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Abstract 

This paper suggests the use of Fourier-type activation functions in fully recurrent neural 
networks. The main theoretical advantage is that, in principle, the problem of recovering 
internal coefficients from input/output data is solvable in closed form. 
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1. Introduction 

Neural networks provide a useful approach to parallel computation. The subclass 
of recurrent architectures is characterized by the inclusion of feedback loops in the 
information flow among processing units. With feedback, one may exploit context- 
sensitivity and memory, characteristics essential in sequence processing as well as in 
the modeling and control of processes involving dynamical elements. Recent theoret- 
ical results about neural networks have established their universality as models for 
systems approximation as well as analog computing devices (see e.g. [16,13]). 

The use of recurrent networks has been proposed in areas as varied as the design of 
control laws for robotic manipulators, in speech recognition, speaker identification, 
formal language inference, and sequence extrapolation for time series predictions. 
In spite of their attractive features, recurrent networks have not yet attained as much 
popularity as one might e%pgct, compared to the feedforward nets so ubiquitous in 
other applications. One important reason for this is that training (“learning”) 
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algorithms for recurrent nets suffer from serious potential limitations. The learning 
problem is that of finding parameters that “fit” a general form to training (experi- 
mental) data, with the goal of obtaining a model which can subsequently be used for 
pattern recognition and classification, or for extrapolation of numerical values. 

Various learning methodologies for recurrent networks have been proposed in the 
literature, and have been used in applications. All algorithms attempt to achieve the 
optimization of a penalty criterion by means of steepest descent, but due to memory 
and speed constraints, they usually only involve an estimate of the gradient. They 
differ on the approximation used, and thus on their memory requirements and 
convergence behavior. Among these are “recurrent back propagation”, “backpropa- 
gation through time”, and the “real time recurrent learning” algorithm. In complex 
applications involving large models, it is difficult to simultaneously achieve good 
convergence speeds and reasonable accuracy. 

It has been pointed out by many authors that the field of control theory, with its 
emphasis on dynamics and optimization, is naturally related to recurrent nets. It was 
shown that at least some algebraic issues such as testing for identifiability and 
observability of system parameters can be handled analogously to the case of linear 
systems (see [l-3]). In a related context, recurrent net models have been proposed, 
and used by many authors, for adaptive control and system identification applications 
(see e.g. [lo, 121). In this paper, we propose a control theory-based technique for the 
initial estimation of weights. Most implementations of recurrent network learning 
algorithms assume a random initialization of weights. We suggest instead the use of 
nontrivial techniques from nonlinear synthesis, based on mathematical developments 
that have taken place during the past few years, for the initial choice of such weights. 

1.1. Comparison with linear systems 

Historically, linear systems have been used to approximate various nonlinear 
systems since the parameters can be identified easily. Linear system identification is 
a well-established and widely used tool; see for instance [9]. In broad ranges of 
operation, linearity is a reasonable simplification, as the success of the linear theory 
attests to. However, linear systems are limited. Most real world processes are in- 
herently nonlinear. In many areas, linear simplifications are not valid, which means 
that nonlinear approaches must be tried. 

In searching for a canonical form for approximating all nonlinear systems, we 
would like a class of nonlinear dynamical systems that is representationally rich, like 
recurrent neural nets, but at the same time parameter-identifiable, like linear systems. 
At the very least we want a class for which realization (noise-free identification) 
algorithms are simple, and an algebraic structure theory similar to that available for 
linear systems is possible. 

Motivated by this need to broaden the scope of the linear theory, and to utilize the 
advantages of neural nets, this paper aims to describe the development of techniques 
for parameter reconstruction in a class of nonlinear systems that we call Fourier- 
neural recurrent networks. The main departure from current practice in neural net- 
works is that we suggest the use of sine and cosine activations (or, more precisely, 
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because it makes the theoretical development far simpler, a complex-exponential) 
rather than the “sigmoids” that are used in most applications. This allows the design 
of parameter identification methods in closed-form. Within the resulting mathemat- 
ical class of system models, parameter reconstruction can be accomplished in a theor- 
etically justified and methodical fashion, at least in the noise-free case and if the 
responses to appropriate regularly spaced inputs can be obtained. 

This work is a first step towards an eventual theory of identification from noisy data 
for such systems. Viewing a system outside our class as a “noisy version” of a recurrent 
net, just as is routinely done when using linear techniques for nonlinear plants, may 
allow this approach to be broadly applicable. The approximation theorems in 
[15, 173, justify such potential applications. In those papers, sigmoidal activation 
functions are used, but the theory can be adapted to the complex exponential 
activation functions used here. 

1.2. The approach here 

The approach taken here is inspired by the major developments in [l] (for 
continuous-time) and [2] (for discrete-time) that internal coefficients or “weights” of 
a recurrent net can be determined from external dynamical behavior in an essentially 
unique manner. Even though intrinsically nonlinear, the actual implementation of the 
algorithm involves a number of subtasks that are routinely carried out in linear 
identification theory, an area of control engineering that has had major practical 
successes, as remarked above. 

We show that the parameters of an exp-system can be identified using a technique 
that avoids all the pitfalls of gradient descent, at least assuming low noise and 
a judicious choice of test inputs (“learning with queries”). Section 7 describes a pre- 
liminary computer implementation of the algorithm described in Section 5 utilizing 
averaging in order to handle a small amount of noise. Section 7 also includes 
simulation results. 

2. Main results 

We first define general dynamic systems, since many concepts can be defined at that 
level of generality, and then specialize to recurrent networks. 

A discrete-time initialized input/output dynamical system consists of a state space 
% with an initial state x0, an input value space a!, an output value space Y, and 
a transition functionf: % x ??L --f L4? that computes the state at time t + 1 from the state 
and input values at time t. There is also an output function h : X -+ Y that assigns an 
output value to the current state. The equations are written as 

x(t + 1) =f(x(O, n(r)), y(r) = 4x(t)). 

The dimension of the state space !K is called the dimension of the system. 
The system model that we deal with here, a recurrent neural network with one input 

and one output, can be seen as a nonlinear input/output system with a state x E C”, 
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a scalar input, and a scalar output. Let CJ be a fixed nonlinear function, which we call 
an activationfunction. Let A E C’xn, B E @“’ I, C E @i xn. Recurrent neural networks are 
described by equations 

x(t + 1) = &4x(t) + Bu(t)), Y(l) = Wt), x(O) = x0, (1) 

where a(x) = (a(~~), . . . , 0(x,))‘. We use G(X) = exp(ix) as the activation function and 
call a system as in (1) with this activation function an exp-system or Fourier-neural 
recurrent network, denoted E = (A, B, C),. We use the subscript x0 to denote the 
system with initial state x0, when necessary, xX0. 

This choice of o as an activation function is very natural, since we obtain in this 
manner a dynamic extension of Fourier analysis. Moreover, the choice of this o is 
critical to our results. Indeed, our method depends in an essential way on being able to 
transform sums into products, a property which uniquely (among continuous func- 
tions) forces us to consider this activation. (A small variation would consist of using 
real as opposed to complex exponentials, but this seems less interesting as it leads to 
highly unstable dynamics.) The idea of using Fourier-type activations has already 
appeared before in the neural network literature; see for instance [S] for an ap- 
plication in the content of feedforward nets and function approximation. 

Before stating our main result, dealing with identification of the parameters, we 
need to briefly address the question of observability, that is, the possibility of 
determining the internal state from input/output data, for this class of systems. Notice 
that if the initial state x0 is unknown, it too is a parameter that should be identified. 
A control system is said to be observable if given any two distinct initial states, x0 and 
zo, there is a finite sequence of inputs that causes the two systems, XX0 and C,,, to have 
a different output. We will look at this standard notion of observability rather than 
the perhaps more desirable notion of actually determining the unknown initial state. If 
our goal is to be able to simulate the input/output behavior of the system, we do not 
need to identify the unknown initial state. It is enough to measure the initial output 
and to be able to determine the state at time 1, as well as the parameters A, B, and C. 
Nevertheless, we characterize observability for this class of systems. 

Lemma 2.1. Let C = (A, B, C), be an exp-system such that 
a. the components bI, . . . , b, of B are nonzero and a(bl), . . . , a(b,) are distinct, and 
b. the entries of C are all nonzero. 

Then E is observable if and only if 

ker CnA-‘(Z”) = (0). (2) 

This is proved in Section 3. Condition (2) is easily seen to be generic. Indeed, for any 
fixed nonzero k E @“, the (n + 1) x (n + 1) matrix 

has full rank for all A and C except those that are described by the zero set of an 
analytic function. Thus all nonzero k E if” are avoided for (A, C) in the complement of 
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a countable union of such sets. The two assumptions in the theorem are important for 
proving the sufficiency part of our result, because they allow certain matrices to be 
inverted. 

The following technical condition will be used in the identification theorem. Let 
B =(b1, . . . , b,)’ E @” and assume again that o(b,), . . . , a@,) are distinct. Let 

o(b,) - 1 

i : 

... 4%) - 1 
B, = 

o((n + $4 - i : r 
7 

. . . a((n + ip,)- i 

and let R(B) be the condition that the column space of B, does not contain any 
nonzero integer vectors. That is, 

co1 B,nZ”+’ = (0). (R(B)) 

Although it can be proved to be generic, there are exceptions to Condition R(B). For 
example, if any of o(b,), . . . , o(b,) are integers, the condition fails. This condition is 
used in the proof to guarantee that a certain equation has a unique solution. In that 
situation, any two solutions would have to differ by an integer vector and R(B) then 
implies that the two solutions are not, in fact, distinct. It should be possible to 
eliminate the need for this condition in the theorem below by modifying the part of the 
procedure described in the proof where we find C, to use varying inputs, but the 
algorithm that we give is simpler if we assume R(B). 

Next is the identification result. It states that the parameters of a Fourier network 
can be recovered using a finite set of input/output data all starting from the same 
unknown initial state. More than one set of input/output data is needed, but the 
training program does not need the complete input/output behavior as a function. 

Theorem 1. Let Xx, be a single input, single output system as in (1); with a(x) = exp(ix). 
Assume that 

1. the components of B are nonzero, strictly increasing in modulus, and bj - b,$2rziZ 
for j # k, 

2. the entries of C are all nonzero, and 
3. B satisfies R(B). 

If the dimension of the system is known, then the input/output data is sufficient to 
uniquely determine the parameters A, B, C. 

If in addition the system is observable, then the initial state x0 is also uniquely 
characterized. 

The components of B are uniquely identifiable only up to a change in order. Thus, 
we assume that the components of B are initially in increasing order and as we identify 
them, we put them in the correct order. The assumptions that bj - bk$2rGZ and the 
entries of C are nonzero are made, as in the observability theorem, to allow us to 
invert certain matrices. Regarding the assumption that the dimension of the system is 
known, this is a standard assumption in neural nets and more generally in function 
approximation, where problems are solved by means of search procedures over given 
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parameter spaces. In linear systems theory, analogously, one assumes a fixed dimen- 
sion, in most identification and adaptive control problems. Methods for estimating 
dimensions are a matter for future research, but this is an area that is not well- 
understood even for function approximation (viz. work on regularization in numerical 
analysis, structural risk in learning theory, etc.). 

The theorem is proved by means of an explicit procedure for reconstructing A, B, 
and C which is described in Section 4. 

3. Proof of Observability Lemma 

We now prove Lemma 2.1 First assume that YZ is observable. Suppose there exists 
a nonzero v E @” such that 

Cv=O and AVET’. 

Then the initial states 0 and x0 = 27cv are indistinguishable, contradicting observabil- 
ity. To see that 0 and x0 are indistinguishable, note that 

co = cx,, 

so the outputs at time zero are the same. Next, the states at time one are equal for the 
two initial states, after applying any input. Indeed, fix any input value U. For the initial 
state x0, 

x(1) = a(Axo + Bu) = 

i 

where Aj is the jth row of A. Since AXE E 2d”, o(Ajxo) = 1 = a(AjO) for all j. Thus 
x( 1) = a(Ao + Bu) which is equal to the state at time one for initial state 0. Hence the 
outputs from time one and on are equal. 

For the converse, suppose there exists a pair x 0, 2, that is indistinguishable. Then 

cxo = cjzo, and Ca(Axo + Bu) = &(A& + Bu), Vu. 

We can apply the above equality for the n different input values 0, 1, . . . , II - 1. Since 
o&b) = o(b)k, 

I 

e-(bi )” ... o(bJ-’ 

(cla(Arxo) ... c,o(A,xo)) : 

dU” 
1 I 

... cQ,)“-’ 

4bd” 
= (cla(AljZo) ... c,o(A,~,)) 

i 

; 

4U” 
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The marix appearing on both sides of the above equation is a Vandermonde matrix. 
That is, it is a matrix of the form 

1 Xi x: .*. 

I 
n-l xi 
n-l 1 Xq x; ... x2 

i x, xf ... 
n-l 

x, 

with xi # xj i #j. Thus it is invertible, yielding 

(cia(Aixo) ... c,o(A,x,,)) = (clo(A1&,) ... c,a(A,R,,)) . 

Dividing out the components of C (which are nonzero by assumption), we obtain 

a(Axo) = a(A??,), 

so A& - 2,) = 27ck for some integer vector k. Let u = (x0 - El,)/2rc # 0. Then 
Cv = 0, and Au = k contradicting condition (2) in the lemma. Cl 

The condition in the lemma does not always hold, as we can see from the simple 
example 

A=(; ;), B=(k), C=(l 1). 

The two initial states 

x0=(;), P,=(_;;) 

are indistinguishable. 

4. The basic algorithm 

Suppose E is a system of known dimension n that is modeled by equations such as 
(l), but with unknown values of A, B, C, x0. Assuming we may reset the system to the 
unknown initial state and apply any input to obtain the corresponding output, we can 
identify the parameters A, B, C using the following procedure. In the procedure, we 
input a finite set of controls and then view the list of outputs as the output sequence of 
a different system. This other system is linear, allowing the use of linear realization 
techniques. 

4.1. Finding B 

To compute the values of B, first apply integer-valued inputs of length one equal to 
0, 1, . . . ,2n - 1. The resulting 2n output values are 

Ca(Axo), Ca(Axo + B), . . . , Ca(Axo + (2n - l)B). (3) 
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Let c be the row vector 

c = (c1a(A1xo) W(Az%) ... W(&O)), 

where cj is thejth component of the row vector C and Aj is the jth row of A. Then the 
sequence (3) can be written as 

a(bl)2"-1 

e 

These terms can be viewed as the first 2n Markov parameters (or impulse response 
parameters) for an n-dimensional linear system whose “A” matrix has eigenvalues 
exactly equal to a(bl), . . . , a(b,). These eigenvalues can be found by applying linear 
realization techniques to the sequence. This step of the algorithm is based on 
Hankel-matrix techniques that are classical in the context of linear recurrences and 
their multivariable extensions developed in control theory (see a detailed discussion in 
[14, Chap. 51. The method appears in many other area; for instance in coding theory 
for decoding BCH codes, and in learning theory for sparse polynomial interpolation 
(see [4, Section 31). Specifically, if we denote the sequence in (3) by hi, h2, . . . , hzn, we 
form the two Hankel matrices 

1 hl 1.. h, 
H1= .*. 

h, ... h2n_1 

The matrix Aobs satisfying 

\ 

7 Hz = 

h n+1 ... ’ ha, 
(4) 

is the observability form of the “A” matrix for the triple 

41) 
t?:, . . . 

4h) 

The eigenvalues of &bs are equal to a(bl), . . . ,a(b,). 
In order to compute bl, . . . , b, themselves, one would need to apply the “inverse” 

of u. This is slightly more complicated than it seems, since the complex exponential is 
not one-to-one. To recover the information lost by taking the complex exponential, 



R. Koplon, E. D. Sontag / Neurocomputing I5 (1997) 225-248 233 

we repeat the procedure described above, but instead of applying the first 2n non- 
negative integer inputs, we apply inputs equal to 0, 1,2A, . . . ,(2n - l)A, where II is 
theoretically irrational (or “close” to it for a computer implementation). By comparing 
the two sets of resulting eigenvalues we can determine the correct log. 

The procedure is as follows. First, from the integer inputs we obtain a vector Bi, by 
taking any determination of the logarithm. Observe that this necessarily differs from 
the true B by an integer multiple of 27~ 

B1 = B + 27tr, r an integer vector. (5) 

If we could determine r, we would know B, which is our goal. Now from the second set 
of inputs we obtain the values c(ibj), and from these values we obtain some possibly 
different estimate, Bz, again using any log. Here we know that 

B2 = B + $ s, s an integer vector. (6) 

From (5) and (6) we deduce 

(7) 

The integer vectors r and s are unique. To see this, suppose there were two possible 
solutions to (7), (rI, si) and (r2, sz). Then 

Sl s2 rI -r2 1 
rl - - = r2 - - 

1 1 
or -=-. 

s1 -s2 A 

The last equality is impossible since the left-hand side is rational while the right side is 
irrational. Hence, there cannot be two possible solutions. Theoretically, then, from the 
input/output data one has the vector 

BI -& 
~C---- 

7c . 

There is a unique solution (r, s) to the equation 

s 
r---v. 

1 

Thus the true B is recovered as B = B1 - 27cr. Of course, this does not yet provide an 
explicit procedure. 

For the computer implementation, of course, II cannot actually be irrational. But if 
we assume r and s are reasonably small (which corresponds to the entries of B being 
reasonably small, since the determinations of log used by most computer systems have 
arguments in [ -R, x] or [O, 2x]), then a 1 that is not close to being the quotient of 
two small integers will work. 

Using (7) we can, in principle, find the unique integer vectors r and s and recover the 
true B as follows. The simplest idea for this step is to exhaustively search through 
integer values for s until the left-hand side of (7) is equal to a vector of integers. 
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A preliminary problem is that we are assuming the components of B are distinct, and 
increasing in modulus, but the components of B1 and B2 may not be in the right order. 
So we need to match up each component of B1 with the corresponding component 
of BZ. 

Start by letting s = 0 and compare the first component of B1 with the first 
component of Ba. If 

B,(l) - B,(l) 
2Tc 

is not an integer, then compare B,(l) to B,(2), B,(3), . . . and so on. That is, test if 

Bl(l) - B,(k) 
271. 

has an integer value for some k = 1, . . . , II, and rearrange B2 such that B,(k) is now the 
first component of BZ, then proceed to comparing B,(2). Otherwise, try the next s, 

r 1 
s:= -s+ 

if s I 0, 
o if s>o, 

and repeat the evaluation of 

B,(l)-B&)+5 
2Tt 1 

for j ranging from 1 to n. Continuing in this way, obtain a rearranged vector B2 and 
two integer vectors r and s. When integer match-ups are found for all entries, we are 
done. The true B can be then computed either from the pair B,, by sorting the 
components of 

B = B1 - 21rr, 

or from the pair Bz, s by sorting the vector 

B=B+ 

Both yield the same answer, so in the actual implementation it is not necessary to 
store both r and s. 

Of course, such an exhaustive search may not be practical for systems of large 
dimension. But for moderate sizes and for vectors B that are a priori subject to bounds 
(such that the entries of Y and s are small integers), our experience is that this step 
represents only a minor part of the time needed to execute our procedure. 

4.2. Finding C 

The next step in the identification procedure is to determine the vector C. For this, 
apply inputs of length two with integer values ranging from 0 to n + 1 for the first 
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input and 0 to n - 1 for the second. We introduce the (n + 2) x n dimensional matrix 
Y composed of the corresponding output values 

i Yo.0 Yo.1 ... YO,“_l \ 

y= Yl..” 1 : Y1.1 .” Yl,n- 1 

Yn+l,O Y.+1,1 : I, ..’ Yn+l,n-1 

The main observation at this point is that Y may be fractured as Y = c,V, where I/ is 
the Vandermonde matrix 

To keep the notation clear, from now on we display the special case 12 = 2, but the 
same procedure works in general. We can write, as just explained, 

where 

e, = 1 
c14AdAxoN w(~14~xo)) 

cla(Ala(Axo + B)) c,o(A1a(Ax, + B)) 
clo(Ala(Axo + 28)) c,o(Ala(Axf) + 2B)) ’ 
c,a(A~a(AxlJ + 3B)) c,a(Ara(Ax, + 3B)) I 

(8) 

Cj is thejth component of C, bj is the jth component of B, and Aj is the jth row of A. 
Observe that Y is known (from the data) and the last matrix on the right in (8) is 
a Vandermonde matrix, also already known. Thus, we can solve the linear equation 
and obtain c,. 

Next observe that for each column of c,, 

, (9) 

where a(vj) = cj. Let V, be the extended Vandermonde type matrix on the right-hand 
side of (9). The goal here is to solve for the last vector on the right, call it hi. Then for 
each j we can use the first component of hj to find cj, and the rest of the ‘vector will be 
used to recover A. 
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Remark 4.1. The (n + 1) x (n + 1) dimensional Vandermonde matrix 

1 

1: 

o(b,) ... 
\ 

4bn) 

i a(@ + l)b,)- 1 ... o((n + l)b,) / 

has rank n + 1. After performing an elementary column operation, we see the matrix 

1 o(b,) - 1 ... dbn) - 1 

\ i a((n + l)b,)- 1 *.. : I a((n + i)b,)- 1 

also has rank n + 1. Thus, the matrix B, has full column rank so if R(B) holds, 
B,o E Z”+ ’ =E- B,u = 0 which in turn implies that v = 0. 

Lemma 4.2. Assume B satisfies Condition R(B). If o(V,t) = o(V,e) for <,g~ @“+ ‘, 
then~1-~lE2~Zand<j=~jforj=2,...,n+l. 

Proof. Let o = 5 - g. We need to show that if V,OE 27rZnf2, then 
w = (27rk, 0, . . . , O)l, or equivalently, 

V,OEZ”+2 3 w=(K,O )...) 0). 

Assume I/,oEZ”+~. Then 

wg +or + ... + w, = ko, 

coo + o(bI)oI + ... + a(b,)co,, = kl, 

w. + a(bI)“+‘oI + ... + a(b,,)n+lco, = k,+l 

Subtracting the first equation from all of the others gives 

&[::l=(:;;;o] 

which implies that w1 = ... =o,=O.Thuswo=ko,andsow=(ko,O ,..., 0)‘. 0 

We just showed that for each j, there is a unique solution for hj, up to the addition 
of an integer multiple of 27~ in the first coordinate. This does not contradict the 
uniqueness of C since for each j = 1, . . . , n, 

cj = o(uj) = Q(Uj + 2Kk), Vk E h . 

The procedure that we implemented for finding hj is as follows. Pick any com- 
ponentwise log of C,j. Then we can write 

-i log(e,,j) + 2nK = VYhj, (10) 
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where K is an unknown (n + 2) x n integer matrix that depends on the chosen 
determination of log. Now we search through the integers in order to find an integer 
vector K and a solution hj for (10) that minimize the error 

1 Ir,hj - (i lOgZ;“,j + 27X)1. 

(We already proved that such an hj is unique except for integer multiples of 27t in the 
first row.) After finding hj for each j, let H be the matrix (hi -.. h,). Apply IS to the 
components of the first row of the matrix H to obtain C. 

We recognize that an exhaustive search through the integers is a very inefficient way 
to solve for the matrix H. Intuitively, we are looking for a point in a hyperplane with 
small integer coordinates, or more precisely a point with small integer coordinates 
closest to the hyperplane spanned by the columns of an (n i- 1) x n matrix. A more 
efficient way to do this might be using ellipsoid methods or interior point methods 
[l l] and linear programming for finding lattice points. These ideas will be developed 
in the future. 

4.3. Finding A 

Once we have C and H we can immediately obtain A. Drop the first row of H and 
transpose the result, 

( 

All4Al%) ~l24~1~0) 

A214f41%) > ‘422442x0) . 
(11) 

Next use the first n outputs that were obtained earlier by applying the integer inputs, 

a = (Ca(AxrJ), Ca(Axo + B)). 

This row vector can be written as the product 

Solve the linear equation to obtain the row vector (cla(A1x,,), c2a(A2xo)). By now we 
know the components of C so we may divide these out of each component leaving the 
vector 

A; = (c(A,xo), 442-Q). 

Finally, divide each row of (11) term by term by the components of the vector AZ to 
obtain A. 

This completes the proof of the theorem. The input/output behavior can now be 
simulated even without precise knowledge of x0. The last two pieces of information that 
are needed to have full knowledge of the input/output behavior are Cx,,, which is 
simply the time zero output, and 

a(Axo) = A :T, 

which provides the state at time one for any point input. Both are already known. 
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5. Procedure for noisy output 

In this section we discuss various purely heuristic considerations. The following are 
intuitive ideas for extending the procedure in the previous section to accommodate 
more practical situations. One obvious next step involves modifying the basic algo- 
rithm to make use of longer output sequences in order to find more uniform 
approximations. The basic algorithm uses information obtained only in the first to 
time steps. This may be sufficient for identification of systems that are of the desired 
form, but it is not enough for approximation of other systems. Using only the 
information obtained in the first two time steps will produce a desired network 
approximation for a system that will closely approximate the input/output behavior 
of the original system for the first two time steps only. We cannot control the accuracy 
of the approximation beyond that. Another major problem with the basic approach is 
the lack of robustness with respect to noise in the output. We have improved this by 
simultaneously conducting the procedure described above on sequential time inter- 
vals of length two and “averaging” the information. In Section 7, we define the noise 
used and give results of testing this variation of the algorithm on exp-systems with 
noisy output. 

5.1. Averaging to find B 

The basic algorithm applies 2n different length one integer inputs to obtain a scalar 
sequence that can be seen as the Markov sequence for the triple (A, 8, c). (This 
procedure was then repeated with “irrational” inputs so the proper logs could be 
recovered.) 

Now instead of applying one set of length one inputs, apply p sets of inputs 
increasing in length from one to p. That is, apply the sets of inputs 

length 1: 0,1,2, . . . . 2n-1 

length 2: 00, O&02, . . . , O(2n - 1) 

length p: 0 ... 00,O .+. 01,O ... 02, . . . ,O . ..0(2n - 1). 

Let yu denote the output that is measured after applying the input u. The number p can 
be as high as 2n provided the corresponding outputs do not get too small or too large. 
If y, is very large or very small for some u, then just let p = length(u) - 1. If we arrange 
the outputs in an array as follows 

Yo Yl Y2 .‘. Yzn- 1 

Yoo YOl Yo2 ... YO(Zn- 1) (12) 

Yo...o ... YO...Zn- 1, 
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we can view the columns of (12) as 2n terms of a p x 1 Markov sequence. This sequence 
of vectors can be realized by the triple 

6) 
\ 

1 

a= ... ) 

1 

B= ; , 

4J / OI 1 

i c14~i~o) . . . wJ(4&) 

2;= 
c,a(A,a(Ax,) ... cl~(~nefxo)) 

\ c,a(A,a(Aa( 1.. (Ax,) .*. ))) ... c~a(A,o(Aa( ... (Ax,) .‘. ))) 

The rest of the procedure for recovering b,, . . . , b, is almost the same as in the basic 
algorithm. Hence we denote 

and form the two pn x n Hankel matrices as in (4). Whereas we could have used either 
the controllability or the observability form in the first case, here we have to use the 
controllability form since HI and Hz are no longer square. We solve 

HI A,,,,, = HZ, 

to obtain the controllability form of a. We are interested in the eigenvalues of A”, 
which are the same as the eigenvalues of A,,,,,. As before, we “invert” CJ to obtain an 
estimate for B, repeat the whole procedure with inputs that are “less” rational and 
resolve the ambiguity in B that was created by taking the complex exponential. 

5.2. Averaging to find C 

In the basic strategy we formed the (n + 2) x n dimensional matrix Y = [yi- l,j- r], 
and performed a few factorizations (and special steps to get the right log) to isolate the 
matrix in (9) and recover C by applying ts to the components of the first row. We used 
information obtained only during the first two time steps. 

A similar method can be used with any matrix Y, where the elements of Y are 
outputs corresponding to inputs of the form 

u= z (i-l)(j-1). 

any # of zercls 

We then obtain a matrix with 
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as the first row, where cj = a(rj), j = 1, . . . ,n. In this version of the algorithm we 
obtain numerous estimates for the vector C by repeating the procedure with different 
Y’s and averaging these estimates. The number of estimates that are included in the 
average is at most 2n. We use fewer if the output becomes either too large or too small. 

Specifically, we get the first estimate for C using the basic algorithm. Next we apply 
inputs Uij = O(i - l)(j - 1) to obtain the matrix 

Yo.o.0 ... 

Y= YO,l,O ... 

\’ YO,n+l,O ... Yo,n+l,n- 1 

Just as before, we can write Y as the product (assuming n = 2 for notational clarity) 

where 

z;” = 

c14~14w~~o))) c24~24Wxo))) 

c1o(A,a(Aa(Axo + B)) c,o(A2a(Aa(Axo + B)) 

c1o(A1a(Aa(Axo + 2B)) c~a(A&@4xo + 2B)) 

qo(Ap?(Aa(Axo + 3B)) c&4&Ia(Axo + 3B)) I 
Solve the linear equation for c,, and note that for a chosen determination of the 
(componentwise) log, 

1 40) 40) 
Vl 02 

-i log(Q + 26 = 

i II 1 a(h) 4b2) 
1 @1)2 4b2)2 ~114~14~x0)) A21(A144xo)) . 

1 4w3 4b2)3 A1244244xo)) A22(-4244xo)) 

1 

As in the basic approach, we must simultaneously solve for the rightmost matrix 
above and the integer matrix K. Then apply Q to the entries of the first row of the 
resulting matrix to obtain the second estimate for C. 

Repeat the procedure starting with a new Y obtained by applying inputs 
Uij = OO(i - l)(j - 1). At the end we will have 

v2 \ 

~ll4~l4w~~O))) ~2l(‘4l4444~0))) 

I 

(14) 
~124424444~0))) ~22(~24~44~0))) 

and a third estimate for C can be obtained from the first row of this matrix. 
Repeating this with an increasing number of zeros in the beginning of the input 

sequences provides many estimates for the vector C. The last step is to average all of 
the estimates. 
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5.3. Averaging to jind A 

Here we use c from (13) and all of the matrices such as (14) used in finding C. (Now 
we can discard the first row of each of these matrices.) 

The first task is to find e. By now we know A” and 8. We also know the 
controllability form for the triple: (Acontr, BEOnlT, Ccontr), since all we really need to 
know for these matrices is the characteristic polynomial for i[ and the first n terms of 
the vector Markov sequence which are exactly the columns in (12). The two triples are 
related through an invertible matrix T as follows: 

T-‘A cm,T = A”, 

We retrieve T by solving 

(Bcontr A,,“,, L,, 

T - ‘B,,,,, = B, C,,,,,T = e. 

... A:,:, B,,,,,) = T@ AB” . . . p- ‘B”). 

(The reachability matrices are invertible. Remember, these are not the A, B, C 

matrices of the underlying exp-system. The triple (A, B, c) is a minimal realization 
of the sequence found in (12).) 

Multiply CA, by T to get c. Next average the rows of c. The resulting row vector 
is C,,,, where 

e,,,(j) = Cj ave(a(Ajx,,), a(Aja(Axo)), . . . ,~(Ajo(Aa( ... ~(Axo) *.. )))}. 

Since we already have an estimate for C, we can divide out cj from each component 
and we call the outcome A;,..,. 

The second matrix we need in this method for finding A comes from averaging the 
matrices obtained in the procedure for finding C. We drop the first row of each matrix 
of the form 

/ 
01 

Al 1 a(Ala( ... 4Axo))) AZI ~AI$. 4Axo))) . 

\ A,,4A,4 ... ~(Axo))) Azz4A24 ... 4Axo))) I 

Next let II,,, be the matrix formed by averaging (in a term by term way) all of these 
matrices. 

The last step is identical to the basic method. Transpose H,,, to obtain 

( 

AII ave{+trx& ... > AXI ave{a(A2xO), ... > 

> Al2 ave{a(A,x,), ... } Az2 ave{a(A2xO), ... > ’ 

Then divide each row, element by element, by the row vector A?_,, . 
One technicality is that the number of rows used in the average A;,..,, and the 

number of matrices used in the average H,,, must be equal. So if one of these is less 
than 2n because of potential numerical problems (numbers becoming either too large 
or too small), then only the smaller number is used for both computations. 
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6. Topics for further study 

The algorithms described above only scratch the surface if the body of work that 
could and should be done in this area. Section 7 describes some of the shortcomings in 
the current numerical adaptation of the algorithm. In addition to the points men- 
tioned there, one would also like to be able to identify the parameters without being 
restricted to testing with the very special (integer and J x integer) inputs used above. 
This should be possible. In the first step, for example, finding B, applying random 
inputs corresponds to measuring the output of a continuous-time system at ir- 
regularly spaced intervals. This relates to identification of continuous-time linear 
systems from irregularly spaced samples. 

The program should be tested on systems that are not exp-systems, and developed 
further, if necessary, to handle approximating a broad range of systems. Comparative 
studies should be made with other identification and approximation techniques. 

There are variations on the basic algorithm that should be explored further. One 
such variation considered the fact that engineering processes are often hybrid models 
with local accurate linear control together with nonlinear components, so a better 
model for approximation might be a parallel connection of a linear system and an 
exp-system 

x(t + 1) = A+(t) + &U(L), 

z(t + 1) = a&z(t) + &.4(t)), 

y(t) = &x(t) + c&z(t). 

This model is still a recurrent neural network with 

A=(&.g). E=(;;), c=(cL Cd, 

and 6 acting as the identity on the first few components. We can expand the algorithm 
to include this model. The parallel system may serve as a better approximator for 
general systems with linear components. In particular, it trivially includes the class of 
linear systems. The algorithm for the parallel system closely resembles the basic 
algorithm. This procedure will be developed in the future and incorporated into the 
computer implementation. 

7. Numerical techniques 

We experimented with the algorithm in Section 5 using MATLAB. The program 
employs a naive, but effective, approach to carrying out the given techniques for 
parameter reconstruction. Despite the fact that numerous steps lack creative and even 
robust numerical solutions, the program and the simulations that follow provide 
a “proof” that the concepts described above are practical, and indeed have the 
potential to be executed in an efficient manner. Some of the steps in the computer 
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formulation require further study. The linear realization that is performed when 
finding B is done using a simple Hankel matrix technique. This step should be 
replaced with more sophisticated techniques like Hankel norm approximation and 
robust identification. The next two steps, finding C and A, use a tedious integer search 
to find the correct log at some point. This step should also be improved. 

The program behaved relatively well in practice. We tested the program on systems 
that were truly exp-systems, but with small random noise (uniformly distributed on 
(- 10-3, 10m3)) added to the output. The test systems that we used have dimension 
between two and four and the entries of the parameters all have magnitude less 
than 10. 

The program was sensitive to the number used for A- the “irrational” number, and 
the thresholds used when comparing numbers to integers. This lack of robustness 
could be eliminated by implementing more refined numerical techniques. 

In the simulations below, we use stable systems so that we can make comparisons 
between the input/output behaviors of the true and estimated systems over a longer 
time period than the one used for the approximation. 

Example 7.1. In this example, we reconstructed the parameters for a three dimen- 
sional system. The true system parameters are 

A = 1.3000 

1 

;:;I:: -EZi ZE], AEJ) 

/ 

- 1.0000 
C = (0.1000 0.5000 0.8000), x,, = 

: 

0.3000 
2.2000 / 

In the absence of noise in the output, the program estimated the parameters exactly: 

0.5000 - O.OOOOi - 0.6000 - O.OOOOi 0.1000 + O.OOOOi 
A^ = 1.3000 - O.OOOOi 0.5000 + O.OOOOi 1.0000 - O.OOOOi , 

0.4000 - O.OOOOi 1 .OOOO + O.OOOOi 0.2000 - O.OOOOi 

1.0300 + O.OOOOi 

3.2000 - O.OOOOi 

C = (0.1000 - O.OOOOi 0.5000 - O.OOOOi 0.8000 - O.OOOOi). 

In the presence of noise, the following A, B, C were estimated: 

0.5073 - 0.0019i - 0.5872 - 0.0049i 0.0864 - 0.0169i 
1.2989 + 0.0083i 0.5039 - 0.02451 0.9988 + 0.0136i , 

0.4065 + 0.0009i 1.0006 - 0.0035i 0.2057 - 0.0124i 
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/ 1.0290 + 0.0023i 
b = 2.6951 -0.0061i , 

1 3.2002 - 0.0031i 1 

C = (0.1001 - 0.0002i 0.4964 - 0.0075i 0.8034 + 0.0058i). 

The pair of figures (1 and 2) compare the real parts of the outputs for the true system 
and the one reconstructed when noise was present in the output during the estimation 
procedure. The input sequences used have length 15; the first is a sequence of 15 ones, 
the second is a random input sequence. 

Example 7.2. This is an example of the parameter reconstruction for a four dimen- 
sional system. The true system has parameters 

0.5000 - 0.1000 - 0.6000 - 0.30000 

A= i 

0 0.4000 0.5000 
0.7000 1 .oooo 0.2000 

- 1.0000 0.8000 0.6000 

C = (0.4000 1.1000 6.2000 5.0000), x0 = 

2 

1.5- 

l- 

0.5 - 
5 a 

2 
O- 

-0.5 - I 

-1 - 

-1.5 0 2 4 6 tike lo 12 14 16 

Fig. 1. Three dimensional example. True (0) and approximating (*) outputs for an input sequence of 15 
ones. Noisy case. 



R. Koplon, ED. SontaglNeurocomputing I5 (1997) 225-248 245 

1 

5 
40 
0 

-a 

2- 

,5 - 

l- 

s- 

O- 

1.5 - 

-‘0 2 4 6 a 10 12 14 
time 

j 

Fig. 2. Three dimensional example. True (0) and approximating (*) outputs for a random input sequence 
of length 15. Noisy case. 

Without noise in the output, the program correctly estimated the parameters: 

A= 

OSOOO-O.OOOOi -0.1000 + O.OOOOi -0.6000 + O.OOOOi -0.3000-O.OOOOi 
0.0000 - O.OOOOi 0.4000 + O.OOOOi 0.5000 + O.OOOOi 0.0000 - o.oOOOi 

0.7000 - O.OOOOi 1.0000 + O.OOOOi 0.2000 - O.OOOOi 0.3000 + O.OOOOi 

- 1.0000 + O.OOOOi 0.8000 - O.OOOOi 0.6000 - O.OOOOi 0.1000 - O.OOOOi 

0.2000 - O.OOOOi 
B = 1.0000 - O.OOOOi 

2.3000 - O.OOOOi 

c = (0.4000 - O.OOOOi 1.1000 + O.OOOOi 6.2000 - O.OOOOi 5.0000 + O.OOOOi) 

When there was noise in the output, the following A, B, C were estimated: 

A= 

: - - 0.7112 0.4962 0.0036 1.0118 - - + + 0.02381 0.0023i 0.0308i 0.0036i - 0.8008 0.4000 0.1166 1.0082 - + + + 0.002Oi O.OOOOi 0.0092i 0.0021i - 0.1958 0.6130 0.5938 0.4954 - - - + 0.0008i 0.0135i 0.0008i 0.0083i - 0.0032 0.3069 0.1031 0.3036 + + - + 0.0024i 0.0098i 0.0003i 0.0004i ’ 
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time 

Fig. 3. Four dimensional example. True (0) and approximating (*) outputs for an input sequence of 20 
ones. Noisy case. 

5 
CL 

2 

15. 

lo- 

f 

5- 

O- 

P , i , 
2 4 6 0 10 12 14 16 16 

time 
3 

Fig. 4. Four dimensional example. True (0) and approximating (*) outputs for a random input sequence 
of length 20. Noisy case. 
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0.1999 - 0.0006i 
B = 0.9987 + 0.0019i 

2.2999 + O.OOOli 

c = (0.4039 + 0.0069i 1.1000 + 0.0052i 6.1728 - 0.02721 4.9831 - 0.0053i). 

247 

The final two figures compare the real part of the output of the true system versus 
that of the estimated system. As in the previous examples, the inputs used were 
a sequence of ones (Fig. 3) and a random sequence (Fig. 4). 
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