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a b s t r a c t 

Synthetic biology is the application of engineering principles to the fundamental components of biology, 

with the aim of creating systems with novel functionalities that can be used for energy, environment, and 

medical applications. While the potential impact of this new technology is enormous, there are challenges 

that we need to overcome before the impact of synthetic biology can be fully realized. Many of these 

challenges fall beyond the scope of molecular biology and are indeed “system-level” problems, where 

very little research is being performed. This paper identifies pressing challenges in synthetic biology that 

can be formulated as systems and control theoretic problems and outlines potentially new systems and 

control theories/tools that are required to tackle such problems. The aim is to attract more systems and 

control theorists to collaborate with molecular biologists and biophysicists and help synthetic biology 

reach its promise. At the same time, engaging the systems and control community more broadly into 

the rich research opportunities and life-changing applications of synthetic biology may provide added 

visibility to the field of systems and controls. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Synthetic biology is an emergent interdisciplinary field of re-

search, whose aim is to engineer biomolecular systems to achieve

useful functionalities. Synthetic biology provides powerful tools to

address many pressing societal needs. For example, in the past

decade, researchers in synthetic biology have created engineered

bacteria that can produce biofuel ( Peralta-Yahya, Zhang, del Car-

dayre, & Keasling, 2012 ) and sense heavy metals ( van der Meer &

Belkin, 2010 ), genetic circuits that can reprogram cell identity to

treat diabetes ( Saxena et al., 2016 ), and engineered immune cells

that can track and kill cancer cells ( Chakravarti & Wong, 2015 ).

While these efforts, among many others, demonstrate the great

impact that synthetic biology can have on society, they also cur-

rently remain mostly at the laboratory stage. In fact, most syn-

thetic genetic circuits constructed nowadays rely on lengthy and ad

hoc design processes that do not yet give predictable outcomes in

less controlled environmental conditions. Overall, poor robustness,

lack of reliability, and the current inability to predict the emergent

behavior of many interacting genetic components are hampering

progress in this field. 

The origins of these problems can to some extent be traced

back to molecular biology issues, such as the reliability and orthog-

onality of genetic parts, and intense research efforts are underway

in this direction (see Arpino et al., 2013; Kosuri et al., 2013 , for

example). To a large extent, however, issues of robustness, reliabil-

ity, and predictability are due to the complex dynamic interactions

among system components and can be classified as “system-level”

problems that fall beyond the scope of molecular biology. Compar-

atively, in these problems, very little research is being performed.

In addition, as we discuss in more detail in Section 3 , existing the-

oretical tools and mathematical frameworks adopted directly from

engineering systems are often unsuitable and/or inefficient to deal

with the level of complexity in biomolecular systems. The aim of

this paper is to provide a perspective on future systems and con-

trol research that can help solve a wide range of system-level prob-

lems in synthetic biology, with the hope to attract more systems

and control engineers to the many interesting open questions in

synthetic biology that may have life-changing applications. 

This paper is not a comprehensive review of synthetic biology.

Instead, it is a vision paper aimed at motivating future theoreti-

cal research and new mathematical frameworks that could facili-

tate the design, analysis, and verification of synthetic genetic cir-

cuits and is intended for readers with a background in systems

and control theory. Nevertheless, we should clarify that mathemat-

ical tools are valuable to synthetic biology only if they are aware of

the domain-specific constraints, such as limitations of a biophysical

model and the available design parameter space. In fact, many of

the problems we describe here reflect such needs. After a brief in-

troduction to synthetic biology, we identify a few pressing system-

level challenges that are hampering the development of synthetic

biology in Section 3 . In particular, the problems of compositional-

ity, stochasticity, and spatial heterogeneity largely limit the scala-

bility and complexity of synthetic biological systems that we can

build today. In Section 4 , we highlight future research opportuni-

ties that can potentially benefit the characterization, design, veri-

fication, implementation, and re-design of synthetic biological sys-

tems, which can help this nascent field move forward. Some prob-

lems may involve adopting existing systems and control theoretic

tools to entirely new contexts, while many others require creating

novel theories and mathematical frameworks that are complemen-

tary to existing ones. 
r  
This paper is largely based on the outcome of an AFOSR-funded

orkshop titled “The Compositionality Problem in Synthetic Biol-

gy: New Directions for Control Theory” held on June 26–27, 2017

t MIT. The workshop was co-organized by D. Del Vecchio, R. M.

urray, and E. D. Sontag and was attended by the participants

isted in the acknowledgements at the end of this paper. 

. A Glimpse into synthetic biology 

The ability of all living organisms to sense, communicate, and

ake decisions relies on a handful of highly conserved core bio-

ogical processes such as gene regulation and protein-protein inter-

ctions. These, among many others, are used as functional building

locks in the de novo creation of genetic circuits ( Fig. 1 ). 

.1. Brief history 

The roots of synthetic biology can be traced back to the No-

el winning discovery of the lac operon’s regulation in bacteria E.

oli by Jacob and Monod in the early 1960s ( Jacob & Monod, 1961 ).

he fact that a protein (called a transcription factor) can bind the

romoter region of the gene of another protein to regulate (i.e.,

ither activate or repress) its rate of synthesis allows us to view

he gene expression process as a dynamical system with an in-

ut and an output ( Fig. 1 -A), with a hope that these input/output

I/O) systems can be composed together to build more sophisti-

ated functionalities. The advancement of biotechnology since the

ate 1960s has enabled time and cost-efficient technological tools

o extract, sequence, amplify, and insert foreign DNA elements into

ells ( Cameron, Bashor, & Collins, 2014 ). In the year 20 0 0, the

rst two synthetic genetic circuits were constructed: an oscilla-

or ( Elowitz & Leibler, 20 0 0 ) and a toggle switch ( Gardner, Cantor,

 Collins, 20 0 0 ). Although these circuits were built with the aim to

nderstand natural systems, they clearly demonstrated our techno-

ogical capabilities to create de novo functional dynamics through

odel-based design of gene regulation. In the early 20 0 0s, a num-

er of small-scale synthetic genetic circuits, or functional mod-

les, were constructed ( Fig. 1 -B), including various forms of logic

ates, cell-cell communication modules, cascades, feedback loops,

nd feedforward motifs (see Cameron et al., 2014; Del Vecchio,

y, & Qian, 2016; Hsiao, Swaminathan, & Murray, 2018, in press;

ian, McBride, & Del Vecchio, 2018 for more details). The success-

ul assembly of biological parts into functional modules triggered

he first wave of applications of synthetic biology, a few notice-

ble examples include environmental biosensors, ex vivo cell type

lassifiers ( Xie, Wroblewska, Prochazka, Weiss, & Benenson, 2011 ),

nd biofuel production pathways ( Peralta-Yahya et al., 2012 ) (see

ore examples in Ruder, Lu, and Collins (2011) and Khalil and

ollins (2010) ). 

In the past decade, research efforts can be roughly catego-

ized as moving along two orthogonal directions. In one direc-

ion, effort s concentrated on discovering, creating, and character-

zing biological parts and tools (see, for example, Arpino et al.,

013 ). In the other direction, effort s f ocused on increasing the

omplexity of circuits by establishing general approaches to com-

ine available parts and modules into larger systems ( Purnick &

eiss, 2009 ) ( Fig. 1 -C). This is motivated by the need for sophisti-

ated circuit functionalities in most emerging applications of syn-

hetic biology, such as those in the health industry. For exam-

le, in cancer immunotherapy, T cells need to be engineered to

ense, track, and attack cancer cells while avoiding side effects

o normal cells ( Chakravarti & Wong, 2015 ); when using cell-fate

eprogramming to produce insulin-secreting beta cells, the level
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Fig. 1. Synthetic biology as the bottom-up/layered design of biological systems. Core biological processes are encoded in DNA (panel A). These processes can be engineered 

into functional modules (panel B). Largely due to context dependence in biological systems, composing functional modules together to build complex systems in a single cell 

(panel C) and/or in multicellular systems (panel D) is still a challenging task. 
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t  

d

nd timing of transcription factor production must be tightly con-

rolled ( Saxena et al., 2016 ); in regenerative medicine, synthetic

ene circuits need to accomplish multicellular coordination to form

patial patterns ( Berthiaume, Maguire, & Yarmush, 2011 ); and for

mart drug delivery, cells producing the therapeutic protein need

o coordinate the timing of their lysis to release drugs periodi-

ally ( Din et al., 2016 ). 

While these applications are exciting, their success today of-

en relies on a lengthy trial-and-error process. In fact, when parts,

odules, and systems are combined together, they work unpre-

ictably ( Cardinale & Arkin, 2012 ). Today, a designer is forced to

e-characterize and re-tune the same circuit over and over again as

ew modules are added, as the host cell changes, as the growing

edia is varied, and as temperature changes, to name a few. We

nalyze in Section 3 some of the roots of these problems, taking a

ystems and control engineering angle. 

.2. The role of systems and control in synthetic biology 

Systems-level concepts and analogies have permeated the field

f synthetic biology since its inception. The abstraction hierarchy

nvisioned for the bottom-up design of a synthetic genetic cir-

uit is constituted of different layers ( Fig. 1 ). This hierarchy starts

ith the lower abstraction layer constituted by “parts”, which in-

lude DNA sequences corresponding to, for example, promoters, ri-

osome binding sites, and terminators. At the next layer up, we

ave “modules”, which are pictured as I/O dynamical systems re-

ulting from core biological processes, such as gene expression reg-

lation, RNA-level regulation or protein modification, and (under

ertain assumptions) mathematical models for these processes are

eadily available ( Alon, 2006; Del Vecchio & Murray, 2014 ) ( Fig. 1 -A

nd Fig. 1 -B). Next, we have “systems”, which are obtained as the

/O interconnection of modules assembled in the cell, which is the

ircuit chassis ( Baker et al., 2006; Purnick & Weiss, 2009 ) ( Fig. 1 -C).

hese systems could be implemented across multiple cells to lead

o multicellular communities, tissues, and organs ( Fig. 1 -D). 

Context dependence , the fact that a system’s behavior changes

ith its environment (e.g., the chassis or the systems around it),

ffects all layers of the ideal abstraction hierarchy in synthetic bi-

logy. The behavior of a core process, such as gene regulation,

s affected by direct connectivity to other processes, by resource
ompetition with other system components, by the specific DNA

ayout around the parts that encode the process itself, by inter-

ctions with the cellular chassis (i.e., cell growth), by significant

tochasticity in low molecular count regime, by spatial gradients

f molecules and resources within the cell, and by spatial differ-

nces on the signaling molecule concentration in a cell popula-

ion ( Cardinale & Arkin, 2012; Del Vecchio, 2015; Del Vecchio et

l., 2016; Qian et al., 2018 ). 

For electronic systems, the ability to cope with uncertainty and

oise, to maintain modularity, and to enforce compositionality are

argely based on systems and control concepts. In fact, feedback

ontrol has been critical to maintaining modularity of systems, pro-

iding simplified abstractions of lower level layer functionalities

or higher level layers. This is possible by conveniently describing

ny system through a compositional I/O relationship, hence allow-

ng a designer to essentially “forget” about the specifics of a sys-

em’s internal physical structure and treat it as a black box with

nputs and outputs ( ̆Aström & Murray, 2008 ). An example of how

eedback design has enabled to hide details of dynamics and un-

ertainty is that of Black’s feedback amplifier (1920s) ( Kline, 1993 ).

he open loop amplifier device was plagued by distortion and

ragility to temperature variations, making it unusable, while the

eedback amplifier had an extremely robust and reliable I/O rela-

ionship independent of its context. More broadly, managing uncer-

ainty , such as the uncertainty due to context dependent effects,

s a crucial ability in engineered systems. For example, feedback

llows high performance in the presence of uncertainty by com-

aring actual and desired output values through accurate sensing

i.e., repeatable performance of amplifiers with 5x component vari-

tion). The use of similar design principles to robustify the behav-

or of genetic circuits to a certain type of context dependence has

een considered in synthetic biology ( Mishra, Rivera, Lin, Del Vec-

hio, & Weiss, 2014 ), but a unified design framework that makes

ircuits robust to all major sources of uncertainty from context is

till largely missing. 

. Challenges and open questions in synthetic biology 

Here, we identify and detail three key system-level challenges

hat are impeding our current ability to perform robust and pre-

ictable design of synthetic biological systems. 
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3.1. Lack of modularity and compositionality 

Many complex engineering systems can be regarded as a num-

ber of low-level components (i.e., modules) interconnected through

a set of prescribed rules via suitable I/O interfaces ( Tripakis, 2016 ).

Design, analysis, and verification of such systems rely heavily on

the property of system compositionality , which guarantees that

system-level behaviors can be predicted from (1) the relevant I/O

behaviors of the constituent components and (2) the interconnec-

tion rules. In contrast, a system is called monolithic if it contains no

clear architecturally separate components whose functions can be

composed to obtain the emergent system-level behavior. Composi-

tional systems are therefore more efficient to design, analyze, and

verify than monolithic ones. A key to compositionality is the ability

to abstract possibly complicated component dynamics by I/O be-

haviors. Hence, a necessary condition for system compositionality

is the modularity of all its constituent components, which implies

that components’ I/O behaviors are independent of the context, in-

cluding the environment and the neighboring components. 

While modularity and compositionality are taken for granted

and have enabled layered/hierarchical design and verification in

many engineering domains, in biological systems, these are still

largely open questions. The reality is that genetic parts, func-

tional modules, and systems are often influenced by their con-

text ( Cardinale & Arkin, 2012; Del Vecchio, 2015; Del Vecchio et al.,

2016 ). As the complexity of genetic circuits has increased in recent

years, various forms of context dependence have been unveiled

in experiments. Examples include, but are not limited to, load-

ing effects resulting from direct connectivity ( Jayanthi, Nilgiriwala,

& Del Vecchio, 2013; Jiang et al., 2011; Ventura et al., 2010 ), for

which a mathematical analysis framework was developed ( Del Vec-

chio, Ninfa, & Sontag, 2008 ); competition for shared resources,

which creates subtle coupling among otherwise unconnected mod-

ules ( Gyorgy et al., 2015; Qian, Huang, Jiménez, & Del Vecchio,

2017a ); loading effects on the chassis (cell), which in turn impacts

the functionality of modules and/or leads to mutations ( Ceroni, Al-

gar, Stan, & Ellis, 2015; Tan, Marguet, & You, 2009 ); and depen-

dence of a circuit’s function on the way DNA parts are assembled

together ( Yeung et al., 2017 ). 

Although a number of biophysical models have been estab-

lished, they are often restricted to one or two forms of context

dependence described above, with very limited compositionality.

As a consequence, no design-oriented model can effectively predict

all possible interactions listed above. In addition, there are a num-

ber of interactions that we still cannot predict with sufficient accu-

racy. For instance, we cannot effectively predict how protein-DNA

interactions alter DNA structure, how a given protein-DNA struc-

ture impacts gene expression, how supercoiling results from ge-

netic circuit layout, how DNA-encoded modules will perform due

to possible emergence of mechanical interactions, and how loca-

tion of a gene on the genome impacts gene expression ( Cardinale &

Arkin, 2012 ). Even if one could simulate the whole engineered cell

through available software tools, the information obtained from

these simulations would be hardly usable for design and verifica-

tion. In fact, a plethora of experimental data and computational

tools are available to characterize some of these effects indepen-

dently, but a design-oriented mathematical framework to describe

these effects and their interactions is missing. 

The ever-growing list of context-dependent effects that need to

be considered during design leads us to the fundamental question

of how to determine a suitable mathematical framework to describe

composition among parts, functional modules, and systems . Currently,

there is no consensus in the community as to what type of model

is sufficiently descriptive to capture important biological phenom-

ena, yet amenable to a constructive design and verification ap-

proach. 
Our lack of understanding of modularity and compositionality

n natural biological systems has largely limited our ability to an-

wer the above question. Natural biological systems are in fact ex-

remely robust to parameter fluctuations/uncertainty and external

erturbations, such as (unfortunately) cancer pathways ( Hanahan

 Weinberg, 2011 ), which are very hard to eradicate. We, as en-

ineers, are inclined to take a reductionist approach with a hope

o fit the description of biological systems within the same conve-

ient standards that we use for man-made systems. While the use

f modularity and compositionality is a convenient way to analyze

nd design robust systems, it may not be the only way and what

e may view as undesirable “crosstalk” may actually be exploited

y natural systems to attain robustness. For example, when faced

ith nutrient limitations, genetically identical cells in a biofilm can

xhibit crosstalk and differentiate into different cell types depend-

ng on their locations within the colony (i.e., peripheral or inte-

ior) to achieve cooperative division of metabolic labor and con-

equently robustness of growth and survival ( Bocci, Suzuki, Lu, &

nuchic, 2018; Liu et al., 2015; Yamagishi, Saito, & Kaneko, 2016 ).

t is therefore important to learn from these natural systems and

ossibly learn how to exploit the context around a system as a de-

ign “degree of freedom”. 

Performing reverse engineering of models from experimental

ata provides a way to characterize engineered systems in vivo

ithin their context. For example, by systematically perturbing a

ynthetic circuit in vivo to reconstruct the network topology and

hen compare it with the known regulatory interactions, context-

ependent interactions can be isolated. Such information can then

e used to develop models that account for context dependence.

his strategy has been applied in Kang, Moore, Li, Sontag, and

leris (2015) and Quarton, Kang, Sontag, and Bleris (2016) to iden-

ify hidden interactions due to resource competition, resulting in

 model that matches well with a mechanistic resource competi-

ion model ( Qian et al., 2017a ). A universal challenge in biologi-

al inverse problems and system identification is the poor qual-

ty of available data. In fact, biological data are often either too

parse due to the lack of high quality sensors or too “dense” due

o the lack of specific perturbations (e.g., correlation-based high-

hroughput gene expression data). In the latter case, one must be

xtremely cautious to differentiate causality and correlation ( Feizi,

arbach, Médard, & Kellis, 2013; Kang et al., 2015 ). 

Feedback control has been instrumental in enabling layered de-

ign, allowing one to “forget” the specifics of a system’s internal

tructure and to treat it as a black box with a prescribed dy-

amic I/O relationship ( ̆Aström & Murray, 2008 ). However, this re-

uires the ability to sense, compute, and actuate precisely and ac-

urately appropriate signals. In synthetic biology, on the one hand,

e do not have biomolecular sensors for many biological pro-

esses/signals and the available sensors are not sensitive enough

i.e., difficult to detect low numbers of molecules and unable to

ample quickly enough). On the other hand, biomolecular sensors,

ontrollers, and actuators are themselves often corrupted by dis-

urbances, noise, and uncertainties. 

Biology utilizes encapsulation and compartmentalization at var-

ous scales to enforce modularity and to increase robustness. For

xample, at the molecular scale, scaffold proteins regulate interac-

ion of signaling molecules through localization with high speci-

city ( Good, Zalatan, & Lim, 2011 ); at the cellular scale, eukary-

tic cells pump toxic metal ions into specialized compartments

i.e., organelles) for detoxification to avoid metal-induced toxic-

ty ( Dameron & Harrison, 1998 ); and at the populational scale, di-

ision of metabolic labor among cells themselves enables robust

rowth and survival of the colony ( Bocci et al., 2018; Liu et al.,

015; Yamagishi et al., 2016 ). At the molecular and cellular scale,

ynthetic biologists have created synthetic compartmentalizations

o mimic the natural ones (see Chen & Silver, 2012 for a review). At
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he populational scale, synthetic microbial ecosystems have been

onstructed ( Balagaddé et al., 2008; Scott et al., 2017 ). Yet, regard-

ng cells themselves as compartments to achieve modularity and

ivision of labor is still an underutilized concept in synthetic bi-

logy. In addition to molecular technological bottlenecks such as

he lack of orthogonal cell-cell communication modules ( Payne &

ou, 2013 ), we still lack systematic understanding of how hetero-

eneous agent dynamics could give rise to robust emergent popu-

ation phenotypes. The presence of large number of heterogeneous

gents in biological systems challenges existing theories, which

re often oriented to engineered systems that contain only a few

gents and/or can be regarded as homogeneous. 

.2. Emergent behaviors from stochasticity 

Biological systems are inherently stochastic due to the way in

hich the constituent chemical reactions take place ( Del Vecchio &

urray, 2014; Khammash, 2009; Paulsson, 2004 ). For a reaction to

ccur, molecules need to collide as a result of thermal noise, lead-

ng to a marked probabilistic behavior especially in low-molecule-

ount conditions ( Elowitz, 2002; Rosenfeld, Young, Alon, Swain, &

lowitz, 2005 ). Stochastic effects also manifest themselves in cell

opulations, where gene expression is subject to substantial vari-

bility across genetically identical cells ( Norman, Lord, Paulsson,

 Losick, 2013; Raj & van Oudenaarden, 2008 ). Noise propagation

an deteriorate circuit performance or even lead to complete cir-

uit failure ( Atkinson, Savageau, Myers, & Ninfa, 2003; Hooshangi,

hiberge, & Weiss, 2005; Siciliano et al., 2013; Wu et al., 2013 ). 

To theoretically study gene expression in the presence of intrin-

ic noise, biomolecular reactions are often treated as discrete-state

ontinuous-time Markovian processes and modeled by the chemi-

al master equations (CMEs) rather than ODEs ( Del Vecchio & Mur-

ay, 2014; Van Kampen, 2007; Kurtz, 1972 ). Analytical solutions to

MEs are limited to a small set of systems often consisting of only

ne or two species, and finding robust and scalable approxima-

ions for larger systems is still an active area of research ( Gupta,

riat, & Khammash, 2014; Naghnaeian & Del Vecchio, 2017; Singh

 Hespanha, 2011 ). Existing approximation and simulation tools

i.e., stochastic simulation algorithms (SSAs)) are often plagued by

ignificant computational challenges and by our inability to map

xperimentally measured quantities to model parameters. Hence,

here appears to be a general lack of constructive tools that can be

sed for design and verification of stochastic biomolecular systems.

o make matters worse, another recurrent challenge is unknown

iology and, in this case, the fact that it is often unknown a priori

n which domain the system operates (i.e., high versus low molec-

lar counts) ( Pahle, 2008 ), making it difficult to pick the appro-

riate modeling framework (e.g., ODE versus CME) to initiate the

esign process. 

Although the modeling of monolithic stochastic biological sys-

ems can be done through the CME and simulated through SSA,

ost of the research (both experimental and theoretical) to date

ocuses primarily on noise characteristics of single gene expression,

nd only a very limited number of investigations on noise charac-

eristics have been carried out on the system level. This is partly

ue to the fact that (de)composition of a stochastic network into

he interconnection of I/O stochastic modules is still largely unex-

lored. Specifically, the definition of I/O stochastic properties for

odular design is generally lacking. Previous concepts of noise-

o-state stability (reminiscent of the concept of input-to-state sta-

ility for nonlinear systems ( Sontag, 1989 )) could be leveraged, in

hich the covariance of the noise appears as the “input” to the

ystem ( Deng, Krstic, & Williams, 2001; Krstic & Deng, 1998 ). A

heory for cascaded such systems has been initiated years ago, but

ore general interconnections have not been studied before. 
In small scale circuits, feedback control has been demon-

trated to be instrumental to attenuate noise ( Becskei & Serrano,

0 0 0; Nevozhay, Adams, Murphy, Josic, & Balazsi, 2009; Shimoga,

hite, Li, Sontag, & Bleris, 2014; Singh, 2011 ). However, the con-

rollers, being implemented by chemical reactions, are often cor-

upted by noise. The reliability of the controller performance in

he low molecule count regime remains a major challenge. This

s largely different from engineered systems, in which the “feed-

ack” path in any controller is typically close to noise-free and

ighly precise/reliable. However, certain biomolecular controller 

esigns, such as the antithetic feedback in Briat, Gupta, and Kham-

ash (2016a) , can perform robustly in the presence of noise. It

s therefore desirable to expand the toolbox of such controllers

nd/or to come up with reliable design principles in noisy envi-

onments. 

While noise is typically regarded as undesirable in engi-

eered systems, biological systems often exploit noise and cell-

ell heterogeneity in order to achieve a robust emergent pheno-

ype ( Eldar & Elowitz, 2010; Pelkmans, 2012 ). Examples include

ell fate decisions, such as the lysis-lysogenic switch in phage

ambda ( Ptashne, 2004 ), or the process of cellular differentia-

ion ( Wu et al., 2013 ), which is extremely robust and reliable de-

pite remarkable gene expression differences across cells. By con-

rast, noise is still underutilized in synthetic biology. 

.3. Interactions between spatially distributed dynamics 

Within a single cell, core processes tend to spatially localize

n specific regions. For example, in prokaryotic cells, the chromo-

ome and the RNA polymerase localize at the center of the cell,

nd the ribosomes localize in ribosome-rich regions, often near

he two endcaps ( Bakshi, Siryaporn, Goulian, & Weisshaar, 2012;

astellana, Li, & Wingreen, 2016 ). Therefore, different expression

f the same gene may occur depending on (i) whether it is on the

lasmid or on the chromosome and (ii) the localization of the plas-

id in the cytoplasm ( Pogliano, Ho, Zhong, & Helinski, 2001 ). As

 consequence, gene expression is dependent on the spatial con-

ext. In comparison, although transcription and translation in eu-

aryotic cells are inherently more complex (e.g., they involve chro-

atin remodeling and RNA splicing), they happen in specialized

ompartments (i.e., inside and outside the nucleus) ( Alberts, 2014 ).

his spatial arrangement leads to easier access to transcriptional

nd translational resources and possibly more homogeneous gene

xpression with respect to spatial distribution of genes. 

Spatial heterogeneity also underlies many biological phenom-

na that are spatially distributed across different cells ( Payne &

ou, 2013 ). Examples include cross-feeding among different bac-

erial species, which can lead to more stable and resilient com-

unities in the presence of resource limitations ( Brenner, You, &

rnold, 2008; Liu et al., 2015; Wintermute & Silver, 2010 ), and

orphogen gradients in early organism development that help dif-

erentiate stem cells into different cell types ( Gurdon & Bouril-

ot, 2001 ). Therefore, whether we are designing circuits within a

ell or are concerned about the emergent behavior of cell popula-

ions, spatial dynamics are important. However, depending on the

pecific design goal, small length-scale (e.g., intracellular) spatial

nformation may not be as relevant/critical as longer length-scales

e.g., colonies, biofilms, tissues, and organs). 

In general, current tools that consider spatial dynamics particu-

arly for low-copy-number molecules are still crude. Discretization

s a common way to analyze spatial dynamics. Often times, one

iscretizes neighboring interactions using voxel models or graph

odels ( Klann & Koeppl, 2012 ). Unfortunately, this can lead to

odel artifacts that cannot be confirmed experimentally. Captur-

ng spatial gradients is important and discretized models may

iss these effects. The current computational burden of simulating
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Table 1 

Potential systems and control research opportunities in synthetic biology. 

SYSTEM CHARACTERIZATION SYSTEM DESIGN/CONTROL 

new system ID techniques 

customized to biological models, 

inputs, and data acquisition 

identification for stochastic/PDE models 

feedback control for robustness 

find realization of existing algorithms 

learn alternatives from nature 

cope with uncertainty and noise in controllers 

context-aware control design 

novel system descriptions 

I/O description of stochastic/PDE systems 

composition of stochastic/PDE systems 

mixed stochastic/PDE I/O systems 

set-based I/O systems 

system-level considerations 

search for robust circuit architectures 

exploit redundancy and compartmentalization 

account for mutation and biosafety 

compositional modeling framework 

account for uncertainty and context 

new design paradigms 

evolutionary/evolutionary + modular design 

bioinspired design 

more accurate, responsive, and standardized measurement 

exploit timescale separation 

population-level characterization, design, and control 
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models that include spatial dynamics is enormous, making them

mostly unsuitable for design and verification. More generally, the

theory to analyze reaction-diffusion PDEs is largely lacking, and a

modeling framework that allows the analysis of interconnected sys-

tems of PDEs would be highly valuable ( Aminzare & Sontag, 2014;

2016 ). In particular, it is a challenge to connect ODE and/or CME

models with PDE models in a meaningful way. In fact, agent-based

simulations are not constructive and research on “spatially dis-

tributed” CMEs is still on-going ( Ander et al., 2004; Hattne, Fange,

& Elf, 2005; Klann & Koeppl, 2012 ). These models would need to

give rise to computable solutions and properties that can be effi-

ciently used for design and verification, as opposed to simulation.

Similarly, spatial context dependence has hardly been explored.

For example, cell signaling can lead to changes in cell morphology

(e.g., movement/growth/division) which, in turn, affects the spatial

domain in which the reactions take place. 

Engineering sufficient and efficient channels for transfer-

ring/controlling information flow from one cell to another is also

still a largely open field of research. In fact, a particular grand

challenge application is the design of the circuitry within each in-

dividual cell so that the community reaches a community-wide

goal, an idea similar to cooperative control. Since communica-

tion among different cells relies on each individual cell produc-

ing diffusible small molecules, the challenge is to maintain a sta-

ble population of each cell type in order to coordinate reliable

signal communication ( Li & You, 2011 ). In particular, how to ob-

tain robustness of the community emergent behavior, despite each

agent (bacterium) being highly susceptible to perturbations (e.g.,

resource fluctuations) is an open question. Furthermore, cell-to-

cell contact leads to mechanical interconnections, which necessi-

tate hybrid (mechanical/biochemical) models. Hybrid mechanical-

biochemical models that are computationally tractable and can ed-

ucate design are still largely lacking. 

4. Systems and control research opportunities 

In this section we highlight some potential research opportuni-

ties for the systems and control field, which stem from the chal-

lenges so far described. We hope that addressing these research

questions will both advance synthetic biology and demonstrate the

impact of systems and control tools in a yet largely unexplored ap-

plication domain. Some highlights of these research opportunities

are summarized in Table 1 . 

4.1. System identification 

The lack of appropriate system identification techniques is a

key obstacle to solving many issues in synthetic biology, from con-
ext dependence, to stochastic effects, to spatial effects. In order to

arry out model-based design, there is a pressing need to estab-

ish customized system identification procedures for deterministic,

tochastic, and spatially distributed biomolecular models. A major

urdle is the fact that current technology only allows us to mea-

ure a few (often noisy) outputs (e.g., fluorescence) of a nonlinear

ynamical process with limited time resolution. As a consequence,

dentifiability becomes a major issue: it is common to have mul-

iple sets of parameters that all fit the experimental data equally

ell ( Hsiao et al., 2018; Villaverde, Barreiro, & Papachristodoulou,

016 ). 

We therefore need to develop new system identification tech-

iques that can (i) educate optimal placement of a small number

f sensors, (ii) provide rational selection criteria for candidate bio-

ogical models, and (iii) exploit stochasticity in the measurements

o work synergistically with stochastic models. For example, one

pportunity is that stochasticity may provide persistency of exci-

ation and may further restrict the set of possible models. In ad-

ition, it is important to incorporate the consideration of context

ependence, so as to develop experimental practices that minimize

ontextual effects from measurements (e.g., retroactivity). Finally,

e currently have a limited capability to identify the dynamics of

patially distributed biological systems. 

.2. Compositional modeling frameworks 

A compositional modeling framework is critical to untangle com-

lexity associated with design and verification problems. Design

nd verification of a monolithic system is a combinatorial prob-

em. For example, lack of compositionality leads to a need to re-

une the behavior of each module once a new component is added

o the system. To establish a compositional modeling framework, it

s important to correctly capture the boundary of a module, its I/O

nterfaces, and its context. With respect to the context, one could

hink of restricting the dynamics of a module to a different set of

ossibilities depending on the biological context so to account for

he unknowns that are associated with it. 

Differential inclusion models may be a possible framework

o capture all the uncertainty that we have about such sys-

ems ( Aubin & Cellina, 1984 ). However, it is often the case that we

o not even know how many states we have. Developing construc-

ive observability and controllability tools for such models would

e helpful to determine what can be designed/verified with the

iven level of uncertainty that we have to cope with. Another open

uestion is whether differential inclusion models are useful for

roducing constructive tools for design and verification. In addi-

ion, timescale separation could be leveraged to simplify the mod-

ls or to help define the layers of abstractions ( Simon, 1962 ). 
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One could consider hierarchical networks of dynamical sys-

ems, in which the links between nodes obey “contracts”, which

an be framed in logical (AND/OR) or modal (“before”) proper-

ies of inputs and outputs, and use ideas from contract-based

esign ( Nuzzo, Sangiovanni-Vincentelli, Bresolin, Geretti, & Villa,

015 ). The contracts can be composed according to the intercon-

ection scheme of the modules or reverse-engineered through

nterrogation and observation. For example, within a Markov deci-

ion process framework, it is possible to learn the cost functions of

ndividual agents that collectively reach a steady state. Specifically,

he cost functions used by metabolic systems can be inferred from

ata about metabolite fluxes ( Basan et al., 2015 ). It is less clear,

owever, how such approaches could be used for other kinds of

ellular processes in which information, rather than matter, is

eing processed. 

We may need to create new mathematical systems descriptions

long with the compositional rules for I/O systems, accounting

or how nature has composed systems through the course of

volution, perhaps reasoning about I/O sets. The context needs

o be accounted for as a mechanism to reduce uncertainty when

ore information from experimentalists is available. This frame-

ork should be constructive, that is, it should enable explicit

esign and verification procedures. The notion of weak regulatory

inkage ( Kirschner & Gerhart, 2006 ), which enables variation and

election in the course of evolution, may provide a new way of de-

cribing composition in engineered biological systems. These link-

ges reconfigure the interfaces between conserved core processes

s opposed to enforcing agreed interfaces between varied compo-

ents. However, no existing mathematical framework captures this

otion rigorously, especially because establishing such framework

ould require cross-fertilization between different communi-

ies: biologists who provide domain-specific knowledge about

he context and engineers who can create such design-oriented

rameworks. 

Additional traditional approaches that could be consid-

red include computer science approaches to analyze multi-

gent and distributed systems ( Wooldridge, 2009 ), the con-

ept of reconfiguration (allow a system to re-wire itself under

tress) ( Steiger, Walder, & Platzner, 2004 ), and stochastic safety

erification tools ( Prajna, Jadbabaie, & Pappas, 2007 ), but these

ools may not be constructive without leveraging domain-specific

tructures. Boolean networks capture the ON/OFF of gene expres-

ion and provide a coarse model that is appropriate when detailed

echanistic knowledge is missing ( Chaves, Sontag, & Albert, 2006;

hao, Liu, Zhang, Wu, & Ouyang, 2015 ). 

.3. Stochastic and spatially distributed systems 

While there remains a strong need to improve analyt-

cal understanding and computational efficiency of standard

tochastic models (in particular, CME and SSA), these stan-

ard tools can be expanded by a number of existing theo-

etical/computational tools developed in other engineering con-

exts, which may decrease model complexity and increase com-

utational efficiency in certain situations. These include stochas-

ic hybrid systems ( Hespanha, 2006 ); interval-based methods

i.e., interval arithmetic) that capture uncertainty in the param-

ters ( Moore, 1979 ); viability theory, leading to set-based ap-

roaches to design and verification ( Aubin & Cellina, 1984 ); and

ueuing theory ( Cookson et al., 2011 ). However, an underlying

hallenge in these existing approaches is that explicit computation,

hich is often critical for design, is not possible. Hence, there ap-

ears to be a general lack of constructive tools that can be used

or design and verification. 

Developing mathematical frameworks for I/O composition of

tochastic systems are interesting and challenging research avenues,
hich may require new representations of systems and new rules

f composition. New theory will need to be developed for pro-

ucing constructive/compositional approaches to design and veri-

cation. Existing tools such as noise-to-state stability ( Deng et al.,

001; Krstic & Deng, 1998 ) may be adopted towards this goal.

owever, this would first require a deeper understanding of the

tochastic properties of biological systems, especially in the low

olecular count regime. This understanding will also allow us

o determine fundamental limitations that are likely to exist in

he design of closed loop architectures, thus uncovering potential

radeoffs between stochasticity and sharp control. 

A similar I/O compositional framework of PDE models along with

onstructive design and verification tools would be helpful to ac-

ount for many of the spatial effects that we cannot handle to-

ay in design and verification ( Aminzare & Sontag, 2016; Miller

t al., 2012 ). To this end, there is a need to establish input-to-state

tability notions in PDE models in order to analyze robustness to

isturbances (mechanical, thermal, chemical, biological), uncertain

arameters, and unmodeled dynamics. Furthermore, a constructive

nd compositional mathematical framework that provides mixed

ME/PDE descriptions is highly desirable to capture both stochastic

nd spatial effects efficiently and simultaneously. 

.4. Feedback controller design for robustness and modularity 

Context dependence and the general lack of robustness of

ynthetic genetic circuits remain major motivations for feedback

ontrol design (see Del Vecchio et al., 2016; Hsiao et al., 2018;

ian et al., 2018; Steel, Lillacci, Khammash, & Papachristodoulou,

017 for more technical reviews). Robustness to perturbations (i.e.,

oise, parameter uncertainty, and environmental changes) is a re-

arkable property of virtually all living systems, yet current syn-

hetic biology circuits are highly fragile to perturbations and poorly

eliable, often resulting in unpredictable behavior. While feedback

ontrol has been instrumental in achieving robustness and reliabil-

ty since the onset of electrical circuit design, applying these exist-

ng control theoretic tools directly to biomolecular systems faces a

umber of difficulties. 

Firstly, there are often no clear and established realizations of

xisting control algorithms through available biomolecular reac-

ions. Fueled by earlier researches in adaptation and homoeosta-

is in natural systems, one of the most popular control mech-

nisms in biology is integral control. In particular, the integral

ontrol structure theoretically demonstrated in bacterial chemo-

axis to achieve adaptation ( Barkai & Leibler, 1997; Yi, Huang, Si-

on, & Doyle, 20 0 0 ) motivated subsequent searches for biomolec-

lar reaction motifs that can achieve or approximate integral con-

rol ( Ang, Bagh, Ingalls, & McMillen, 2010; Briat et al., 2016a; Briat,

echner, & Khammash, 2016b; Drengstig et al., 2012; Drengstig,

eda, & Ruoff, 2008; Klavins, 2010 ). However, although several

ecent experiments have shown promising results ( Chang, Ar-

itage, Papachristodoulou, & Wadhams, 2013; Hsiao, De Los San-

os, Whitaker, Dueber, & Murray, 2015; Lillacci, Aoki, Schweingru-

er, & Khammash, 2017 ), implementing a synthetic biomolecular

ontroller in vivo that clearly demonstrates the adaptation prop-

rty is still largely an open research question. This is because many

roposed motifs realize integral control in the limit of infinitely

trong binding between two molecules ( Ang et al., 2010; Drengstig

t al., 2008; Klavins, 2010 ) and engineering/finding molecular in-

eraction pairs with sufficiently strong affinity remains a difficult

ask ( Arpino et al., 2013 ). While it is definitely tempting to mimic

lassical engineering designs, the field of synthetic biology may be

eld back by pushing too far the analogy with existing engineered

ystems. In the case of integral control, dilution of biomolecular

pecies due to cell growth makes it essentially impossible to con-

truct a non-leaky memory variable to carry out perfect integration
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c  
of the error signal for feedback ( Olsman et al., 2017; Qian & Del

Vecchio, 2018 ). It is possible that natural systems perform feed-

back in a more efficient way that is different from the common

practices in engineering. 

Another grand challenge in biomolecular feedback system de-

sign is that, like the process that needs to be controlled, the feed-

back path is often equally plagued by disturbances, parametric un-

certainty and noise, and there is a lack of fundamental understand-

ing on how these factors deteriorate control performance. There-

fore, it is unclear whether mapping our classical closed loop feed-

back diagram ( ̆Aström & Murray, 2008 ) directly to biological cir-

cuits is the most appropriate approach to handle robustness prob-

lems. Strategies that relax the requirement for a precise feedback

path in a closed loop design would be highly valuable since ev-

ery path is subject to large parametric uncertainty and noise. More

generally, a mathematical framework to achieve a robust emergent

behavior by appropriately connecting highly uncertain components

would be highly valuable. Addressing these robustness questions

may also require to move beyond traditional core processes in syn-

thetic biology, such as gene expression and gene regulation, and

move to other types of processes, such as protein-protein inter-

actions and CRISPR/Cas-based systems. These biological tools are

currently underutilized, yet they may allow faster responses and

an easier tuning procedure. However, how to perform circuit de-

sign using these core processes to achieve a desired functionality

remains a largely unexplored research avenue. 

Biomolecular controllers, just like the process they are aimed to

control, are context-dependent. Therefore, controller design must

be carried out with the additional constraint that it should not, for

example, impose a heavy burden on the host cell and/or incur un-

expected interactions when connected with the process to be reg-

ulated. On the one hand, this requires control engineers to be very

familiar with the (context-dependent) characteristics of the avail-

able biological tools. For example, two genetic circuits realizing the

same ODE model may result in completely different resource de-

mands. On the other hand, context-aware control design principles

still needs to be explored. 

Finally, feedback control typically trades off robustness and

fragility: feedback systems designed to hedge against one type

of disturbance are typically more fragile to other types of dis-

turbances ( Csete & Doyle, 20 02; Kitano, 20 07; Whitacre, 2012 ). A

theoretical manifestation of this trade-off in classical linear con-

trol theory is Bode’s sensitivity integral ( ̆Aström & Murray, 2008 ),

where robustness to low-frequency disturbances, for example,

must be achieved at the price of fragility to high-frequency ones.

While it is generally believed that through evolution, natural sys-

tems have developed a set of complex mechanisms to balance this

robustness-fragility trade-off in their context, it is crucial to factor

this trade-off into consideration when transferring synthetic ge-

netic circuits from simple laboratory environments to real-world

applications ( Chan, Lee, Cameron, Bashor, & Collins, 2015; Wright,

Stan, & Ellis, 2013 ). In this respect, there is a need to learn from

safety-critical system design and verification practices in tradi-

tional engineering systems and adopt them to the biological con-

text. 

4.5. System-Level considerations for robustness 

A different approach to increase circuits’ robustness to un-

certainty is to search for circuit architectures that are better

suited to handle poor characterization and thus result in a ro-

bust emergent system behavior despite highly uncertain compo-

nents ( Ma, Trusina, El-Samad, Lim, & Tang, 2009 ). On the one hand,

systems and control theory can help identify component properties

and interconnection rules required to maintain robust system-level

behaviors ( Russo, di Bernardo, & Sontag, 2013 ). On the other hand,
 bio-inspired approach, where we learn from biology how notions

f modularity are used, how composition and wiring is performed,

nd how robustness is achieved may be promising. 

Redundancy is common in natural systems, in which multiple

aths exist to transmit the same signal ( Edelman & Gally, 2001;

hitacre, 2012 ). Exploiting redundancy in the design of circuits

ay help reach robustness and resiliency, but one has to care-

ully balance robustness and the size of the system. Another fea-

ure of natural signaling pathways is that they often share com-

onents, which leads to significant crosstalk (i.e., lack of modu-

arity). One notable example is the bow-tie architecture in bacte-

ial metabolic networks ( Csete & Doyle, 2004 ), where several key

pecies (i.e., “knots”) are involved in most of the metabolic pro-

esses. The seemingly contradictory coexistence of modularity and

rosstalk illustrate the complexity of natural systems. Completely

odular systems are typically costly to build and to operate (e.g.,

 machine without a master switch), the lack of modularity in the

rosstalk “knots” may serve as ways (i) to balance robustness and

fficiency and (ii) to provide means for global regulation. For ex-

mple, RNA polymerases can be regarded as a “knot” in gene net-

orks as they are required for all transcriptional regulation ac-

ions. This property is taken advantage of in the bacterial stringent

esponse, where redirecting RNA polymerases to different cellular

asks can globally change the cell growth mode when faced with

utrient starvation ( Magnusson, Farewell, & Nyström, 2005 ). In this

ense, less modularity leads to an efficient global regulation mech-

nism for increased robustness. Of course, a system is fragile when

ts key crosstalk “knots” are subject to attacks, a strategy utilized

y certain viruses to invade host cells ( Bushell & Sarnow, 2002 ).

or synthetic genetic circuits, how to balance robustness (e.g., by

nforcing modularity) and efficiency (e.g., by allowing cross-talk)

ay largely depend on application-specific design requirements. 

Encapsulation and compartmentalization offer ways to enforce

odularity through protecting systems from interference. In this

espect, cells themselves could be used to enforce modular and ro-

ust construction, so that the correct emergent behavior arises at

he level of the cell population without the need to worry about

ontext dependence at the single cell level. While this idea of “dis-

ributed computation” has been realized by synthetically producing

mall molecules that can diffuse through cell membranes ( Hsiao,

ori, Rothemund, & Murray, 2016; Regot et al., 2011; Tamsir, Ta-

or, & Voigt, 2011 ), theoretical studies are largely missing. This re-

ults in limited system-level guidance available for implementation

nd lack of engineering solutions that are generalizable beyond the

pecific experimental systems and conditions considered. Cell-cell

ariability, spatial heterogeneity, communication (diffusion) delay,

he large number of agents (billions to trillions), and most impor-

antly, the need to create stable cell populations are major hurdles

here control engineers could substantially contribute. 

Finally, the problem of genetic mutations is unique to engineer-

ng biology. Mutations are the result of selective pressure against

he mutated components and could be theoretically captured by

ormulating a cost function that the cell is trying to optimize. In-

estigation of design approaches to make an engineered cell pop-

lation robust to mutations could be very valuable. Specifically,

ome genetic circuit architectures are more robust to mutations

han others because they evaluate to a better cost. How to deter-

ine such architectures is an interesting and challenging research

uestion that will most of all require a deeply intertwined theo-

etical (e.g., using tools from optimal control and learning systems)

nd experimental approach. 

.6. New circuit design paradigms 

Model-based design may not be the only approach for biologi-

al systems. In fact, we can perform combinatorial search through
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 large set of circuit architectures with high-throughput experi-

ents, where the appropriate selective pressure is applied to cells.

irected evolution ( Haseltine & Arnold, 2007; Yokobayashi, Weiss,

 Arnold, 2002 ) is an example of how this can be performed and

s very effective for design space exploration. Engineering meth-

ds that synergistically combine modular/layered design approaches

ith evolutionary design techniques could be particularly promising

nd may lead to design and verification methodologies that are

onstructive and also in-line with how nature designs its systems.

his may require establishing a new research direction, for exam-

le in optimal control, in which the cost function is implemented

hrough a selective pressure applied to the engineered cells so that

hey reconfigure themselves, leading to the optimal design. 

Another interesting research approach could be to merge model-

ased design techniques, which require a reasonable characteriza-

ion of the physical process, with machine learning-based design

echniques, which are mostly data-driven. Specifically, system iden-

ification and sensing techniques may be developed to better char-

cterize biological systems used in synthetic biology, and machine

earning techniques along with domain-specific knowledge may be

sed to reduce the uncertainty due to the context. 

.7. Population-level design 

Population-based computation, in which cells compute and

oordinate with each other to obtain an emergent ecosystem

s highly desirable for many applications of synthetic biology,

rom programmable probiotics to regenerative medicine ( Payne

 You, 2013 ). However, while co-existence of cell communi-

ies is ubiquitous in natural systems, engineering such an eco-

ystem where multiple cell populations stably co-exist in a steady

tate that is robust to extraneous species is a formidable chal-

enge ( Armstrong & McGehee, 1976; Balagaddé et al., 2008; Foster

 Bell, 2012; Scott et al., 2017; You, Cox, Weiss, & Arnold, 2004 ).

ttractors exist for these systems that are far more complicated

han simple steady states. The whole population may be “stable”

ccording to some relaxed notion of stability, but each of the con-

tituent cells may not be and may, instead, dynamically change its

tate under the laws of physics or simply due to noise. This could

e a mechanism for resilience such that the whole system steady

tate is robust to external interference but its constituent agents

re highly susceptible to perturbation and continuously evolving.

his begs the question of what mathematics may be appropriate to

escribe and analyze such systems. These communities have tril-

ions of cells (e.g., in our guts we have about 100 trillion bacte-

ia), therefore a multi-agent approach to the problem will likely be

napplicable. Perhaps a PDE-based approach may be more promis-

ng, but current PDE tools are most likely insufficient to describe

nd analyze the important properties of these systems, due to their

eterogeneity. New problem formulations and analysis/design tools

re most likely needed to reason about these questions. 

The theoretical foundations to perform “cooperative control” of

rillion agents to obtain resilient behavior at the population level

s an intriguing research direction. Each agent may implement a

ifferent com ponent of a circuit so that the circuit becomes dis-

ributed across a number of different cellular communities ( Hsiao

t al., 2016; Regot et al., 2011; Tamsir et al., 2011 ), allowing to de-

eat several sources of context dependence at the single cell level,

uch as retroactivity and competition for transcriptional and trans-

ational resources. This requires new compositional/descriptive

rameworks that allow for efficient design and verification, despite

he large size of the systems considered and a significant amount

f communication delay due to slow molecular diffusion. 

.8. Exploiting timescale separation 

Timescale separation is a ubiquitous property of biological pro-

esses. Different core processes occur on very different timescales,
anging from subseconds for protein-DNA or protein-protein inter-

ctions, to minutes for enzymatic reactions, to hours for gene ex-

ression, to days for cell fate decisions, and to weeks for tissue

ormation ( Alon, 2006 ). The dynamics at the different layers of the

esign abstraction hierarchy of synthetic biology also occur at well

eparated timescales, with dynamics of subseconds to seconds for

NA conformation changes to dynamics of days for cell population

ynamics. Stochastic processes are also widely distributed on the

emporal axis, with molecular interactions occurring on the sub-

econd timescale and average noise affecting gene expression on

he minutes to hours timescale. Finally, spatial dynamics are char-

cterized by timescale separation as well. For example, diffusion of

RNA molecules within the cell occurs much faster than that of

arger molecules such as ribosomes. 

On the one hand, system identification, analysis, and simu-

ation are challenged by the wide scale at which the phenom-

na of interest occur. How to remove dynamics that are tangen-

ial to the system of interest to simplify analysis and design re-

ains an open question, especially for stochastic and spatially dis-

ributed systems ( Gómez-Uribe, Verghese, & Tzafriri, 2008; Herath

 Del Vecchio, 2016 ). On the other hand, timescale separation may

nable simplifying models and also reaching some level of “insu-

ation” between processes that occur on different timescales. This

roperty has been exploited to obtain modular synthetic systems

e.g., mitigate retroactivity Mishra et al., 2014; Shah & Del Vec-

hio, 2017 ) and to facilitate control design (e.g., approximate in-

egral control Qian & Del Vecchio, 2018 ). More research in this di-

ection should be explored to support synthetic biology design. 

.9. Instrumentation and standardization 

A fundamental issue impeding our ability to carry out high fi-

elity system identification and control design is the lack of ac-

urate and reliable sensors that could enable better characteriza-

ion of biomolecular processes, parts, and interactions (i.e., stochas-

ic, spatial, structural/mechanical). Unfortunately, we do not have

 sufficient number of accurate sensors to monitor conforma-

ional DNA interactions, single molecules within a cell, cell growth,

nd stochastic fluctuations that may occur on faster timescales.

reation of more sensitive and responsive biosensors with mini-

al context dependence (e.g., retroactivity and resource demand),

s well as lab measurement techniques for single cell dynamics

ill be beneficial in this respect. Furthermore, there is still no

greement in the community on the standard units that should

e used to measure biological signals, and therefore quantita-

ive measurements are often lab-dependent and host/environment-

ependent ( Fahlberg, Groglio, Toxavidis, Israel, & Tigges, 2012 ), pre-

enting better cross-fertilization among different labs. Similarly, a

igh fidelity mapping from experimental measurement to parame-

ers in stochastic/spatial models is still largely absent. 

.10. Simulation and cell-Free testbed 

For most of the biological phenomena discussed, mechanis-

ic simulation tools exist. For example, these include whole cell

imulation models for bacterial cells, which incorporate cellu-

ar context ( Karr et al., 2012 ); the SSAs to capture noise ef-

ects at all molecular counts ( Gillespie, 1977 ); agent-based sim-

lation tools that can account for spatial and cell-cell dynam-

cs ( Gorochowski, 2016 ); and molecular simulation algorithms

hat account for forces and mechanical interactions involving

NAs ( Cheatham & Young, 20 0 0 ). However, existing mechanistic

imulation tools are often not suitable for design and verification

ince they simulate the system as a monolithic entity and do not

llow composition of simpler systems to create/verify the final sys-

em of interest. Therefore, the design and verification problems
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remain combinatorial. Furthermore, simulation depends on the

specific choice of parameters, thus providing little insight for de-

sign and verification, where closed-form analytical expressions,

even if approximate, are much more useful. 

Cell-free systems could be a promising middle ground to test

design ideas and even a potential medium to implement cir-

cuits ( Pardee et al., 2014 ). Cell-free systems provide a means for

“running” a circuit of interest without being susceptible to any un-

known interaction with the host cell ( Shin & Noireaux, 2012; Taka-

hashi et al., 2015 ). However, in addition to the issue of resource de-

pletion, which substantially shortens the life span of the circuit of

interest, there are still problems of standardization of cell extracts

for meaningful quantitative analysis and comparison with in vivo

circuits ( Nagaraj, Greene, Sengupta, & Sontag, 2017; Niederholt-

meyer et al., 2015; Shin & Noireaux, 2012; Takahashi et al., 2015 ). 

5. Summary and outlook 

In this paper, we articulated a number of potential systems and

control research opportunities motivated from pressing problems

in synthetic biology. These opportunities entail new theory that

can have unprecedented impact by enabling ground-breaking ap-

plications of synthetic biology to health, energy, and environment.

While the field of synthetic biology started with model-based de-

sign ( Elowitz & Leibler, 20 0 0; Gardner et al., 20 0 0 ), the field has

progressively moved away from it. Modeling and analysis should

be a precursor as opposed to an after-thought to the experiments,

yet this is rarely the case nowadays as theory is lagging behind the

quick progress in molecular biology and genetic engineering. 

The modeling, design, and realization of any synthetic biolog-

ical system relies fundamentally on our understanding and engi-

neering capability of biology. Hence, the contribution from the sys-

tems and control community to synthetic biology is conditioned on

reaching out to biologists and opening a conversation that will pro-

vide control theorists the appropriate domain-specific knowledge.

For example, the ability to design dynamics has largely relied on

systems and control theory, where a plant of interest that is in-

trinsically unstable (i.e., highly agile aircraft) or underperforming

can be made stable and robust to perturbations by suitable “closed

loop” design. This ability is highly needed in synthetic biology, but

the control theorist will have to learn how to go from design of

a closed loop system on paper to concrete biological parts and to

their reliable interconnections. They will also have to formulate the

mathematical problems to reflect the biophysical constraints and

to be suitable for biomolecular implementation (see Arpino et al.,

2013 for discussions on tunability of common biomolecular param-

eters), which are significantly different from those in classical en-

gineering settings. Therefore, a strong synergy is required between

control theorists and synthetic biologists for these research oppor-

tunities to unfold. 
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