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Abstract

A recent paper by Karin et al. introduced a mathematical notion called dynamical compensa-

tion (DC) of biological circuits. DC was shown to play an important role in glucose homeosta-

sis as well as other key physiological regulatory mechanisms. Karin et al. went on to provide

a sufficient condition to test whether a given system has the DC property. Here, we show

how DC can be formulated in terms of a well-known concept in systems biology, statistics,

and control theory—that of parameter structural non-identifiability. Viewing DC as a parame-

ter identification problem enables one to take advantage of powerful theoretical and compu-

tational tools to test a system for DC. We obtain as a special case the sufficient criterion

discussed by Karin et al. We also draw connections to system equivalence and to the fold-

change detection property.

Author summary

A recently introduced mathematical notion called dynamical compensation of biological

circuits was shown to play an important role in glucose homeostasis and other key physio-

logical regulatory mechanisms. This paper explains how dynamical compensation can be

formulated in terms of a well-known concept in systems biology, statistics, and control

theory—that of parameter structural non-identifiability. Viewing dynamical compensa-

tion as a parameter identification problem enables one to take advantage of powerful theo-

retical and computational tools to test a system for dynamical compensation. As a special

case, one obtains the sufficient criterion for dynamical compensation. The paper also

draws connections to system equivalence and to the fold-change detection property. The

non-identifiability characterization brings up an interesting contrast in the way in which

one thinks of these properties in the two fields. From the point of view of robustness of

behavior, one wishes that parameters do not influence much the response of a system. On

the other hand, from the systems and parameter identification point of view, the more

that a parameter affects behavior, the easier it is to estimate it, and poor sensitivity is taken

as an indication of a poorly parametrized model.
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Introduction

The recent paper [1] argued that physiological control systems should ensure a precise dynam-

ical response despite variations in certain parameters, lest pathological conditions arise. The

authors highlighted the biological significance of this robustness property through the analysis

of several biological systems, including models of plasma glucose response in the face of

changes in insulin sensitivity, parathyroid hormone control of calcium homeostasis, and arte-

rial oxygen regulation in response to hypoxia. They formally introduced the system property

of dynamical compensation (DC)with respect to variations in a parameter p, meaning that the

complete output dynamics is exactly the same, for any time dependent input, independently of

the precise value of p. They went on to provide a sufficient condition for DC to hold, and

applied this condition to verify that their physiological examples have the DC property.

In this paper, we frame the notion of DC in the context of two equivalent notions in systems

biology: equivariances and parameter (non-)identifiability. We provide a necessary and suffi-

cient condition for DC in the language of equivariances and partial differential equations, for

which the sufficient condition given in [1] becomes a particular case, as does the condition

given in [2] for fold-change detection (FCD) or input symmetry invariance, a Weber-like law

in psychophysics [3]. We also provide alternative necessary and sufficient conditions for DC,

using some of the rich tools in the existing literature on systems identification and nonlinear

control theory, for which effective algorithms are available. The non-identifiability characteri-

zation brings up an interesting contrast in the way in which one thinks of these properties in

the two fields. From the point of view of robustness of behavior, one wishes that parameters do

not influence much the response of a system. On the other hand, from the systems and param-

eter identification (“reverse engineering”) point of view, the more that a parameter affects

behavior, the easier it is to estimate it, and poor sensitivity is taken as an indication of a poorly

parametrized model.

We focus our paper on a self-contained discussion, with examples, of the fact that DC is

equivalent to other known concepts. There is, in addition, an extensive literature on parameter

identifiability, which may be consulted for more details, mathematical theory, and effective

algorithms based on computer algebra methods [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

This paper is organized as follows. After formally setting up the questions to be studied, we

present several characterizations: equivariances, Lie derivatives, and derivatives of outputs at

the initial time. We then re-visit the examples from [1] in view of these characterizations,

working out each example. A Discussion section summarizes the results, compares methodol-

ogies, and mentions weaker versions of DC. The Methods section discusses the proofs of the

various results.

Systems and equivalence

We formally state definitions in the language of dynamical systems with inputs and outputs,

the standard paradigm in control systems theory [17]:

_x ¼ f ðx; u; pÞ ; y ¼ hðx; u; pÞ ; xð0Þ ¼ xp ; ð1Þ

or, more explicitly,

dx
dt
ðtÞ ¼ f ðxðtÞ; uðtÞ; pÞ ; yðtÞ ¼ hðxðtÞ; uðtÞ; pÞ ; t � 0 ; xð0Þ ¼ xp:

The functions f, h describe respectively the dynamics and the read-out map; u = u(t) is an

input (stimulus, excitation) function, assumed to be piecewise continuous in time, x(t) is an n-

dimensional vector of state variables, y(t) is the output (response, reporter) variable, and p is
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the parameter (or vector of parameters) that we wish to focus our attention on. In typical

applications, y(t) = xi(t) is a coordinate of x. Values of states, inputs, outputs, and parameters

are constrained to lie in particular subsets X, U,Y, P respectively, of Euclidean spaces

Rn;Rm;Rq;Rs. Typically in biological applications, one picks X as the set of positive vectors in

Rn, x = (x1, x2, . . ., xn) such that xi> 0 for all i, and similarly for the remaining spaces. The

state xp 2 X is an initial state, which could be different for different parameters; thus we view

ξp as a function P! X. (We prefer the notation ξp instead of ξ(p), so that we do not confuse p
with the time variable.) For each input u : ½0;1Þ ! U, we write the solution of Eq (1) with an

initial condition x(0) = ξ (for example, x(0) = ξp) as

xðtÞ ¼ φðt; x; u; pÞ

and the corresponding system response, which is obtained by evaluating the read-out map

along trajectories, as

yðtÞ ¼ hðφðt; x; u; pÞ; uðtÞ; pÞ ¼ cðt; x; u; pÞ :

We assume that for each input and initial state (and each fixed parameter p), there is a unique

solution of the initial-value problem _x ¼ f ðx; u; pÞ, x(0) = ξ, so that the mapping φ is well-

defined; see [17] for more discussion, regularity of f, properties of ODE’s, global existence of

solutions, etc. We refer to Eq (1) as a parametrized (because of the explicit parameter) initial-
ized (because of the specification of a given initial state for each parameter) family of systems.

Depending on the application, one might wish to impose additional restrictions on ξp. For

example, in [1] an additional requirement is that 0 2 U and xp 2 X is an equilibrium when

u(0) = 0, which translates into f(ξp, 0, p) = 0, and a similar requirement is made in [2] (this lat-

ter reference imposes the requirement that for each constant input u(t)� μ there should exist

an equilibrium, in fact). One may also impose stability requirements on this equilibrium; noth-

ing changes in the results to be stated.

The “dynamic compensation” property in [1]—we prefer to use the terminology P-invari-
ance—is the property that outputs should be always the same, independent of the particular

parameter. Formally:

cðt; xp; u; pÞ ¼ cðt; xq; u; qÞ 8 t � 0; uð�Þ; p; q : ð2Þ

The question addressed in [1] was that of providing conditions on the functions f, h, and ξ so

that Property Eq (2) holds.

Results

We start by re-stating P-invariance in a more convenient form. Let us fix from now on an arbi-

trary p 2 P, which we write as “1” (for example, if P is the set of all positive vectors (p1, . . ., ps),
1 could naturally be taken as the vector (1, 1, . . ., 1)). Let us write f(x, u) ≔ f(x, u, 1),

h(x, u) ≔ h(x, u, 1), ξ≔ ξ1, φ(t, ξ, u) ≔ φ(t, ξ, u, 1), and ψ(t, ξ, u) ≔ ψ(t, ξ, u, 1).

In control theory, one says that, for any given parameter p, the system (1) is said to be

input/output (I/O) equivalent to the system

_x ¼ f ðx; uÞ ; y ¼ hðx; uÞ ; xð0Þ ¼ x : ð3Þ

provided that

cðt; xp; u; pÞ ¼ cðt; x; uÞ 8 t � 0; uð�Þ : ð4Þ
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Therefore, Eq (2) is equivalent to the property that, for every parameter p, Eq (1) should

be I/O equivalent to Eq (3). Thus, the P-invariance property is equivalent to the property that

the parameters p are (structurally) unidentifiable from input/output data, a notion which was

originally introduced by Bellman and Astrom in the 1970s [4]. Two approaches to testing I/O

equivalence (or its lack) are described next.

Equivariances

Definition 1 Given a parametrized initialized family of system (1), a set of differentiable map-
pings

rp : X! X
n o

p2P

is an equivariance family provided that:

f ðrpðxÞ; u; pÞ ¼ ðrpÞ�ðxÞf ðx; uÞ ð5aÞ

hðrpðxÞ; u; pÞ ¼ hðx; uÞ ð5bÞ

rpðxÞ ¼ xp ð5cÞ

for all x 2 X, u 2 U, and p 2 P, where in general ρ� denotes the Jacobian matrix of a transforma-
tion ρ.

An important observation is as follows.

Proposition 1 If an equivariance family exists, then the parametrized family is P-invariant.
Observe that Eq (5a) is a first order quasilinear partial differential equation on the compo-

nents of the vector function ρp (for each constant value u 2 U and each parameter p 2 P),

subject to the algebraic constraints given by Eqs (5b) and (5c). Such equations are usually

solved using the method of characteristics [18]. In principle, testing for existence of a solution

through a “certificate” such as an equivariance is far simpler than testing all possible time-vary-

ing inputs u(t) in the definition of equivalence, in a fashion analogous to the use of Lyapunov

functions for testing stability or of value functions in the Hamilton-Jacobi-Bellman formula-

tion of optimal control theory [17]. The paper [2] discusses the relation to classical equivar-

iances in actions of Lie groups and symmetry analysis of nonlinear dynamical systems.

Proposition 1 is proved in the Methods section.

It is a deeper result that the existence of an equivariance is also necessary as well as sufficient.

This converse result, as some of the other converses to be mentioned, requires that the vector

fields f(�, u), for each constant u, as well as the output function h, be real-analytic, that is, that

they can be expanded into locally convergent power series. The expressions that commonly

appear in systems biology models, such as mass action kinetics (polynomial functions) or Hill

functions (rational functions) are real analytic, as are trigonometric, logarithmic, and expo-

nential functions, so analyticity is not a strong restriction on the theory. An additional techni-

cal assumption, verified by all reasonable models including all examples in this paper, is that

the systems are irreducible, meaning accessible from the initial state and observable. These

notions are reviewed in the Methods section. Intuitively, accessibility means that no conserva-

tion laws restrict motions to proper submanifolds. For analytic systems, accessibility is equiva-

lent to the property that the set of points reachable from ξ has a nonempty interior. Intuitively,

observability means that no pairs of distinct states can give rise to an identical temporal

response to all possible inputs.
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Proposition 2 If the parametrized family is P-invariant and the systems are irreducible for
each p, then an equivariance family exists.

Necessity tells us that it is always worth searching for an equivariance, when attempting to

prove that a system has P-invariance. Often one can guess such functions by looking at the

structure of the equations. Proposition 2 is proved in the Methods section.

Identifiability and Lie derivatives

For simplicity, we now restrict attention to systems in which inputs appear linearly (or more

precisely, affinely); that is, systems defined by differential equations of the following general

form:

_x ¼ g0ðx; pÞ þ u1g1ðx; pÞ þ . . .þ umgmðx; pÞ ; y ¼ hðx; pÞ ; xð0Þ ¼ xp ; ð6Þ

where we assume that the input-value set U is a convex subset of Rm. Linearity in inputs is not

a serious restriction, nor is not having an explicit input in the read-out map, and it is easy to

generalize to more general classes of systems, but the notations become far less elegant. We

write the s coordinates of h as h = (h1, . . ., hs).
Consider the following set of functions (“elementary observables” of the system):

H ≔ Lgi1
. . . Lgik

hj

�
�
� ði1; . . . ; ikÞ 2 f0; . . . ;mgk; k � 0; j 2 f1; . . . ; sg

n o
:

We are using the notation

LXH ≔ rH � X

for the directional or Lie derivative of the function H with respect to the vector field X, and an

expression as LYLXH means an iteration LY (LXH). We include in particular the case in which

k = 0, in which case the expression in the defining formula is simply hj. For example, if the sys-

tem is

_x1 ¼ au � dx1 ; _x2 ¼ bu � gx1x2 ; y ¼ x2

(initial states do not matter at this point; the parameters of interest could be all or a subset of

α, β, γ, δ), then

g0 ¼
� dx1

� gx1x2

 !

; g1 ¼
a

b

 !

; hðxÞ ¼ x2

and we compute, for example,

Lg0
h ¼ ð0 1Þ

� dx1

� gx1x2

 !

¼ � gx1x2;

Lg1
Lg0

h ¼ ð� gx2 � gx1Þ
a

b

 !

¼ � agx2 � bgx1 :

A necessary condition for invariance is as follows.

Proposition 3 If a system is P-invariant, then all elements in H, when evaluated at the initial
state, are independent of the values of parameters p.

The Methods section discusses a proof of this Proposition. This condition is most useful

when proving non-invariance. One simply finds one element of H which depends on
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parameters. This test can also be used as a test for identifiability, that is to say the possibility of

recovering all parameters perfectly from outputs: if one can reconstruct the values of p from

the elementary observables (evaluated at the initial state), that is to say if the map

p 7! Lgi1
. . . Lgik

hjðxpÞ
� �

ði1 ;...;ikÞ2f0;...;mg
k ; k�0; j2f1;...;sg

is one-to-one, then the parameters are identifiable. We discuss two examples in the section

“Examples from the paper [1]”.

There is a converse of this property, under the additional assumption of analyticity.

Proposition 4 If the system is analytic and if all elements in H, when evaluated at the initial
state, are independent of the values of parameters p, then the system is P-invariant.

An interpretation of this result in terms of identifiability is as follows: if one can recover all

parameters as functions (perhaps nonlinear) of the elementary observables, then there is com-

plete parameter identifiability (two different parameters give two different outputs, at least for

some input). In other words, if the elementary observables give the same values for some two

specific parameters p; q 2 P, then the output for any possible inputs, whether step inputs or

arbitrary inputs, is the same for these two parameters. See the Methods section for a discussion

of this converse statement.

Identifiability and time derivatives at t = 0

Suppose that an input u(t) is infinitely differentiable on t. Then, and assuming that f and h
are infinitely differentiable on their arguments, the corresponding output y(t), for any initial

state, will also be infinitely differentiable (see e.g. the differential equations appendix in

[17]). We assume now that the system is linear in controls, that is, that the equations have

the form in Eq (6). It follows by iterating inputs and using the chain rule that the ith deriva-

tive y(i) of the output (i> 0) is a polynomial on the first i − 1 derivatives of the inputs. For

example, y0 ¼ Lg0
h þ u1Lg1

h þ . . . þ umLgm
h and (taking for simplicity m = 1)

y00 ¼ L2

g0
hþ u1ðLg0

Lg1
hþ Lg1

Lg0
hÞ þ u2

1
L2

g1
hþ u0

1
Lg1

h :

Now let us consider the derivatives mi≔ y(i)(0+). The mi’s are independent of parameters if

and only if the coefficients of these polynomials on the inputs and their derivatives, which

are themselves linear combinations of Lie derivatives, are independent of parameters.

Proposition 5 If a system is P-invariant, then all the derivatives mi are independent of the val-
ues of parameters p.

A converse holds as well.

Proposition 6 If a system is analytic and if all the derivatives mi are independent of the values
of parameters p, then the system is P-invariant.

Typically, all higher-order derivatives of outputs can be expressed as a function of a finite

number of derivatives, which helps make computations effective using computer algebra pack-

ages. The theory is developed in [19, 20, 21], and is based on work by Fliess and others [22, 23,

24, 25, 26]. We discuss an example in the Methods section.

Examples from the paper [1]

In its Supplement, the paper [1] presents the following class of systems that have P-invariance,

called there “dynamic compensation” (for arbitrary n, but the main text specializes to n = 1):

_x1 ¼ gðp2xnþ1; xnþ2Þ � m1x1 ð7aÞ

Dynamic compensation and identifiability

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005447 April 6, 2017 6 / 17



_xi ¼ Zi� 1xi� 1 � mixi; i 2 f2; . . . ; ng ð7bÞ

_xnþ1 ¼ xnþ1‘ðxnþ2Þ ð7cÞ

_xnþ2 ¼ kðp1x1; p1x2; . . . ; p1xn; xnþ2; uÞ ð7dÞ

y ¼ xnþ2: ð7eÞ

The state variables are positive, that is,X ¼ Rnþ2

>0
, inputs and outputs are scalar and positive,

U ¼ R�0, Y ¼ R>0, and the parameters for which we desire invariance are two positive num-

bers, p ¼ ðp1; p2Þ 2 P ¼ R
2

>0
. The additional parameters ηi and μi are fixed, and g, k, ℓ are

three scalar (differentiable) functions, with the following positive homogeneity property for g:

gðrxnþ1; xnþ2Þ ¼ rgðxnþ1; xnþ2Þ 8 r > 0; xnþ1 > 0; xnþ2 > 0 : ð8Þ

The initial state is implicitly specified in [1] by the requirement that for any parameter vector

p = (p1, p2) there is a unique steady state when u = 0; we call this state ξp. We take the reference

parameter set to be 1 = (1, 1).

In the paper [1], when n = 1 this system is motivated as a mechanism for a hormonal circuit

in which the output y is a regulated variable, x1 is a hormone that regulates y = x3, and the vari-

able xn+1 = x2 represents the functional mass of the tissue that secretes the hormone x1. There

is feedback on the regulated variable y, with a gain p1, and a growth rate in xn+1 that is con-

trolled by y, for instance through increase of proliferation. The parameter p2 quantifies the

magnitude of the effect of the mass on the hormone production rate. In one of the examples in

[1], the input u(t) is the meal intake of glucose, xn+1 represents β cells, x1 is insulin, and y is

plasma glucose concentration; the coefficients ηi correspond to transport rates, and the μi
combine degradation rate and transport rates. In the more general case n> 1, the coordinates

x1, . . ., xn represent the various physiological compartments that the hormone may circulate

through.

We show P-invariance by exhibiting an equivariance. In fact, the proof of dynamical com-

pensation in [1] is based (without using that terminology) on showing that the following map-

ping is an equivariance family:

rpðx1; x2; . . . ; xn; xnþ1; xnþ2Þ :¼ ðp� 1

1
x1; p

� 1

1
x2; . . . ; p� 1

1
xn; p

� 1

1
p� 1

2
xnþ1; xnþ2Þ :

Since h(x, u, p) = xn+2 is not changed by ρp, we have that h(ρp(x), u, p) = h(x, u), and since as

equivariances always map steady states into steady states, and steady states are assumed to be

unique, there is no need to test the condition ρp(ξ) = ξp. So we only need to check that:

f ðrpðxÞ; u; pÞ ¼ ðrpÞ�ðxÞf ðx; uÞ

for all p, x, u. The map ρp is linear, and its Jacobian matrix is

diag ðp� 1

1
; p� 1

1
; . . . ; p� 1

1
; p� 1

1
p� 1

2
; 1Þ ;
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thus we need to verify:

gðp2ðp� 1
1
p� 1

2
xnþ1Þ; xnþ2Þ � m1ðp� 1

1
x1Þ ¼ p� 1

1
½gðxnþ1; xnþ2Þ � m1x1�

ði 2 f2; . . . ; ngÞ Zi� 1ðp� 1
1
xi� 1Þ � miðp� 1

1
xiÞ ¼ p� 1

1
½Zi� 1xi� 1 � mixi�

ðp� 1
1
p� 1

2
xnþ1Þ‘ðxnþ2Þ ¼ p� 1

1
p� 1

2
½xnþ1‘ðxnþ2Þ�

kðp1ðp� 1
1
x1Þ; p1ðp� 1

1
x2Þ; . . . ; p1ðp� 1

1
xnÞ; xnþ2; uÞ ¼ kðx1; x2; . . . ; xn; xnþ2; uÞ;

the last n + 1 of which are trivial, and the first one requires gðp� 1
1
xnþ1; xnþ2Þ ¼ p� 1

1
gðxnþ1; xnþ2Þ,

which holds because of the homogeneity property Eq (8).

We next discuss the “linear integral feedback” and “linear proportional integral feedback”

examples in the paper [1], which are given as examples of systems that are not P-invariant (the

paper does this by simulation). The first system is:

_x1 ¼ x2 � b ð9aÞ

_x2 ¼ a � p1x1 � p2x2 þ u ð9bÞ

y ¼ x2 ð9cÞ

with the unique steady state ξp = ((a − p2b)/p1, b) for u(0) = 0. Let us show that there is no possi-

ble equivariance ρp(x1, x2) = (αp(x1, x2), βp(x1, x2)). The requirement that h(ρp(x), u, p) = h(x, u)

means that βp(x1, x2) = x2, so ρp(x1, x2) = (αp(x1, x2), x2). The PDE f(ρp(x), u, p)) = (ρp)�(x)f(x, u)

translates into:

x2 � b

a � p1apðx1; x2Þ � p2x2 þ u

 !

¼

@ap

@x1

ðx1; x2Þðx2 � bÞ þ
@ap

@x2

ðx1; x2Þða � x1 � x2 þ uÞ

a � x1 � x2 þ u

0

B
@

1

C
A :

Comparing coefficients of u in the first component, we have that
@ap
@x2
� 0, and this in turn

implies that
@ap
@x1
ðx1; x2Þ � 1. Thus the only possible choice is a linear function αp(x1, x2) = c + x1.

On the other hand, comparing second components, we have

apðx1; x2Þ ¼
1

p1

x1 þ
1 � p2

p1

x2 ;

contradicting this formula. Thus, no possible equivariance exists, even if we only ask one of the

parameters to vary. Combined with the necessity result, this implies non-invariance.

Another way to analyze this example is as follows. Let us compute the derivatives

mi≔ y(i)(0+) when applying an input u(t) that is differentiable for t> 0. We have that m0 = b,

m1 = u0, m2 = −p2u0 + u1, m3 ¼ ðp2
2
� p1Þu0 � p2u1 þ u2, where ui≔ u(i)(0+). Therefore, from

the output y (and in particular from its derivatives at time zero) we can reconstruct p2 and p1,

for example using a step function u� 1: u0 = 1 and ui = 0 for i� 1 implies that p2 = −m2 and

p1 ¼ m2
2
� m3. When m2

2
� m3 there are no possible positive parameters producing this out-

put, and when m2
2
> m3 there is a unique pair p1 > 0, p2 > 0 giving the observed derivatives,

but in any case, there is never more than one such pair. This means that the parameter vector

p is identifiable, which implies that the system is not P-invariant.

Alternatively, using the formalism of Lie derivatives, with

g0 ¼
x2 � b

a � p1x1 � p2x2

 !

; g1 ¼
0

1

 !

; hðxÞ ¼ x2 ð10Þ

Dynamic compensation and identifiability
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we can compute

Lg1
Lg0

hðxÞ ¼ � p2 ; Lg1
L2

g0
h ¼ � p1 þ p2

2
;

and we again see that we can recover the parameters, giving identifiability and hence non-

invariance.

The second example of a system that fails invariance in the paper [1] is the “linear propor-

tional integral feedback” given by:

_x1 ¼ x3 � x1

_x2 ¼ x3 � b

_x3 ¼ a � p2x1 � p1x2 þ u

y ¼ x3

with the unique steady state ξp = (b, (a − p2b)/p1, b) for u(0) = 0. The non-existence of equivar-

iances is proved similarly to the previous example, and is not shown. For simplicity, we only

perform the Lie derivative test. One can find

Lg1
L2

g0
hðxÞ ¼ � p2 � p1 ; Lg1

L3

g0
h ¼ p2 ;

so once more we can recover the parameters, giving identifiability and hence non-invariance.

Let us now illustrate the method of derivatives with the example in Eq 7, which was already

shown to be invariant by the method of equivariances. The equations are, in this case:

_x1 ¼ p2x2x3 � x1

_x2 ¼ x2ðx3 � bÞ

_x3 ¼ a � p1x1x3 þ u

y ¼ x3

where p = (p1, p2) are the parameters of interest, a, b are other positive parameters, and the

equations evolve in the positive orthant xi> 0. Using, for clarity, superscripts “(i)” to indicate

derivative of order i, and since y = x3, we have that:

yð1Þ ¼ a � p1x1y þ u

and thus, taking derivatives of this expression and substituting the equation for _x1:

yð2Þ ¼ uð1Þ þ yx2

1
p2

1
þ ð� ap1 � p1uþ p1yÞx1 � x2y

2p1p2

so, taking again derivatives and substituting the equations for _x1 and _x2:

yð3Þ ¼ uð2Þ � x1uð1Þp1 � yx3
1
p3

1
þ ðap2

1
þ p2

1
u � 3p2

1
yÞx2

1

þ ð4p3
1
x2y2 þ 2ap1 þ 2p1u � p1yÞx1 � x2y3p1p2

þ ðbþ 1Þp1p2x2y2 þ ð� 3ap1p2 � 3p1p2uÞx2y:

Observe that these are all functions of t (argument not shown). We can solve for x1 and x2 in

terms of y(1) and y(2), obtaining:

x1 ¼
aþ u � yð1Þ

p1y

Dynamic compensation and identifiability
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and

x2 ¼
uð1Þy þ ða � yð1Þ � yð2Þ þ uÞy � yð1Þðaþ u � yð1ÞÞ

y3p1p2

and, finally, substitute these expressions into the formula for y(3), to obtain:

yð3Þ ¼
� y3 þ ðbþ yð1ÞÞy2 þ ½ð� b � 2Þyð1Þ � yð2Þ�y þ 3yð1ÞÞ2

y2
u

þ
� y2 þ ðbþ 1Þy � 3yð1Þ

y
uð1Þ þ uð2Þ

þ ½� aþ yð1Þ þ yð2Þ�y � ðyð1ÞÞ2 þ ða � bÞyð1Þ þ ða � yð2ÞÞb � yð2Þ

þ
½ðbþ 2Þyð1Þ2 þ ð� abþ 4yð2Þ � 2aÞyð1Þ � ayð2Þ�y þ 3ðyð1ÞÞ2ða � yð1ÞÞ

y2

which involves only y, y(1), and y(2) but neither x1 and x2 nor the parameters p1 and p2. Taking

derivatives on both sides, and iterating, this implies, in turn, that higher-order derivatives of y
can also be expressed in terms of y, y(1), and y(2) and neither of the other state coordinates nor

p1 and p2. This holds for all t, so in particular at t = 0. We remark that the expression for y(3)

can also be obtained, when the system equations happen to be given by polynomials, or even

by rational functions, using tools from differential algebra. This is discussed in the Methods

section.

In the expressions obtained, y(1) and y(2) depend on the parameters p = (p1, p2). However,

these expressions did not yet use the initial state constraint. Next we prove that y(0), y(1)(0),

and y(2)(0) are independent of parameters, so the same will be true for all derivatives at t = 0,

of any order, and therefore Proposition 6 will give invariance. Now, specializing at the equilib-

rium initial state

xp ¼
a
p1b

;
a

p1p2b2
; b

� �

;

we have that, for any differentiable input, y(0) = b, y(1)(0) = u(0), and

y(2)(0) = −(a/b)u(0) + u(1)(0). Thus, indeed neither of these derivatives depends on the

parameters p, which confirms invariance.

It is interesting to observe that, in this example, there is no invariance to the other parame-

ters, a and b; in fact, these parameters are identifiable. To see this, let us write, for convenience,

α≔ a/b. Then,

yð2Þð0Þ ¼ � a uð0Þ þ uð1Þð0Þ

allows identification of α; for example, using the input u(t)� 1, Y2,1 ≔ y(2)(0) = −α, so can

recover α = −Y2,1. From

yð3Þð0Þ ¼ uð2Þð0Þ � a uð1Þð0Þ þ a2 uð0Þ � a uð0Þ

we cannot yet identify a and b individually. Taking one more derivative:

yð4Þð0Þ ¼ � bauð0Þ þ uð3Þð0Þ � auð2Þð0Þ � 3
uð0Þ2a

b
� a3uð0Þ þ 2a2uð0Þ þ auð0Þ þ a2uð1Þð0Þ � auð1Þð0Þ
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005447 April 6, 2017 10 / 17



and therefore, if the input is u� 1, we obtain

Y4;1 ≔ yð4Þð0Þ ¼ � ba � 3
a

b
� a3 þ 2a2 þ a

and if the input is u� 2, we obtain

Y4;2 ≔ yð4Þð0Þ ¼ � 2ba � 12
a

b
� 2a3 þ 4a2 þ 2a

and combining these two results, we conclude that 2Y4,1 − Y4,2 = 6α/b, allowing recovery of the

parameter b (observe that α = a/b 6¼ 0, since the parameters a and b are both positive).

Relations to FCD

The papers [2, 3] studied a notion of scale invariance, or more generally invariance to input-

field symmetries. We restrict attention here to linear scalings

u ¼ ðu1; u2; . . . ; umÞ 7! p� u ¼ ðp1u1; p2u2; . . . ; pmumÞ ;

although the same ideas apply to more general symmetries as well. The property being studied

is the invariance of the response of the following parametrized family of systems:

_x ¼ f ðx; p� uÞ ; y ¼ hðx; p� uÞ ; xð0Þ ¼ xp ;

where the initial states ξp are the (assumed unique) steady states associated to p� u(0). This

property is also called “fold change detection” (FCD), because the only changes that are detect-

able are possibly “fold” changes in u, not simply scalings such as changes of units. It is clear

that this is merely a special case of the current general setup.

Discussion

The dynamical compensation (DC) property was shown in [1] to play an important role in

physiological control systems. Independence of parameters means that complete dynamical

responses, which may affect phenotype, are robust to potentially large parameter variations.

The DC property was verified for various biological circuits including the dependence of

glucose under parameters such as insulin sensitivity, using a mathematical test. We showed

how the DC property can be re-interpreted in terms of more classical systems notions, and

how effective tests for checking DC are then possible, by using the extensive literature on

identifiability. We also drew connections to issues of system equivalence, and showed that the

“fold change detection” or “scale invariance” property is another manifestation of the same

phenomenon.

We have discussed a number of different techniques for testing identifiability (or lack

thereof). Each of these techniques has its advantages and disadvantages. Equivariances amount

to groups of symmetry and help uncover interesting connections among states and parameters

which may have a mechanistic interpretation. When a system is DC, usually an explicit equiv-

ariance is easy to guess and it helps “certify” the property, with far less computation than

“input/output” methods. The latter involve far less guessing (and no need to solve a partial dif-

ferential equation), but on the other hand can have huge computational complexity and are

difficult to apply to large systems even when there is an obvious structure (as in the example in

Eq (7)). Among input/output methods, Lie derivatives or output derivatives at time zero have

different advantages for different problems, and it is hard to compare their relative effective-

ness. For Lie derivatives, the dimension of the state space is a major parameter in determining

computational complexity, while in the case of output derivatives, it is the order of i/o
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equations that matters, and these two numbers are related in non-trivial ways [27]. In the Lie

method, the number of directional derivatives grows exponentially with the input dimension,

even for a fixed total order of output derivative. On the other hand, the output derivative

method involves symbolic computations with large rational functions, which can easily exceed

the available computational storage.

A rather striking aspect of the relation between DC and identifiability is that, while uniden-

tifiability in the context of systems identification is viewed as a “bad” property, meaning that

a model is overparametrized or that it is impossible to design experiments to gather enough

information about a parameter, in contrast in the context of “dynamical compensation” it

becomes a desirable property, as it means that system behavior is robust to changes in these

parameters.

It is the case sometimes that even if system behavior theoretically depends on a given

parameter, this dependence may be weak. A textbook example is that of an enzymatic reaction

operating at near-saturation, where exact concentrations of substrates, if thought of as parame-

ters, may have little influence. Another classical example is furnished by proteases acting in a

close to zeroth-order regime. This notion of “almost independence” is also studied in the iden-

tification literature, under names such as “practical identifiability” (or more precisely, lack

thereof) and is closely related to (though not exactly the same as) the concept of “sloppy” mod-

els in systems biology [28, 29, 30, 14, 15, 31]. When applied in the “dynamical compensation”

context, these notions should be useful in understanding weaker notions of almost-robustness

of homeostatic control systems in physiology.

Methods

Proofs of main characterizations

Proof of Proposition 1. Fix a parameter p and an input u(�); we must show that Eq (4) is

satisfied. Let x(t) = φ(t, ξ, u), t� 0, be the solution of the initial-value problem _x ¼ f ðx; uÞ,
x(0) = ξ, so that ψ(t, ξ, u) = h(x(t), u(t)). Viewing the mapping x 7! ρp(x) as a change of vari-

ables, we define z(t)≔ ρp(x(t)). Differentiating with respect to t,

_zðtÞ ¼ ðrpÞ�ðxðtÞÞ _xðtÞ ¼ ðrpÞ�ðxðtÞÞ f ðxðtÞ; uðtÞÞ ¼ f ðrpðxðtÞÞ; uðtÞ; pÞ ¼ f ðzðtÞ; uðtÞ; pÞ

where we used Eq (5a) applied with x = x(t) and u = u(t). Moreover, z(0) = ρp(x(0)) = ρp(ξ) = ξp,
because of Eq (5c). Thus, since the solution of the initial-value problem _x ¼ f ðx; u; pÞ, x(0) = ξp
is unique, it follows that z(t) = φ(t, ξp, u, p). Now, by definition,

cðt; xp; u; pÞ ¼ hðφðt; xp; u; pÞ;uðtÞ; pÞ ¼ hðzðtÞ; uðtÞ; pÞ ¼ hðrpðxðtÞÞ; uðtÞ; pÞ ¼ hðxðtÞ; uðtÞÞ

where the last equality follows from Eq (5b). On the other hand, since ψ(t, ξ, u) = h(x(t), u(t)),
we conclude that Eq (4) holds, as desired.

Proof of Proposition 3. Consider a piecewise constant control which is equal to u1 on

[0, t1), equal to u2 on [t1, t1 + t2), . . ., and equal to uk on [t1 + . . . + tk−1, t1 + . . . + tk), starting

from x(0) = ξp. By invariance, the resulting output at time t = t1 + . . . + tk is independent of the

parameters. Let us denote the jth coordinate of this output value as

hjðt1; t2; . . . ; tk; u
1; u2; . . . ; ukÞ :

It follows that the derivatives with respect to the ti’s of this output are also independent of

Dynamic compensation and identifiability

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005447 April 6, 2017 12 / 17



parameters, for every such piecewise constant control. By induction, one has

@
k

@t1 . . . @tk

�
�
�
�
t1¼t2¼...tk¼0

hjðt1; t2; . . . ; tk; u
1; u2; . . . ; ukÞ ¼ LX1

LX2
. . . LXk

hjðxÞ ;

where we are using the notations XlðxÞ ¼ g0ðxÞ þ
Pm

i¼1
ul
igiðxÞ. This expression is a multilinear

function of the ul
i’s, and a further derivation with respect to these control value coordinates

gives the elementary observables, which therefore must also be independent of parameters. See

[17], Remark 6.4.2 for more details and references.

Proof of Proposition 5. If the output is independent of parameters, so are all its deriva-

tives, and in particular the derivatives evaluated at time t = 0 are independent of parameters.

We discuss next the notions of accessibility and observability required for the validity of the

converse to Proposition 1.

Accessibility

We consider systems:

_x ¼ f ðx; u; pÞ

with the technical condition that f is a real-analytic function of x. (Outputs do not matter for

this section.)

For any fixed parameter vector p 2 P, this system is said to be accessible from the initial

state ξp if the set of all states reached from ξp,

RðxpÞ ≔ fxðtÞ ¼ φðt; xp; u; pÞ; t � 0; u ranging over all possible inputsg ;

has a non-empty interior. In other words, RðxpÞ cannot be “too thin” (as would happen if

there are conservation laws among the species xi, in which case one should first reduce the

model to independent variables). See for instance the textbooks [32, 17] for details.

Accessibility can be tested as follows. The Lie bracket of two smooth vector functions

X! Rn (more generally, one may extend to vector fields on a smooth manifold, but we

restrict here to Euclidean spaces) is the function ½f ; g� : X! Rn defined by the following for-

mula:

½f ; g� ≔
@g
@x

f �
@f
@x

g :

Let F ¼ ff ð�; u; pÞ;u 2 Ug, that is, the set of vector fields obtained when we plug-in an arbi-

trary constant input (still for our fixed parameter vector p). We now define the set F1 that

consists of all possible iterated brackets [fℓ, . . ., [f3, [f2, f1] . . .]], over all choices of fi’s in F
and all ℓ� 1. Formally, F1 is the union of the sets F k that are recursively defined as fol-

lows:

F 0 ≔F ; F kþ1 ≔ ½f ; g� j f 2 F k; g 2 Ff g ; k ¼ 0; 1; 2; . . . :

The accessibility (or controllability) rank condition is said to hold at ξp if there are n (the

dimension of the state space X) linearly independent vectors among all these vectors when

evaluated at the initial state. An equivalent way to state this condition is in terms of the

accessibility Lie algebra of the system, which is the Lie algebra F LA of vector fields generated

by F , which is the linear span of F1, the smallest Lie algebra of vector fields which contains

F . The condition is that F LAðxpÞ ¼ R
n, that is to say, the evaluations of these vector fields at

the initial state span the entire tangent space. It can be shown that, for affine systems as in
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Eq (6),

F LAðxpÞ ¼ fg0; . . . ; gmgLAðxpÞ :

As an illustration, take the example

_x1 ¼ au � dx1 ; _x2 ¼ bu � gx1x2 ; y ¼ x2

considered earlier. This is a system affine in inputs, with

g0 ¼
� dx1

� gx1x2

 !

; g1 ¼
a

b

 !

;

and we may compute:

½g0; g1� ¼
ad

agx2 þ bgx1

 !

; ½g1; ½g0; g1� ¼
0

2abg

 !

:

Since the determinant of the matrix with columns g1 and [g1,[g0, g1]] is equal to 2α2βγ 6¼ 0 for

every x, the accessibility rank condition holds, in particular, at the initial state.

As a second illustration, consider the linear integral feedback system in Eq (9). With the

vector fields in Eq (10), we have that g1 = (0, 1)T and [g1, g0] = (1, −p2)T are linearly indepen-

dent and hence span R2.

Observability

Consider again systems as in Eq (1):

_x ¼ f ðx; u; pÞ ; y ¼ hðx; u; pÞ

where f and h are real-analytic (initial states do not matter for this section). For any fixed

parameter vector p 2 P, this system is said to be observable provided that, for any two distinct

states ξ and ξ0, there is some input function u (which might depend on the particular pair of

states ξ and ξ0) such that the temporal responses ψ(t, ξ, u) and ψ(t, ξ0, u) differ at at least one

time t. The equivalent contrapositive of this statement is “ψ(t, ξ, u) = ψ(t, ξ0, u) for all u, t
implies ξ = ξ0.” For an analytic input-affine system (6) with output h = (h1,. . ., hp), one can

restate the observability property as follows. We consider the set H of elementary observables

Lgi1
. . . Lgik

hj. Two states ξ and ξ0 are said to be separated by observables if there exists some

k 2 H such that k(ξ) 6¼ k(ξ0). Observability is equivalent to the property that any distinct two

states can be separated by observables, or, in more intuitive terms, that all coordinates of the

state can be obtained as (possibly nonlinear) functions of observables. This is analogous to

the similar result for parameter identifiability, and its proof is also based on approximating

arbitrary inputs by piecewise constant inputs, combining Proposition 2.8.2 and Proposition

6.1.11 in [17] (see also Section 4 in [33]).

As an illustration, take once more

_x1 ¼ au � dx1 ; _x2 ¼ bu � gx1x2 ; y ¼ x2

We need to show that the coordinates of the states can be recovered from the elements in H.

Since x2 = h(x), so only need to give a formula for x2. Using

h1ðxÞ :¼ Lg0
hðxÞ ¼ � gx1x2 and h2ðxÞ :¼ Lg1

Lg0
hðxÞ ¼ � agx2 � bgx1 ;

x1 ¼ �
h1ðxÞ
ghðxÞ, or, if we want to avoid division by zero when y = 0, x1 ¼ �

h2þaghðxÞ
bg

.
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Converses under irreducibility and/or analyticity

A system is said to be irreducible (alternative terminologies are “minimal” or “canonical”) if it

is accessible from the initial state ξp, and observable.

Proof of Proposition 2. The converse of Proposition 1 is entirely analogous to

the proof of Theorem 1 in [2] for the special case of FCD, and relies upon the theory of

minimal realizations of nonlinear systems. We outline it next. Let us fix any parameter

p 2 P. We must find a differentiable mapping rp : X! X so that ρp(ξ) = ξp and

f(ρp(x), u, p) = (ρp)�(x)f(x, u), h(ρp(x), u, p) = h(x, u) for all x 2 X and u 2 U, This means

that ρ should be an isomorphism [34] between the two systems (1) and (3). Now, Theorem

5 in [34] shows that for two analytic and irreducible systems, I/O equivalence implies the

existence of an isomorphism, which is exactly what we require. See [2] for more discussion

and details.

Proof of Proposition 4. The proof of this converse fact consists two parts: (1) showing that

outputs coincide for piecewise constant inputs, which is true because hj(t1, t2,. . ., tk, u1, u2,. . ., uk)
can be expressed as a power series in terms of the observables, followed by (2) an approximation

of arbitrary inputs by step ones. This step follows, applied to parameter identification instead of

state observability, by combining Proposition 2.8.2 with Proposition 6.1.11 in [17]; see also Sec-

tion 4 in [33], and [21]).

Proof of Proposition 6. The proof is analogous to that of Proposition 4. We first consider

inputs which are polynomial functions of time. Equality of output derivatives when using poly-

nomial inputs is equivalent to equality using arbitrary differentiable inputs, since as remarked

output derivatives are polynomial functions of the inputs and a finite number of their deriva-

tives. Polynomials are in particular analytic inputs, and the system being analytic, the corre-

sponding output functions y(t) are analytic in t (see e.g. the differential equations appendix in

[17]). If two analytic outputs have the same derivatives of all orders at t = 0, then they are iden-

tical (Taylor expansions and principle of analytic continuation) Therefore, for any two param-

eters, the responses to all polynomial inputs coincide, and therefore one obtains equality for

arbitrary inputs, again by an approximation argument as in Proposition 6.1.11 in [17], see also

Section 4 in [33] and [21]).

Differential algebra computation of example

We show here the code needed in order to compute a differential equation for the output

derivatives for the example described by Eq (7). Using the package Maple (Maplesoft, Water-

loo Maple Inc.), one may employ the command

RosenfeldGroebner(sys,R)
to compute a representation of the radical of the differential ideal generated by a set of equa-

tions, in our case (from the equations defining the system)

S≔ [diff(x1(t),t)-p_2�x2(t)�x3(t)+x1(t),\
diff(x2(t),t)-x2(t)�(x3(t)-b),\
diff(x3(t),t)-a+p_1�x1(t)�x3(t)-u(t),\
y(t)-x3(t)]

and R is a differential polynomial ring, in our case

R≔ DifferentialRing(blocks = [x1, x2, x3, y, u], \
derivations= [t], arbitrary= [p_1, p_2, a, b])

in which we list the state variables, output variable, and input (in that order), followed by the

time variable and the parameters. The command

G≔ RosenfeldGroebner(S, R)
then computes the ideal, and a final elimination step
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M≔ Equations(G[1],solved)
provides a vector M whose coordinates are, respectively, the expressions for x1, x2, x3 = y
worked out in the paper, as well as the expression for y(3).
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aire. C R Acad Sci Paris. 1988; 307:363–366.

26. Diop S. Elimination in control theory. Mathematics of Control, Signals and Systems. 1991; 4(1):17–32.

https://doi.org/10.1007/BF02551378

27. Wang Y, Sontag ED. Orders of input/output differential equations and state-space dimensions. SIAM J

Control Optim. 1995; 33(4):1102–1126. https://doi.org/10.1137/S0363012993246828

28. Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP. Universally sloppy parame-

ter sensitivities in systems biology models. PLoS Comput Biol. 2007; 3(10):1871–1878. https://doi.org/

10.1371/journal.pcbi.0030189 PMID: 17922568

29. Chaves M, Sengupta A, Sontag ED. Geometry and topology of parameter space: investigating mea-

sures of robustness in regulatory networks. J of Mathematical Biology. 2009; 59:315–358. https://doi.

org/10.1007/s00285-008-0230-y

30. Dayarian A, Chaves M, Sontag ED, Sengupta A. Shape, Size and Robustness: Feasible Regions in the

Parameter Space of Biochemical Networks. PLoS Computational Biology. 2009; 5:e10000256. https://

doi.org/10.1371/journal.pcbi.1000256

31. Chis OT, Villaverde AF, Banga JR, Balsa-Canto E. On the relationship between sloppiness and iden-

tifiability. Math Biosci. 2016; 282:147–161. https://doi.org/10.1016/j.mbs.2016.10.009 PMID: 27789352

32. Isidori A. Nonlinear Control Systems II. Springer-Verlag, London; 1999.

33. Sontag ED. Bilinear realizability is equivalent to existence of a singular affine differential I/O equation.

Systems Control Lett. 1988; 11(3):181–187. https://doi.org/10.1016/0167-6911(88)90057-6

34. Sussmann HJ. Existence and Uniqueness of minimal realizations of nonlinear systems. Math Systems

Theory. 1977; 10:263–284. https://doi.org/10.1007/BF01683278

Dynamic compensation and identifiability

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005447 April 6, 2017 17 / 17


