochastic process
Nq is indeed stationary in the traditional stochastic processes sense:

P. Nqt1 2 A1; : : : ; Nqtk 2 Ak/ D P. Nqt1Ch 2 A1; : : : ; NqtkCh 2 Ak/

for all A1; : : : ; Ak 2 F , for any t1; : : : tk ; h � 0 (see, for instance, [23, Sect. 1.3]).

Lemma 2.1. The �-stochastic process Nq 2 S X
� is �-stationary if and only if there

exists a random variable q 2 X˝
B such that

Nqt .!/ D q.�t!/; 8t 2 T�0; Q8! 2 ˝: (2.6)

Proof. (Sufficiency) Suppose that (2.6) holds for some q 2 X˝
B . Pick any s 2 T�0.

For any t 2 T�0 and �-almost all ! 2 ˝ ,

.�s. Nq//t .!/ D NqtCs.��s!/ D q.�tCs��s!/ D q.�t!/ D Nqt .!/:

So Nq is �-stationary.
(Necessity) Suppose that Nq 2 S X

� is �-stationary and define q 2 X˝
B by

q.!/ WD Nq0.!/; ! 2 ˝: (2.7)

We have

NqtCs.��s!/ D .�s.q//t .!/ D Nqt .!/; 8s; t 2 T�0; Q8! 2 ˝:

Setting t D 0 and renaming s as t we then have

Nqt .��t O!/ D Nq0. O!/ D q. O!/; 8t 2 T�0; Q8 O! 2 ˝:

Given any ! 2 Q̋ and any t 2 T�0, we may apply this property with O! D �t! due
to the �-invariance of Q̋ , thus obtaining

Nqt .!/ D q.�t!/:

Therefore (2.6) holds. �

Note that the random variable q associated to Nq is unique up to a �-invariant set
of measure zero. Indeed, it is determined �-almost everywhere by (2.7). Thus, we
have:

Corollary 2.1. Given an RDS .�; '/ over a metric space X and a random state
x 2 X˝

B , the following three properties are equivalent:

(1) x is an equilibrium;
(2) the trajectory �x , as defined in (2.2), is �-stationary;
(3) the map t 7! L�xt 2 X˝

B , t 2 T�0, is constant.
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We will always use an overbar to denote the �-stationary �-stochastic process Nq
associated with a given random variable q.

2.2.2 Perfection of Crude Cocycles

We briefly review the theory of perfection of crude cocycles discussed in Arnold’s
[3, Sect. 1.2]. It is customary for the definition of an RDS to require that the cocycle
property of ' in (S2) holds for every s; t 2 T�0 and every ! 2 ˝ . If we want
to emphasize this fact we shall say that ' is a perfect cocycle (over the underlying
MPDS �).

Definition 2.2 (Crude Cocycle). We say that 'W T�0 � ˝ � X ! X is a crude
cocycle (over �) if it is a .B.T /˝F ˝B/-measurable map satisfying (S1) and

(S20) '.0;w/ D idX for each ! 2 ˝ , and for every s 2 T�0, there exists a
subset ˝s � ˝ of full measure such that

'.t C s; !/ D '.t; �s!/ ı '.s; !/; 8t 2 T�0; 8! 2 ˝s:

The ˝s’s need not be �-invariant.

As Arnold points out, there are circumstances where this flexibility in the
requirements for a cocycle is desirable. For instance, the flow of a stochastic
differential equation is only guaranteed to be a crude cocycle [3, Sect. 2.3]. Another
example will come up below after we introduce random dynamical systems with
inputs. Consider (deterministic) controlled dynamical systems. Such systems yield
a (deterministic) dynamical system when restricted to a constant input. One would
expect a sensible extension of the concept to random dynamical systems to have an
analogous property. However we shall see in the proof of Lemma 2.3 in the next
section that the restriction of the flow of an RDS with inputs to a �-stationary input
is not necessarily a perfect cocycle.

In this work we deal only with random dynamical systems (with inputs) evolving
in locally compact, connected subsets of R

n. We will informally refer to such
systems as finite dimensional. It turns out that crude cocycles evolving in these
spaces can be perfected in a very reasonable sense.

Definition 2.3 (Indistinguishable Cocycles). Let � be an MPDS and '; W T�0 �
˝ � X ! X crude cocycles over � . If there exists a subset N 2 F such that
P.N / D 0 and

f! 2 ˝I '.t; !/ ¤  .t; !/; for some t 2 T�0g � N;

then ' and  are said to be indistinguishable.
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Proposition 2.1. Let � D .F ;˝;P; .�t /t2T / be an MPDS with T D Z or T D
R. Suppose 'W T�0 � ˝ � X ! X is a crude cocycle over � evolving in a locally
compact, locally connected, Hausdorff topological space X . Then there exists a
perfect cocycle  W T�0 �˝ �X ! X such that ' and  are indistinguishable.

Proof. See Arnold [3, Theorem 1.2.1] for the discrete case, which actually holds
with weaker hypotheses and yields stronger conclusions. For the continuous case,
see Arnold [3, Theorem 1.2.2 and Corollary 1.2.4]. �

2.2.3 Pullback Convergence

We work with the notion of pullback convergence developed in the literature and
canonized in the works of Arnold and Chueshov [3, 5]. As with equilibria, we relax
the notion to require only that pointwise convergence happens �-almost everywhere.

Definition 2.4 (Pullback Convergence). A �-stochastic process � 2 S X
� is said

to converge to a random variable �1 2 X˝
B in the pullback sense if

L�t .!/ WD �t .��t!/ �! �1.!/ as t ! 1;

for �-almost all ! 2 ˝ .

Proposition 2.2. Let .�; '/ be an RDS evolving on a metric spaceX . Suppose there
exists a random initial state x 2 X˝

B and a map x1 W ˝ ! X such that

L�xt .!/ D '.t; ��t!; x.��t!// �! x1.!/ as t ! 1; Q8! 2 ˝: (2.8)

Then x1 is an equilibrium.

Proof. For each t 2 T�0, the map ! 7! '.t; ��t!; x.��t!//, ! 2 ˝ , is
measurable, since it is the composition of measurable maps:

! 7�! ��t! 7�! x.��t!/;

.��t!; x.��t!// 7�! '.t; ��t!; x.��t !//:

So it follows from [21, Chap. 11, Sect. 1, Property M7 on page 248] that x1 is
measurable. (If T is continuous time, just pick a subsequence .tn/n2N going to
infinity.)

In addition, for each ! 2 ˝ such that the limit in (2.8) exists, and each 	 2 T�0,
we have

lim
t!1'.t � 	; �	�t!; x.�	�t!// D x1.!/
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also. By �-invariance, the limit in (2.8) exists for �	! as well. Hence

x1.�	!/ D lim
t!1'.t; ��t �	!; x.��t �	!//

D lim
t!1'.	; �t�	 �	 � t!; '.t � 	; �	�t!; x.�	�t!///

D '.	; !; x1.!//

by continuity (property (S1) in the definition of an RDS). �

2.3 RDS’s with Inputs and Outputs

We now define a new concept. It extends the notion of RDS’s to systems in which
there is an external input or forcing function. A contribution of this work is the
precise formulation of this concept, particularly the way in which the argument of
the input is shifted in the semigroup (cocycle) property.

As in the previous section, given a metric space U , we equip it with its Borel
�-algebra B.U / and denote by U˝

B the set of Borel measurable maps ˝ ! U . Let
S U
� be the set of all �-stochastic processes T�0 �˝ ! U . Given u; v 2 S U

� and
s 2 T�0, we define u˙svW T�0 �˝ ! U by

.u˙sv/	 .!/ D
�

u	 .!/; 0 � 	 < s

v	�s.�s!/; s � 	
; 	 2 T�0; ! 2 ˝:

We say that a subset U � S U
� is a set of �-inputs if u˙sv 2 U for any u; v 2 U

and any s 2 T�0. In other words, a set of �-inputs is a subset of S U
� which is closed

under concatenation.
Given Qu 2 U , we denote by c.Qu/ the trivial �-stochastic process defined by

.c.Qu//t .!/ WD Qu for every t 2 T�0 and every ! 2 ˝ .

Definition 2.5 (Random Dynamical Systems with Inputs). A random dynamical
system with inputs (RDSI) is a triple .�; ';U / consisting of an MPDS

� D .˝;F ;P; f�tgt2T /;

a set of �-inputs U � S U
� , and a map

' W T�0 �˝ �X � U ! X

satisfying

(I1) '.�; �; �; u/W T�0 �˝ � X ! X is (B.T�0/˝ F ˝ B)-measurable for each
fixed u 2 U ;
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(I10) the map Q'W T�0 �˝ �X � U ! X defined by

Q'.t; !; x; Qu/ WD '.t; !; x; c.Qu//; .t; !; x; Qu/ 2 T�0 �˝ �X � U;

is (B.T�0/˝ F ˝ B ˝ B.U /)-measurable;
(I2) '.t; !; �; u/ W X ! X is continuous, for each fixed .t; !; u/ 2 T�0 �˝ � U ;
(I3) '.0; !; x; u/ D x for each .!; x; u/ 2 ˝ �X � U ;
(I4) given s; t 2 T�0, ! 2 ˝ , x 2 X , u; v 2 U , if

'.s; !; x; u/ D y

and

'.t; �s!; y; v/ D z;

then

'.s C t; !; x; u˙sv/ D zI

(I5) and given t 2 T�0, ! 2 ˝ , x 2 X , and u; v 2 U , if u	 .!/ D v	 .!/ for
almost all 	 2 Œ0; t/, then '.t; !; x; u/ D '.t; !; x; v/.

We refer to the elements u 2 U as �-inputs, or simply inputs. Whenever we
talk about an RDSI .�; ';U /, we tacitly assume the notation laid above, unless
otherwise specified.

(I1), (I10) and (I2) are regularity conditions. (I3) means that nothing has “happened”
if one is still at time t D 0. (I4) generalizes the cocycle property and (I5) states
that the evolution of an RDS subject to an input u is, so to speak, independent of
“irrelevant” random input values.

Remark 2.1. Notice that for each s; t 2 T�0, x 2 X , ! 2 ˝ ,

'.t C s; !; x; u/ D '.t; �s!; '.s; !; x; u/; �s.u//; 8u 2 U ;

where �s W S U
� ! S U

� is defined by (2.5)6:

.�s.u//t .�s!/ � utCs.!/: (2.9)

This follows from (I4) with v D �s.u/, which then yields u˙sv D u. �

6We will use the same notation �s for the shift operator S V
� ! S V

� defined by (2.5), irrespective
of the underlying metric space V . Since the domain of any � -stochastic process is always T

�0�˝,
this will not be a source of confusion.
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The shift operator �s has a physical interpretation. The right-hand side is the
input as interpreted by an observer of the RDSI ' who started at time t1 D 0, while
the left-hand side is how someone who started observing the system at time t2 D s

would describe it at time t (C t2). Following this interpretation, a �-stationary input
would then be an input which is observed to be just the same, regardless of when
one started observing it.

Example 2.2 (RDSI’s Generated by Random Differential Linear Equations with
Inputs). This generalizes Example 2.1. Given an MPDS � , suppose that AW˝ !
R
n�n and BW˝ ! R

n�k are random real matrices such that, for each ! 2 ˝ ,

t 7�! kA.�t!/k; t � 0; and t 7�! kB.�t!/k; t � 0;

are locally essentially bounded. Let U WD R
k and let S U1 � S U

� be the set of
�-inputs consisting of all �-stochastic processes u 2 S U

� such that

t 7�! jut .!/j; t � 0;

is locally essentially bounded for each ! 2 ˝ . We consider the random differential
equation with inputs (RDEI)

P� D A.�t!/� C B.�t!/ut .!/; t � 0; ! 2 ˝; u 2 S U1: (2.10)

Let � WR � R � ˝ ! R
n�n be the fundamental matrix solution of the

homogeneous, linear RDE

P� D A.�t!/�; t � 0;

and let .�; ˚/ be the RDS generated by the same equation (see Example 2.1). For
each fixed .!; u/ 2 ˝ � S U1, define


.�; !; u/WR�0 ! R
n

by


.t; !; u/ WD
Z t

0

�.�; t; !/B.��!/u� .!/ d�; t � 0:

Finally, define

'WR�0 �˝ � R
n � S U1 �! R

n

.t; !; x; u/ 7�! ˚.t; !; x/C 
.t; !; u/
:

Fixing .!; x; u/ 2 ˝ � R
n � S U1 arbitrarily, and differentiating '.t; !; x; u/ with

respect to t , we get
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d

dt
'.t; !; x; u/ D A.�t!/˚.t; !; x/C�.t; t; !/B.�t!/ut .!/

CA.�t!/
Z t

0

�.�; t!/B.��!/u�.!/ d�

D A.�t!/
.t; !; u/C B.�t!/ut .!/; 8t � 0:

Thus t ! '.t; !; x; u/, t � 0, is a solution of (2.10) with initial state

'.0; !; x; u/ D ˚.0; !; x/C 
.0; !; u/ D x:

In fact, .�; ';S U1/ is an RDSI. Indeed, (I1) and (I10) follow from the fact that
the limit of a sequence of measurable functions is measurable. Properties (I2) and
(I3) follow directly from the analogous properties of ˚ . And (I4) and (I5) follow
from uniqueness of solutions applied for each fixed ! 2 ˝—one basically verifies
that both sides of each equation we want to prove to be true, when looked at as
functions of t , define solutions of the same differential equation with the same initial
condition. We refer to .�; ';S U1/ as the RDSI generated by the RDEI (2.10).

We also introduce a notion of outputs.

Definition 2.6 (Random Dynamical System with Inputs and Outputs). A ran-
dom dynamical system with inputs and outputs (RDSIO) is a quadruple .�; ';U ; h/,
such that .�; ';U / is an RDSI, and

h W ˝ �X ! Y

is an (F ˝B)-measurable map into a metric space Y such that h.!; �/ is continuous
for each ! 2 ˝ . In this context we call h an output function and Y an output space.

It may sometimes be useful to refer to a random dynamical system with outputs
(RDSO) only, by which we mean a triple .�; '; h/ where .�; '/ is an RDS and h is
an output function.

The ˝-component in the domain of output functions is important. It allows for the
concept to model uncertainties in the readout as well. We will return to systems with
outputs further down, in the context of RDSIO’s which can be realized as cascades
of RDSO’s and RDSIO’s.

2.3.1 Pullback Trajectories

Let .�; ';U ; h/ be an RDSIO with output space Y . Given x 2 X˝
B and u 2 U , we

define the (forward ) trajectory starting at x and subject to u to be the �-stochastic
process �x;u 2 S X

� defined by

�x;ut .!/ WD '.t; !; x.!/; u/; .t; !/ 2 T�0 �˝:
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We then define the pullback trajectory starting at x and subject to u to be the �-
stochastic process L�x;u 2 S X

� defined by

L�x;ut .!/ WD �x;ut .��t!/ D '.t; ��t!; x.��t!/; u/; .t; !/ 2 T�0 �˝:

The (forward) output trajectory corresponding to initial state x and input u is
defined to be the �-stochastic process �x;u 2 S Y

� , where

�
x;u
t .!/ WD h.�t!; '.t; !; x.!/; u// D h.�t!; �

x;u
t .!//; .t; !/ 2 T�0 �˝;

while the pullback output trajectory corresponding to initial state x and input u is
analogously defined to be the �-stochastic process L�x;u 2 S Y

� , where

L�x;ut .!/ WD �
x;u
t .��t!/

D h.!; '.t; ��t!; x.��t!/; u//
D h.!; L�x;ut .!//; .t; !/ 2 T�0 �˝:

For RDSI’s the definitions of forward and pullback trajectories are the same and
we also use the notations �x;u and L�x;u. For RDSO’s the definitions are analogous,
except that they of course do not depend on any inputs. So forward and pullback
trajectories are defined as for RDS’s and we also use the notations �x and L�x ,
respectively. We denote the forward and pullback output trajectories corresponding
to initial state x by �x and L�x , respectively:

�xt .!/ WD h.�t!; '.t; !; x.!/// D h.�t!; �
x
t .!//

and

L�xt .!/ WD h.!; '.t; ��t!; x.��t!/// D h.!; L�xt .!//

for every .t; !/ 2 T�0 �˝ .
Note that the input u is not shifted in the argument of ' in the pullback, while at

first one might intuitively think it should have been. There are several reasons this
is so. First notice that

L�x;ut .!/ D �x;ut .��t!/; 8.t; !/ 2 T�0 �˝:

So L�x;u is just the pullback of the �-stochastic process �x;u, as it should be the case.
However we are more concerned with what happens in the context of cascades and
feedback interconnections of RDSIO’s. But before we get to that we first discuss
discrete RDSIO’s. This will further motivate axioms (I1)–(I5) in the definition of
an RDSI, provide—and completely characterize—a whole class of examples, and
provide the framework for said discussion of pullback trajectories and cascades.



2 Random Dynamical Systems with Inputs 59

We say that an RDSI (or RDSIO) is discrete when T D Z. We first note that,
just like RDS’s [3, Sect. 2.1], RDSI’s also have their flows completely determined
by their state at time t D 1.

Theorem 2.1 (Characterization of Discrete RDSI’s). For every discrete RDSI

.�; ';U /;

there exists a unique map f W˝ �X � U ! X such that

(G1) f W˝ �X � U ! X is .F ˝ B ˝ B.U //-measurable,
(G2) f .!; �; Qu/WX ! X is continuous for each .!; Qu/ 2 ˝ � U ,

and

'.nC 1; !; x; u/ D f .�n!; '.n; !; x; u/; un.!//; (2.11)

for every .n; !; x; u/ 2 T�0 �˝ �X � U .
Conversely, given an MPDS � , a set of �-inputs U and a map

f W˝ �X � U ! X

satisfying (G1) and (G2), define 'W T�0 �˝ �X � U ! X recursively by

'.0; !; x; u/ WD x; .!; x; u/ 2 ˝ �X � U ; (2.12)

and (2.11). Then .�; ';U / is an RDSI.
We refer to the map f as the generator of the RDSI .�; ';U /.

Proof. Define f by setting

f .!; x; Qu/ WD '.1; !; x; c.Qu//; .!; x; Qu/ 2 ˝ �X � U:

Then (G1) and (G2) follow directly from (I10) and (I2), respectively. Equation (2.11)
follows from (I4) (see Remark 2.1) and (I5):

'.nC 1; !; x; u/ D '.1; �n!; '.n; !; x; u/; �n.u//

D '.1; �n!; '.n; !; x; u/; c..�n.u//0.�n!///

D f .�n!; '.n; !; x; u/; .�n.u//0.�n!//

D f .�n!; '.n; !; x; u/; un.!//

for any .n; !; x; u/ 2 T�0 � ˝ � X � U . Uniqueness follows from (I3) and (I5),
together with the computations above performed backwards for t D 0.

Now suppose f satisfies (G1) and (G2), and that ' is defined recursively by
(2.12) and (2.11). For (I1), pick any u 2 U . One first shows using induction on n
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that

'.n; �; �; u/ D f .�n�1�; '.n � 1; �; �; u/; un�1.�// (2.13)

is (F ˝ B)-measurable for each n 2 Z>0. Indeed, at n D 1 we have

'.1; �; �; u/ D f .�1�1�; '.1� 1; �; �; u/; u1�1.�// D f .�; �; u0.�//;

which is (F ˝ B)-measurable, since f satisfies (G1) and u0 is F -measurable.
Now (2.13) gives us the inductive step, since the right hand side is a composition of
measurable functions and, hence, itself measurable. Now pick any A 2 B. We then
have

'.�; �; �; u/�1.A/ D
1
[

nD0
fng � '.n; �; �; u/�1.A/ 2 2Z�0 ˝ F ˝ B;

since it is a countable union of (2Z�0 ˝ F ˝ B)-measurable sets. Thus (I1) holds.
One can prove (I10) in the same way by noting that

Q'�1.A/ D
1
[

nD0
fng � Q'.n; �; �; �/�1.A/

for each A 2 B, and that

Q'.n; �; �; �/ D f .�n�1�; Q'.n � 1; �; �; �/; �/
is .F ˝ B ˝ B.U //-measurable for each n 2 Z>0.

Property (I2) follows from (G2), (2.12) and (2.11), again by induction on n 2
Z�0. Indeed, at n D 0, '.0; !; �; u/ is continuous for every ! 2 ˝ and every u 2 U .
So once (I2) has been proved for a certain value of n 2 Z�0, we conclude that

'.nC 1; !; �; u/ D f .�n!; '.n; !; �; u/; un.!//
is continuous for any ! 2 ˝ and any u 2 U as well.

Property (I3) follows from (2.12).
Before proving (I4) we first prove (I5) by induction on n 2 Z�0. Fix ! 2 ˝ ,

x 2 X . Equation (2.12) gives us the base of the induction. Now assume (I5) holds
for a certain value of n 2 Z�0. If u; v 2 U are such that uj .!/ D vj .!/ for
j D 0; 1; : : : ; n, then '.n; !; x; u/ D '.n; !; x; v/ by the induction hypothesis. So
it follows from (2.11) that

'.nC 1; !; x; u/ D f .�n!; '.n; !; x; u/; un.!//
D f .�n!; '.n; !; x; v/; vn.!//
D '.nC 1; !; x; v/:

This proves (I5).
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It remains to prove (I4). For each arbitrarily fixed p 2 Z�0, we use induction on
n 2 Z�0. For n D 0, (I4) holds in virtue of (I3) and (I5). For any ! 2 ˝ , we have
uj .!/ D .u˙pv/j .!/ for j D 0; : : : ; p � 1. Therefore

'.0; �p!; '.p; !; x; u/; v/ D '.p; !; x; u/ D '.0C p;!; x; u˙pv/;

for any x 2 X . Now suppose (I4) holds for some n 2 Z�0. Given ! 2 ˝ and
x 2 X , set y WD '.n; �p!; x; u/. Then

'.nC 1; �p!; y; v/ D f .�n�p!; '.n; �p!; y; v/; vn.�p!//

D f .�nCp!; '.nC p;!; x; u˙pv/; .u˙pv/nCp.!//

D '.nC p C 1; !; x; u˙pv/:

This completes the proof that .�; ';U / is an RDSI. �

Observe that we did not need (I1) in order to prove the first half of the theorem.
So we could have in principle dropped this axiom from the definition of an RDSI
and an analogous result would still hold. We remind the reader that (I1) was
nevertheless used in showing that RDSI’s restricted to �-stationary inputs are RDS’s
(see Lemma 2.3 below).

From the construction of the generator f of an RDSI .�; ';U /, it is clear how
the dependence of the flow ' at time n 2 Z�0 and subject to ! 2 ˝ on the input u
is really through the value un.!/ of the input u. So when one shifts the˝-argument
! of ' in the pullback trajectory to ��n!, there is no need to change the input, since
'.n; ��n!; x.��n!/; u/ depends on un.��n!/ already. This is our second reason for
defining the pullback trajectories of systems with inputs like so.

We now discuss the third and most important reason this is the mathematically
sensible way of defining pullback trajectories for RDSI’s. Let .�;  / be a discrete
RDS evolving on the state space Z D X1 �X2:

 WZ�0 �˝ � .X1 �X2/ �! .X1 �X2/:

Let gW˝ �Z ! Z be the generator of .�;  /. Suppose g can be written as

g.!; .x1; x2// �
�

f1.!; x1/

f2.!; x2; h1.!; x1//

�

; (2.14)

where f1W˝ � X1 ! X1 is the generator of some RDSO .�; '1; h1/ with output
space Y1, and f2W˝ � X2 � U2 ! X2 is the generator of some RDSI .�; '2;U2/

with input space U2 D Y1. Let �2WX1 �X2 ! X2 be the projection onto the second
coordinate. We use �1 to denote the output trajectories of .�; '1; h1/, � for the state
trajectories of  , and �2 for the state trajectories of .�; '2;U2/.
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Theorem 2.2 (Projection of Pullback Equals Pullback of Projection). For any
random initial state

z D .x1; x2/ 2 Z˝
B.Z/ D .X1/

˝
B.X1/

� .X2/˝B.X2/;

the following two identities hold:

(1)  .n; !; z.!// �
�

'1.n; !; x1.!//

'2.n; !; x2.!/; .�1/
x1/

�

, and

(2) �2. L�z
n.!// � . L�2/x2;.�1/

x1

n .!/.

Proof. (1) For each fixed ! 2 ˝ and z 2 Z˝
B.Z/, we use induction on n 2 Z�0. At

n D 0 we have

 .0; !; z.!// D z.!/ D
�

x1.!/

x2.!/

�

D
�

'1.0; !; x1.!//

'2.0; !; x2.!/; .�1/
x1/

�

:

Now suppose that (1) holds for some n 2 Z�0. Since

h1.�n!; '1.n; !; x1.!/// D .�1/
x1
n .!/

by definition, it follows that

 .nC 1; !; z.!// D g.�n!; .n; !; z.!///

D
�

f1.�n!; '1.n; !; x1.!///

f2.�n!; '2.n; !; x2.!/; .�1/
x1/; .�1/

x1
n .!//

�

D
�

'1.nC 1; !; x1.!//

'2.nC 1; !; x2.!/; .�1/
x1/

�

:

This completes the induction.
(2) We prove by induction that (2) holds, for each n 2 Z�0, for all random initial

states z D .x1; x2/ 2 Z˝
B.Z/, and all ! 2 ˝ . At n D 0 we have

�2. L�z
0.!// D �2. .0; !; .x1.!/; x2.!////

D x2.!/

D '2.0; !; x2.!/; .�1/
x1/

D . L�2/x2;.�1/
x1

0 :

Now assume (2) has been proved to hold for all integer values of n up to some
n0 � 0, for all random initial states z D .x1; x2/ 2 Z˝

B.Z/ and all ! 2 ˝ . Given

z D .x1; x2/ 2 Z˝
B.Z/, define Oz D . Ox1; Ox2/ 2 Z˝

B.Z/ by
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Oz.!/ D g.��1!; z.��1!//

WD
�

f1.��1!; x1.��1!//
f2.��1!; x2.��1!/; h1.��1!; x1.��1!///

�

; ! 2 ˝: (2.15)

We have .�1/ Ox1 D �1..�1/
x1/ by Lemma 2.2 below, and also

h1.��.n0C1/!; x1.��.n0C1/!// D .�1/
x1
0 .��.n0C1/!/; ! 2 ˝:

Fix ! 2 ˝ arbitrarily and denote O! WD ��.n0C1/!. Then

�2. L�z
n0C1.!// D �2. .n0 C 1; O!; z. O!///

D �2. .n0; ��n0!;  .1; O!; z. O!////
D �2. .n0; ��n0!; g. O!; z. O!////
D �2. .n0; ��n0!; Oz.��n0!///

D �2. L� Oz
n0
.!//

D . L�2/ Ox2;.�1/Ox1

n0 .!/

by the induction hypothesis. Now

. L�2/ Ox2;.�1/Ox1

n0 .!/ D '2.n0; ��n0!; Ox2.��n0!/; .�1/ Ox1/

D '2.n0; ��n0!; f2. O!; x2. O!/; .�1/x10 . O!//; .�1/ Ox1/

D '2.n0; ��n0!; '2.1; O!; x2. O!/; .�1/x1/; �1..�1/ Ox1//

D '2.n0 C 1; ��.n0C1/!; x2.��.n0C1/!/; .�1/x1/

D . L�2/x2;.�1/x1n0C1 .!/:

So

�2. L�z
n0C1.!// D . L�2/x2;.�1/

x1

n0C1 .!/:

Since z D .x1; x2/ 2 Z˝
B.Z/ and ! 2 ˝ were arbitrary, this completes the inductive

step. �

The left hand side of (2) in the proposition above is the projection over the second
coordinate of the pullback trajectory starting at z D .x1; x2/ of the RDS .�;  /.
The right hand side is the pullback trajectory of the RDSI .�; '2;U2/ starting at
x2 and subject to the input .�1/x1 , the output trajectory of .�; '1; h1/ starting at x1.
Theorem 2.2 then says that they coincide. An analogous result holds in continuous
time for systems generated by random differential equations. These provide the
motivation for the definition of cascades of systems with inputs and outputs, an
introductory discussion of which is carried out in Sect. 2.4.2.
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We now state and prove the technical lemma referred to in the proof of item (2)
in Theorem 2.2:

Lemma 2.2. Let f W˝ � X ! X be the generator of a discrete RDSO .�; '; h/.
Given x 2 X˝

B , let Ox 2 X˝
B be defined by

Ox.!/ WD f .��1!; x.��1!//; ! 2 ˝:

Then � Ox D �1.�
x/.

Proof. Indeed, we have

� Ox
n.!/ D h.�n!; '.n; !; Ox.!///

D h.�n!; '.n; !; f .��1!; x.��1!////

D h.�n!; '.n; !; '.1; ��1!; x.��1!////

D h.�nC1��1!; '.nC 1; ��1!; x.��1!///

D �xnC1.��1!/

D .�1.�
x//n.!/;

for every n 2 Z�0 and every ! 2 ˝ . �

2.3.2 �-Stationary Inputs

The concept of RDSI subsumes that of an RDS, as we shall see below. Denote the
subset of S U

� consisting of �-stationary inputs by NS U
� . We identify NS U

� and U˝
B

via Lemma 2.1.
Let .�; ';U / be a RDSI, and suppose that Nu 2 U \ NS U

� is some �-stationary
input. Consistent with the convention that an overbar is used to indicate the �-
stationary process associated with a given random variable, we remove the bar to
denote the random variable associated with a given �-stationary process. So we
denote by u the random variable in U˝

B associated via Lemma 2.1 with Nu. We then
define

'u WD '.�; �; �; Nu/W T�0 �˝ �X �! X:

Lemma 2.3. 'u is a crude cocycle.

Proof. It follows from condition (I1) and [12, p. 65, Proposition 2.34] that 'u is
measurable. From (I2), 'u.t; !; �/ is continuous for each .t; !/ 2 T�0�˝ , yielding
(S1). From (I3), we know that 'u.0; !; �/ D idX for every ! 2 ˝ . So to verify (S20)
it remains to prove that 'u satisfies the “crude cocycle property.” Let Q̋ � ˝ be a
�-invariant subset of full measure such that
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.�s.Nu//t .!/ D Nut .!/; 8s; t 2 T�0; 8! 2 Q̋ : (2.16)

Fix arbitrarily ! 2 Q̋ . For any s; t 2 T�0, we have �s! 2 Q̋ by �-invariance, and
so it follows from (2.16) and (I5) that

'.t; �s!; 'u.s; !; x/; �s.Nu// D '.t; �s!; 'u.s; !; x/; Nu/:

It then follows from (I4)—see Remark 2.1—that

'u.t C s; !; x/ D '.t C s; !; x; Nu/
D '.t; �s!; '.s; !; x; Nu/; �s.Nu//
D '.t; �s!; 'u.s; !; x/; Nu/
D 'u.t; �s!; 'u.s; !; x//:

So (S20) is satisfied with ˝s WD Q̋ for every s 2 T�0. �

Proposition 2.3. If X is a locally compact and locally connected, Hausdorff
topological space, then 'u can be perfected.

Proof. This follows straight from Proposition 2.1. �

Note that, since Q̋ in the proof of Lemma 2.3 is �-invariant, so is its complement
in ˝ , namely ˝n Q̋ . So Proposition 2.3 could have also been proved directly by
redefining 'u to take an arbitrarily fixed value of x0 2 X on the set

T�0 � .˝n Q̋ / �X:
Whenever the state space X is such that 'u can be perfected, we shall assume

that 'u has already been replaced by an indistinguishable perfection and then refer
to the resulting RDS .�; 'u/.

2.3.3 Tempered Random Sets

Recall that, given a topological space X , a multifunctionDW˝ ! 2X is said to be
a random set if

D�1.U / WD f! 2 ˝I D.!/ \ U ¤ ¿g 2 F

for every open set U � X (see [16, Chap. 2]). In this work, we shall be concerned
exclusively with so-called Polish spaces; that is, separable topological spaces
generated by a metric with respect to which they are complete. In such spaces,
the definition above is known [16, p. 142, Proposition 1.4] to be equivalent to the
requirement that
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! 7�! dist.x;D.!// WD inf
y2D.!/ d.x; y/; ! 2 ˝;

defines a Borel-measurable7 map˝ ! NR�0 for each x 2 X .

Definition 2.7 (Tempered Random Variables). A nonnegative, Borel-measurable
function r W˝ ! R�0 is said to be a tempered random variable (with respect to the
underlying MPDS �) if, for every 
 > 0,

sup
s2T

r.�s!/ e�
 jsj < 1; Q8! 2 ˝:

We denote the family of nonnegative, tempered (with respect to �) random variables
˝ ! R�0 by .R�0/˝� .

Observe that we do not require the bound to be independent of ! 2 ˝ . In fact, if
it were, then r would have been essentially bounded. More precisely, suppose that,
for some 
 > 0, there exists a K
 � 0 such that

sup
s2T

r.�s!/ e�
 jsj � K
; Q8! 2 ˝:

Then

0 � r.!/ � sup
s2T

r.�s!/ e�
 jsj � K
; Q8! 2 ˝:

So r is actually essentially bounded.

Definition 2.8 (Tempered Random Set). Let .X; d/ be a metric space. A random
set DW˝ ! 2X is said to be tempered (with respect to �) if there exist x0 2 X and
a nonnegative tempered random variable r W˝ ! R�0 such that

D.!/ � fx 2 X I d.x; x0/ � r.!/g; 8! 2 ˝: (2.17)

A Borel-measurable map vW˝ ! X is said to be a tempered random variable (with
respect to �) if the random singleton defined by ! 7! fv.!/g, ! 2 ˝ , is a tempered
random set.

We denote the family of tempered (with respect to �) random sets ˝ ! 2X

by .2X/˝� . Likewise, the family of tempered (with respect to �) random variables
˝ ! X is denoted by X˝

� .

Lemma 2.4. Suppose � is an MPDS, .X; k � k/ is a normed space over R, and let
R1;R2 2 X˝

� , r 2 R
˝
� , and c 2 R. Then

7Our convention is that inf ¿ WD C1.
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(1) R1 CR2 is tempered.
(2) cR1 is tempered.
(3) rR1 is tempered; in particular, the product of two real-valued tempered random

variables is tempered.

Proof. (1) Indeed, for any 
 > 0 and any ! 2 Q̋ , we have

sup
s2T

k.R1 CR2/.�s!/ke�
 jsj � sup
s2T

kR1.�s!/ke�
 jsj C sup
s2T

kR2.�s!/ke�
 jsj

< 1;

where we write .R1 C R2/.�s!/ for R1.�s!/C R2.�s!/. So both R1 C R2 is
tempered.

(2) follows from (3), which we now prove. Given 
 > 0 and ! 2 Q̋ , apply the
definition of tempered random variable for 
=2:

sup
s2T

kr.�s!/R1.�s!/ke�
 jsj D sup
s2T

jr.�s!/je� 

2 jsjkR1.�s!/ke� 


2 jsj

�
�

sup
s2T

jr.�s!/je� 

2 jsj
��

sup
s2T

kR1.�s!/ke� 

2 jsj
�

< 1:

Thus rR1 is tempered. �

In other words, X˝
� is a real vector space, and also a module over the ring of real-

valued tempered random variables.
We now introduce concepts of convergence and continuity taking into account

the notion of temperedness just introduced.

Definition 2.9 (Tempered Convergence). Suppose � is an MPDS and .X; d/ is a
metric space. We say that a net .�˛/˛2A in X˝

B converges in the tempered sense to a
random variable �1 2 X˝

B if there exists a nonnegative, tempered random variable
r W˝ ! R�0 and an ˛0 2 A such that

(1) �˛.!/ ! �1.!/ as ˛ ! 1 for �-almost all ! 2 ˝ , and
(2) d.�˛.!/; �1.!// � r.!/ for all ˛ < ˛0, for �-almost all ! 2 ˝ .

In this case we denote �˛ !� �1 (as ˛ ! 1).

Definition 2.10 (Tempered Continuity). Suppose � is an MPDS and X;U are
metric spaces. A map K W U � U˝

B ! X˝
B is said do be tempered continuous

if K .u˛/ !� K .u1/ for every net .u˛/˛2A in U such that u˛ !� u1 for some
u1 2 U .

We close this subsection with the definition of several asymptotic behavior
concepts. Let X be a metric space. Given � 2 S X

� and 	 � 0, we call the
multifunction ˇ	� W˝ ! 2Xnf¿g, defined by
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ˇ	� .!/ WD f�t .��t!/I t � 	g; ! 2 ˝;

the tail (from moment 	) of the pullback trajectories of �. If a �-stochastic process
� 2 S X

� is such that there exists a 	� � 0 such that ˇ	� .!/ is precompact for all
	 � 	� , for �-almost all ! 2 ˝ , then we say that � is eventually precompact.
We denote the subset of all eventually precompact �-stochastic processes � 2 S X

�

by K X
� . A �-stochastic process � 2 S X

� is said to be tempered if there exists a
tempered random set D 2 .2X/˝� such that

ˇ	� .!/ � D.!/; 8	 � 0; Q8! 2 ˝I (2.18)

in other words,

�t .��t!/ D L�t .!/ 2 D.!/; 8t � 0; Q8! 2 ˝: (2.19)

AnyD 2 .2X/˝� for which the relation above holds is called a rest set. The subset of
S X
� consisting of all tempered �-stochastic processes � 2 S X

� is denoted by V X
� .

Observe that, in virtue of �-invariance, condition (2.19) is equivalent to

�t .!/ 2 D.�t!/; 8t � 0; Q8! 2 ˝:

We further motivate the concept of temperedness just introduced. The idea is to
have a term to talk about �-stochastic processes which, as far as their oscillatory
behavior is concerned, look somewhat like a �-stationary process generated by a
tempered random variable. Since this pertains to long-term behavior, this property
should be preserved by shifting or concatenating tempered stochastic processes.
Indeed, it is not difficult to show that (1) �-stationary processes generated by
tempered random variables are tempered, (2) �s.u/ is tempered for any tempered
u, and (3) u˙sv is tempered for any tempered u; v.

Definition 2.11 (Tempered RDSI). An RDSI .�; ';U / is said to be tempered if
the trajectories �x;u are tempered for every tempered initial state x 2 X˝

� and every
tempered input u 2 U .

2.3.4 Input to State Characteristics

Let .�; ';U / be an RDSI and suppose that Nu 2 U is a �-stationary process, with
generating random variable u (refer to Lemma 2.1). Any equilibrium � of the RDS
.�; 'u/ will be referred to as an equilibrium associated to Nu (or to u). The set of all
equilibria associated to Nu (or to u) is denoted as E .Nu/ (we may also write E .u/). So
an element � 2 E .Nu/ is a random variable˝ ! X such that

'u.t; ��t!; �.��t !// D �.!/; 8t � 0; Q8! 2 ˝: (2.20)
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When we have a “proper” RDS .�; '/, we write simply E for the set of equilibria of
.�; '/.

For deterministic systems—when˝ is a singleton and we may identify the set of
�-inputs U with the input space U—, if the set E .Nu/ consists of a single, globally
attracting equilibrium, then the mapping u 7! E .Nu/, u 2 U , is the object called the
“input to state characteristic” in the literature on monotone i/o systems. For systems
with outputs, composition with the output map h provides the “input to output”
characteristic [1]. One of the contributions of this work is the extension of these
concepts to RDSI’s and RDSIO’s.

In this section we introduce the notion of input to state characteristics for RDSI’s
and discuss a class of examples. Systems with outputs will be considered in greater
detail in the next section. For reasons which will be illustrated in Example 2.3
and become clearer in the proof of Theorem 2.3 (CICS), further conditions on the
convergence of the states are needed.

Definition 2.12 (I/S Characteristic). An RDSI .�; ';U / is said to have an input
to state (i/s) characteristic K WU˝

� ! X˝
� if

U˝
� � U

and

L�x;ut �!� K .u/ as t ! 1;

for every x 2 X˝
� , for every u 2 U˝

� .

Example 2.3 below illustrates the concepts of tempered RDSI (Definition 2.11)
and i/s characteristics (Definition 2.12 above). Temperedness features in said
example will be a special case (with p D 1 or p D 1) of the general result below.

Proposition 2.4. Suppose r W˝ ! R�0 is a tempered random variable. For each

 > 0 and each p 2 Œ1;1�, the map

! 7�! kr.��!/ e�
 j�j kLp.R/; ! 2 ˝;

is a tempered random variable. Moreover, temperedness bounds are uniform in p 2
Œ1;1�; that is, for each 
 > 0 and each ı > 0,

sup
p2Œ1;1�

sup
s2R

kr.���s!/ e�
 j�j kLp.R/ e�ıjsj < 1; Q8! 2 ˝:

Proof. For each � > 0, set

K�;! WD sup
s2R

r.�s!/ e��jsj
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for every ! 2 ˝ such that the supremum above is finite. Since r is tempered by
assumption, this will be true for �-almost all ! 2 ˝ .

Fix arbitrarily 
 > 0 and choose any ı > 0. We consider two different cases.
(Case 1 � p < 1) Settingm WD minf
; ıg > 0 and using the triangle inequality

we obtain

kr.���s!/ e
 j�j kLp.R/ e�ıjsj D
�Z 1

�1
jr.�tCs!/ e�
 jt j�ıjsj jp dt

�1=p

�
�Z 1

�1
jr.�tCs!/ e�mjtCsj jp dt

�1=p

� Km
2 ;!

�Z 1

�1
e� pm

2 jtCsj dtsw

�1=p

D Km
2 ;!

�

4
pm

�1=p

;

which is finite for all s 2 R, for �-almost all ! 2 ˝ . In fact, since the map

p 7�! Km
2 ;!

�

4

pm

�1=p

; 1 � p < 1; (2.21)

is continuous in p and

lim
p!1Km

2 ;!

�

4

pm

�1=p

D 1;

we then know that the map in (2.21) is bounded. Thus

M
;ı;! WD sup
p2Œ1;1/

sup
s2R

kr.���s!/ e�
 j�j kLp.R/ e�ıjsj < 1; Q8! 2 ˝:

(Case p D 1) The trick is basically the same as before. We have

kr.���s!/ e
 j�j kL1.R/ e�ıjsj D sup
t2R

r.�tCs!/ e�
 jt j�ıjsj

� sup
t2R

r.�tCs!/ e�mjtCsj

D Km;!;

which is finite for all s 2 R, for �-almost all ! 2 ˝ .
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Combining both cases we conclude that

sup
p2Œ1;1�

sup
s2R

kr.���s!/ e�
 j�j kLp.R/ e�ıjsj D maxfM
;ı;!;Km;!g;

which is finite for �-almost all ! 2 ˝ . Since 
; ı > 0 were chosen arbitrarily, this
completes the proof. �

Example 2.3 (I/S Characteristics for RDSI’s Generated by Linear RDEI’s). Con-
sider the RDSI .�; ';S U1/ from Example 2.2, generated by the RDEI

P� D A.�t!/� C B.�t!/ut .!/; t � 0; u 2 S U1; (2.22)

where X D R
n, U D R

k , and AW˝ ! R
n�n and BW˝ ! R

n�k are random
matrices such that

t 7�! A.�t!/; t � 0; and t 7�! B.�t!/; t � 0;

are locally essentially bounded for every ! 2 ˝ . Now suppose in addition thatA;B
are such that

(L1) B is tempered and
(L2) there exist a � > 0 and a nonnegative, tempered random variable 
 2 .R�/˝�

such that the fundamental matrix solution� of the homogeneous part of (2.22)
satisfies

k�.s; s C r; !/k � 
.�s!/ e��r ; 8s 2 R; 8r � 0; Q8! 2 ˝:

Then .�; ';S U1/ is tempered (in the sense of Definition 2.11) and has a continuous
input to state characteristic K WU˝

� ! X˝
� (refer to Definition 2.12). We will prove

this in several steps, indicated below.
Construction of K WU˝

� ! X˝
� . We first claim that the limit

lim
t!1

L�x;Nut .!/ D
Z 0

�1
�.�; 0; !/B.��!/u.��!/ d� (2.23)

exists for each x 2 X˝
� and each u 2 U˝

� , for �-almost ! 2 ˝ . Let ˚ and 
 be as
in Example 2.2, so that we may write

'.t; !; x; u/ � ˚.t; !; x/C 
.t; !; u/:

So it is enough to show that

lim
t!1˚.t; ��t!; x.��t!// D 0; 8x 2 X˝

� ;
Q8! 2 ˝; (2.24)
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and that

lim
t!1
.t; ��t!; Nu/ D

Z 0

�1
�.�; 0; !/B.��!/u.��!/ d�; 8u 2 U˝

� ;
Q8! 2 ˝:

(2.25)
Fix arbitrarily x 2 X˝

� and let ! 2 ˝ be such that

K!;�2 ;x
WD sup

s2R

.�s!/jx.�s!/j e� �

2 jsj < 1; (2.26)

where � > 0 and 
 nonnegative and tempered are given by (L2). Combining (L2)
and (2.26), we obtain

j˚.t; ��t!; x.��t!//j D j�.0; t; ��t!/ � x.��t!/j
� 
.��t!/ e��t jx.��t!/j

D
�


.��t!/jx.��t!/j e� �
2 j�t j

�

e� �
2 t

� K!; �2 ;x
e� �

2 t ; 8t � 0:

Hence

j˚.t; ��t!; x.��t !//j �! 0 as t ! 1:

Since K!;�2 ;x
is finite for �-almost all ! 2 ˝—recall that, by Lemma 2.4(3),

the product of two tempered random variables is tempered—, this holds �-almost
everywhere. So since x 2 X˝

� was chosen arbitrarily, this proves (2.24).
Now fix arbitrarily u 2 U˝

� . Then by (F2) and a change of variables,


.t; ��t!; Nu/ D
Z t

0

�.�; t; ��t !/B.���t !/u.���t!/ d�

D
Z t

0

�.� � t; 0; !/B.���t !/u.���t!/ d�

D
Z 0

�t
�.�; 0; !/B.��!/u.��!/ d�; 8.t; !/ 2 R�0 �˝:

In virtue of (L2), for each ! 2 ˝ such that

L!; �2 ;u
WD sup

s2R

.�s!/kB.�s!/k � ju.�s!/j e� �

2 jsj < 1; (2.27)

we have

j�.�; 0; !/B.��!/u.��!/j � 
.��!/ e��j� j kB.��!/k � ju.��!/j

� L!; �2 ;u
e� �

2 j� j; 8� 2 R:
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Since

� 7�! L!; �2 ;u
e� �

2 j� j; � 2 R;

is integrable on .�1;1/, so is

� 7�! �.�; 0; !/B.��!/u.��!/; � 2 R:

In particular, it follows from dominated convergence that the limit

limt!1 
.t; ��t!; Nu/ D lim
t!1

Z 0

�t
�.�; 0; !/B.��!/u.��!/ d�

D
Z 0

�1
�.�; 0; !/B.��!/u.��!/ d�

exists. Finally, observe that, for each u 2 U˝
� , L!; �2 ;u

as defined in (2.27) is finite
for �-almost all ! 2 ˝ . This establishes (2.25). We have then proved that (2.23)
holds for each x 2 X˝

� and each u 2 U˝
� , for �-almost all ! 2 ˝ .

Define K WU˝
� ! X˝

B by

.K .u//.!/ WD
Z 0

�1
�.�; 0; !/B.��!/u.��!/ d�; Q8! 2 ˝:

It remains to show that K .U˝
� / � X˝

� . Indeed, fix u 2 U˝
� arbitrarily. It follows

from the computations above that

j.K .u//.!/j �
Z 0

�1

.��!/kB.��!/k � ju.��!/j e��j� j d�

�
Z 1

�1

.��!/kB.��!/k � ju.��!/j e��j� j d�

D k.
kBk � juj/.��!/ e��j�j kL1.R/; Q8! 2 ˝:
From Proposition 2.4,

! 7�! k.
kBk � juj/.��!/ e��j�j kL1.R/; ! 2 ˝;
is tempered. Thus K .u/ is also tempered.

K is an i/s characteristic. To show that K is an i/s characteristic, it remains to
show that the convergence in both (2.24) and (2.25) is tempered.

Fix x 2 X˝
� arbitrarily. From the estimates above, we have

j˚.t; ��t!; x.��t!//j � 
.��t!/jx.��t!/j e��t

� sup
s2R


.�s!/jx.�s!/j e��jsj

D k.
 jxj/.��!/ e��j�j kL1.R/; 8t � 0; Q8! 2 ˝:
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It follows from Proposition 2.4 (applied with p D 1) that

! 7�! k.
 jxj/.��!/ e��j�j kL1.R/; ! 2 ˝;

is tempered. We conclude that the convergence in (2.24) is tempered.
Similarly, for any arbitrarily fixed u 2 U˝

� , we have

j
.t; ��t!; Nu/� .K .u//.!/j D
ˇ

ˇ

ˇ

ˇ

Z �t

�1
�.�; 0; !/B.��!/ � u.��!/ d�

ˇ

ˇ

ˇ

ˇ

�
Z 1

�1
j�.�; 0; !/B.��!/ � u.��!/j d�

D k.
kBk � juj/.��!/ e��j�j kL1.R/
for all t � 0 and �-almost all ! 2 ˝ . As we saw above, the rightmost term in
these inequalities is a tempered random variable. So the convergence in (2.25) is
also tempered.

K is continuous. Suppose that u˛ !� u1 2 U˝
� for some net .u˛/˛2A in U˝

� .
Let ˛0 2 A and r 2 .R�0/˝� be such that

ju˛.!/ � u1.!/j � r.!/; 8˛ � ˛0; Q8! 2 ˝:

Then

j.K .u˛//.!/ � .K .u1//.!/j

D
ˇ

ˇ

ˇ

ˇ

Z 0

�1
�.�; 0; !/B.��!/ � .u˛.��!/ � u1.��!// d�

ˇ

ˇ

ˇ

ˇ

�
Z 1

�1
k�.�; 0; !/B.��!/k � r.��!/ d�

for every ˛ � ˛0, for �-almost all ! 2 ˝ . As above, we can combine (L2), the
temperedness of 
 , B and r , Lemma 2.4(3) and Proposition 2.4 to conclude that

! 7�! k�.�; 0; !/B.��!/k � r.��!/; ! 2 ˝;

is integrable for �-almost all ! 2 ˝ , and that the map

! 7�!
Z 1

�1
k�.�; 0; !/B.��!/k � r.��!/ d�; ! 2 ˝;

is tempered. In particular, since

ju˛.!/ � u1.!/j �! 0 as ˛ ! 1; Q8! 2 ˝;
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it follows from dominated convergence that the map

j.K .u˛//.!/ � .K .u1//.!/j �! 0 as ˛ ! 1; Q8! 2 ˝;

as well. This shows that K .u˛/ !� K .u1/. Since u1 2 U˝
� and the net .u˛/˛2A

converging to it were arbitrary, this shows K is continuous.
' is tempered. The argument here goes along the same lines. Fix arbitrarily any

tempered input u 2 S U1 and any tempered initial state x 2 X˝
� . When we were

showing that K is an i/s characteristic above, we saw that

j˚.t; ��t!; x.��t!//j � r1.!/; 8t � 0; Q8! 2 ˝;

where r1W˝ ! R�0 is a tempered random variable defined by

r1.!/ WD k.
 jxj/.��!/ e��j�j kL1.R/; ! 2 ˝:

Now let D 2 .2U /˝� be a (tempered) rest set for u. Let r 2 .R�0/˝� be such that

D.!/ � fu 2 U I kuk � r.!/g; 8! 2 ˝:

Thus indeed

kut .��t!/k � r.!/; 8t � 0; Q8! 2 ˝:
Then

j
.t; ��t!; u/j D
ˇ

ˇ

ˇ

ˇ

Z t

0

�.�; t; ��t !/B.���t !/u�.��t!/ d�
ˇ

ˇ

ˇ

ˇ

�
Z t

0

k�.�; t; ��t !/B.���t !/k � ju�.������t!/j d�

�
Z t

0

k�.� � t; 0; !/B.���t !/k � r.���t!/ d�

�
Z 1

�1
k�.�; 0; !/B.��!/k � r.��!/ d�; 8t � 0; Q8! 2 ˝:

The argument repeatedly applied above shows that the map r2W˝ ! R�0 defined
by

r2.!/ WD
Z 1

�1
k�.�; 0; !/B.��!/k � r.��!/ d�; ! 2 ˝;

is tempered. Now r1 C r2 is tempered and we have

j L�x;ut .!/j D j'.t; ��t ; x.��t!/; u/j � r1.!/C r2.!/; 8t � 0; Q8! 2 ˝:
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This proves that �x;u is tempered. Since u tempered and x tempered were chosen
arbitrarily, this completes the proof that ' is a tempered cocycle.

Remark 2.2. If kA.�/k 2 L1.˝;F ;P/, the largest eigenvalue �.�/ of the Hermitian
part of A.�/ is such that

E� WD
Z

˝

�.!/ dP.!/ < 0;

and the underlying MPDS � is ergodic, then it follows from [5, p. 60, Theorem 2.1.2]
that (L2) holds with � WD �.E�C "/ for any choice of " 2 .0;�E�/. �

2.4 Monotone RDSI’s

Suppose that .X;�/ is a partially ordered space. For any a; b 2 X˝
B , we write a � b

to mean that a.!/ � b.!/ for �-almost all ! 2 ˝ . Similarly, for any p; q 2 S X
� ,

we write p � q to mean that p.t; !/ � q.t; !/ for all t � 0, for �-almost all ! 2 ˝ .
Observe that this convention naturally induces partial orders in X˝

B and S X
� .

Definition 2.13 (Monotone RDSI). An RDSI .�; ';U / is said to be monotone if
the underlying state and input spaces are partially ordered spaces .X;�X/, .U;�U /,
and

'.�; �; x.�/; u/ �X '.�; �; z.�/; v/

whenever x; z 2 X˝
B and u; v 2 U are such that x �X z and u �U v.

In particular, if

'.t; !; x; u/ �X '.t; !; z; v/

holds for every t � 0, every ! 2 ˝ , and every x; z 2 X and u; v 2 U such that
x �X z and u �U v, then it follows that .�; ';U / is monotone as per definition
above.

Most of the time the underlying partially ordered space will be clear from the
context. So unless there is any risk of confusion, we shall often drop the indices in
“ �X ” and “ �U ,” and write simply “ � .”

Proposition 2.5. If an RDSI .�; ';U / is monotone and has an i/s characteristic
K WU˝

� ! X˝
� , then K is order-preserving; in other words, if u; v 2 U˝

� and
u � v, then K .u/ � K .v/.

Proof. The proof is straightforward, and we emphasize its main purpose of pointing
out a subtlety in Definition 2.13 which might have otherwise gone overlooked. Pick
any u; v 2 U˝

� such that u � v, and fix x 2 X˝
� arbitrarily. Then x � x, and Nu � Nv.
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By Definition 2.13, there exists a �-invariant subset of full-measure Q̋ � ˝ such
that

'.t; !; x.!/; Nu/ � '.t; !; x.!/; Nv/; 8t � 0; 8! 2 Q̋ :

Thus

'.t; ��t!; x.��t!/; Nu/ � '.t; ��t!; x.��t!/; Nv/; 8t � 0; 8! 2 Q̋ ;

in view of the �-invariance of Q̋ . The result then follows by taking the limit as
t ! 1 on both sides of the inequality above for each fixed ! 2 Q̋ . (Recall that,
from the definition of i/s characteristic, such limits exist for �-almost all ! 2 ˝ .) �

2.4.1 Converging Input to Converging State

The “converging input to converging state” result below was first stated and
proved for deterministic and finite-dimensional “monotone control systems” by
Angeli and Sontag [1, Proposition V.5(2)]. In [10, Theorem 1], Enciso and Sontag
explore normality to extend the result to infinite-dimensional systems. Replacing the
geometric properties in [10] by minihedrality and adding a compactness assumption
it is possible to extend this result to monotone RDSI’s.

Recall that a (closed) cone in a vector space X is a subset XC � X such that
XC CXC � X , cXC � XC for every c � 0, andXC \ .�XC/ D ¿. The coneXC
induces a partial order �X in X , defined by

x �X y , y � x 2 XC:

A cone is said to be solid if it has nonempty interior, and minihedral if every finite
subset has a supremum. If X is a normed space, then XC is said to be normal if
there exists a constant k � 0 such that 0 � x � y implies kxk � kkyk.

Theorem 2.3 (Random CICS). Suppose that X and U are separable Banach
spaces, partially ordered by solid, normal, minihedral conesXC � X andUC � U ,
respectively. Let .�; ';U / be a tempered, monotone RDSI with state space X and
input space U , and suppose that ' has a continuous i/s characteristic K WU˝

� !
X˝
� . If u 2 U and u1 2 U˝

� are such that

(i) u is tempered and eventually precompact, and
(ii) Lut �!� u1 as t ! 1,

then

L�x;ut �!� K .u1/ as t ! 1; 8x 2 X˝
� : (2.28)
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In other words, if the pullback trajectories of u are eventually precompact and
converge to u1 in the tempered sense, then the pullback trajectories of ' subject
to u and starting at any tempered random state x will converge to K .u1/ in the
tempered sense as well.

Proof. Fix arbitrarily x 2 X˝
� . From (i), u is tempered. Since ' is assumed to be

tempered, the �-stochastic process �x;u is also tempered (see Definition 2.11). In
particular,

kL�x;ut .�/� .K .u1//.�/k � kL�x;ut .�/k C k.K .u1//.�/k;

which is in turn bounded by a nonnegative tempered random variable for large
enough values of t � 0. Thus in order to prove the tempered convergence in (2.28),
it remains to show the pointwise convergence; in other words, we need only show
that

L�x;ut .!/ �! �

K .u1/
�

.!/ as t ! 1; Q8! 2 ˝: (2.29)

This will require some setting up.
Since UC is solid and normal, it follows from temperedness and Proposition [5,

p. 89, Proposition 3.2.2] that there exist a tempered random variable vW˝ ! intUC
and a tu � 0 such that

Lut .!/ 2 Œ�v.!/; v.!/�; 8t � tu; Q8! 2 ˝:

Moreover, Œ�v; v� is a random closed set by Proposition [5, p. 88, Proposi-
tion 3.2.1](1); in particular, it is a random set. So Œ�v; v� is indeed a tempered
random set—temperedness follows from normality. In view of the assumption (i)
that u is eventually precompact, by picking a larger tu, if necessary, we may assume
without loss of generality that ˇtuu .!/ is precompact for �-almost all ! 2 ˝ .

Let .a	 /	�tu and .b	 /	�tu be, respectively, lower and upper tails of the pullback
trajectories of u:

a	.!/ WD inf
t�	 ut .��t!/ D infˇ	u .!/; 	 � tu;

and

b	 .!/ WD sup
t�	

ut .��t!/ D supˇ	u .!/; 	 � tu;

for each ! 2 ˝ such that ˇtuu .!/ is precompact. It follows from the hypotheses that
U is separable and UC is minihedral that the lower and upper tails of the pullback
trajectories of u are well-defined, and the maps ! 7! a	.!/, ! 2 ˝ , and ! 7!
b	 .!/, ! 2 ˝ , are measurable for each 	 � tu (see [5, Theorem 3.2.1, p. 90]). For
each 	 � tu, we have a	 ; b	 2 Œ�v; v�. Thus by normality a	 ; b	 are indeed tempered
random variables. Moreover,
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a	 ; b	 �!� u1 as 	 ! 1; (2.30)

which also follows by normality.
For each 	 � tu, let Na	 ; Nb	 be the �-stationary processes generated by a	 ; b	 ,

respectively. Then

. Na	/s.!/ D a	 .�s!/ D inf
t�	 ut .��t �s!/ � u	Cs.��.	Cs/�s!/ D .�	 .u//s.!/

and, similarly,

.�	 .u//s.!/ � . Nb	 /s.!/; 8	 � tu; 8s � 0; 8! 2 ˝:

Thus

Na	 � �	 .u/ � Nb	 ; 8	 � tu: (2.31)

We now return to (2.29). Using the cocycle property, we may rewrite

L�x;ut .!/ D '.t � 	; ��.t�	/!; '.	; ��t!; x.��t!/; u/; �	 .u//

D '.t � 	; ��.t�	/!; x	 .��.t�	/!/; �	 .u//

D L�x	 ;�	 .u/t�	 .!/; 8! 2 ˝; 8t � 	 � tu;

where x	 2 X˝
� is defined by x	 WD L�x;u	 . Therefore

kL�x;u	Cs.!/� .K .u1//.!/k D kL�x	 ;�	 .u/s .!/ � .K .u1//.!/k

for every ! 2 ˝ , for all s � 0, for all 	 � tu. For any such !; s; 	 , we have

kL�x	 ;�	 .u/s .!/ � .K .u1//.!/k � kL�x	 ;�	 .u/s .!/ � L�x	 ; Na	s .!/k
CkL�x	 ; Na	s .!/� .K .a	 //.!/k
Ck.K .a	 //.!/ � .K .u1//.!/k:

From (2.30) and the continuity of K , there exist �-invariant subsets Q̋
a and Q̋

b

of full measure of ˝ such that

k.K .a	 //.!/ � .K .u1//.!/k �! 0; as 	 ! 1; 8! 2 Q̋
a;

and

k.K .b	 //.!/ � .K .u1//.!/k �! 0; as 	 ! 1; 8! 2 Q̋
b:
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Similarly, from the definition of i/s characteristic, for any integer n � tu, there exist
�-invariant subsets Q̋

a;n and Q̋
b;n of full measure of ˝ such that

kL�xn; Nans .!/ � .K .an//.!/k �! 0; as s ! 1; 8! 2 Q̋
a;n;

and

kL�xn; Nbns .!/� .K .bn//.!/k �! 0; as s ! 1; 8! 2 Q̋
b;n:

Now by (2.31) and monotonicity, for each integer n � tu, there exists a �-invariant
subset of full measure Q̋ �;n � ˝ such that

L�xn; Nans .!/ � L�xn;�n.u/s .!/ � L�xn; Nbns .!/; 8s � 0; 8! 2 Q̋ �;n:

Let8

Q̋ WD Q̋
a \ Q̋

b \
0

@

1
\

nDdtue
Q̋
a;n

1

A \
0

@

1
\

nDdtue
Q̋
b;n

1

A \
0

@

1
\

nDdtue
Q̋ �;n

1

A :

Thus Q̋ is a countable intersection of �-invariant subsets of full measure of ˝
and, hence, itself a �-invariant subset of full measure of ˝ . We shall show that
convergence in (2.29) occurs for every ! 2 Q̋ .

Fix arbitrarily an ! 2 Q̋ and a positive integer k. It follows from the construction
of Q̋ that there exists an integer nk � tu such that

k.K .a	 //.!/� .K .u1//.!/k < 1=k; 8	 � nk;

and

k.K .b	 //.!/� .K .u1//.!/k < 1=k; 8	 � nk:

Now we can use the convergence in the definition of i/s characteristic to choose an
sk � 0 such that

kL�xnk ; Nanks .!/� .K .ank //.!/k < 1=k; 8s � sk;

and

kL�xnk ; Nbnks .!/ � .K .bnk //.!/k < 1=k; 8s � sk:

8For any x 2 R, we write dxe to denote the smallest integer larger than or equal to x.
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Again from the construction of Q̋ , we have

L�xnk ; Nanks .!/ � L�xnk ;�nk .u/s .!/ � L�xnk ; Nbnks .!/; 8s � 0:

Thus

kL�xnk ;�nk .u/s .!/ � L�xnk ; Nanks .!/k � CkL�xnk ; Nbnks .!/� L�xnk ; Nanks .!/k; 8s � 0;

where C � 0 is the normality constant for UC. Now

kL�xnk ; Nbnks .!/ � L�xnk ; Nanks .!/k � kL�xnk ; Nbnks .!/ � .K .bnk //.!/k
Ck.K .bnk //.!/� .K .u1//.!/k
Ck.K .u1//.!/ � .K .ank //.!/k
Ck.K .ank //.!/ � L�xnk ; Nanks .!/k

� 4=k; 8s � sk:

We conclude that

kL�x;ut .!/ � .K .u1//.!/k D kL�xnk ;�nk .u/t�nk .!/ � .K .u1//.!/k
� kL�xnk ;�nk .u/t�nk .!/ � L�xnk ; Nankt�nk .!/k

CkL�xnk ; Nankt�nk .!/ � .K .ank //.!/k
Ck.K .ank //.!/ � .K .u1//.!/k

< 4C=k C 1=k C 1=k

D .4C C 2/=k; 8t � nk C sk:

Since ! 2 Q̋ and the positive integer k were chosen arbitrarily, this completes the
proof. �

2.4.2 Cascades

We now discuss a few applications of the “converging input to converging state”
theorem just proved. Separate work in preparation deals with a small-gain theorem
for random dynamical systems, a brief outline of which will be given at the end of
the chapter.

Let .�;  / be an autonomous RDS evolving on a space Z D X1 � X2. We say
that .�;  / is cascaded if the flow  can be decomposed as
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 .t; !; .x1.!/; x2.!/// �
�

'1.t; !; x1.!//

'2.t; !; x2.!/; .�1/
x1/

�

;

for some RDSO .�; '1; h1/ with state space X1 and output space Y1, and some
RDSI .�; '2;U2/ with state space X2, input space U2 D Y1, and set of �-inputs
U2 containing all (forward) output trajectories of .�; '1; h1/. In this case we write
 D '1 Ë '2. Recall from item (1) in Theorem 2.2 that if the generator of a
discrete RDS can be decomposed as in (2.14), then this RDS is a cascade. A similar
decomposition can be done for systems generated by RDEI’s whose generator
satisfies the natural analogues of (2.14).

Example 2.4 (Bounded Outputs). Let .�;  / WD .�; '1 Ë '2/ be a cascaded RDS as
above. Suppose that .�; '1; h1/ is an RDSO evolving on a normed space X1, and
such that .�; '1/ has a unique, globally attracting equilibrium .�1/1 2 X˝

B :

. L�1/x1t .!/ �! .�1/1.!/; as t ! 1; Q8! 2 ˝; 8x1 2 .X1/˝B:

Now suppose that .�; '2;U2/ is an RDSI satisfying the hypotheses of Theorem 2.3,
and that the output function h1 is bounded; in other words, there existsM � 0 such
that

kh1.!; x1/k � M; 8x1 2 X1; Q8! 2 ˝:

We prove that .�;  / has a unique equilibrium which is attracting for all tempered
random initial states.

By continuity of h with respect to the state variable, we have

. L�1/x1t .!/ D h1.!; . L�1/x1t .!//
�! h1.!; .�1/1.!//; as t ! 1; Q8! 2 ˝; 8x1 2 .X1/˝B:

Since h1 is bounded, the convergence and the limit are automatically tempered. Thus

L�z
t .!/ �!

�

.�1/1.!/
K ..u2/1/.!/

�

as t ! 1; Q8! 2 ˝; 8z 2 Z˝
� ;

by Theorem 2.3. In particular, the convergence in the second coordinate is tempered.
For conditions guaranteeing that an RDS .�; '/ would have a unique, globally

attracting equilibrium in the sense above, see [4, Theorem 3.2]. The assumption that
the output is bounded is very reasonable in biological applications, since there is
often a cut off or saturation in the reading of the strength of a signal.

Before we consider the next example, we develop a stronger notion of regularity
for output functions than continuity with respect to the state variable. We seek a
property which preserves tempered convergence, and which we could check it holds
in specific examples.
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Definition 2.14 (Tempered Lipschitz). An output function hW˝ �X ! Y is said
to be tempered Lipschitz (with respect to a given MPDS �) if there exists a tempered
random variable L 2 .R�0/˝� such that

kh.!; x1/ � h.!; x2/k � L.!/kx1 � x2k; 8x1; x2 2 X; Q8! 2 ˝:

We refer to L as a Lipschitz random variable for h.

For example, suppose that X � R
n, and that hW˝ �X ! R

k is an output function
such that h.!; �/ is differentiable for all ! in a �-invariant set of full measure Q̋ �
˝ . If the norm of the Jacobian with respect to x,

! 7�! kDxh.!; �/k WD sup
x2X

jDxh.!; x/j; ! 2 ˝;

is finite and tempered, then h is tempered Lipschitz.

Lemma 2.5. Let hW˝ �X ! Y be a tempered Lipschitz output function, p 2 S X
�

be a �-stochastic process in X , and let p1 2 X˝
B . Let qW T�0 � ˝ ! Y be the

�-stochastic process in Y defined by

qt .!/ WD h.!; pt .!//; .t; !/ 2 T�0 �˝;

and q1 2 Y ˝B.Y / be the random variable in Y defined by

q1.!/ WD h.!; p1.!//; ! 2 ˝:

If pt !� p1, then qt !� q1.

Proof. It follows from continuity with respect to x 2 X that

qt .!/ D h.!; pt .!// �! h.!; p1.!// D p1.!/ as t ! 1; Q8! 2 ˝:

Now because pt !� p1, there exist r 2 .R�0/˝� and t0 � 0 such that

kpt .!/ � p1.!/k � r.!/; 8t � t0; Q8! 2 ˝:

Let L be a Lipschitz random variable for h. Then

kqt .!/� q1.!/k D kh.!; pt .!// � h.!; p1.!//k
� L.!/kpt .!/ � p1.!/k
� L.!/r.!/; 8t � t0; Q8! 2 ˝:

By item (3) in Lemma 2.4, Lr is tempered, completing the proof. �
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Now suppose that .�;  ;U / is an RDSI evolving on a state space Z D X1 �X2.
In this case we say that .�;  ;U / is cascaded if the flow  can be decomposed as

 .t; !; .x1.!/; x2.!//; u/ �
�

'1.t; !; x1.!/; u/
'2.t; !; x2.!/; .�1/

x1;u/

�

;

for some RDSIO .�; '1;U1; h1/ with state space X1, set of �-inputs U1 D U
and output space Y1, and some RDSI .�; '2;U2/ with state space X2, input space
U2 D Y1, and set of �-inputs U2 containing all (forward) output trajectories of
.�; '1;U1; h1/. In this case we also write  D '1 Ë '2. Item (1) in Theorem 2.2 can
be generalized to contemplate this kind of cascades for discrete systems, as well as
systems generated by random differential equations.

Example 2.5 (Tempered Lipschitz Outputs). Suppose that (�; '1;U1) and (�; '2;U2)
in the decomposition above satisfy both the hypotheses of Theorem 2.3. If the output
function h1 is Lipschitz continuous, then .�;  ;U / also has the “converging input
to converging state” property; that is, if u 2 U is such that Lut !� u1 for some
u1 2 U˝

� , then there exists a �1 2 Z˝
� such that

L�z;u
t �!� �1; 8z 2 Z˝

� ; (2.32)

as well.
To see this, let K1W .U1/˝� ! .X1/

˝
� and K2W .U2/˝� ! .X2/

˝
� be the i/s

characteristics of .�; '1;U1/ and .�; '2;U2/, respectively. Fix

z D .x1; x2/ 2 Z˝
� D .X1/

˝
� � .X2/˝�

arbitrarily. From Theorem 2.3, we have

. L�1/x1;ut �!� K1.u1/:

Since h1 is tempered Lipschitz, it follows from Lemma 2.5 that

. L�1/x1;ut �!� .u2/1;

where

.u2/1 WD h1.�;K1.u1/.�//:

It follows, again from Theorem 2.3, that

. L�2/x2;.�1/
x1;u

t �!� K2..u2/1/:
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Hence

L�z;u
t D

 

. L�1/x1;ut

. L�2/x2;.�1/
x1;u

t

!

�!�

�

K1.u1/
K2..u2/1/

�

:

Since z 2 Z˝
� was picked arbitrarily, this establishes (2.32).

The procedure above can be generalized to cascades of three or more systems to
show that the “converging input to converging state” property will hold provided that
it holds for its individual components—and the intermediate outputs are tempered
Lipschitz. In Example 2.3, suppose we assume, in addition, that the off-diagonal
entries of A and all entries of B are nonnegative �-almost everywhere. Then the
RDSI generated by the RDEI in the example is monotone and thus satisfies the
hypotheses of Theorem 2.3. Tempered Lipschitz output functions are not difficult to
come by, as we pointed out above. This yields a class of cascaded systems having
the “converging input to converging state” property.

A couple more remarks about this example are in order. A cascade of monotone
systems need not itself be monotone. So the construction above provides us with
a way of checking the “converging input to converging state” property for systems
which do not directly satisfy the hypotheses of Theorem 2.3. But even if it would
be possible to check it directly that .�; ';U / already satisfies the hypotheses of
Theorem 2.3, it might be easier to check them for each component—for instance,
if .�; ';U / can be decomposed as a cascade of linear systems linked by (possibly
nonlinear) tempered Lipschitz output functions.

We have illustrated in Examples 2.4 and 2.5 how one may obtain global
convergence results for systems decomposable into cascades, as discussed in the
Introduction. Further work in preparation deals with “closed loop” systems, and
how “converging input to converging state” property can be used to prove small-
gain theorems for such systems. Below we provide a brief outline of the idea.

2.4.3 Small-Gain Theorem

A small-gain theorem for the closed-loop of monotone RDSIO’s with anti-monotone
outputs follows along the lines of the deterministic case [1, 10]. Assuming the
input and output spaces coincide, one defines an “input to output characteristic”
K Y WU˝

� ! U˝
� by composing the i/s characteristic (assuming, of course the

underlying RDSI has one) with the output function h in the natural way:

�

K Y .u/
�

.!/ WD h.!;
�

K .u/
�

.!//; u 2 U˝
� ; ! 2 ˝:

If the iterates .K Y /.k/.u/ WD .K Y ı � � � ı K Y /.u/ (k times) of K Y converge to a
unique equilibrium u1 (“small-gain condition”), then every eventually precompact
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solution of the closed-loop system converges to K .u1/, the state characteristic
corresponding to the input u1.

A proof as in [1, 10] goes by appealing to the random CICS property for
monotone RDSI’s above, after establishing a contraction property on the “limsup”
and “liminf” (defined analogously as in these references) of external signals. Mild
technical assumptions on the state and input/output spaces guarantee that said
limsup’s and liminf’s are well-defined and measurable. Reasonable (“polynomial
temperedness”) growth conditions on the outputs guarantee that the input to output
characteristic is well-defined as a map U˝

� ! U˝
� (preserves temperedness).

Separate work in preparation will provide all the details and several examples.
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