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DISCRETE-TIME TRANSITIVITY AND ACCESSIBILITY:
ANALYTIC SYSTEMS*

FRANCESCA ALBERTINIt AND EDUARDO D. SONTAG$

Abstract. A basic open question for discrete-time nonlinear systems is that of determining
when, in analogy with the classical continuous-time "positive form of Chow’s Lemma," accessibility
follows from transitivity of a natural group action.

This paper studies the problem and establishes the desired implication for analytic systems
in several cases: (i) compact state space, (ii) under a Poisson stability condition, and (iii) in a
generic sense. In addition, the paper studies accessibility properties of the "controllability sets"
recently introduced in the context of dynamical systems studies. Finally, various examples and
counterexamples are provided relating the various Lie algebras introduced in past work.
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1. Introduction. This paper continues the study, initiated in [7], of systems of
the type

x(t+ l)= f(x(t),u(t)) t-0,1,2,...

where x and u take values in manifolds. The smooth mapping f is assumed to be
invertible on x for each fixed u, a restriction that models systems that arise when deal-
ing with continuous-time plants under digital control. See [7] for further motivation
for the study of such systems, and [12] for general definitions of systems.

Given the system (1), we may introduce the reachable or forward-accessible set
from a state x, which we will denote by R(x). This is the set of states to which we
may steer x using arbitrary controls. Clearly, reachable sets are one of the central
concepts in control theory.

A mathematically far easier object to deal with is the orbit or forward-backward
accessible set from x, which we will denote by O(x). This is defined as the set
consisting of all states to which x can be steered using both motions of the system
and negative time motions: a state z is in the orbit of x if there exists a sequence of
states

XO XOxl,...xk Z

such that, for each 1,..., k, either xi is reachable from Xi--1 or xi-1 is reachable
from X

Of course, R(x) is always included in O(x), but these two sets are in general
different. Observe that O(x) is the orbit of x under the group action induced by all
the diffeomorphisms f(., u), while the main interest in control theory--since negative
time motions are in general not physically realizable--is in R(x), the orbit under the
corresponding semigroup. One reason that orbits are easier to study is that they have
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1600 FRANCESCA ALBERTINI AND EDUARDO D. SONTAG

a natural structure of submanifold of the state space; this induces a decomposition
of the state space into invariant submanifolds that integrate a natural distribution of
vector fields (see, for instance, [13] and [11]).

One of the central facts in continuous-time controllability is the following property,
valid for analytic systems and arbitrary states x:

I(C) R(x) has nonempty interior in O(x).

This property follows directly from the orbit theorem, but it can also be established
for general smooth systems, under appropriate Lie-algebraic assumptions; it is often
known as the "positive form of Chow’s Lemma." Thus, for continuous-time, the state
space can be partitioned into invariant submanifolds, and inside each submanifold we
can reach an open set from each state. In particular, the interior of the reachable set
from x is nonempty--we then say that there is forward accessibility from x--if and
only if the orbit is openqi.e., there is transitivity from x.

In contrast, property (C) may fail in discrete-time, even for systems obtained
through the time-sampling of one-dimensional analytic continuous-time systems; see
the examples in [7]. There are two known cases where (C) does hold:

(a) When x is an equilibrium point (and the system is analytic and the control-
value set is connected); this is one of the main results in [7].

(b) If the map f is rational on states and controls; see [9].
Both of these properties are quite restrictive; equilibria are in general few, and the
rationality assumption is too strong in discrete-time (note that even when sampling
very simple--for instance, polynomialq continuous-time systems we do not in general
obtain rational equations.)

In this paper we extend the validity of property (C). For analytic systems, we
prove that property (C) does hold if the orbit from x is compact (see Remark 4.1),
or under certain stability hypotheses related to Hamiltonian dynamics. Another result
shows that if there is only one orbit (the system is transitive), then forward acces-
sibility holds from an open dense set of states, assuming the state space to have at
most finitely many connected components. Building upon the results in this paper,
[2] provides further conditions under which property (C) holds.

Low-dimensional cases are of interest because certain special implications hold
in those cases, and as sources of examples and counterexamples. For instance, we
show that. in dimension one transitivity from a given state x implies either forward
accessibility from x or backward accessibility (controllability from some open set to
x), but that this result fails in dimension two.

Recently, Colonius and Kliemann introduced the notion of controllability subsets
of the state space of continuous-time systems. These are essentially sets where ’%lmost
reachability" holds. Controllability sets have proved to be an extremely useful con-
cept; in particular, in [4] these authors established an interesting relationship between
such sets and chaotic behavior in subsets of an associated dynamical system. The ex-
tension to discrete-time of the results of Colonius and Kliemann depends critically on
the better understanding of the forward accessibility properties of controllability sets,
so we devote the last part of this paper to that goal. The reader is referred to the
conference paper [1] for a detailed explanation of how the results in [4] can indeed be
extended when applying the techniques developed here.

2. Basic definitions. In this paper we will deal with discrete-time nonlinear
systems E of the type (1) where x(t) E X and u(t) U. We assume that the
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DISCRETE-TIME TRANSITIVITY AND ACCESSIBILITY 1601

state space X is a connected, second countable, Hausdorff, differentiable manifold of
dimension n, except in 5.1, where we wish to study what happens if the connectedness
assumption is dropped.

The control-value space U is always assumed to be a subset of ]R" that satisfies
the assumptions

U c clos int U

and 0 E U. We always assume that U is a connected set, except in 3.1 and 6 where
this assumption can be dropped.

The system is of class Ck, with k c or w, if the manifold X is of class Ck and
the function

f" XxU-X

is of class Ck (i.e., there exists a Ck extension of f to an open neighbourhood of
X x U in X x IR’). We call systems of class C smooth systems and those of class
C analytic systems.

The most restrictive technical assumption to be made is that the system is in-
vertible; this means that for each u E U the map f f(., u) X -- X is a global
diffeomorphism of X. Invertibility allows the application of the techniques in [7]; the
assumption is satisfied when dealing with systems obtained by sampling a continuous-
time one. We will use f-i to denote the inverse of the map f.

Unless otherwise stated, from now on we assume that a fixed smooth system 5] is
given.

2.1. Some notation. If there exists an integer k >_ 0 and a k-tuple (uk,..., ul)
Uk such that fk,...,l (x) z, we will write

xz
k

As usual, fk 1 denotes f of. For any fixed state x and any nonnegative
integer k define:

where u (Uk,..., u) Uk. For each u, let pk,x(u) be the rank of O/OUk,x[u], and
denote

Pk, :: maxpk,(u).
uEU

For each x, let also

Px := max pk,x;
k>0

roughly, this is the largest possible dimension of a manifold reachable from x. Observe
that k’ _> k implies

(2) Pk,, >_ fik,

because if u e Uk achieves pk,x(u) Pk, then also Pk’,x(fi) >_ p,(u) for any fi Uk’

that extends u. We define the following sets:

R (x) := Ix k
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1602 FRANCESCA ALBERTINI AND EDUARDO D. SONTAG

is the set of states reachable from x in (exactly) k steps,

(x) := {,(u) e u, ,()=}

is the set of states that are maximal-rank reachable from x in (exactly) k steps,

k(x) (k,(u) u e Uk, pk,x(u)= n)

is the set of states that are nonsingularly reachable from x in k steps. Observe that,
clearly,

(x) c_ () c_ R(x).

We let

R() .= (.J R(x)
k>O

and analogously for n(x) and n(x). Recall that E is said to be forward accessible

from x if and only if int R(x) .
We also define

o()
O(x)

X
{ Z Zl 0k-1 and z .z z or z ’z Zl },

and

O(x) [.J O(x).
k>0

Thus O(x) is the orbit from x; E is said to be transitive from x if and only if int O(x)

Note that, given any state x, there is a well-defined restriction of the system to
the orbit O(x). Hence all results can be, in principle, applied in each orbit. The only
difficulty is that orbits are often not connected, while most results hold only under
the blanket assumption that the state space must be connected. In 5.1 we make
some further comments about this issue.

Certain Lie algebras of vector fields L, L+, F, F+ were introduced in [7] (see also
[5] and [6] for previous work) we repeat their definitions here for the convenience of
the reader.

First we let X+ and X- be the following vector fields:

v=0
f4 o f+(z),

v=O

-1f o f+.(x),

one for each 1,..., m (for computational aspects associated to these vector fields
seeJ3]). Given a vector field Y and a control value u, we can define another vector
field from Y by applying a change of coordinates given by the diffeomorphism f,

(AdY)(x) (dfu(x))-lY(A(x)).
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DISCRETE-TIME TRANSITIVITY AND ACCESSIBILITY 1603

Here df stands for the differential of fu with respect to x. In the same way, but now
using the diffeomorphism f-l, we also define Ad1. We let

We will use the abbreviated notation Ad0kY for Ad0...0Y with u 0 repeated k-times,
if k > 0, and for AdI.’-Y, if k < 0. Additionally, Ad0Y Y. The Lie algebras F+
and F are now defined as

F+ {Adk...ulX+o,ilk >_ O, 1 <_ <_ m, uo,..., uk E U},

F {Ad’"l +}.Xo#]k > O, 1 < i < m, uo,.. uk U, el,.. -k +l,a

Finally the Lie algebras L+ and L are as follows:

L+ Lie { k +Ad0X,l k>_0, l_<i<_m, uU},

L Lie { k +Ad0X,lk , 1 _< i _< m, u U,}.

We look at the sets of states in which various rank conditions fail, or forward
accessibility fails:

B+ {x intR(x) 0}
BL+’-{xldimL+(x) < n}
Br+ {x dimr+(x) < n}.

Although well-defined always, the set BL+ will be of interest only when the system is
analytic.

2.2. Review of main known facts. With this notation, many of the results
obtained in [7] can be visualized by the following diagram, where an arrow "A -- B"indicates inclusion A c_ B, and the inclusions involving BL+ are only valid in the
analytic case:

/(B+) Br+ -- BL+

R(B+) B+

Note. The inclusion

(4) /(B+) C_ Br+

rephrases the result obtained in Corollary 4.4 of [7]. The inclusion Br+ c_ B+ expresses
the result in Theorem 6 part (a) of [7]. The inclusion BL+ C_ B+ represents the result
in Theorem 6 part (b)of [7].

3. Some new general properties. In this section we prove a number of general
facts that can be conveniently expressed in terms of the sets just defined.

Remark 3.1. If there exists any k0 such that [k(x) is nonempty, then for all
k _> k0 we have [k(x) =/(x). Indeed, the assumption implies that fix n.

PROPOSITION 3.1. For each x X, the following properties are equivalent:
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1604 FRANCESCA ALBERTINI AND EDUARDO D. SONTAG

(a).

(a) int (x) 0;
(b) int R(x) ;
(c) int R(x) .
Proof. Since/(x) C_/(x) c_ R(x), it is only necessary to show that (c) implies

We will show the following two properties:
1. for each k _> 0 if int k(x) then k(x) ;
2. if k(x) } for all k _> 0 then int R(x) .

Combining (1) and (2) we have that if int/(x) then all int/k(x) too, so
int R(x) }, as desired.

We first prove (1). Suppose that k(x) , so that there exists some sequence
fi for which the rank Pk,(’) is equal to n at ft. Since we assume U c clos int U, there
exists also some fi E int Uk so that pk,(u) n for each u in some neighbourhood of
ft. By the implicit mapping theorem, 5 Ck,x() belongs to int [k(x).

We now prove (2). If k(x) q} for all k >_ 0 then each u e Uk is a singular point
of the map Ck,x, for each k. Thus by Sard’s theorem Ck,(Uk) has measure zero for
all k > 0. It follows that also

R(x) R() (.J ,(V)
k>0 k>0

has measure zero, and hence int R(x) 0, as desired. D
PROPOSITION 3.2. If the system is analytic then, for any x X"

cos R (x) co ()

for all k sujficiently large.
Proof. Fix x X, and let k0 be so that fiko,x fi,. For all k >_ k0, let

Ak(x) {u Pk,x(u)= fix}.

We claim that A(x) is an open dense set of Uk. This is because Ak(x) by (2)
and the complement of A(x) is a set defined by the vanishing of certain analytic
functions (suitable determinants) of u.

We claim that

R*() c co*(),

which implies

(5) clos Rk (x) C_ clos/k (x) for each such k.

This will establish the result, the other inclusion being obvious.
Indeed, pick k _> k0 and take any z Rk(x). Then z Ck,x(u) for some

u (Uk,..., Ul). Since Ak(x) is dense, we can find a sequence {ut} such that

u u ,...,u U=(Uk,...,Ul) n

and u e Ak(x) for each I.
Let z Ck,(u) e k(x). By continuity, z z, which proves (5). D
Remark 3.2. Assume that the system E is analytic, and that there exists an

x0 e X and a k0 0 for which kO(x0) . Then the proof of the previous result
together withRemark (3.1) imply that

clos R* (0) clos/ (x0)
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DISCRETE-TIME TRANSITIVITY AND ACCESSIBILITY 1605

for all k >_ k0.
Moreover, since O/Ouek,x[u] is analytic also with respect to the x-variable, this

particular k0 works also for an open dense set of states x E X. Thus, under these
assumptions, we have that

clo R clos c os

for all k _> k0 and for almost all x E X.

3.1. Regular points. We call x a regular point if fix is constant in a neighbour-
hood of x. The following fact will be useful later; it is of course a well-known general
fact about smooth mappings.

LEMMA 3.3. The regular points form an open dense subset of X.
Proof. Let

p max px.
xEX

We have fi {0,..., n}. We will prove our thesis by induction on/5.
If/5 0, then each x X is a regular point, thus the statement is true.
Let t5 > 0. Define

X1 :={xX Ix is a regular point and fix=fi},
Y1 := int {X \ X1 }.

Then X and Y1 are open. Moreover X1 U Y1 is dense in X, since its complement is
the boundary of X1 which is a nowhere dense set. If we call

,01 max Px
xEY1

we have 1 < .
Thus, applying the inductive assumption to (Pl, Y1), we have that the set of

regular points in Y1, denote it by Yr, is dense in Y1. But since the set of regular
points of X is given by X1 [J Yr and X1 JY is dense in X, then X J Yr is also dense
in X. [:]

Note that, in the particular case in which the system is analytic, then in the above
proof the set X1 is already dense, because the rank is less then fi if and only if certain
determinants, which are analytic functions of x, vanish and this can happen only in
a nowhere dense set.

4. More results for analytic systems. In this section we always assume the
system E to be analytic.

LEMMA 4.1. Suppose that for a fixed x X there exists a sequence of elements
{Xnk } and some y X so that dim L+ (y) n, such that

1. Xnk Rnk(x), with nk ---*
2. Xnk - y.

Then the system is forward accessible from x (i.e. x

_
B+).

Proof. Since Xn y and dim L+ (y) n there is some integer k0 _> 0 such that
dim L+ (xn) n for all k _> k0. But for k sufficiently large we know (by Proposition

(3.2)) that Xn e clos/n(x). Thus there exists some z e Z such that z e n(x)
and dim L+ (z) n. So we can conclude forward accessibility from x by (4).
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1606 FRANCESCA ALBERTINI AND EDUARDO D. SONTAG

Remarks 4.1.
1. The result is also true if the weaker assumption dim F+ (y) n is made, but

we will apply it in the above form.
2. If x and y are as in the previous lemma, and U is any open neighbourhood

of y, then, in particular, we have that R(x) C U is also open.
3. If for a fixed x E X there exists a sequence of elements {xnk} such that

x,k R(x), with nk -- c and x -- x then, by the previous lemma, we can
conclude that forward accessibility from x is equivalent to dim L+(x) n. We will
see later that in dimension 1 this equivalence is .always true, but it can fail in higher
dimensions.

For each x X, we will denote by y0k, the image under Ck, (’) of the zero control;
i.e.,

k

k-times

LEMMA 4.2. Suppose that x, y X are so that
1. the system is transitive from y, (or equivalently, dim L(y) n,

nk2. there exists a sequence {Y0,} with nk -- oo such that Yo,xn __+ y.
Then dim L+ (x) n.

Proof. Choose n vector fields vl,..., v, in L such that

is a basis for L(y).
As in the proof of Proposition 4.2 in [7], we can assume that the vi’s involve Lie

brackets of a finite numbers of vector fields of the form Adko X+ with kj . Chooseuj,
a positive integer k0 so that kj + k0 > 0 for all such j.

Since the vi’s are linearly independent at y, they are still linearly independent in
some neighbourhood Uy of y. By assumption (2), there is some nk so that Y0, Uy
and nk >_ ko.

Applying the operator Ad to the vi’s, there result n linearly independent vectors
in L+ (x), as desired, rl

4.1. Poisson stability. Recall that if Y is a vector field on a manifold M, one
says that x E M is a positively Poisson stable point for Y if and only if for each
neighbourhood V of x and each T _> 0 there exists some t > T such that etY (x) V,
where ety (.) represents the flow of Y.

Analoguosly, we can define positive Poisson stability in discrete time, as follows.
DEFINITION 4.1. Let f X --, X be a global diffeomorphism. The point x X is

positively Poisson stable if and only if for each neighbourhood V of x and each integer
N > 0 there exists some integer k > N such that fk(x) V.

THEOREM 4.3. Let x X be a positively Poisson stable point for fo f(’, 0).
Then transitivity from x implies forward accessibility from x.

Proof. Positive Poisson stability from x implies the existence of a sequence {Y0%},
with nk --+ o, convergent to x. Thus the result follows immediately combining
Lemmas (4.1), (4.2) (applied with y x).

4.2. Compact state space. For each k >_ 0 we define the following sets:

:= {
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DISCRETE-TIME TRANSITIVITY AND ACCESSIBILITY 1607

i.e., the set of states controllable to x in (exactly) k steps, and

Uc (x).
k>0

A system is backward accessible from x if and only if int C(x)
THEOREM 4.4. Let E be a discrete time, analytic, invertible system, and assume

that the state space X is compact.
Then, E is transitive if and only if it is forward accessible.

Proof. By [7], Theorem 3, it will be enough to show that dim L+ (x) n for all
x E X. Fix any x E X, and consider the sequence

0)

Then since X is compact (and second countable) there exists a subsequence {Y,x}
lkwhich converges; let y be so that Y0,x --* Y. Since is transitive, dim L(y) n, so, by

Lemma (4.2), dim n+ (x) n as wanted.
Remark 4.1. Notice that, in the previous theorem, the blanket assumption of

connectedness of the state space X is not needed. In particular, the result holds if
the orbit from a state x is compact.

Remark 4.2. Clearly, using the same arguments as in Theorem 4.4, we also have
that, if the state space is compact, then transitivity from all x X is equivalent to
backward accessibility from all x X. We will not use this fact, however.

Recall that for a space Z with a a-algebra F and a finite measure #, we say that
a measurable transformation T Z Z is measure-preserving if for every A F we
have #(T-1A) #(A).

The following controllability result is an analogue for discrete-time systems of the
result in [8]. The proof is very similar, but it uses the facts just established.

PROPOSITION 4.5. Assume that the state space X is a compact Riemannian
analytic manifold, and that for all u U the map fu is a measure preserving trans-
formation (for the natural measure in X). Then is transitive if and only if is
controllable.

Proof. We need only to prove that transitivity implies controllability.
For each u, since f is a measure preserving map, by the Poincar recurrence

theorem the set of positively Poisson stable points for f is known to be dense in X.
Let x, y E X; we need y R(x). By Theorem 4.4, we know that E is both forward

and backward accessible from x and y. Choose 2 int R(x) and int C(y); since E
is transitive there exist k, (uk,..., ul), and (ek,..., e), with each u U and e 1
or -1, such that

fu o... ofl ()
Let number of e -1. We will show by induction on the following fact:

there exist E int R(x) and int C(y) such that R().
Clearly the previous statement implies our thesis.

If 0 then the statement holds with and . So let > 0 and let i be
the first index such that e -1. Define

and
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1608 FRANCESCA ALBERTINI AND EDUARDO D. SONTAG

Since E int C(y), there exists a neighbourhood V of y such that

o,] Ui+l

let W fu (V). Since E int R(x) we can assume (taking W smaller if necessary)
that W C_ R(x).

Choose zi W positively Poisson stable for fu; then there exists some n > 1
such that f. (zi) W and the following properties hold:

f;](zi) --lo=fu, f’u,(zi) eV,
e c(v).o

So we have constructed a trajectory joining z int R(x) to int C(y) with a
number of negative steps strictly less than l; the statement follows by induction.

Remark 4.3. The result obtained in the previous proposition can be applied to
any discrete-time system that arises through the time-sampling of a continuous-
time system, if the vector fields in the right-hand side of the differential equation are
conservative. The latter happens for Hamiltonin systems; see for instance [10] for
mny examples of such Hamiltonian control systems, and the lt section of [11] for
conditions under which transitivity is preserved under sampling.

5. Accessibility almost everywhere. For analytic systems, we say here that
a property holds for "almost all" x X if it holds on a set which is the complement
of the set of zeros of a nonzero analytic function; note that such a set is open dense
and its complement h zero meure.

LEMMA 5.1. Let be an n-dimensional, discrete-time, invertible, and analytic
system. Then the following are equivalent:

(1) is transitive from almost all x X;
(2) dim n(x) n for almost all x e X;
(3) is foard accessible from almost all x X;
(4) dim n+ (x) n for almost all x e X.
Proof. We will show (1) (2) (4) (3) (1).
(1) (2) This is a consequence of Theorem 4 in [7].
(2) (4) Since the system is analytic, and X is connected it will be enough

to show that there is at let one x with dim L+ (x) n, because the set where this
property holds is either empty or open and dense. To show that there exists such an
x we will use the sme procedure used in proving Lemma 4.2.

Fix any y e X for which dim L(y) -n, and let v,..., Vn L be so that

is a basis for L(y). Assume that the vi’s involve vector fields of the form

Adko X+
uj

with kj , and choose a positive integer k0 so that kj + k0 _> 0 for all such j.
Applying the operator Ado to the vi’s, there result n linearly independent vectors in
i+ (x), where x fko (y). Thus dim i+ (x) n.

(4) - (3) Again by analyticity, it will be sufficient to find at least one x form
which E is forward accessible. Choose 2 regular and let k, u (uk,..., ul), and be
such that

Ck,(U) and pk,(u)-
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DISCRETE-TIME TRANSITIVITY AND ACCESSIBILITY 1609

Let W be some neighbourhood of 2 so that

p,() > p,()

for each x E W. As 2 is regular

p p > p,(u),

so there is equality, pk,x(u) pk,(U). Define

u I(w);

since fu is a diffeomorphism, U is open. Moreover, by maximality of the rank, we
have

u c_ h(w).

Since dim L+(x) n for almost all x, we can choose some z
dim L+ (z) n. Let

for which

y := fl(z)
_
W.

Note that then z e k(y) and dimL+(z)= n.

We can conclude forward accessibility from y by (4).
(3) (1) This is clear. E1

Remarks 5.1. (1) Since E is analytic, in each of the previous statements we can
substitute "there exists x X" instead of "for almost all x X."

(2) Note that, in general, the open dense sets in which the previous statements
hold are not the same, except for those in parts (1) and (2). In particular, if we denote

B := {x dimL(x) < n},

we have
B (xlx is not transitive );
BC_B+c_B+;

and the previous inclusions can be proper. For example, for the system described in
Example 6.1 below we have

B+L={(k,y) lk>_l, keZ, -k<_y<k}

B+ { (,)1 > 0, e ,, - < <_ } B+ U((0, 0)}.

(3) Let L- be the Lie algebras defined in the same way as L+, but using the vector
fields X,i instead of X+,i, and k < 0 instead of k _> 0. Given this definition, the
conclusions of Lemma 5.1 hold substituting (3) and (4) with the following properties:

(3’) E is backward accessible from almost all x X.
(4’) dim L-(x) n for almost all x e X.
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1610 FRANCESCA ALBERTINI AND EDUARDO D. SONTAG

5.1. Nonconnected orbits. Given any system E, its state space can be par-
titioned into invariant submanifolds, the orbits. Since the system restricted to each
orbit is transitive, we would like to conclude that relative to each orbit there is for-
ward accessibility from almost every state. Unfortunately, this conclusion is false in
general (see Example 5.1 below), because orbits are in general not connected. We can
prove this fact, however, in the particular case of orbits with at most finitely many
connected components, as follows from the next result.

PROPOSITION 5.2. Let E be an n-dimensional, discrete-time, invertible and an-
alytic system, and assume that the state space X has finitely many connected compo-
nents. If E is transitive then it is forward accessible from almost all x E X.

Proof. Partition X Ui=l Xi into disjoint nonempty open connected subsets.
Note that, if x E X and f(x, u) Xj, then since X U is connected we have that

(6) f(x u) c_ x,
by continuity of f. Then for each i there is some j(i) so that

for every u U.
Fix now any u e U. Since f(Z) X, necessarily Ui=l xj() x. As f is

a diffeomorphism of X, the Xj(i) are all distinct and fu(Xi) Xj(). Since E is
transitive, we can conclude that for any p 1,..., 1- 1, denoting by

p--times

the following holds:

(7) f(x) # x v = 1,...,.

If this were not the case and there exists such p and i, then applying (6) p-times we
would have

f ,(x) x,

for all (ul, Up) Up. Thus the set

p--1

will be an invariant set different from X, which contradicts the assumption that E is
an orbit. Moreover, from (7), since is finite, we can conclude that

(8) .t’,, ,,,(x) x v .
By repeating the arguments used in the proof of the Lemma 5.1 ((2) (4)) we

conclude that there exists x E X such that dim L+(x) n. Assume that x X.
Since X is connected we have

dim L+ (y) n from almost all y X.
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DISCRETE-TIME TRANSITIVITY AND ACCESSIBILITY 1611

Choose 2 E X, 2 regular and let k, u (uk,..., Ul), and 2 be such that

Ck,(u) 2 and Pk,(U)

By inequality (2) we can assume that k is a multiple of 1. Thus, by (7), we get that
2 E Xi. Now, we can repeat the arguments used in the proof of the Lemma 5.1
((4) (3)) and conclude that E is forward accessible from almost all x e X.

To conclude that E is forward accessible from almost all x X it is enough to
note that, for any j # i, (7) implies that there exists p such that

Example 5.1. Consider the following analytic system, with X IR2, U IR, and
equations:

x+ =x+l,
y+ y + uh(x)

where h(x) is any analytic function whose zeros are exactly at the positive integers
{1, 2, 3,...}. This system is easily seen to be invertible. Let z0 (0, 0). Then it is
easy to verify that the orbit O(zo) is as follows:

O(zo) U R,

R, { lu e }.

If we restrict the system to this orbit, the restricted system is not forward accessible
from any the points in R, for each 1, 2, 3, This is because there it holds that
h(x) 0, so z+ and z must have the same y-coordinate.

6. Low-dimensional cases. In this section we make some remarks about one-
and two-dimensional systems.

6.1. Dimension one. There we consider systems for which the state space X
is of dimension one. The pointwise versions of [7, Thm. 3] hold for these systems as
follows.

LEMMA 6.1. Let E be as above, and pick x X. Then
1. if E is smooth then

E is forward accessible from x if and only if dim F+ (x) 1;
2. if E is analytic and U is connected then

E is forward accessible from x if and only if dim L+ (x) 1.

Proof. (1) The necessary part follows from part (a) of Theorem 6 in [7], so we
will prove sufficiency. If E is not forward accessible from x then f(x, u) must be
independent of u. Moreover if y fk ,x (x), since E is also not forward accessible
from y, also

f(y, U) f(fuk ux (X), U)

must be independent of u. Thus

0 --I folfuo/vfu,. ,ux (x) O, lX +o(X)
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1612 FRANCESCA ALBERTINI AND EDUARDO D. SONTAG

which implies dim F+ (x) 0.
(2) The necessary part follows from part (b) of Theorem 6 in [7]. Sufficiency is a

consequence of (1), since L+ (x) C_ F+ (x). E]

LEMMA 6.2. Let F be a one-dimensional, discrete-time, invertible system, and
pick any x E X so that F is transitive from x. Then, either F is forward accessible

from x or F is backward accessible from x.

Proof. Suppose that neither conclusion holds.
We claim that, for each u E U, E] is not forward nor backward accessible from

y fu(X). Since x is not forward accessible, f(x, u) is independent of u. Thus
y f(x) for all u e U, so also

f-l(y) x for all u E U.

It follows that Cl(y) x, which implies that

c (u) c -l(x) k > 1.

Thus if E] would be backward accessible from y also E] would be backward accessible
from x. Clearly, forward accessibility from y would imply forward accessibility from
x (in any dimension). So the claim is proved.

With the same arguments we can prove that E] is not forward nor backward
accessible from z f-l(x) for all u e U.

Now we want to provethat dim F(x) 0, which implies that E in not transitive
from x. In order to do that, we will show that

I X (x) Otk..,tl UO

for all k >_ 0, (u,..., Ul), ei 1 or -1, a 1 or -1, and for all x which are neither
forward nor backward accessible.

We will use induction on k. Take first k 0.
Ifa=l

0
X:olXl Xv v--0

-1
oAo+ (x) o

since f(x, .) is independent of u (E is not forward accessible from x).
Ifa=-i

0z:o (x)
v=0

of o+.(x) =o

since f-l(x, .) is independent of u (E is not backward accessible from x).
Take now any k > 0 and note that

From the first part of the proof, we have that E is also neither forward nor backward
accessible from f (x), so, by inductive assumption, this last vector is zero. El

Remark 6.1. A consequence of the two previous lemmas is that, for each x"

1. dim L(x)= 1 if and only if dim L+ (x)= 1 or dimL-(x)= 1.
2. dim F(x) 1 if and only if dim F+ (x) 1 or dim F-(x) 1.

D
ow

nl
oa

de
d 

10
/0

7/
14

 to
 1

28
.6

.2
18

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



DISCRETE-TIME TRANSITIVITY AND ACCESSIBILITY 1613

The result in Lemma 6.2 is true only pointwise. In fact we can find a one-
dimensional, analytic system that is transitive but is neither forward nor backward
accessible. One example of such a system is as follows.

Consider the following system:

U
x+ 1 + x + [g(x) + g(x- 1)]

with X lR, U [-1, 1], and where g(x) is the following function:

(10) g(x) sin(rx)
7rx

It is easy to verify that [g’(x)l _< 1 for all x e lR. Moreover, g(x) 0 if and only
if x E \ {0}. Since [g’(x)[ _< 1, this system is invertible. Moreover the following
properties hold and are easily verified:

1. E is transitive;
2. if x 2, 3,... then E is backward accessible but not forward accessible from

x;
3. if x -1,-2,-3,... then E is forward accessible but not backward acces-

sible from x.

6.2. Dimension two. We now show that both the results in Lemmas 6.1 and
6.2 are false if the dimension of the state space X is greater than one, even if the
system is invertible, analytic and with a connected control space U.

The following example illustrates these facts.
Example 6.1. Consider the discrete-time, analytic system with X lR2, U

[-1, 1] 2, and equations:

U
x+ x + 1 + - sin(y)g(x),

y+ =y+v,

where g(x) is the function in (10).
This system is invertible. In fact, the determinant of the Jacobian matrix of the

map f,,v(x, y) is given by

u
sin(y)g’1 + (x).

Since u e [-1, 1], [sin(y)[ _< 1 and [g’(x)[ _< 1,

u
sin(y)g’I (x)l < 1

so the determinant is nonzero for all x, y. Moreover it is easy to verify that for each
(u, v) e U, the map fu,v(., .)is bijective.

We wish to study the behavior of this system when starting from x 0, y 0.
Let z0 (0, 0). We prove the following properties:

(1) the system is not forward accessible from z0;

(2) the system is not backward accessible from z0;

(3) dim L+ (z0) 2;
(4) the system is tranSitive from z0.
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1614 FRANCESCA ALBERTINI AND EDUARDO D. SONTAG

Proof.
(1) This follows from the equality

R(0) { (}, U) k _< U < },

which holds for each k > 1 and it is clear from the equations.
(2) It will be sufficient to show that

(11) C(zo) { (-k, ) k < < k }.

First note that if (xk, Yk) e Ck(zo) then we can write Yk + Vl --...--Vk 0 with
n v, < 1, so lull < k.

To prove (11), it is now sufficient to note the following. For any fixed u E [-1, 1]
and any y E ]R, the function

is invertible. Moreover

h U
x x + 1 + = sin(y)g(x)

2

h-l(-k+l)=-k for all k_>l,

independently of u and y. Thus x -k is the only solution of h(x) -k + 1, for all
u, y, and we have proved

c(zo) c { (-k,) k <_ < k }.

The other inclusion is obvious.
(3) Consider the vector fields

and

x+ (z) (df(,.)(z))- a
(U,v),l

x+ () (dk,.)(z))_ 0
(,),

Fix (u, v) (0, 0). Then

for all z IR2,

(10)df(o,o) (z) 0 1

and

So

f(+,)(z)
e--O

k,.+)(z)

+ (z)X(,),l 0

X(0,0),2 1

+ + (z)X(,),’ X(,)a 0
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DISCRETE-TIME TRANSITIVITY AND ACCESSIBILITY 1615

In particular,

and

X(0,),2 1

(0,0),1’ X(0,0) ,2 0

so dimL+(z0) 2 as desired.
(4) Transitivity at z0 is a consequence of (3) since dim L+(z0) 2 implies

dim L(z0) 2.

7. Controllability sets. The next definition is a discrete-time analogue of that
in [4], except that we make the assumption of nonempty interior.

DEFINITION 7.1. A set D C_ X is called a precontrollability set if

DC_closR(x) for all xED

and int D 0. A precontrollability set which is maximal with respect to set inclusion
is called a controllability set.

Note that if D is a precontrollability set, then in D the system E is "almost"
controllable, in the sense that if x, y E D then from x it is possible to reach any
neighbourhood of y.

LEMMA 7.1. Let D C_ X be a controllability set. Pick any two elements 2, 1 in
int D. Then, for each sequence (u0,..., UT) UT+I such that

we have that, necessarily, also

fk’"fo(2)intD for k 0,...,T-1.

Proof. Let 2, 9, u0,..., UT be as in the statement and let E be the following set:

E := {fko...ofo(2), k 0,...,T-1 }.

We will first prove that E C_ D, by showing that D’ D E is again a precontrolla-
bility set and using that D is maximal. For this, we must prove that

D’ C_ clos R(x) for each x D’.
Observe that E C_ R(2) C_ closR(2) and R(y) c_ closR(y) for all y E E.
Thus

E C_ clos R(2) c_ clos R(clos R(x)) clos R(x) Vx e D;
DC_closR(x) VxD;
If y g then D C_ clos R() C_ clos R(clos R(y)) clos R(y)
and E C_,clos R(2) c_ clos R(cl,os R()) c_ clos R(y).

Thus D [.J E D c_ clos R(x) /x D.
So we have proved that, for any two points 2, in int D and any trajectory joining

them, all the intermediate states must be in D. We now prove that such intermediate
points must be in int D.
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1616 FRANCESCA ALBERTINI AND EDUARDO D. SONTAG

Pick any , 1, uo,..., UT as above. Let k E (0,..., T- 1} and 2 fk... Ofuo ().
By continuity of folo.., of- and of fuk+l o... fur, there exists some open neigh-
bourhood V of 2 such that

folO.., off,(V) C_ int D and f,+o.., fur (V) C_ int D.

Pick any z E V. For such a z,

z Oleo(Z)

for some x int D and

y fUk/lO... OAT(Z int D.

Thus, applying the first part of the proof to x and y (rather than to and ), it
follows that z D. We conclude that V c_ D, so is in int D, as desired. [:]

LEMMA 7.2. Let D C_ X be a precontrollability set. Then we have

DC_closFk(intD) for all k 0,1,2,...,

where

Fk (int D) U Rt (int D).

Proof. We proceed by induction on k. The case k 0 follows directly from the
defintion of controllability set. So let k _> 1 and pick any x D.

Choose y E int D, y x. By inductive assumption there exists a sequence Yn -- Y
with

Yn e Fk(int D).

For 5 sufficiently large, ya D (since y int D) and ya x (since y x), where
each yn is of the form

with z int D, >_ k, for some u E Ut. Pick one such . Since x clos R(ya), there
exist a sequence {tn} and a sequence {zn} so that

Zn Rt (yn) and Zn --- X.

Since yn x we can assume tn >_ 1 for all n. Thus

Zn Rt+t(z) C Fk+l(intD),

which implies x clos Fk+l(int D).
Remark 7.1. The conclusion of the previous lemma can be rephrased by saying

that

D C_ limkRk (int D),

where for any family of sets Ek limkEk =0 (-Jt> Et.
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DISCRETE-TIME TRANSITIVITY AND ACCESSIBILITY 1617

LEMMA 7.3. Let D C_ X be a controllability set. Then

clos D clos int D.

Proof. Let x E D. We only need to prove that for any neighbourhood W of x,

W fq int D # 0.

Pick any such W and choose any y E intD. Since y closR(x), we can find
z Ck,x(u) for some k > 0 and some u Uk, such that z intD. Let Uz be a
neighbourhood of z contained in D. Then, by continuity, there exists a neighbour-
hood Ux of x such that for all y U, Ck,u(u) is in Uz and so, in particular, in
int D.

Let Wx Ux (q W. Choose y E int D. Since x clos R(y), we can find k’, u’ such
that

Let fi be the concatenation of u and u. Since Ux,

Ck,(U) int D.

Thus

Ck+k,,U,(fi) int D,

so by Lemma (7.1), 2 E int D. Hence

Wx fq int D 0,

so W N int D as wanted.
DEFINITION 7.2. Let x X and S c X.

S (respectively, backward accessible in S if
We say that x is forward accessible in

int (R(x) f S)

(respectively, int (C(x) fq S) 0).
If we simply say that x is forward (backward) accessible, we mean forward (back-

ward) accessible in X.
LEMMA 7.4. Let S c_ X and define

Sf={xM Ix is forward accessible in S},

then Sf is open.
Proof. If Sy 0, then it is trivially open; thus assume Sy 0. Pick any x Sy.
By assumption there exists W c_ S open such that W c_ R(x); therefore there

exists k such that W f3 Rk(x) has nonzero measure. Let

Uv={ulueUk, and Ck,(u) eW},

then U is open and the image of
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1618 FRANCESCA ALBERTINI AND EDUARDO D. SONTAG

has nonzero measure. It follows, by Sard’s theorem, that there exists u E Uk such
that pk,x(u) n. We may assume, without loss of generality, that u E int U.

Now pick any neighbourhood V of x such that ,y(u) c_ W and still pk,y(u) n
for all y V. By the implicit mapping theorem, V c_ Sf; therefore Sf is open.

We assume from now on that the system E to be analytic and transitive. In this
case, we can conclude the following important property of precontrollability sets.

THEOREM 7.5. Let D C_ X be a precontrollability set. Then every point of D is

forward accessible in D.
Proof. Since E is transitive and analytic, by Lemma 5.1 we have that there exists

an open dense set of points for which dim L+ (x) n. If we intersect this set with
int D then this intersection, which we denote by W, is open.

Pick any x D, and y in W, with x y. Now, we will construct a sequence of
elements Yn such that

Yn -- Y, Y, Rk(x) and kn - oc as n -
Then, using Lemma 4.1 and its succesive remarks, we can conclude that from x it is
possible to reach an open set within any neighbourhood of y, i.e., since y int D, x
is forward accessible in D, as desired.

To construct the yn’S we proceed as follows. Let’s denote by Wn a neighbourhood
of y. Since y e clos R(x), we can find Yl e W1, Yl y, and yl Rkl (x) where (since
y =/: x) we can assume k >_ 1.

Now we proceed by induction. Suppose that we have found yl,..., Yn such that

yW, yy, yRk(x) and k>_i for i-1,...,n.

Since y E clos R(yn) we can find Yn+ Wn+ such that

Yn+l ? Y, Yn+l RI(yn)

with _> 1. Since Yn Rk(x),

Yn+I Rk’+l(x)
and kn+l kn + _> n + 1. Thus kn - (x) as n oc; moreover, we can choose the
W’s in such a way that Yn - Y.

The definition of precontrollability set is not reversible in time, so we cannot
conclude backward accessibility from every point. However, the next result provides
backward accessibility from a dense subset.

PROPOSITION 7.6. Let D C_ X be a controllability set. Then there exists some
(necessarily nonempty) open subset E c_ D such that

(1) clos E clos D;
(2) if y E then y is backward accessible in D.
Proof. Since E is transitive and analytic, by Lemma 5.1 applied to the "inverse"

system

x(t + 1) f (x(t)),

we know that there exists an open dense set from which we have backward accessibility.
Moreover, there exists some integer k0 such that the set G of states x X for which
int ck(x) 0 and

clos int Ck (x) clos Ck (x)
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DISCRETE-TIME TRANSITIVITY AND ACCESSIBILITY 1619

for all k _> k0 is itself open dense (Remark 3.2). Consider first the open set

E int D C G.

We claim that E’ is open and

clos E clos int D.

To show this, it is enough to establish that int D c_ clos E. So take any x E int D. By
density of G, there exists some sequence Yn} with y E G for all n, y x. Thus

Yn int D N G

for all large enough n, and this shows that x clos E. Finally, let

E- E’ N Fko (int D),

where Fko (int D) is defined as in Lemma (7.2). Then E is also open, since Fk(int D) is
open for any k. Moreover, using the result in Lemma (7.2) (i.e., D c_ clos Fko (int D))
and the same arguments used before we have

clos E clos E clos int D.

Thus, by Lemma (7.3),

clos E clos D.

So E satisfies property (1). We prove next that it also satisfies (2).
Pick y E. Since y Fko (int D) then there exists x E int D so that y Rk(x)

for some k >_ k0. This means that x Ck(y). Since y G,

x clos int C (y).

Thus, since x E int D, we can find some z int D int Ck(y), which means that y is
backward accessible in D. Thus (2) is proved.

LEMMA 7.7. Let D C_ X be a controllability set and let E be any set as in the
conclusion of the previous proposition. Then

EC_R(x) for each xD.

Proof. Take any y E and x D. By the previous proposition, there exists some
nonempty open set W C_ D C(y). Choose any z E W. Since D is a controllability
set, z e clos R(x), so there exists also 5 e R(x)N W. Thus 5 e R(x) and y e R(5)
(since 5 e C(y)) imply y e R(x).

DEFINITION 7.3. For any set S c_ X, define

Core (S)"= { x e int Six is forward and backward accessible in S }.

Using Lemma 7.4 twice (once for E and another time for the "inverse" system
x(t + 1) f (x(t))), we can conclude the following.

LEMMA 7.8. For any subset S c_ X, Core (S) is open.
For a controllability set D, we proved (see results in Theorem 7.5 and Proposition

(7.6)) that Core (D)

_
E for some E C_ D such that clos E clos D. Thus we have

(12) clos Core (D) clos D for a controllability set D.
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1620 FRANCESCA ALBERTINI AND EDUARDO D. SONTAG

Moreover, the result in Lemma (7.7) can be rephrased as follows.
PROPOSITION 7.9. IfD is a controllability set, and E Core (D), then E c_ R(x)

.for all x E D.
If D is a controllability set, then, by the previous results, Core (D) is a dense

subset of D in which we have exact controllability. Note that if E was a continuous
time system then Core (D) would have been equal to int D. However for discrete-time
systems there are controllability sets D for which Core (D) is strictly contained in
int D, as it is shown in the next example.

Example 7.1. Let us consider the discrete-time, analytic system with X
lR2, U [-1, 1] 2, and equations

x+ x + 1 + uy,
Vy+ y + -g(x),

where g(x) is the function in (10).
This system is invertible. In fact the determinant of the Jacobian matrix of the

map fu,v(X, y) is given by

Since u, v e [-1, 1], and Ig’(x)l _< 1,

UVg, 1

so the determinant is nonzero for all x, y. Moreover it is easy to verify that for each
(u, v) U, the map fu,v(’, ") is bijective. It is also easy to prove that this system is
transitive.

For this system we can see that for all k IN with k _> 1 the following hold:
1. the points of the type (-k, 0) are not backward accessible;
2. the points of the type (k, 0) are not forward accessible.

Let

B-( (k,O) lkelN k>_l}.

Next we want to show that D lR2 \ B is a controllability set.
Note that D is certainly maximal; in fact, no points in B could belong to a

controllability set, since they are not forward accessible. To prove that D satisfies

(13) D c_ R() for all e D

we will prove the following:

(14) lR2 \ { (k,y) k e Z, y e lit } c_ R(),

which, by taking the closure in both sides, implies (13). Let F { (k, y) k IE, y
}.

First we note that, since sin(r(x + 1)) -I sin(x)l, if we apply to any (x, y) a
control sequence of the following form:

(15) ut=0, vt= sign(g(x+l-1)),
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DISCRETE-TIME TRANSITIVITY AND ACCESSIBILITY 1621

then, after k steps, we will reach the following point"

xk----xA-k

Yk Y + sin(rx)l
2r

4=0

Using this fact and the divergence of the series n 1In we will prove (14).
Fix (, ) E D and (2, )) E lR2\ F. Note that, since (, ) B, it is not restrictive

to assume

g(Y) #0 and

First we choose u, v as in (15). Since g(y) # 0 there exists k such that Yk > 1.
Next we apply a control sequence with all v 0 so as to reach a state (x’, y’) of the
type

x &- n and Y Yk,

where n is a positive integer that will be chosen later. Note that we can assume
<y’.

Now we want to find a sequence of controls (0, v) such that we get the state
in exactly n steps. It is clear that this is possible if and only if

n--1
1

(16) y,_ sin(zr&)
2

4=0

So we just have to choose n large enough such that (16) is satisfied. This is possible
since sin(yr,) # 0 and

n--1 1 n
1

=o [ n + l[ [ m[

is divergent. Thus D is a controllability set.
Note that, for this controllability set D, Core(D) is strictly contained in D

intD. In fact, none of the points of the type (-k, 0) with k a strictly positive integer
belongs to Core (D).
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