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Abstract. This paper further develops a method, originally introduced by Angeli
and the second author, for proving global attractivity of steady states in certain
classes of dynamical systems. In this approach, one views the given system as a
negative feedback loop of a monotone controlled system. An auxiliary discrete sys-
tem, whose global attractivity implies that of the original system, plays a key role in
the theory, which is presented in a general Banach space setting. Applications are
given to delay systems, as well as to systems with multiple inputs and outputs, and
the question of expressing a given system in the required negative feedback form is
addressed.

1. Introduction. In their paper, Angeli and Sontag [2] introduced an approach for
establishing sufficient conditions under which a dynamical system Φ, described by
ordinary differential equations, is guaranteed to have a globally stable equilibrium.
The method may be applied whenever Φ can be decomposed as a negative feedback
loop around a monotone controlled system. A discrete system is associated to Φ,
and its global attractivity toward an equilibrium implies that of Φ.

In this paper, we generalize the results of Angeli and Sontag [2] in several direc-
tions: (i) we address the stability of the closed loop system, which was not done in
[2], (ii) we prove results which are novel even in the finite-dimensional case, in par-
ticular allowing the consideration of systems with multiple inputs and outputs, and
(iii) we extend considerably the class of systems to which the theory can be applied
and the above characterization holds, by formulating our definitions and theorems
in an abstract Banach space setting. The extension to Banach space forces us to
develop very different proofs, but it permits the treatment of delay-differential and
other infinite-dimensional systems. In addition, we work-out a number of interest-
ing examples, exploit a useful necessary and sufficient condition for monotonically
decreasing discrete systems to be globally attractive which leads to sufficient tests
for stability of our negative feedback loops, and provide a procedure for decompos-
ing a system as the negative feedback closed loop of a monotone controlled system
(Appendix 1). We rely on basic results from the theory of monotone systems, but
most necessary concepts will be defined in the text. The reader is encouraged to
consult Smith [32] for further references on this topic.
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There has been previous work that remarked upon special cases of the relation-
ship in asymptotic behavior between continuous systems and associated discrete
systems. Indeed, in [31], Smith studied a cyclic gene model with repression, and
observed how a certain discrete system seemed to mirror the continuous model’s dy-
namics, both at the local and the global level. The setup of feedback loops around
monotone control systems provides one appealing formalization of this remark, and
the repression model in question will be used as an illustration of our main result.
Related work has been carried out by Chow, Mallet-Paret and Nussbaum, and sur-
veyed by Tyson and Othmer [6, 23, 37]. See also [10] for an application by the
authors to a model of testosterone dynamics, and [3, 9, 19] for related work in the
positive feedback case.

The topic of monotone and related positive systems is a very active current
area of research, especially in biological applications; see e.g. [1, 5, 12, 11, 27].
Nevertheless the results in this paper are meant to be applied to systems that
are not monotone. Given an autonomous system, the idea is to decompose it as
the negative feedback loop of a monotone controlled system, and to apply the main
result to this controlled system. Hence, the global attractivity of the original system
will follow from the main result. To carry out this preliminary step, we provide
in the appendix a systematic description on how to decompose an autonomous
system, under relatively few constraints, as the negative feedback loop of a monotone
controlled system with a comparatively small number of inputs and outputs.

The organization of this paper is as follows. In Section 2 we define the most
important concepts involved, such as monotonicity and the existence of a charac-
teristic, and we state the general hypotheses that will be assumed. In Section 3
we prove the main result in an abstract framework, and in Section 4 we address
the stability of the closed loop system. In Section 5 we specialize to delay sys-
tems, and after a general introduction we show how to apply the abstract results
in this scenario. We conclude in Section 6 with our main application, re-deriving
and extending, as a corollary of our main theorem, the global attractivity results
of an autonomous model of the lac operon published by Mahaffy and Savev [24].
In the Appendix I, we describe how to decompose an autonomous system as the
negative feedback loop of a monotone controlled system. In the Appendix II we
provide a proof of existence and uniqueness for controlled delay systems, including
the semiflow property.

2. Preliminaries. Let B be a real Banach space, and let K ⊆ B be a cone, that
is, a nonempty, convex set that is closed under multiplication by a positive scalar
and pointed (i.e. K∩ (−K) = {0}). Assume also that K is closed and has nonempty
interior. The cone K induces the following order relations in B:

x ≤ y ⇔ y − x ∈ K,
x < y ⇔ x ≤ y and x 6= y,
x ¿ y ⇔ y − x ∈ int K.

The pair (B, K) is referred to as an ordered Banach space. The following notation
will be used: [x, y] = {z|x ≤ z ≤ y}, (x, y) = {z|x ¿ z ¿ y}. These sets will be
denoted as intervals or boxes. The cone K is called normal if 0 ≤ x ≤ y implies
|x| ≤ M |y| for some constant M > 0, called a normality constant for K. Also, a set
A ⊂ B will be said to be bounded from above if there is some x ∈ B such that a ≤ x,
for all a ∈ A. If B1, B2 are two ordered Banach spaces, γ : B1 → B2 is said to be
≤-increasing if x ≤ y implies γ(x) ≤ γ(y), and it is said to be ≤-decreasing if x ≤ y
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implies γ(x) ≥ γ(y) (similarly with the other order relations). In the case B = Rn,
a tuple (s1, . . . sn), si :=‘+’,‘−’, defines the orthant cone K := Rs1 × . . .×Rsn . The
canonic orthant cone defined by s = (+ . . . +) is called the cooperative cone.

The following lemmas are standard exercises in convex analysis. For convenience,
proofs are provided in the appendix.

Lemma 1. A cone K has nonempty interior if and only if the unit ball is bounded
from above.

Lemma 2. Let K ⊆ Rn. Then K is normal.

Dynamical Systems. Let BX , BU be two arbitrary Banach spaces, and pick Borel
measurable subsets X ⊆ BX , U ⊆ BU . The set U is referred to as the set of input
values, and an input is defined as a function u : R+ → U that is Borel measurable
and locally bounded. The set of all inputs taking values in U will be denoted as
U∞. The set of all constant inputs û(t) ≡ u ∈ U is denoted by Û ⊆ U∞, and is
considered to have the topology induced by U .

Definition 1. A controlled dynamical system is a function

Φ : R+ ×X × U∞ → X

which satisfies the following hypotheses:
1. Φ is continuous on its first two variables, and the restriction of Φ to the set
R+ ×X × Û is continuous.

2. For every u, v ∈ U∞ such that u(s) = v(s) for almost every s, x(t, x0, u) =
x(t, x0, v) for all x0 ∈ X, t ≥ 0.

3. x(0, x0, u) = x0 for any x0 ∈ X, u ∈ U∞.
4. (Semigroup Property) if Φ(s, x, u) = y and Φ(t, y, v) = z, then by appending

u|[0,s] to the beginning of v to form the input w, it holds that Φ(s+t, x, w) = z.

See also Sontag [33]. The functions x(·) = Φ(·, x0, u) can be regarded as trajecto-
ries in time for every x0, u. We often refer to Φ(t, x0, u) as x(t, x0, u) or simply x(t)
if the context is clear. As a simple remark, note that the properties above imply
that if u, w ∈ U∞ and u|[0,s] = w|[0,s], then Φ(s, x, u) = Φ(s, x, w). This can be seen
simply by letting t = 0 in Property 4.
Output and Feedback Functions. Given a controlled dynamical system (1),
a Banach space BY and a measurable set Y ⊆ BY , an output function is any
continuous function h : X → Y . In that case, the pair (Φ, h) consisting of

Φ : R+ ×X × U∞ → X, h : X → Y (2.1)
will be referred to as a dynamical system with input and output. Unless explicitly
stated, we will assume throughout this paper that BY = BU , Y = U , in which case
h is also called a feedback function. It will also be assumed that h is ≤-decreasing,
in which case (2.1) is said to be under negative feedback.
Monotonicity and Characteristic. Given cones KX ⊆ BX , KU ⊆ BU , a dy-
namical system (1) is said to be monotone with respect to KX ,KU if the following
property is satisfied: for any two inputs u, v ∈ U∞ such that u(t) ≤ v(t) for almost
every t, and any two initial conditions x1 ≤ x2 in X, it holds that

x(t, x1, u) ≤ x(t, x2, v), ∀t ≥ 0.

The partial orders are interpreted here as ≤U or ≤X in the obvious manner. If there
is no input space, i.e. if the system is autonomous, then the system is monotone
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if x1 ≤ x2 implies x(t, x1) ≤ x(t, x2) for all t. The cones will usually be omitted
if they are clear from the context. We observe also that if x1 ≤ x2, u1, u2 ∈ U∞
and u1(t) ≤ u2(t) on [0, s], then x(s, x1, u1) ≤ x(s, x2, u2). To see this, let ūi(t) =
ui(t), 0 ≤ t ≤ s, and ūi(t) = a otherwise, for fixed a ∈ U . Then ū1 ≤ ū2, and by
monotonicity x(s, x1, ū1) ≤ x(s, x2, ū2). The conclusion follows by the remark after
Definition 1.

A dynamical system (1) is said to have an input to state (I/S) characteristic
kX : U → X if for every constant input û(t) ≡ u ∈ U , x(t, x0, u) converges3 to
kX(u) ∈ X as t → ∞, for every initial condition x0 ∈ X. Given a system with
input and output (2.1) with Y = U , the function k := h ◦ kX will be called the
feedback characteristic of the system. (This function has been called input to output
characteristic in previous work, where U and Y are not necessarily equal.) It can be
easily shown that if (1) is monotone then kX is a ≤-increasing function, see Angeli
and Sontag [2].
Closed Loop Trajectories. Consider a system (2.1) and assume that BY =
BU , Y = U . Given a vector x0 ∈ X, and a continuous function x : R+ → X,
it will be said that x(t) is a closed loop trajectory of (2.1) with initial condition x0

if x(0) = x0 and x(t) = Φ(t, x0, h ◦ x(·)), for all t ≥ 0.

Definition 2. Suppose that (2.1) is such that, for each x0 ∈ X, there is a unique
continuous closed loop trajectory x(t) so that x(0) = x0. The function

Ψ : R+ ×X → X, Ψ(t, x0) := x(t) (2.2)

will be called the closed-loop behavior associated to (Φ, h). If this function itself con-
stitutes a dynamical system, then it is denoted as the closed loop system associated
to (Φ, h).

The semiflow condition for Ψ is actually guaranteed by the unique closed loop
trajectory assumption. To see this, let x(t) be an absolutely continuous closed
loop trajectory, and y0 = x(t0). Then the function w(t) = x(t + t0) can be shown
to be itself an absolutely continuous closed loop trajectory, by using the semiflow
condition for Φ. Therefore w(t) = Ψ(t, y0), and Ψ(s0, y0) = z0 implies x(t0 +
s0) = w(s0) = z0. To prove the continuity of Ψ on its second argument, one
may nevertheless need to assume stronger continuity conditions than are stated in
Definition 1. While the main result will not assume the existence or uniqueness of
closed loop trajectories for any x0 ∈ X, the fact that the closed loop system Ψ is
well defined will be guaranteed in all our applications, since we will start off with
an autonomous dynamical system in the first place (see the introduction).
The General Assumptions. A subset A of an ordered metric space (T,≤) is said
to satisfy the ε-box property if for every ε > 0 and x ∈ A, there are y, z ∈ A such
that diam [y, z] < ε and [y, z]∩A is a neighborhood of x (with respect to the relative
topology on A). A simple example of a set that does not satisfy this property is
A := {(x, y) ∈ R2 |x + y ≥ 0}, under the usual positive orthant order for R2.

Let BX , BU be arbitrary Banach spaces ordered by cones KX ,KU , and let (1) be
a controlled dynamical system with states in X ⊆ BX and input values in U ⊆ BU .
Let h : X → U be a given feedback function. The following general hypotheses will
be used throughout this paper:

H1: KX and KU are closed, normal cones with nonempty interior.

3This definition differs slightly with that in Angeli and Sontag [2], in that stability of the
attractor kX(u) is not assumed. Nevertheless see the comments after Theorem 1.
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H2: U is closed and convex. Moreover, for every bounded set C ⊆ U , there
exist a, b ∈ U such that a ≤ C ≤ b.

H3: X ⊆ BX and U ⊆ BU satisfy the ε-box property.
H4: Φ(t, x0, u) is monotone, with a completely continuous I/S characteristic kX .

Furthermore, h is a ≤-decreasing feedback function that sends bounded sets
to bounded sets.

Recall that a map T : D ⊆ B1 → B2 is completely continuous if and only if it
is continuous and T (A) is compact, for every bounded set A ⊆ D. Note that H4
implies that k = h ◦ kX is completely continuous as well.

A notion related to H3 is proposed in Smith [32]: x ∈ X can be approximated
from below if there exists a sequence {xn} in X such that x1 < x2 < x3 < . . . and
xn converges towards x as n tends to infinity. It is easy to see that H3 doesn’t imply
boundedness from below for every x ∈ X, for instance considering X = [0, 1], x = 0
and the usual order. It also holds that approximability from both below and above
for all x ∈ X doesn’t imply the ε-property for X. An example for this is

X = {(x1, x2) ∈ R2| x1x2 < 0} ∪ {x2 = 0}, x = (0, 0)

with the usual positive cone. Note that for orthant cones K = Rs1× . . .×Rsn (si =
‘+’ or ‘−’), any box (a, b) together with some or all of its faces satisfies condition
H3. So does also any open X in an arbitrary Banach space ordered with a cone K
with intK 6= ∅.

In particular, consider BU = Rm, BX = Rn, KU and KX orthant cones. Let
U be a closed box (not necessarily bounded), and let X be either an open set
or an interval (bounded or not) that contains some or all of its sides. Given a
monotone system ẋ = f(x, u), u = h(x) with characteristic, f continuous and
locally Lipschitz on x, and h ≤-decreasing and continuous, conditions H1,H2,H3,H4
are necessarily satisfied. Indeed, the only condition that still needs verification is
that kX is (completely) continuous; this has been done in [2].

3. The Small Gain Theorem. Our first result is referred to as the Converging
Input Converging State property, or CICS for short.

Theorem 1 (CICS). Consider a monotone system Φ(x, t, u) with a continuous I/S
characteristic kX , under hypotheses H1,H3. If u(t) converges to ū ∈ U as t → ∞,
then x(t, x0, u) converges to x̄ := kX(ū), for any arbitrary initial condition x0.

Proof. Let u(t) → ū. For ε > 0, let δ > 0 be such that |v − ū| < δ ⇒
∣∣kX(v)− x̄

∣∣ <
ε. The assumption H3 can be used on U to construct a “δ-box” around ū, that
is, to find a, b ∈ U such that diam[a, b] < δ and [a, b] ∩ U is a neighborhood of
ū. In particular, it holds that

∣∣kX(v)− x̄
∣∣ < ε for every v ∈ [a, b] ∩ U , and that∣∣kX(a)− kX(b)

∣∣ ≤ 2ε.
Let now T1 be such that u(t) ∈ [a, b] for all t ≥ T1, and let x1 := x(T1, x0, u(t)).

Now the attention can be restricted to the input u1(t) := u(t + T1) with the ini-
tial condition x1. This trajectory has the same limit behavior as before but with
the added advantage that now all input values correspond to globally attractive
equilibria that are close to x̄.

Let T2 be large enough so that
∣∣x(t, x1, a)− kX(a)

∣∣ < ε and
∣∣φ(t, x1, b)− kX(b)

∣∣ <
ε, for all t ≥ T2. Since by monotonicity

x(t, x1, a) ≤ x(t, x1, u1) ≤ x(t, x1, b), ∀t ≥ 0,
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it follows that

|x(t, x1, u1)− x(t, x1, a)| ≤ M |x(t, x1, b)− x(t, x1, a)| ≤ 4Mε, ∀t ≥ T2,

where M is a normality constant for CX . Thus |x(t, x1, u1)− x̄| ≤ (4M + 2)ε, for
all t ≥ T2. This proves the assertion.

Several remarks are in order. First, this theorem is an infinite-dimensional gen-
eralization of Proposition V5, number 2) in [2]. In addition, even in the finite
dimensional case, it holds using weaker assumptions on the characteristic (in [2], an
additional stability property is imposed on kX(u), for every fixed u ∈ U). See [28]
for a counterexample showing that, in the absence of stability or monotonicity,
systems with characteristics may fail to exhibit the CICS property. Conclusion
1) in Proposition V5 of [2], namely the stability of the system x(t, x, u) for fixed
u(t) → ū, may not hold here in general. Nevertheless it holds under relatively
weak additional hypotheses: if a, b are such that a ¿ ū ¿ b, and kX is ¿-
increasing, then (kX(a), kX(b)) is an open neighborhood of x̄, and by monotonic-
ity x(t, x0, v) ∈ (kX(a), kX(b)) for any t ≥ 0, whenever x0 ∈ (kX(a), kX(b)) and
v(t) ∈ (a, b) for all t. Thus stability holds for instance if U is open and kX is ¿-
increasing. A similar argument shows that stability holds if kX is an open function.
CICS is a strong property of systems with both characteristic and monotonicity,
and it will be used frequently in what follows.

The Small Gain Theorem. Monotone systems have very useful global conver-
gence properties (see Hirsch [14], Smith [32]), but many gene and protein interac-
tion networks are not themselves monotone. We will consider the closed loop of a
monotone controlled system (when it is defined), forming an autonomous system in
which nevertheless the monotonicity will be of use.

Let u ∈ U∞ be an input. An element v ∈ U will be called a lower hyperbound of u
if there exist sequences v1, v2, . . . → v and t1 < t2 < . . . →∞ such that for all k ≥ 1
and t ≥ tk, vk ≤ u(t). A similar definition is given if for every t ≥ tk, vk ≥ u(t),
and v is said to be an upper hyperbound of u. Identical definitions are given for the
state space.

Lemma 3. Suppose given a system (1) under hypotheses H3,H4. Let u ∈ U∞, and
let v be a lower (upper) hyperbound of u. Then for any arbitrary initial condition
x0 ∈ X, kX(v) is a lower (upper) hyperbound of x(·) = Φ(·, x0, u).

Proof. Suppose v is a lower hyperbound of u(·), the other case being similar, and
let v1, v2, . . . → v and t1 < t2 < . . . → ∞ be as above. For every positive integer
n, let yn, zn ∈ X be such that diam(yn, zn) < 1/n and Vn := [yn, zn] ∩ X is a
neighborhood of kX(vn) (such yn, zn exist by H3).

For n ≥ 1 let

un(t) :=
{

u(t), 0 ≤ t < tn
vn, t ≥ tn.

The numbers T1 < T2 < . . .∞ are defined by induction as follows: let T0 := 0, and
given Tn−1, let Tn be chosen so that Tn ≥ Tn−1 + 1, Tn ≥ tn and for all t ≥ Tn :
x(t, x0, un) ∈ Vn. By monotonicity, yn ≤ x(t, x0, u) for every t ≥ Tn. Finally, by
construction, yn → kX(v) as Tn →∞, and so kX(v) is a lower hyperbound of x(·).

¤



ABSTRACT SMALL GAIN THEOREM 555

We use a result from Dancer [7], slightly adapted to our setup, which will provide
a simple criterion to study the global attractivity of discrete systems

xn+1 = T (xn) (3.3)

when the function T is ≤-increasing.

Lemma 4. Let K be a closed, normal cone with nonempty interior defined on a
Banach space B, and let M ⊆ B satisfy axiom H2 (i.e. with U replaced by M).
Let T : M → M be ≤-increasing and completely continuous. Suppose also that the
system (3.3) has bounded forward orbits, and that there is a unique fixed point x̄ of
T . Then all solutions of (3.3) converge towards x̄.

Proof. It is easy to see that a set C ⊆ B is order-bounded (in the sense of Dancer
[7]) if and only if it is bounded in B. Since T sends bounded sets to precompact
sets, it also holds that the orbits of (3.3) are precompact in M .

The same argument can now be used as in Lemma 1 of Dancer [7]: given x ∈ M ,
let ω(x) ≤ u for some u ∈ U , using H2. It then holds that ω(x) ≤ ω(u) pointwise.
Let similarly ω(u) ≤ ω(z), for z ∈ M , and let S = {y ∈ M |ω(x) ≤ y ≤ ω(z)}.
Then S is nonempty, closed, and convex, again using H2. By the Schauder fixed
point, one finds f ∈ S such that T (f) = f . But necessarily f = x̄. One similarly
concludes x̄ ≤ ω(x) ≤ x̄, and thus that ω(x) = {x̄}.

It is a well-known result that if T : R → R is a continuous, bounded, non
increasing function, then system (3.3) is globally attractive towards its unique fixed
point x̄ if and only if the equation T 2(x) = T (T (x)) = x has only the trivial
solution x̄. The following consequence of the above lemma generalizes this result to
an arbitrary space (see also Kulenovic and Ladas [21]).

Lemma 5. Assume the same hypotheses of Lemma 4, except that T : M → M
is ≤-decreasing instead of ≤-increasing. Then system (3.3) is globally attractive
towards x̄ if and only if the equation T 2(x) = x has only the trivial solution x̄.

Proof. Any solution of T 2(x) = x other than x = x̄ would contradict the global
attractivity towards x̄, since it would imply the existence of a two cycle T (x) =
y, T (y) = x (if x 6= y) or of another fixed point of T (if x = y). Conversely, assume
that the only solution of T 2(x) = x is x̄. Then T 2, being ≤-increasing, satisfies all
hypotheses of the above lemma, and therefore for any x ∈ B it holds that T 2n(x)
converges to x̄. But so does T 2n+1(x), too, for any fixed x ∈ B. The conclusion
follows. ¤

Definition 3. We say that a system (2.1) with I/S characteristic kX satisfies the
small gain condition if the following properties hold:

1. The system un+1 = k(un) has bounded orbits for every initial condition u0 ∈
U .

2. The equation k2(u) = u has a unique solution ū ∈ U .

The terminology “small gain” arises from control theory. Classical small-gain
theorems (cf. [8, 29, 30, 38]) show stability based on the assumption that the closed-
loop gain (meaning maximal amplification factor at all frequencies) is less than one,
hence the name. These results are formulated in terms of appropriate Banach spaces
of causal and bounded signals, and amount to the fact that the open-loop operator
I+F is invertible, and thus solutions exist in these spaces, provided that the closed-
loop operator F has operator norm < 1. The characteristic k in the current setup
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plays an analogous role to F ; observe that, for linear k, norm < 1 would guarantee
stability. Versions with “nonlinear gains” were introduced in [25], and the most
useful ones were developed by [17] on the basis of the notion of “input to state
stability” from [34]; see also the related paper [15, 36]. The current formulation is
from [2].

The main result of this paper, denoted as the small gain theorem or SGT for short,
gives sufficient conditions for the bounded closed loop trajectories of a system (Φ, h),
under negative feedback, to converge globally to an equilibrium. Observe that in
view of Lemma 5, and under the hypotheses H1,H4, a system (2.1) satisfies the small
gain condition if and only if the system un+1 = k(un) is globally attractive to an
equilibrium. The two statements will be used interchangeably in the applications.

Theorem 2 (SGT). Let (2.1) be a system satisfying the assumptions H1,H2,H3,
H4, and suppose that the small gain condition is satisfied. Then all bounded closed
loop trajectories of (2.1) converge towards x̄ = kX(ū).

Proof. Let x0 ∈ X be an arbitrary initial condition, and let x(·), u = h ◦ x be a
bounded closed loop trajectory and its corresponding feedback, respectively. Let α
be a lower hyperbound of u(·). Such an element always exists: by H3 the range
of u(·) is bounded, and by H2 there exist α, β ∈ U that bound the bounded func-
tion u entirely from below and above, respectively. Then by Lemma 3, kX(α) and
kX(β) are lower and upper hyperbounds of x, respectively. Since h is a continuous,
≤-decreasing function, it is easy to see that k(α), k(β) are upper and lower hyper-
bounds of u respectively. Similarly, one concludes that k2(α), k2(β) are lower and
upper hyperbounds of u respectively, by using Lemma 3 once more. By repeating
this procedure twice at a time, it is deduced that k2n(α), k2n(β) are also lower and
upper hyperbounds of x(t), for every natural n.

Now, k2n(v) converges as n → ∞ towards ū for all v ∈ U by H4, the small
gain condition and Lemma 4. But this implies that u converges to ū. This is
proven as follows: given ε > 0, there is n large enough so that

∣∣k2n(α)− ū
∣∣ <

ε,
∣∣k2n(β)− ū

∣∣ < ε. By definition of lower and upper hyperbound, there are a, b ∈ U

and T ≥ 0 large enough such that
∣∣a− k2n(α)

∣∣ < ε,
∣∣b− k2n(β)

∣∣ < ε and for
every t ≥ T : a ≤ u(t) ≤ b. The normality of the cone KU is used in the same
way as in the proof of CICS: for M a normality constant of KU , it holds that
|u(t)− a| ≤ M |b− a| < 4εM , and so |u(t)− ū| ≤ 4εM + 2ε, for all t ≥ T .

By CICS, the solution x(·) converges to kX(ū). This shows the global attractivity
towards the point x̄ = kX(ū). ¤

Corollary 1. Let (2.1) be a system satisfying assumptions H1,H2,H3,H4 and the
small gain condition. If the closed loop system Ψ(t, x) is well defined and has
bounded solutions, and the if equation k2(u) = u has a unique solution, then Ψ(t, x)
has a unique globally attractive equilibrium x̄.

Proof. It is sufficient to observe that every solution x(t) of the closed loop system
Ψ(t, x) is in particular a closed loop trajectory, and to invoke Theorem 2. ¤

The statement of Theorem 2 in [2] is restricted to single input, single output sys-
tems in finite dimensions and doesn’t address the equivalence provided by Lemma 5.

Finally, the same proof as above can be carried out for the case in which h is
≤-increasing (rather than ≤-decreasing), assuming simply that there is a unique
fixed point ū of k. Nevertheless this latter result is not very strong, since it follows
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from weaker hypotheses. See for instance Ji Fa [16], and de Leenheer, Angeli and
Sontag [22].

4. Stability in the Small Gain Theorem. In this section we turn to the question
of stability for the closed loop trajectories considered in Theorem 2. Given a vector
x0 ∈ X, we say that a system (2.1) has stable closed loop trajectories around x0 if
for every ε > 0 there is δ > 0 such that |z0 − x0| < δ implies |z(t)− x0| < ε, t ≥ 0,
for any closed loop trajectory z(t) with initial condition z0. Of course, if the closed
loop system Ψ(t, x) is well defined, then this is equivalent to the stability of Ψ(t, x)
at x0. The basic idea is given by the following lemma.

Lemma 6. Let (2.1) be a monotone system with characteristic kX and a ≤-
decreasing feedback function h. Let y ¿ z in X be such that kXh(y), kXh(z) ∈
(y, z). Then any closed loop trajectory x(t) of (2.1), with initial condition x0 ∈
[kXh(z), kXh(y)], satisfies x(t) ∈ (y, z), t ≥ 0.

Proof. Let kXh(z) ≤ x0 ≤ kXh(y), and let x(t) be a closed loop trajectory of
(2.1) with initial condition x0. Suppose that the conclusion doesn’t hold, and let
by contradiction

t0 := min{t ≥ 0 |x(t) 6∈ (y, z)}.
It is stressed that as x(0) ∈ (y, z), x(·) is continuous, and the interval (y, z) is open,
it holds that x(t0) 6∈ (y, z). Nevertheless u(·) = h ◦ x(·) satisfies h(z) ≤ u(t) ≤
h(y) for t < t0, and therefore also h(z) ≤ u(t0) ≤ h(y) by continuity. Then by
monotonicity

kX(h(z)) = x(t, kX(h(z)), h(z)) ≤ x(t, x0, u) ≤ x(t, kX(h(y)), h(y)) = kX(h(y)),

for all t ≤ t0, and in particular,

y ¿ kXh(z) ≤ x(t0) ≤ kXh(y) ¿ z,

which is a contradiction.
In the case in which h is ≤-increasing the lemma also holds. One may interchange

“h(y)” and “h(z)” in the above proof to obtain the corresponding stability result.
Define γ(x) := kXh(x). The result in Lemma 6 is applied systematically in the

following proposition to guarantee the stability of the closed loop.

Lemma 7. Under the hypotheses of Theorem 2, let x̄ = kX(ū), and let {yn, }, {zn}
be sequences in X such that yn, zn → x̄ as n → ∞. Assume also that for every n,
γ(zn) ¿ x̄ ¿ γ(yn) and γ(yn), γ(zn) ∈ (yn, zn). Then (2.1) has stable closed loop
trajectories around x̄.

Proof. Let V be an open neighborhood of x̄. For ε > 0, let yn, zn be within distance
ε of x̄, for some n large enough. For x ∈ (yn, zn), one has |x− yn| ≤ 2MXε and
|x− x̄| ≤ 2MXε+ ε, by normality. Thus for ε small enough, (yn, zn) ⊆ V . It follows
that (γ(zn), γ(yn)) is a neighborhood of x̄ with the property that all closed loop
trajectories with initial condition in this set are contained in V (by the previous
lemma). ¤

The following lemma provides a simple criterion for the application of Lemma 7.

Lemma 8. Under the hypotheses of Theorem 2, suppose that kX is ¿-increasing
and h is ¿-decreasing. Suppose that there exists z ∈ int X such that x̄ ¿ k2(z) ¿
z. Then (2.1) has stable closed loop trajectories around x̄.
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Proof.
Recall that x̄ is a fixed point of γ. Let y := γ(z) − ν, where ν À 0 is small

enough that γ(y) ¿ z; this is possible by continuity of γ. It holds that

y ¿ γ(z) ¿ x̄ ¿ γ(y) ¿ z.

It is easy to see how this implies that

γ2(y) ¿ γ4(y) ¿ . . . ¿ x̄ ¿ . . . ¿ γ4(z) ¿ γ2(z),

using the fact that γ2 is ¿-increasing. By Lemma 5, yn := γ2n(y) and zn := γ2n(z)
converge to x̄, and thus these sequences satisfy the hypotheses of Lemma 7. ¤

The following theorem will ensure the stability of the closed loop in the case that
the input space is one or two-dimensional. Note that this can be the case even if X
is infinite dimensional.

Theorem 3. Under the hypotheses of Theorem 2, let BU = R or BU = R2, and let
U ⊆ BU be a (not necessarily bounded) closed interval with positive measure. If kX

is ¿-increasing and h is ¿-decreasing, then (2.1) has stable closed loop trajectories
around x̄.

Proof. Recall the notation k(u) = hkX(u). It is only needed to prove in both
cases that there exists z ∈ X such that x̄ ¿ k2(z) ¿ z, by Lemma 8. In the case
BU = R, let c ∈ int U , c > ū. Then necessarily γ2(c) < c, since otherwise the
sequence c ≤ γ2(c) ≤ γ4(c) ≤ . . . would not converge towards ū. Using the fact
that kX is ¿-increasing, it follows that z := kX(c) satisfies x̄ ¿ γ2(z) ¿ z.

If BU = R2, let A be a 2 × 2 matrix such that AKU = (R+)2, and define
φ(u) = A(u − x̄), κ(u) = φkφ−1(u). Note that u ¿ v if and only if Au ≤(1,1) Av,
and that the system un+1 = κ(un) is ¿-decreasing in the cooperative order (1, 1)
and converges globally towards 0.

We want to find c À(1,1) 0 such that κ2(c) ¿(1,1) c, since then the vector z :=
kXφ−1c will satisfy ū ¿ γ2(z) ¿ z. Suppose by contradiction that there is no such
point. By global attractivity, for any u À(1,1) 0 it must hold κ2(u) 6À(1,1) u. Then
the function α(u) := κ2(u)−u is such that α(R+×R+) ⊆ (R+×R−)∪ (R−×R+).
But if there existed v, w >(1,1) 0 such that α(v) ∈ R+ × R−, α(w) ∈ R− × R+,
then by joining the points v and w with a line one would find a point q >(1,1) 0
such that α(q) = 0 by continuity, that is, a nonzero fixed point of κ2u = u. This
contradicts attractivity. Assume therefore that κ2(u)1 ≤ u1, κ2(u)2 ≥ u2 holds for
all u À(1,1) 0, the other case being similar. Then 0 < u2 ≤ κ2(u)2 ≤ κ4(u)2 ≤ . . .,
which also violates attractivity. The conclusion is that 0 ¿ κ2(c) ¿(1,1) c for some
c. ¤

The following corollary of Lemma 8 strengthens the hypotheses of Theorem 2
to imply the stability of the closed loop in arbitrary input spaces. Thus, instead
of assuming that the function u → k(u) defines a globally attractive system and is
≤-decreasing, we will assume that its linearization T around ū defines a globally
attractive system and that u < v implies T (u) À T (v). The linearization is taken
here in the usual sense of Frechet differentiation.

Corollary 2. Under the hypotheses of Theorem 2, suppose that kX is ¿-increasing
and h is ¿-decreasing. Assume that the linear operator T = k′(ū) is well defined
and compact, and that i) un+1 = T (un) is a globally attractive discrete system, ii)
T (KU − {0}) ⊆ −int KU . Then (2.1) has stable closed loop trajectories around x̄.
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Proof. By i), the operator T 2u = (k2)′(u) defines a globally attractive discrete
system. Hence the point spectrum of T 2 is contained in the open complex unit
ball. By ii), it holds that T 2 is a strongly monotone operator, and in particular
λ := ρ(T ) > 0. By the Krein Rutman theorem, there is v À 0 such that T 2(v) = λv.
But since 0 < λ < 1, it holds that 0 ¿ T 2(v) ¿ v. Let |v| = 1 and ε > 0 be such
that 0 ¿ B(ε, T 2(v)) ¿ B(ε, v) pointwise in U . Letting δ > 0 be small enough that∣∣k2(ū + u)− T 2(u)− ū

∣∣ < ε |u| whenever |u| < δ, it follows that ū ¿ k2(u+λδv) ¿
ū + δv. The conclusion follows from Lemma 8. ¤

An Application of Theorem 3. The local stability of finite-dimensional systems
can usually be verified by calculating the eigenvalues of the linearized system around
the equilibrium. Nevertheless further understanding of the stability of the system
is difficult to extract in this way, especially in the case of large-scale systems and
variable (or unknown) parameters. One finite-dimensional illustration of Theorem 3
can be found in Section VII of [2], where global attractivity is proven for a model
of MAP kinase cascade dynamics. We prove here that this system is actually asym-
potically stable. The fact that the model satisfies the hypotheses of Theorem 2 is
mostly guaranteed from the last paragraph of Section 2 of this paper. It will be
assumed here, since later examples will treat these hypotheses at length.

The system in question can be written as the closed loop system of the following
controlled dynamical system (after a simple change of variables):

ẋ = θ1(1− x)− uθ2(x)

ẏ = θ3(1− y − z)− (1− x)θ4(y)

ż = (1− x)θ5(1− y − z)− θ6(z)

Ẏ = θ7(1− Y − Z)− zθ8(Y )

Ż = zθ9(1− Y − Z)− θ10(Z),

h(x, y, z, Y, Z) =
K

1 + g1+Z
g2+Z

, (4.4)

where θi(x) := aix/(bi + x), for positive constants ai, bi, K > 0, and g2 > g1 > 0.
It is shown in [2] that (4.4) is monotone with respect to the cones R+ for the
input, and R− × R− × R+ × R− × R+ for the states. It is only needed to verify
that kX is ¿-increasing and h is ¿-decreasing, the latter of which can be easily
checked. To verify the former, note that the system is a cascade of three subsystems
x → (y, z) → (Y, Z) with characteristic, and that it is enough to verify that each of
the characteristic functions is ¿-increasing. This is done for the third subsystem,
the other two being very similar.

For every fixed input z of the third subsystem, the state converges towards
the globally attractive state (Y,Z) = k(Y,Z)(z). By monotonicity, if z1 < z2 and
(Yi, Zi) = kX(zi), i = 1, 2, it follows that Z1 ≤ Z2, Y1 ≥ Y2. But by definition
zi = θ7(1− Yi − Zi)/θ8(Yi), and thus one cannot have both Z1 = Z2 and Y1 = Y2.
On the other hand, since also by definition it holds that

θ8(Y )θ10(Z) = θ7(1− Y − Z)θ9(1− Y − Z),

and all θj are strictly increasing, then Y cannot decrease without Z increasing,
and vice versa. Putting all together, one concludes that z1 < z2 implies Z1 <
Z2, Y1 > Y2, so that in particular k(Y,Z) is ¿-increasing. A similar argument for
the remaining subsystems shows that the characteristic of (4.4) is ¿-increasing, as
desired, and stability of (4.4) follows.
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5. Delay Systems. The abstract treatment we have followed allows us to special-
ize to situations that generalize the single input, single output setup considered in
[2]. Apart from including multiple inputs and outputs, one possible generalization
consists of allowing diffusion terms in the equations, and thus transforming them
into a weakly coupled system of PDEs. This is out of the scope of this paper, and it
will be discussed elsewhere. From now on, we will rather consider the introduction
of delay terms in finite-dimensional systems of ODEs. One example of such systems
is

ẋ(t) = Ax(t− r) + Bx(t), (5.5)

where A,B are n × n constant matrices. Note that the initial condition of such
a system would have to include not only x(−r) and x(0), but also all x(s) for
−r < s < 0.

Given r ≥ 0 (the delay of the system), a ≤ ∞, x : [−r, a) → Rn and 0 ≤ t < a,
define xt ∈ X as xt(s) = x(t + s), s ∈ [−r, 0]. A general autonomous delay system
can be thus written as

ẋ(t) = f(xt), x0 = φ, (5.6)

where φ : [−r, 0] → Rn, and f has values in Rn. The state of the system at time t
is considered to be xt (as opposed to just x(t)). Thus even though the equation is
defined in a finite dimensional context, the proper dynamical system Φ(t, φ) = xt

is defined in a suitable state space of such functions.
Similar comments apply to the controlled system

ẋ = f(xt, α(t)), (5.7)

which defines a dynamical system Φ(t, φ, α) = xt, for every input α : [0,∞) → U .
The set U of input values will be allowed to consist itself of functions, in order to
include delays in the inputs. The delay rinput used for input values will nevertheless
be allowed to be different from that used for states, which will be referred to as
rstate. Thus if α is an input, then for every t ≥ 0, α(t) : [−rinput, 0] → U0 is a
function α(t)(s) (though not necessarily of the form α(t) = ut for some u : R+ →
X0, see below). It will be clear from the context when α is an input (α ∈ U∞), and
when it is an input value (α ∈ U).

Let U0 ⊆ Rm be a closed box (possibly unbounded), and X0 ⊆ Rn be open or,
in the case of KX0 being an orthant cone, a box including some or all of its faces.
Define

BX := C([−rstate, 0],Rn), X := C([−rstate, 0], X0)

under the supremum norm. The tentative choice of the function space

BU = L∞([−rinput, 0],Rn)

carries with it a problem: for a delay system such as

ẋ = f(xt, ut) = u(t− 1)− u(t) + x(t− 1)− x(t),

the function f cannot have as argument an input value α ∈ L∞([−rinput, 0],Rn),
since such functions are not defined pointwise. Thus in the case of discrete delays,
the input space will be restricted to BU := C([−rinput, 0],Rm), U = C([−rinput, 0], U0).
In the case of distributed delays, this problem disappears; for this reason BU will
be allowed to be either L∞([−rinput, 0],Rn) or C([−rinput, 0],Rm), and U will be
defined accordingly.
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Definition 4. A delay dynamical system consists of a tuple (X, U, f), f : X×U →
Rn, and X, U as above for some X0 ⊆ Rn, U0 ⊆ Rm, with the following property:
for any initial condition φ ∈ X and any measurable, locally bounded α : R+ → U ,
there is a unique maximally defined, absolutely continuous function x such that

ẋ(t) = f(xt, α(t)) for almost every t, x0 = φ. (5.8)

The lowercase greek letters φ, ψ will be used to refer to elements of X, that is,
φ, ψ : [−r, 0] → X0 continuous, and α, β will be used for elements in U as well as
for inputs in U∞.

In the case that U = C([−rinput, 0], U0), note that for a discontinuous input
u : R+ → U0, the function t → ut is not a well defined input in U0. The following
lemma will provide a source of allowed inputs for each choice of the space BU .
(Recall that an input u ∈ U∞ is any locally bounded, measurable function u :
R+ → U .)

Lemma 9. Let u : [−rinput,∞) → U0 be continuous. If BU = L∞([−rinput, 0],
Rm), or if BU = C([−rinput, 0],Rm), then the function α : [0,∞) → BU , defined as
α(t) := ut, is a well defined input in U∞.

Let BU be any of the two spaces above, and consider τ1, τ2, . . . τk, where τi ∈
[−rinput, 0] for all i. If u ∈ (U0)∞, and if U0 is convex, then there exists an input
α ∈ U∞ such that α(t)(τi) = ut(τi), for all i and t ≥ 0.

Proof. A continuous function u : [−rinput,∞) → U0 is uniformly continuous on
every closed bounded interval. This implies that ‖us − ut‖∞ → 0 if s → t, and
therefore that the function α(t) = ut is continuous, for both choices of the space
BU . The local boundedness of α follows directly from that of u.

To prove the second statement, and assuming without loss of generality that
the τi are pairwise distinct, consider a continuous partition of unity ν1 . . . νk :
[−rinput, 0] → [0, 1] such that νj(τj) = 1 for all j = 1 . . . k and νj(τi) = 0, i 6= j.
Let

α(t)(s) := ν1(s)u(t + τ1) + . . . + νk(s)u(t + τk).

For every t ≥ 0, α(t) is a linear combination of continuous functions, and there-
fore α(t) ∈ BU . To prove measurability, note that each function νi(s)u(t + τi) is
measurable by writing it as the composition of

R+ ζ−→ C([−rinput, 0], [0, 1])× Rm ξ−→ BU ,

where ζ(t) := (νi, u(t)), ξ(φ, q) := q φ, ζ is measurable and ξ is continuous. It holds
that Range α(t) ⊆ U0 for every t, by convexity of U0. The local boundedness of
α follows from that of u, and the fact that α(t)(τi) = ut(τi) for all t and i can be
easily verified. ¤

The second statement of the above lemma is useful when considering a system
(5.7) in which f(φ, α) only depends on the values of φ at discrete times τ1, . . . , τk,
that is, in the case of point delays. In this case, given an input u in U0, the function
ut can be replaced by the input α in Lemma 9 for all practical purposes.

In the Appendix II the question is addressed as to which functions f : X×U → Rn

generate a well defined delay dynamical system. The main result is the following
theorem, where X0, U0, X, U are as described in the end of Section 2.
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Theorem 4. Let f : X × U → Rn be continuous and locally Lipschitz on X,
locally uniformly on U . Let also f(φ,C) be bounded, for any φ ∈ X, C ⊆ U closed
and bounded. Then the system (5.8) has a unique maximally defined, absolutely
continuous solution x(t), for every input α(t) and every initial condition φ ∈ X.

We give conditions on X0, U0 and the underlying cones in Rn,Rm that guarantee
that the general hypotheses H1,H2,H3 are satisfied.

Lemma 10. Let U0 be a closed box (possibly unbounded), and let X0 be open or, in
the case of KX0 being an orthant cone, a box including some or all of its faces. Let
KU0 ⊆ Rm,KX0 ⊆ Rn be closed cones with nonempty interior, rinput, rstate ≥ 0,
BX , BU as in Definition 4, and let KX := {φ ∈ BX | φ(s) ∈ KX0 ∀s}, KU := {α ∈
BU | α(s) ∈ KU0 a.e. s}. Then conditions H1,H2 and H3 in the general hypotheses
are satisfied for X, U ,KX ,KU .

Proof. By Lemmas 1 and 2, KX0 ,KU0 are normal. Let M, N be normality constants
for KX0 ,KU0 respectively. If 0 ≤ φ ≤ ψ in X, that is 0 ≤ φ(s) ≤ ψ(s) in X0 for
every s, then it holds that |φ(s)| ≤ M |ψ(s)| , for every s. This asserts the normality
of KX with normality constant M . One proves similarly that KU is normal.

Let a ∈ Rm bound the unit ball from above (see Section 2). Then the constant
function â bounds the unit ball in BU . This implies that KU has nonempty interior.
For α ∈ BU , the function d(α) := ess sup {dist(α(s),KU0)| s ∈ [−rinput, 0]} is
continuous, which implies that KU = d−1(0) is closed. The same argument applies
to KX .

If X0 is open, Range φ will remain a finite distance away from Xc
0 , for every

φ ∈ X. Thus there is an open neighborhood around φ contained in X, which shows
that X is open and satisfies the ε-box property. Let s = (s1, . . . sn), si = ±1 for
all i, defining an orthant cone in a natural way as in Section 2. Let X be a box
containing some or all of its sides. Consider a given state φ ∈ X and ε > 0, and let

η :=
1

3
√

n
min(ε, dist(Range(φ), ∂X0 −X0).

Define π1, π2 : X0 → X0 as

π1(x) := inf{x + q · s | q ∈ (−η, η), x + q · s ∈ X},
π2(x) := sup{x + q · s | q ∈ (−η, η), x + q · s ∈ X},

where the infimum and supremum are taken with respect to the order ≤s.
Given φ ∈ X, let φi(s) := πi(x(s)), i = 1, 2.. See Figure 1 for an illustration

of these two functions. It is clear that π1 and π2 are both continuous functions.
Then (y =)φ1, (z =)φ2 ∈ X by construction, and diam[φ1, φ2] = |φ2 − φ1| ≤
|2η(1 . . . 1)| = 2η

√
n < 3η

√
n ≤ ε. Also, it is easy to see that

[φ1, φ2] = X ∩ [φ− ηs, φ + ηs].
This implies that [φ1, φ2] ⊆ X is a neighborhood of φ, and H3 thus holds for X.

In the case BU = C([−rinput, 0],Rm), the same proof above applies to prove H3
for U , even if some or all of its sides are missing. However, if BU = L∞([−rinput, 0],
Rm), then for a given α ∈ U the distance between the range of α and ∂U \ U may
well be zero. One uses the fact that U is closed to show that for η = 1

2
√

m
ε,

π1, π2 : U0 → U0 are well defined. Since the πi are continuous, αi(s) = πi(α(s)) are
measurable functions. The rest of the proof that U satisfies H3 follows similarly as
above.
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φ

φ1

φ2
d
3

d

Figure 1. Shown in the picture is the box X0 with one open
and three closed faces, and φ1 ≤ φ ≤ φ2 in bold. Here
d = dist(Range φ, ∂X − X0), and η = d/(3

√
2). Note that

|φ(0)− φ1(0)| = |η(1, 1)| = d/3.

It will be proved that U satisfies H2. It is clear that U is closed and convex. In
the case BU = C([−rinput, 0],Rm), and given a bounded set A ⊆ U , consider the
bounded set A0 defined as the union of all the images of the functions in A. Use H2
on A0 to find a, b ∈ U0 such that a ≤ A0 ≤ b. Then the constant functions â, b̂ do
the same on the set A. In the case BU = L∞([−rinput, 0],Rm), the axiom of choice
allows to define A0, by picking a particular point-by-point defined function for each
u ∈ A. After possibly changing the values of each function at sets of measure zero
to ensure that A0 is bounded, the result follows as before. ¤

We give a convenient criterion to check for monotonicity in the orthant cone case,
which is based on Theorem 1.1 of Smith [32]. Refer to Figure 2 for an illustration
of this criterion.

φ

ψ

φ(0) ψ(0)

f(φ,α)

f(ψ,α)

Figure 2. Monotonicity Criterion. Illustrated are two states
φ, ψ : [−rstate, 0] → R2 with φ ≤ ψ and φ2(0) = ψ2(0). In the
cooperative case, the criterion requires that f2(φ, α) ≤ f2(ψ, α).
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Proposition 1 (Monotonicity Criterion). Let (5.7) be a delay system, and let KX

be the orthant cone defined by the tuple s = (s1 . . . sn). Assume that i) α → f(φ, α)
is an increasing function, for every φ ∈ X, and that ii) for every α ∈ U , φ ≤ ψ,
and if φi(0) = ψi(0) for some i, it holds that sifi(φ, α) ≤ sifi(ψ, α). Then system
(5.7) is monotone with respect to its underlying cones.

Proof. See the appendix for a sketch of the proof. ¤.

Suppose that the delay system (X, U, f) allows an I/S characteristic kX : U → X.
Note that φ = Φ(t, kX(α), α̂) is constant over t, and thus that any solution of (5.7)
with constant input α̂ starting at kX(α) must satisfy xt = kX(α) for all t ≥ 0.
This easily implies that kX(α) is a constant function, for every α. Hence, since kX

has a finite dimensional range, it is easy to verify when it is completely continuous,
namely the image of every bounded set should be bounded. One can also think of
kX as having values in X0, and when evaluating un+1 = k(un) it is sufficient to
consider constant initial conditions.

In the applications of this paper the feedback function h : X → U will be defined
as h(φ)(s) = h0(φ(s)), for some h0 : X0 → U0. In such case, it holds that ū is itself
a constant vector. Also note that if z ∈ Rm is such that ū ¿ k2(z) ¿ z, then the
constant function ẑ has this property in U . Therefore one can apply Theorem 3 to
prove stability in the context of delay systems.

To prove that Φ(t, φ, α) is a dynamical system, it is important to verify that the
semiflow condition is satisfied. To avoid confusion, this is best done for an abstract
input space U ; a short proof will be given in the appendix.
Example. The following system corresponds to the cyclic gene model with repres-
sion studied in [31]. Let y1 be a messenger RNA, which produces an enzyme y2,
which produces another enzyme y3, and so on for p ≥ 2 steps. Let yp in turn inhibit
the production of y1, closing the cycle and inducing the repression. The system is
modeled as

ẏ1 = F (Lpy
t
p)− a1y1(t)

ẏi = Li−1y
t
i−1 − aiyi(t), 2 ≤ i ≤ p,

(5.9)

where a1, . . . , ap > 0, F : [0,∞) → (0,∞) is a strictly decreasing continuous func-
tion, and yt

i stands for the delay term yt used above, with superscripts to allow
indexing. The delay is assumed to be r > 0 for all yi for simplicity. The operators
Li are of the form

Liφ =
∫ 0

−r

φ(s) dνi(s),

for positive Borel measures νi on [−r, 0], 0 < νi([−r, 0]) < ∞. Set X = C([−r, 0],
(R+)p). Since F is decreasing, this system is not monotone. Nevertheless the
induced control system

ẏ1 = F (Lpα(t))− a1y1(t)

ẏi = Li−1y
t
i−1 − aiyi(t), 2 ≤ i ≤ p,

h(yt) = yt
p = α(t),

(5.10)

will fit the setup of our results. Indeed, letting U = L∞([−r, 0],R+),4 the system
satisfies the hypotheses of Theorem 4. It also fulfills the monotonicity criterion

4Here it is assumed that νi(E) = 0 whenever the Lebesgue measure of E ⊆ [−r, 0] is zero. In
the case of point delays, one would set U = C([−r, 0],R+) as before.
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using the cones KX = C([−r, 0], (R+)p), KU = L∞([−r, 0],R−) (note the negative
sign). Lemma 10 is also satisfied, thus guaranteeing hypotheses H1-H3. Fixing
α ∈ U , the control system can now be shown to converge towards the constant
function (ŷ1, . . . ŷp), where

y =
(

F (Lpα)
a1

, . . . ,
F (Lpα)
a1 · · · ap

)
.

To see this, note first that the convergence of y1 towards the constant function
F (Lpα)/a1 is elementary. The convergence of yt

2 towards (the constant function)
F (Lpα)/(a1a2) is also evident, by considering the controlled linear system

ẏ2 = β − a2y2(t),

where β(t) := L1y
t
1, and by noting that β(t) must converge. Inductively, the exis-

tence of the characteristic follows. Noting that kX sends bounded sets to bounded
sets, it follows that H4 holds. The item 1 in the small gain condition holds clearly,
since F is bounded (see next paragraph). To see that any solution y(t) of (5.9)
is bounded, let z1(t) be a solution of z′ = F (0) − a1z, with initial condition
z1(0) = y1(0). Then y1(t) ≤ z1(t) for all t ≥ 0: to see this, note that the function
w(t) = z1(t) − y1(t) satisfies the equation w′(t) = F (0) − F (Lpα(t)) − a1w, where
F (0)− F (Lpα(t)) ≥ 0 and w(0) = 0. Now, since z1(t) is monotonic and converges
towards F (0)/a1, y1(t) is eventually bounded from above by F (0)/a1 + ε, for any
ε > 0. In fact, F (0)/a1 is an upper hyperbound of y1(t) under the usual order. The
boundedness of y1(t) is used to carry out a very similar argument in order to show
that y2(t) is also eventually bounded, and the same holds for all other variables.
This shows that all the solutions of the closed loop system are bounded.

By Theorem 2, system (5.9) is globally attractive whenever the discrete system

un+1 = k(un) =
F (Lpun)

a1 · . . . · ap

is globally attractive. Note that even if u1 is a function, still u2, u3, . . . can be
assumed to be constants, so that one can further reduce the system to be 1-
dimensional. Whenever the hypotheses of Theorem 2 apply, the stability of the
system is ensured by Theorem 3, the remainding hypotheses being trivially verified.
The same procedure can be applied throughout to the coupled system of an odd
number of repressions of the form (5.9), as done in Smith [31]. This is in accord
with the comments in p. 188 of that article:

The remarkable fact is that the dynamics of the two systems [discrete
and continuous] appear to correspond both at the level of local stability
analysis and at the level of global dynamics. This is potentially a very
useful fact, both for model construction and for analysis of particular
models.

An example of a system (5) which is globally attractive is given by the function
F (x) := A/(K +x), for A, K > 0 arbitrary (the division by the constants a1 . . . ap is
here irrelevant). By Lemma 5, one only needs to show that the equation F (F (x)) =
x has a unique solution. Such a solution would satisfy x = A/(K + F (x)), that is

A = Kx +
Ax

K + x
.
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The right hand side is an increasing function that starts at the origin and grows
to infinity; thus x is the unique intersection of this function with y = A, and the
statement follows.

6. A model of the lac operon. The following dynamical system was proposed by
Mahaffy and Savev [24] to describe the dynamics of lactose metabolism in E.Coli,
which is orchestrated by the genes known as the lac operon. Some of the main
results in [24] concern the global stability of the system; we will apply the small
gain theorem in its delay form to prove and extend these results.

The compounds involved in the system are the lac operon mRNA, the proteins
β-galactoside permease, β-galactosidase (β-gal for short) and lactose, which are
denoted respectively by x1, x2, x3, x4. (Actually it is isolactose that regulates the
operon, but lactose and isolactose are considered identical in this model.) All sub-
stances degrade at a fixed rate except for the lactose, which is actively digested by
the enzyme β-gal. The gene is activated whenever lactose is present in the system;
more energetic sources of food, like glucose, are assumed not to be present. The
mRNA then induces the production of permease and β-gal, and the permease makes
the cell membrane more permeable to lactose, so that it can more efficiently enter
the cell. Mahaffy et al. assume that the production of mRNA has a natural satura-
tion point, with Michaelis-Menten dynamics. This amounts to the presence of, say,
a constant number of RNA polymerase molecules. After introducing an arbitrary
delay τ1 as a result of the transcription of x1, as well as a delay τ2 as a result of the
translation of x2, x3, one can make a change of variables and arrive to the system
with a single delay

ẋ1(t) = g(x4(t− τ))− b1x1(t)

ẋ2(t) = x1(t)− b2x2(t)

ẋ3(t) = rx1(t)− b3x3(t)

ẋ4(t) = Sx2(t)− x3(t)x4(t).

(6.11)

Here g(θ) := (1 + Kθρ)/(1 + θρ), K > 1, all other constants are positive, and all
variables are nonnegative. We will illustrate our main result by writing this system
as the negative feedback loop of a controlled monotone system, in the way illustrated
by Figure 3. The resulting system, which is modeled with rstate = τ, rinput = 0, is

+

+

+

++

|

++

|

+x1 x2

x3 x4

x1 x2

x3 x4

v u

Figure 3. On the left, the digraph associated with equation
(6.11). The dotted arrows are replaced by inputs on the right di-
graph, making the system into a controlled monotone one. Setting
u = x1, v = x4 closes the loop back to (6.11).
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ẋ1(t) = g(v(t))− b1x1(t)

ẋ2(t) = u(t)− b2x2(t)

ẋ3(t) = rx1(t)− b3x3(t)

ẋ4(t) = Sx2(t)− x3(t)x4(t),

h(x(t)) = (x1(t), x4(t− τ)).

This model can be verified to be monotone with respect to the cones

KX = C([−rstate, 0],R+ × R− × R+ × R−), KU = R− × R+

using our monotonicity criterion. (In fact, monotonicity with respect to some or-
thant cone is equivalent to the property that the associated digraph doesn’t have
any undirected closed loop with an odd number of ‘−’ signs.) See [2] for details,
and Appendix I for a more systematic treatment in the finite dimensional case. It
is clear that the closed feedback loop of this system is (6.11).

It will be shown that this controlled system has a well defined characteristic, by
appealing to Figure 3 and by noting that one can write the system as a cascade of
stable, one-dimensional systems. In fact, in the notation of (5.7), it holds in this
example that f(xt, α) = f(x(t), α), and that the delay is only used for defining the
feedback function. If the delay in the state is ignored and the controlled system is
viewed as a strictly finite dimensional system, it becomes obvious that a fixed control
(u, v) will induce a globally asymptotically stable equilibrium, which is calculated
to be

x1 =
g(v)
b1

, x2 =
u

b2
, x3 =

r

b1b3
g(v), x4 =

Sb1b3u

rb2g(v).
After proving this, it is evident that the state kX(u, v) = (x̂1, x̂2, x̂3, x̂4) is a globally
asymptotically stable state. This proves the existence of the I/S characteristic. The
feedback characteristic of the system is

k(u, v) =
(

1
b1

g(v),
Sb1b3

rb2

u

g(v)

)
. (6.12)

To guarantee that this open loop system satisfies the hypotheses of the main
result, let X0 = (R+)4, U0 = (R+)2, and note that Lemma 10 can be directly ap-
plied to prove H1,H2,H3. The monotonicity and existence of the characteristic was
shown above, and since kX sends bounded sets to bounded sets (g(θ) is bounded
from above by K and from below by 1), condition H4 also holds. Since the first
component of k(u, v) is bounded from below and above by 1/b1 and K/b1 respec-
tively, it is easy to see that the orbits of the discrete system (6.12) are uniformly
bounded after two steps. Therefore item 1 in the small gain condition is satisfied. To
see that a solution x(t) of system (6.11) is bounded, let z1(t), z2(t) be the solutions
of the systems z′ = 1 − b1z and z′ = K − b1z respectively, with initial conditions
zi(0) = x1(0). It is easy to see that z1(t) ≤ x1(t) ≤ z2(t) for all t ≥ 0, see the previ-
ous example. Since z1(t) (z2(t)) converges towards 1/b1 (K/b1), it holds that x1(t)
is eventually bounded from below and above by fixed positive constants 1/b1 − ε
and K/b1 + ε respectively. In fact, 1/b1 (K/b1) is a lower (upper) hyperbound of
x1(t) in the usual order. Using this fact, the same procedure is used to show that
x2, x3 are bounded, and this in turn implies that x4 is also bounded (see also [24]).
This shows that all the solutions of the closed loop system are bounded.

Note that k(u, v) has a unique fixed point u = 1
b1

g(Sb3
rb2

), v = Sb3
rb2

. For any choice
of the parameters such that the discrete system (un+1, vn+1) = k(un, vn) is globally
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attractive to this equilibrium, it follows from Theorem 2 that the original model
(6.11) is globally attractive to its unique equilibrium. In those cases, the stability of
(6.11) will be ensured by Theorem 3 and by the strict monotonicity of kX and h. For
the remainder of this example, we will concentrate on finding sufficient conditions
for the global attractivity of the discrete system.

In the global analysis of model (6.11), Mahaffy and Savev [24] restrict their
attention to the case ρ = 1, and they prove three results that provide sufficient
conditions for global attractivity. We will come to the exact same conclusions, by
writing the system associated to (6.12) as a scalar discrete system of second order,
and by appealing to the attractivity results known for such systems. For arbitrary
ρ we will also prove a new result, concerning global attractivity for any choice of
the parameters b1, b2, b3, S and r, provided that an inequality holds for ρ,K. Let
ρ = 1, and consider the discrete system

(un+1, vn+1) = k(un, vn). (6.13)

It holds that un+1 = 1
b1

g(vn), and

un+2 =
1
b1

g

(
Sb1b3

rb2

un

g(vn)

)
=

1
b1

g

(
Sb3

rb2

un

un+1

)
=

βun+1 + γun

Bun+1 + Cun
, (6.14)

where here ρ = 1 in g(θ), and β := 1
b1

, γ := K Sb3
rb1b2

, B := 1, C := Sb3
rb2

. If the
parameters of (6.14) are such that this discrete system has a globally attractive
equilibrium for all initial conditions u0, u1 > 0, then (6.13) has globally attractive
solutions for any initial condition u, v ≥ 0. (If u = 0 or v = 0, simply iterate (6.12)
a few times and the states will become strictly positive.) The global attractivity of
(6.13) clearly also implies that of (6.14).

The book by Kulenovic and Ladas [21] deals exclusively with rational discrete
systems of second order. It follows from their treatment of equation (6.14) that for
p := β/γ, q := B/C, and p < q, global attractivity holds (that is, with respect to
arbitrary real initial conditions for which the iterations are well defined, including
(u0, u1) ∈ (0,∞) × (0,∞)) if q < pq + 1 + 3p. Furthermore, instability occurs if
q > pq + 1 + 3p (see Theorem 6.9.1 in [21]).

In our case p = rb2
KSb3

< rb2
Sb3

= q, and attractivity holds if and only if

0 < q2 + 3q −Kq + K, q :=
rb2

Sb3
. (6.15)

For instance, if q < 1 then 0 < K−qK and thus (6.15) follows. This corresponds
to Proposition 4.1 in [24]. Similarly, convergence follows whenever q > K, since then
0 < q2−qK (Proposition 4.2 in [24]). Finally, for q > 1 equation (6.15) is equivalent
to K < q(q + 3)/(q − 1), and the right hand side of this equation is bounded from
below by 9. Thus for 1 ≤ K < 9 stability also follows. The remaining hypotheses
in Theorem 4.3 of [24] can be shown to be equivalent to K < q(q + 3)/(q − 1) for
q > 1. We summarize the three main global stability results of [24] in the following
statement.

Theorem 5. For ρ = 1, the system (6.11) is globally attractive to a unique equi-
librium, provided that 0 < q2 + 3q −Kq + K, q := rb2

Sb3
. In particular, this holds if

q < 1, if q > K or if q > 1 and K < q(q + 3)/(q − 1). Whenever this condition is
satisfied, system (6.11) is stable around this equilibrium.
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The stability part of the above theorem is a direct consequence of Theorem 3,
after noting that kX is ¿-increasing and h is ¿-decreasing, both of which are
straightforward to check.

Note that the delay τ was almost never used, and indeed can be arbitrarily large
or small. In fact, one can introduce different delays, large or small, in all of the
first terms of the right hand sides of (6.11), and the results will apply with almost
no variation. (If delays are introduced in the second terms, the systems will not be
monotone anymore.) If no delays are assumed, substantially stronger attractivity
conditions hold; see [24].

Note that one can associate a second order, scalar discrete system to the original
two-dimensional system for any value of ρ, in the same way as above. One cor-
respondence that can be easily verified by using equation (6.14) repeatedly is the
following: if u0 = u > 0 and u1 = v > 0, and if u0, u1 and (u, v) are taken as initial
conditions of the systems (6.14) and (6.13) respectively, then u0, u1, u2, . . . generates
a two cycle in (6.14) if and only if (u, v) forms a two cycle in (6.13). Thus there
exist nontrivial two-cycles in (6.13) if and only if there exist nontrivial two cycles
in (6.14). For u = 0 or v = 0, similar comments apply as before. Recall that the
existence of nontrivial two-cycles in (6.13) is equivalent to the global attractivity
of system (6.13), by Lemma 5 and the fact that this system is ≤-decreasing under
some orthant cone. By the above arguments, the same is true for system (6.14).
Using the main result, the following proposition follows:

Proposition 2. The system (6.11) is globally attractive to its equilibrium whenever
the only solution u > 0, v > 0 of the system of equations

u =
βvρ + γuρ

Bvρ + Cuρ
, v =

βuρ + γvρ

Buρ + Cvρ

is u = v = (β + γ)/(B + C), for β =
1
b1

, γ =
K

b1

(
Sb3

rb2

)ρ

, B = 1, C =
(

Sb3

rb2

)ρ

.

This is a good point to comment on decomposing the same model as the nega-
tive feedback loop of a monotone system in other ways – after all, one can see that
replacing x3 by “u” in the fourth equation of (6.11), the resulting SISO system is
monotone as well. Indeed, in that way a characteristic k(u) can also be shown to
exist, but it can be expressed only indirectly as the solution of a certain algebraic
equation, since a directed loop remains in the digraph of the controlled system. To
check that there are no nontrivial two-cycles for the discrete system, it is necessary
to solve the system of equations u = k(v), v = k(u), which turns out to be equiv-
alent and very similar to the system of equations in Proposition 2. Thus, there is
more than one way to decompose autonomous systems as closed loops of monotone
controlled systems and use Theorem 2.

Next we provide sufficient conditions on K, ρ for system (6.11) to be globally
attractive, for any choice of the remaining parameters. We transform k(u, v) =
(ζv, ξu/g(v)) into logarithmic coordinates. That is, consider

κ(σ, τ) := ln(k(eσ, eτ )).
The initial condition (σ, τ) of the resulting discrete system is allowed to be an

arbitrary vector in R2. Then

κ(σ, τ) = (∆(τ), σ + c−∆(τ)), ∆(τ) := ln ζg(eτ ), c := ln ζξ.
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Note that the iterations of this function converge globally to an equilibrium if and
only if those of k(u, v) do. To the former system one can associate the second order
system σn+2 = ∆(c + σn − σn+1) as was done in equation (6.14).

Lemma 11. Consider a discrete system σn+2 = ∆(c + σn − σn+1), where c is
an arbitrary constant and ∆ is a bounded, non-decreasing, Lipschitz function with
Lipschitz constant α < 1/2. Then the system is globally attractive to its unique
equilibrium σ = ∆(c).

Proof. It is clear that a constant sequence σ−1, σ0, σ1 . . . = σ is a solution of
the discrete system if and only if σ = ∆(c), since σ0 = σ1 implies σ2 = ∆(c +
σ0 − σ1) = ∆(c) and so on for all n ≥ 2 (the converse direction is evident). Let
a0 := inf Range ∆, b0 := sup Range ∆. Then it holds that σn ∈ [a0, b0], n ≥ 1,
for any initial conditions σ−1, σ0. Thus for all n ≥ 1,

σn − σn+1 + c ∈ [a0 − b0 + c, b0 − a0 + c],

and by calling a1 := ∆(a0 − b0 + c), b1 := ∆(b0 − a0 + c), it follows that σn ∈
[a1, b1], n ≥ 3.

Define inductively ai+1 := ∆(ai − bi + c), bi+1 := ∆(bi − ai + c). Then for any
n ≥ 2i+1, σn ∈ [ai, bi], by induction on i as above. If one shows that |bi − ai| tends
to 0 as i increases, then the discrete system will be shown to be globally attractive
towards ∆(c), since ai ≤ ∆(c) ≤ bi for all i. Using the Lipschitz condition on ∆, it
holds that

|bi−ai| = |∆(bi−1−ai−1+c)−∆(ai−1−bi−1+c)|
≤ α |bi−1−ai−1+c−(ai−1−bi−1+c)|
= 2α |bi−1 − ai−1| ≤ . . . ≤ (2α)i |b0 − a0| ,

and the conclusion follows. ¤
In the particular case in question, it follows from the definitions of ∆(x) and g(θ)

that ∆(x) = ln ζ + ln(1 + keρx)− ln(1 + eρx). By derivating twice, it is shown that
∆(x) has a unique inflexion point at x0 = − 1

2ρ ln K, and that

∆′(x0) =
(K − 1)ρ

2(
√

K + 1)
<

1
2
⇔ ρ <

√
K + 1

K − 1
,

and that ρ arbitrary if K = 1. The following corollary follows by the previous
lemma and Theorem 2:

The following corollary follows by using the previous lemma and Theorem 2:

Corollary 3. The lac operon model (6.11) has a unique, globally attractive equi-
librium for any choice of the positive parameters b1, b2, b3, r, S, provided that ρ <
(
√

K + 1)/(K − 1).

7. Appendix I: Decomposing Autonomous Systems into Negative Feed-
back Loops of Monotone controlled Systems. It will be shown in this section
that, under rather general conditions, one can decompose an autonomous (not nec-
essarily monotone) system into the negative feedback loop of a monotone controlled
system. Sufficient conditions will also be found for the controlled system to have
a well defined characteristic. This appendix is solely concerned with finite dimen-
sional systems, where the ideas are most simply presented, but a generalization to
delay systems is straightforward. Consider the controlled system

ẋ = f(x, u), x ∈ X = (R+)n, u ∈ U = (R+)m, (7.16)
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and fix a set S ⊆ {1, . . . n}. Any vector (xi)i=1...n defines a vector xS = (xi)i∈S .
Letting z stand for a fixed vector (zi)i∈SC , define the function fS(xS ; z, u) :=
f(xS , z, u)S , where f(xS , z, u) is meant in the obvious sense. This vector field
defines a controlled |S|-dimensional dynamical system

ẋS = fS(xS ; z, u) (7.17)

with n−|S|+m–dimensional control (z, u).
Finally, denote by SC the complement {1,. . . , n} - S of S. If π = {S1, . . . SΛ} is

a partition of {1 . . . n}, then the coupled system

ẋSλ = fSλ(xSλ ;xSC
λ , u), λ = 1 . . . Λ (7.18)

is equivalent to (7.16).
Sign Definite Systems. Many dynamical systems arising from gene and protein
models can be associated with a signed digraph. Given an autonomous system

ẋ = g(x), x ∈ X = (R+)n, (7.19)

let the variables x1 . . . xn be vertices, and write a positive arc from xi to xj , i 6= j,
if ∂

∂xi
gj(x) ≥ 0 for all x ∈ X and the strict inequality holds at least at some state.

Similarly, write a negative arc from xi to xj if ∂
∂xi

gj(x) ≤ 0 (with strict inequality
at some state), and no arc if ∂

∂xi
gj(x) ≡ 0. Note that not every system satisfies this

trichotomy for all its variables. The attention will be restricted in this appendix to
such systems, which will be denoted as sign definite.

If the system (7.19) is sign definite with associated digraph G, then one can find
an n-dimensional controlled system

ẋ = f(x, u), x ∈ X = (R+)n, u ∈ U = (R+)m, h : X → U, (7.20)

which is i) monotone with respect to some orthant cones in the inputs and the
states; ii) such that the function h is ≤-decreasing; and iii) such that its closed loop
system is well defined and is (7.19). This will be done as follows, trying to minimize
the number of inputs and outputs involved so as to make the reduced model in
Theorem 2 as simple as possible.

Let A ⊆ {x1, . . . xn} be an arbitrary set of variables, called agonists. These vari-
ables may be unrelated to each other, but it is best (and most meaningful) to choose
them so that their dynamics are positively correlated, i.e. most arrows connecting
two nodes from A are positive. The remaining variables will be referred to as an-
tagonists, and they will also be thought of as being mostly positively correlated to
each other.

An arc in G will be called discordant if it is positive and joins an agonist with
an antagonist, or if it is negative and joins two agonists or two antagonists. Let
Dj := {xi| there is a discordant arc from xi to xj}, and let D :=

⋃
j Dj , m := |D|

and U := (R+)m. Now enumerate the elements of D as xl1 , . . . , xlm . Define fj(x, u)
as the result of replacing in gj(x) all appearances of xli by ui, for each xli ∈ Dj . The
controlled system (7.20) thus defined has a state digraph G′ that can be described
as the result of removing all discordant arcs from G.

Now define the output function h : X → U as hk(x) := xlk , k = 1 . . . p, and close
the loop by letting u(t) = h(x(t)). Let

s(i) :=
{

1 if xi ∈ A
−1 if xi 6∈ A
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and let KX be the orthant cone induced by s. Let pk := −slk , k = 1 . . .m, and let
KU be the orthant cone defined by p.
Example. Equation (6.11) and Figure 3 form a good example of these definitions.
In this model, one can consider as agonists the variables x1, x3 and as antagonists
x2, x4. There are only two discordant arcs and it holds that D1 = {x4}, D2 =
{x1}, D3 = D4 = ∅; thus D = {x1, x4}. The variables x1 and x4 are replaced by u
and v in the functions g2, g1 to form the functions f2(x, u), f1(x, v), respectively.

An important consideration in making the choice of the agonist set is to minimize
the number of inputs. See Figure 4 for an example of a system in which the agonist
set is chosen in two different ways.
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Figure 4. Network Splitting. The nodes in the digraphs above
have been labelled “a” for agonist and “b” for antagonist in two
different ways, and the discordant arrows have been circled in each
case. The nodes at the base of these arrows will form the set D
of inputs of the controlled system (four inputs in the first digraph,
and two in the second). Note that by choosing the agonists and
antagonists in an educated way one can substantially reduce the
number of inputs.

Before providing our construction leading to i),ii),iii), the following simple result
is stated and proved for convenience. Given a digraph H, we denote by V (H) the
set of vertices of H, and by A(H) the set of arcs of H.

Lemma 12. Let H be an acyclic digraph. Then there exists a bijection b : V (H) →
{1, . . . |V (H)|} such that (v1, v2) ∈ A(H) implies b(v1) < b(v2).

Proof. The proof proceeds by induction on the number of vertices. If there is only
one vertex, the bijection is trivial. Assuming the statement true for graphs of at
most n vertices, let H have n + 1 vertices. There exists at least one vertex v with
no incoming arcs. Remove it and apply the statement on the remaining digraph H ′

to form a bijection b : V (H ′) → {2, . . . n + 1}. Finally, define b(v) := 1. The result
follows. ¤

Theorem 6. The controlled system (7.20) described above is monotone, and h is
a ≤-decreasing function. The closed loop system of (7.20) is well defined and equal
to system (7.19). Furthermore, if for each strongly connected component of G′ with
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vertices S ⊆ {1 . . . n} the system (7.17) has a well defined I/S characteristic, then
(7.20) allows an I/S characteristic.

Proof. The Kamke monotonicity criterion for controlled systems will be used:
given orthant cones KX and KU generated by the tuples (s1, . . . sn) and (p1, . . . pm)
respectively, a system (7.20) is monotone with respect to these cones if and only if

sjsi
∂fj

∂xi
≥ 0, ∀i 6= j and sjpk

∂fj

∂uk
≥ 0, ∀i, k, (7.21)

where i, j = 1 . . . n and k = 1 . . .m; see [32, 2]. To prove the first assertion in
7.21, let i 6= j be such that there is an arc from xi to xj in G′ (otherwise there is
nothing to prove). Then either both variables are agonists and the arc is positive,
or both are antagonists and the arc is also positive, or else one is agonist, one is
antagonist and the arc is negative. In all these cases, the first statement in (7.21)
is satisfied. As to the second statement, if k, j are such that ∂fj/∂uk 6≡ 0, then by
construction the arc from xlk to xj in G is discordant, so that slksj∂gj/∂xlk ≤ 0.
Also by construction, sign ∂gj/∂xi = sign ∂fj/∂uk. Therefore sjpk∂fj/∂uk ≥ 0 as
expected.

Recall that pk = −slk , hk(x) = xlk to see that h is ≤-decreasing. Replacing each
uk in fj(x, u) back with hk(x) = xlk will form back gj(x). This proves that the
closed loop system is the same as (7.19).

For the last assertion write (7.20) as a cascade of controlled monotone systems
on the state spaces Xλ := (R+)|Sλ|, λ = 1 . . . Λ, where S1, . . . , SΛ are the strongly
connected components (s.c.c.) of G′. Let H be the acyclic digraph with vertices
S1 . . . DΛ which is naturally induced by the digraph G′, i.e. (Sλ, Sµ) ∈ A(H) if and
only if (x, y) ∈ A(G′) for some x ∈ Sλ, y ∈ Sµ. Now use Lemma 12 to relabel the
s.c.c’s in such a way that if xi ∈ Sλ1 , xj ∈ Sλ2 , and there is an arc from xi to xj ,
then λ1 ≤ λ2.

Consider the function fS1(xS1 ; z, u), where z = (zi)i∈SC
1

is given. By the choice
of S1, it holds that fS1 doesn’t actually depend on z, and it can be written as
fS1(xS1 , u). Similarly one can write fSλ(xSλ ; xSC

λ , u) in (7.18) as

fSλ(xSλ ; xS1 , . . . xSλ−1 , u),

and thus system (7.20) is written as a cascade as desired, using equation (7.18).
Given a fixed input u ∈ U , the system ẋS1 = fS1(xS1 ;u) converges globally

towards a vector (x̄i)i∈S1 , by hypothesis. Using u1, . . . um and the variables in S1

as inputs, the system

ẋS2 = fS2(xS2 ;xS1 , u)

can be seen to satisfy (7.21), since some of the variables have now been simply rela-
belled as inputs. Also, this system has a well-defined characteristic by hypothesis.
Thus the property CICS holds, and since (xS1 , u) converges to (x̄S1 , u), then xS2

converges to x̄S2 . The same argument holds to show that all the cascade converges,
thus proving that system (7.20) has an I/S characteristic. ¤

Corollary 4. If the digraph G′ associated to system (7.20) is acyclic, and for every
i = 1 . . . n the 1-dimensional system

ẋi = gi(x̂1, . . . , x̂i−1, xi, x̂i+1, . . . , x̂n)



574 G.A. ENCISO AND E.D. SONTAG

with controls x̂j , j 6= i, has a well defined I/S characteristic, then (7.20) allows an
I/S characteristic.

Proof. The graph G′ is acyclic, therefore its strongly connected components are
exactly the singletons {1}, . . . , {n}. By the previous theorem, the result follows. ¤

Discussion. The reader will notice a tradeoff in the number of variables chosen
to form the input: the more variables are included in D, the more complex is the
resulting discrete system in SGT, but the less connected is G′ and the easier to show
the existence of a characteristic. Note that D is completely determined by the set A
of agonists, which is arbitrary and allows for some choice. The results in this section
make SGT robust to possible changes in the model. If a new participating gene is
discovered as part of a gene network, one can simply keep the previous agonists,
introduce the new gene either as agonist or antagonist, and obtain a monotone
system (7.20) that has a similar topology as the previous one. The second condition
in Theorem 6, regarding the existence of the characteristic, also needs to be checked
only locally if a new node or a new arrow is introduced.

8. Appendix II.

8.1. Existence and Uniqueness.

Theorem 7. Let X0 ⊆ Rn be an open set, or in the orthant cone case, a box (not
necessarily bounded) containing some or all of its sides. Let BU be a Banach space,
and let U ⊆ BU be an arbitrary Borel measurable set. Let X = C([−r, 0], X0), and
let f : X × U → Rn be a continuous function. Assume that

i): f is locally Lipschitz on X, locally uniformly on U : for any C ⊆ U and
D ⊆ X closed and bounded, there exists M > 0 such that

|f(φ, α)− f(ψ, α)| ≤ M |φ− ψ| , ∀φ, ψ ∈ D,∀α ∈ C.

ii): There exists φ0 ∈ X such that for all C ⊆ U closed and bounded, the set
f(φ,C) is bounded.

Then the system (5.8) has a unique maximally defined, absolutely continuous solu-
tion x(t) for every input β ∈ U∞ and every initial condition φ ∈ X.

Proof. It will be shown that all hypotheses are met so as to apply Theorem 4.3.1,
p. 207 of Bensoussan et al. [4]. Let Ω0 ⊆ X0 be a given compact set, and let
Ω = C([−r, 0],Ω0). Let Ci := B(0, i) ∩ U , where i = 1, 2, 3 . . . and B(0, i) is
the open ball in BU with radius i. For every Ci, there is a constant Mi such
that f(·, α) is Mi-Lipschitz on Ω, for all α ∈ Ci. For any α ∈ U , let m(α) :=
inf{Mi | i such that α ∈ Ci}. Note that f(·, α) is m(α)-Lipschitz on Ω for each α
and that m is measurable. Indeed, each Mi can be chosen to be as small as possible,
and then m becomes a step function on each Ci.

Now for every fixed α ∈ U , extend the function φ 7→ f(φ, α) from Ω to all of BX ,
in such a way that the extension is also m(α)-Lipschitz. For this, let

Fi(φ, α) := inf
ψ∈Ω0

fi(ψ, α) + m(α) |φ− ψ| ,
for each i, and let F = (F1, . . . , Fn). It is a simple exercise in analysis to verify
that for a fixed α, F (·, α) is well defined, coincides with f(·, α) on Ω, and is itself√

nm(α)-Lipschitz.
Fix now β ∈ U∞, and define g(t, φ) := F (φ, β(t)). It is to this function that

Theorem 4.3.1 of [4] is applied. A few conditions need to be verified: F is continuous
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on each set X × (Ci − Ci−1)) and therefore measurable, which implies that g(t, φ)
is also measurable. By setting n(t) = m(β(t)), it follows that n(t) is measurable
and locally bounded (since each β|[0,T ] is contained in some Ci), and thus locally
integrable. Finally, note that F (φ0, Ci) is bounded in Rn for every i, and that
therefore t → g(t, φ0) is locally integrable.

By Theorem 4.3.1 in [4], the system ẋ = g(t, xt) = F (xt, β(t)) has a unique
maximally defined, absolutely continuous solution defined for every initial condition
φ ∈ BX .

Next define for a fixed initial condition φ ∈ X, and j = 1, 2, 3, . . .:

Ωj := Range(φ) ∪ {x ∈ X0 |dist(x, Range(φ)) ≤ j and dist(x, ∂X \X) ≥ 1/j}.
Extend f from Ωj to all Rn to form Fj , applying the main step above. The solutions
of the systems ẋ = Fj(xt, β(t)), j = k, k + 1, . . ., using the same initial condition
φ, must agree with each other by uniqueness. If x1(t), x2(t) are both solutions of
(5.8) with initial condition φ and are defined on [0, T ], let j be such that x1|[−r,T ] ∪
x2|[−r,T ] ⊆ Ωj . Then x1 = x2 on [−r, T ] by the argument above. This shows that
x(t) is unique. The fact that it is maximally defined follows similarly. ¤

8.2. Proof of Lemmas 1 and 2.
Proof of Lemma 1: Let K have nonempty interior, that is 0 ≤ Bε(x0) for some
x0 > 0 and some real ε > 0. Then 0 ≤ B1(ε−1x0), which is equivalent by definition
to B1(0) ≤ ε−1x0. The converse result follows by the same argument. ¤
Proof of Lemma 2: Let C1 := {x ∈ K| |x| = 1}. Let f : C1×C1 → R, f(x, y) :=
x · y. C1 is compact, therefore f must have a minimum at some (x0, y0). But
f(x0, y0) > −1, since otherwise x0 = −y0 and a contradiction would follow from
K ∩ (−K) = {0}. If follows that there is θ < 1 such that x · y ≥ −θ |x| |y|, for every
x, y ≥ 0.

Now let 0 ≤ x ≤ y. Then (y − x) · x ≥ −θ |x| |y − x|, so

|x|2 ≤ θ |x| |y − x|+ x · y ≤ |x| (θ |x|+ θ |y|+ |y|),
and after cancelling |x| on both sides (if x = 0 there is nothing to prove) and solving
for |x|, one has

|x| ≤ θ + 1
θ − 1

|y| .
¤

8.3. Monotonicity Criterion and Semiflow Property.
Sketch of Proof for Proposition 1. Let α, β be two inputs, and assume α(t) ≤
β(t) for every t (if this only holds a.e. t, one can change the value of these func-
tions at a set of measure zero). Let h1(t, φ) := f(φ, α(t)), h2(t, φ) := f(φ, β(t)).
Theorem 1.1 of Smith [32] cannot be applied directly, even in the cooperative case,
since the functions hi are not necessarily continuous on t. Nevertheless by writing
the absolutely continuous solution x(t, φ;hi) of ẋ = hi(t, xt) as an integral (see
Bensoussan et al. [4]) one shows that, for e À 0 in X and hε

i(φ, t) := εe + hi(φ, t),
x(t0, φ; hε

i) converges towards x(t0, φ; hi) as ε → 0 for each t0. The rest of the ar-
gument is as in [32]: define e := (s1, s2, . . . sn) À 0. Show by contradiction that
x(t, φ; h1) ¿ x(t, φ; hε

2) for all t and small ε, and let ε tend to zero. ¤
The following two lemmas give a proof that the function Φ(t, φ, α) = xt satisfies

the semiflow property. The proof is straightforward, but it is included because the
result might seem counterintuitive for delay systems. Let BU be an abstract Banach
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space here, and U ⊆ BU . Consider X0 ⊆ Rn, X = C([−r, 0],Rn) as before, and
f : X × U → Rn such that the triple (X,U,f) forms a well defined delay dynamical
system as in Definition 4.

Lemma 13. Let u, v be inputs in U such that u(t) = v(t), 0 ≤ t ≤ t0. Then the
solutions x(t), y(t) of the system (5.7), with initial condition φ0 and inputs u and
v respectively, satisfy x(t) = y(t),−r ≤ t ≤ t0.

Proof: Let γ(t) := v(t + t0), and let z(t) be the solution of (5.7) with input γ and
starting condition φ1 = xt0 . Let w(t) := x(t) for −r ≤ t ≤ t0, w(t) := z(t − t0)
for t > t0. It is easy to see that w(t) is absolutely continuous, as it is built from
absolutely continuous parts. Further,

w′(t + t0) = z′(t) = f(γ(t), zt) = f(v(t + t0), w(t + t0)), a.e. t ≥ 0.

Thus w(t) is a solution of (5.7) with input v(t) (recall u(t) = v(t),−r ≤ t ≤ t0), and
initial condition φ0. By uniqueness, it must hold that w = y, and the conclusion
follows.

Lemma 14 (Semiflow Property). Given s, t ≥ 0, and inputs u(τ), v(τ), let x(τ), y(τ)
be the solutions of (5.7) with inputs u1(τ), u2(τ) respectively, and initial conditions
φ and xs respectively. Let z(τ) be the solution of (5.7) with initial condition φ and
input v(τ) := u1(τ), 0 ≤ τ ≤ s, v(τ) := u2(τ − s), τ > s. Then zs+t = yt.

Proof. By the previous Lemma, zs = xs. Note that w(t) := z(s + t) is a solution
of (5.7) with input u and initial condition xs:

w′(τ) = z′(s + τ) = f(v(s + τ), z(s + τ) = f(u2(τ), w(τ)), ∀τ ≥ 0.

Thus w = y by uniqueness. In particular, yt = wt = zs+t. ¤
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