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Abstract— In standard control systems theory, a system
is modeled as an input/output (I/O) module with internal
dynamics. This implicitly assumes that the dynamics of a
module do not change when the module is connected to other
components. However, such an assumption is not realistic in a
wide number of electrical, hydraulic, mechanical, and biological
systems. We thus propose a new model that incorporates signals
that travel from downstream to upstream, which we broadly call
retroactivity. We quantify such a retroactivity in transcriptional
components and show how to attenuate its effect by the design
of insulation devices.

I. I
The property of modularity covers a fundamental role

both for constructing synthetic systems by the composition
of simple units and for predicting the behavior of natural
systems by the behavior of their components. Such a de-
sirable property guarantees that the input/output behavior
of a component does not change upon interconnection. As
it occurs in several engineering systems such as electrical,
mechanical, and hydraulic systems, the property of modu-
larity does not generally hold in biological systems. Upon
interconnection, the behavior of an ”upstream” component
(the one that sends the signal) is affected by the presence
of the ”downstream” component (the one that receives the
signal). We broadly call retroactivity the phenomenon by
which the behavior of an upstream component changes upon
interconnection. The above considerations strongly motivate
the need for a novel theoretical framework to formally define
and quantify retroactivity effects. In this paper, we present
such a formalism, illustrate it with engineering and biological
examples, and study general approaches to the reduction of
retroactivity. The standard model, used in virtually every
control and systems theory mathematical and engineering
textbook since the 1950s, e.g. [9], is based on the view of
devices described solely in terms of input channels, output
channels, and state (internal, non-shared) variables. A notable
exception to this standard model is found in the work of
Willems [5]. Willems has emphasized the fact that, for many
physical situations, directionality of signals is an artificial,
and technically wrong, assumption. While agreeing with this
general point of view, we argue that, in certain circumstances
such as those illustrated in this paper, it is important to
distinguishing between input and output channels. Thus,
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Fig. 1. On the left, we represent a tank system that takes as input
the constant flow f0 and gives as output the pressure p at the output
pipe. On the right, we show a downstream tank.

instead of blurring the distinction between inputs, states, and
outputs as in Willems work, we prefer to keep these three
distinct entities but augment the model with two additional
signals, namely the retroactivities to inputs and to outputs,
respectively.

Example. As a simple example, consider the one-tank
system shown on the left of Figure 1. We consider a constant
input flow f0 as input to the tank system and the pressure
p at the output pipe is considered the output of the tank
system. The corresponding output flow is given by k√p, in
which k is a positive constant depending on the geometry
of the system. The pressure p is given by (neglecting the
atmospheric pressure for simplicity) p = ρh, in which h
is the height of the water level in the tank and ρ is water
density. Let A be the cross section of the tank, then the tank
system can be represented by the equation A dp

dt = ρ f0−ρk
√p.

Let us now connect the output pipe of the same tank to
the input pipe of a downstream tank shown on the right of
Figure 1. Let p1 = ρh1 be the pressure generated by the
downstream tank at its input and output pipes. Then, the
flow at the output of the upstream tank will change and will
now be given by g(p, p1) = k

√

|p − p1| if p > p1 and by
g(p, p1) = −k

√

|p − p1| if p ≤ p1. As a consequence, the
time behavior of the pressure p generated at the output pipe
of the upstream tank will change to

Adp
dt = ρ f0 − ρg(p, p1)

A1
dp1

dt = ρg(p, p1) − ρk1
√p1,

in which A1 is the cross section of the downstream tank and
k1 is a positive parameter depending on the geometry of the
downstream tank. Thus, the input/output response of the tank
measured in isolation does not stay the same when the tank
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is connected through its output pipe to another tank. We
will model this phenomenon by a signal that travels from
downstream to upstream, which we call retroactivity. The
amount of such a retroactivity will change depending on
the features of the interconnection and of the downstream
system. For example, if the aperture of the pipe connecting
the two tanks is very small compared to the aperture of an
output pipe of the downstream tank, the pressure p at the
output of the upstream tank will not change much when
the downstream tank is connected. We thus model a system

S
x

u y

sr

Fig. 2. A system S input and output signals. The red signals denote
signals originating by retroactivity upon interconnection.

by adding an additional input, called s, to the system to
model any change in its dynamics that may occur upon
interconnection with a downstream system. Similarly, we add
to a system a signal r as another output to model the fact
that when such a system is connected downstream of another
system, it will send upstream a signal that will alter the
dynamics of the upstream system. More generally, we define
a system S to have internal state x, two types of inputs (I),
and two types of outputs (O): an input “u” (I), an output “y”
(O), a retroactivity to the input “r” (O), and a retroactivity to
the output “s” (I) (Figure 2). We will thus represent a system
S by the equations

ẋ = f (x, u, s), y = Y(x, u, s), r = R(x, u, s), (1)

in which f , Y,R are arbitrary functions and the signals
x, u, s, r, y may be scalars or vectors. In such a formalism,
we define the input/output model of the isolated system as
the one in equations (1) without r in which we have also
set s = 0. Let S i be a system with inputs ui and si and with
outputs yi and ri. Let S 1 and S 2 be two systems with disjoint
sets of internal states. We define the interconnection of an
upstream system S 1 with a downstream system S 2 by simply
setting y1 = u2 and s1 = r2. For interconnecting two systems,
we require that the two systems do not have internal states
in common.

In this paper, we focus on transcriptional components. We
analyze first the dynamics of a component in isolation and
then we quantify the change in its dynamics, the retroactivity,
due to the interconnection with other modules (Section II).
We show in Section III how insulation between an up-
stream component and a downstream one can be attained by
connecting them through an insulation device. A biological
realization of an insulation device is proposed in Section IV.

II. R   
It has been proposed by previous authors [6], [7] that the

occurrence of retroactivity, that is, having nonzero signals r
and s, depends on the specific choice of input u and output

y. In the context of a gene transcriptional network, it is not
clear whether choices that lead to negligible retroactivity are
generally possible. We thus consider the input u and output
y of the system to be fixed a priori. We then attenuate the
effects of a nonzero s by a suitable feedback mechanisms and
we decrease the value of r by specific physical component
choices. For the transcriptional components considered in
this paper, we let protein concentration play the role of
both the input and output signals u and y. In the sequel,
we denote by X the protein, by X (italics) the protein con-
centration, and by x (lower case) the gene expressing protein
X. A transcriptional component that takes as input protein
concentration Z and gives as output protein concentration
X is shown in Figure 3 in the dashed box. In particular,
protein Z is a transcription factor that binds to the operator
sites on the promoter controlling gene x. The output protein
concentration X is the concentration of the protein expressed
by the gene x. The activity of the promoter controlling gene

p

Transcriptional component

Z

x

X

Fig. 3. The transcriptional component takes as input u protein
concentration Z and gives as output y protein concentration X. The
transcription factor Z binds to operator sites on the promoter. The
red part belongs to a downstream transcriptional block that takes
protein concentration X as its input.

x will depend on the amount of Z bound to the promoter.
If Z = Z(t), such an activity will also be changing in time.
We denote it by k(t). By neglecting the mRNA dynamics,
we can write the dynamics of X as [1]

dX
dt = k(t) − δX, (2)

in which δ is the decay rate of the protein. We will refer to
equation (2) as the isolated system response. Now, assume
that X drives a downstream transcriptional block by binding
to a promoter p with concentration p (the red part of
Figure 3). The reversible binding reaction of X with p is
given by X+p 
kon

ko f f
C, in which C is the complex protein-

promoter. Since the promoter is not subject to decay, its
total concentration pTOT is conserved so that we can write
p+C = pTOT . Therefore, the new dynamics of X is governed
by the equations

dX
dt = k(t) − δX + ko f f C − kon(pTOT − C)X
dC
dt = −ko f f C + kon(pTOT − C)X, (3)

in which the terms in the box represent the signal s, that
is, the retroactivity to the output, while the second of
equations (3) describes the dynamics of the interconnection
mechanism. When s = 0, the first of equations (3) reduces
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Fig. 4. Simulation results for the system in equations (3). In the plot,
k(t) = 0.01(1 + sin(ωt)) with ω = 0.005, kon = 10, ko f f = 10, δ =
0.01, pTOT = 100, X(0) = 5. The amount of downstream binding
sites is large compared to X(0) as it occurs in synthetic systems
in which these sites are present in high copy-number plasmids.
Time is in minutes. The green plot represents X(t) originating by
the isolated system in equations (2), while the blue plot represents
X(t) obtained by the interconnected system of equation (3). Both
transient and permanent behaviors are different.

to the dynamics of the isolated system given in equation (2).
The effect of the retroactivity s on the behavior of X can
be very large (Figure 4). This is undesirable in a number
of situations in which we would like an upstream system to
“drive” a downstream one as is the case, for example, when
a biological oscillator has to time a number of downstream
processes. If, due to the retroactivity, the output signal of
the upstream process becomes too low and/or out of phase
with the output signal of the isolated system (as in Figure 4),
the coordination between the oscillator and the downstream
processes will be lost. In order to counteract the effect of the
retroactivity to the output, we quantify it and determine the
biological parameters that affect its value.

A. Quantification of the retroactivity to the output
In this section, we quantify the difference between the

dynamics of X in equation (2) and the dynamics of X in
equations (3) by establishing conditions on the biological
parameters that make the two dynamics close to each other.
This is achieved by exploiting the difference of time scales
between the protein production and decay processes and its
binding and unbinding process to the promoter p. By virtue
of this separation of time scales, we can reduce system (3) to
a one dimensional system describing the evolution of X on
the slow manifold [4]. This way, we can simply compare two
one-dimensional systems. Consider again the full system in
equations (3), in which ko f f � δ [1] and kon = ko f f /kd with
kd = O(1). To explicitly model the difference in time scales
between the two equations of system (3), we introduce a
parameter ε, which we define as ε = δ/ko f f . Since ko f f � δ,
ε � 1. Substituting ko f f = δ/ε and kon = δ/(εkd) in system
(3), we obtain the system dX

dt = k(t) − δX + δ
ε
C − δ

εkd
(pTOT −

C)X and dC
dt = −

δ
ε
C + δ

εkd
(pTOT −C)X, in which the singular

perturbation parameter ε appears in both equations. We can
take the above system to standard singular perturbation form
by performing the change of variable y = X +C, in which y
physically corresponds to the total concentration of protein
X. Then, the system in the new variables becomes

dy
dt = k(t) − δ(y −C)

ε
dC
dt = −δC + δkd

(pTOT −C)(y −C), (4)

which is in standard singular perturbation form. This means,
as some authors recently proposed [3], that y (total concen-
tration of protein) is the slow variable of the system (3) as
opposed to X (concentration of free protein). By setting ε = 0
in the second one of system (4), we obtain the slow manifold.
The dynamics of (4) restricted to the slow manifold are a
good approximation of the dynamics of system (4) only if the
slow manifold is asymptotically stable. Before approximating
system (4) by its dynamics on the slow manifold, we thus
verify first that the slow manifold is asymptotically stable.
For a variable v involved in system (4), we denote by v̄ the
value of the variable v once we have set ε = 0 in system
(4). Let g(C, y) := −δC + δ

kd
(pTOT − C)(y − C) and let γ(ȳ)

be such that g(γ(ȳ), ȳ) = 0. Then, C̄ = γ(ȳ) defines the slow
manifold. Model (4) reduced to the slow manifold leads to
the reduced model

dȳ
dt = k(t) − δ(ȳ − γ(ȳ)). (5)

Let τ = t/ε and let eC = C − C̄ be the error between C and
its approximation C̄. The dynamics of such an error, called
the boundary layer system, is given by

deC
dτ = −δ(eC + C̄) + δkd

(pTOT − eC − C̄)(ȳ − eC − C̄), (6)

and describes the dynamics of the error of C with respect
to C̄, in which ȳ and thus C̄ are considered frozen at the
initial condition. Since we desire C to tend to C̄, we study
the stability of the equilibrium point eC = 0 of equation (6).

Proposition 1: The equilibrium eC = 0 of the boundary
layer system (6) is asymptotically stable uniformly in ȳ
and ∂g/∂C|C̄(t),ȳ(t) has real part smaller than a fixed negative
number.

Proof: One can easily verify that ∂g/∂C|C̄(t),ȳ(t) ≤ −δ
and that deC

dτ = −K(ȳ)eC +
δ
kd

e2
C, in which K(ȳ) ≥ K0 with

K0 independent of ȳ. Therefore, the asymptotic stability is
uniform in ȳ.
It thus follows that (Theorem 3.1 [4]) if eC(0) is in the region
of attraction of the equilibrium eC = 0, then there are positive
constants ε∗, t1, t2 with 0 < t1 < t2 < ∞ such that for all
ε < ε∗, we have y(t) = ȳ(t) + O(ε), for all t ∈ [0, t2) and
C(t) = C̄(t) + O(ε), for all t ∈ [t1, t2). As a consequence, we
also have that X(t) = X̄(t) + O(ε), for all t ∈ [t1, t2). Since
X̄(t) = ȳ(t) − C̄(t), the differential equation that X̄ satisfies is
given by dX̄

dt =
dȳ(t)

dt −
dγ(ȳ)

dȳ
dȳ(t)

dt , which finally leads to

dX̄
dt = (k(t) − δX̄)(1 − dγ(ȳ)

dȳ ). (7)
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After a fast transient, X(t) will follow X̄(t) solution of
equation (7). We thus assume that for t ∈ [t1, t2) we have
that X(t) ≈ X̄(t) and we quantify the retroactivity to the
output s after a fast transient by quantifying the difference
between the dynamics in equation (7) (the connected system)
and the dynamics in equation (2) (the isolated system). Such
dynamics are the same when dγ(ȳ)

dȳ = 0. We thus take as
a measure of the retroactivity at interconnection between
transcriptional modules the quantity R(X̄, t) = | dγ(ȳ)

dȳ |, in
which dγ(ȳ)

dȳ may be viewed as depending only on time as
γ is a function of ȳ and ȳ is the solution of equation (5).
The retroactivity measure R can also be interpreted as a
percentage variation of the dynamics of the connected system
with respect to the dynamics of the isolated system. We
next determine the physical meaning of the retroactivity
measure defined above by determining what the key physical
parameters are that regulate the value of R. In the sequel, we
will omit the bar from the variables on the slow manifold to
simplify notation.

Proposition 2: The value of the retroactivity measure is
given by

R(X, t) = 1
1 + (1+X/kd)2

pTOT /kd

(8)

and R(X, t) < 1.
Proof: suppose that γ(y) satisfies that g(γ(y), y) = 0,

where g(C, y) = δ
[

−C + 1
kd

(pTOT −C)(y − c)
]

. We want to
calculate dγ/dy.

dγ/dy = − ∂g/∂y
∂g/∂C =

1
kd

(pTOT −C)
1 + 1

kd
(pTOT − C) + 1

kd
(y −C)

so substituting 1
kd

(y −C) = C
pTOT−C this equals

1
1 + kd pTOT

(pTOT−C)2

=
1

1 + kd
pTOT

(

1 + C
pTOT−C

)2

and now substituting C
pTOT−C =

1
kd

(y − C) we conclude that
this equals 1

1+ kd
pTOT

(

1+ 1
kd

(y−C)
)2 , in which y − C = X.

Retroactivity is small if pTOT /kd � 1. If this condition is
not satisfied, the only way to make R small is to have X
large enough compared to pTOT . A similar measure of the
retroactivity to the input r of a transcriptional module can
be obtained as

R(Z, t) = 1

1 +
(1+ Z

k̄d
)2

p0,TOT
k̄d

, (9)

in which k̄d = k−/k+ and 1/k̄d is the affinity of Z to its target
sites p0 (with total concentration p0,TOT ) on the promoter
controlling gene x.

III. A       


Consider a system S as the one shown in Figure 2 that
takes u as input and gives y as output. We would like to

design it in such a way that (a) the retroactivity r to the
input is very small; (b) the effect of the retroactivity s to the
output on the internal dynamics of the system is very small
independently of s itself; (c) the u to y response is about
linear. Such a system is said to enjoy the insulation property
and will be called an insulation component. In electronics,
amplifiers enjoy the insulation property by virtue of the
features of the operational amplifier (OPAMP) that they
employ [8]. In such electronic components, r is very small
because the input stage of an OPAMP absorbs almost zero
current. This way, there is no voltage drop across the output
impedance of an upstream voltage source. Similarly, equation
(9) provides a measure of the retroactivity to the input r of
a transcriptional system after a fast transient as a function
of biological parameters that characterize the interconnection
mechanism. To reduce the amount of r, we can choose k̄d
large (low affinity) and p0,TOT small, for example. Having
low affinity means that there is a low “flow” of protein Z
that goes to bind its target sites. Thus, we can say that a
low retroactivity to the input is obtained when the “input
flow” to the system is small. Such an interpretation can be
further carried to the hydraulic example. If the input flow
to the downstream tank is small compared, for example, to
the output flow of the downstream tank, the output pressure
of the upstream tank will not be affected by the connection.
Therefore, the retroactivity to the input of the downstream
tank will be small.

In electronic amplifiers, the effect of s on the amplifier
behavior is reduced to almost zero by virtue of a large
(theoretically infinite) amplification gain of the OPAMP and
an equally large negative feedback mechanism that regulates
the output voltage. In order to show the generality of such a
mechanism, we show how it can be applied to the academic
hydraulic example consisting of two connected tanks shown
in Figure 5. The objective is to attenuate the effect of the
pressure applied from the downstream tank to the upstream
tank, so that the output pressure of the upstream system does
not change when the downstream tank is connected. We let

h1G′ √p

G f0

h

Fig. 5. We amplify the input flow f0 through a large gain G and we apply
a large negative feedback by employing a large output pipe with output flow
G′ √p.

the input flow f0 be amplified by a large factor G. Also, we
consider a large pipe in the upstream tank with output flow
G′ √p, with G′ � k and G′ � k1. Let p be the pressure at
the output pipe of the upstream tank and p1 the pressure at
the bottom of the downstream tank. One can verify that the
only equilibrium value for the pressure p at the output pipe

1371



of the upstream tank is obtained for p > p1 and it is given
by

peq =

























G f0
G′ + (kk1)/

√

k2
1 + k2

























2

.

If we let G′ be sufficiently larger than k1 and k and we
let G′ = KG for some positive K = O(1), then for G
sufficiently large peq ≈ ( f0/K)2, which does not depend on
the presence of the downstream system. In fact, it is the same
as the equilibrium value of the isolated upstream system
A dp

dt = ρG f0−ρG′
√p−ρk√p for G sufficiently large and for

G′ = KG with K = O(1). How do we attenuate the effect of
the retroactivity to the output for protein and gene systems?
This mechanism is summarized by the following lemma and
corollary in a form that is directly applicable to the isolated
and connected systems (systems (2) and (7)), as they appear
after a short transient, once a large amplification gain G and
an equally large feedback are employed.

Lemma 1: Consider the system dX
dt = G(t)(u(t) − KX) in

which G(t) ≥ G0 > 0 and |u′(t)| ≤ V uniformly in t. Then,

|X(t) − u(t)
K | ≤ exp(−tG0K)|X(0) − u(0)

K | +
V

G0K2 .

Proof: Let e = X − u/K. The error dynamics is given
by ė = −G(t)Ke − u̇(t)

K . The solution of such a differential
equation is provided by e(t) = e(0) exp(−

∫ t
0 KG(τ)dτ) +

∫ t
0 exp(−

∫ t
τ

KG(σ)dσ) u′(t)
K dτ. Since |u′(t)| ≤ V and G(t) ≥

G0 > 0 for all t, we have that |X(t)− u(t)
K | ≤ exp(−tG0K)|X(0)−

u(0)
K | + (1 − exp(−tG0K))V/(G0K2).

Corollary 1: Consider the two systems
dXr
dt = G(u(t) − KXr) and dX

dt = Ḡ(t)(u(t) − KX), (10)

in which |u′(t)| ≤ V, Ḡ(t) ≥ G0, and G ≥ G0 for G0 > 0.
Then, for a suitable nonnegative constant C0

|X(t) − Xr(t)| ≤ exp(−tG0K)C0 + 2 V
G0K2 .

Proof: We can apply Lemma 1 to the two systems
in equation (10), separately. This along with the triangular
inequality |X(t) − Xr(t)| ≤ |X(t) − u(t)/K| + |Xr(t) − u(t)/K|
leads to |X(t)−Xr(t)| ≤ exp(−tG0K)C0+2 V

G0K2 , for a suitable
nonnegative constant C0 depending on the initial conditions.

Let us now consider the isolated system (2) and the con-
nected system (7) and assume that we can amplify with gain
G the input k(t) and apply an additional negative feedback
−G′X, in which G′ = αG for some α = O(1). Then, we
obtain the two systems (isolated an connected) as

dXr
dt = G(k(t) − (α + δ/G)Xr) (11)

and dX
dt = G(k(t) − (α + δ/G)X)(1 − d(t)) (12)

respectively, in which d(t) = dγ(y)
dy and y(t) given by the

reduced system dy
dt = Gk(t) − (G′ + δ)(y − γ(y)). We can

apply Corollary 1 to the two systems (11) and (12) with

Ḡ(t) = G(1 − d(t)), K = (α + δ/G), and k(t) = u(t), to obtain
that X(t) can be made close to Xr(t) by increasing the gain
G. How can we obtain a large amplification gain and a large
negative feedback in a biological insulation component? This
realization question is addressed in the following section.

IV. A      
We propose a design that realizes a large amplification

of the input signal Z(t) by having promoter p0 (to which
Z binds) be a strong, non leaky, promoter. The negative
feedback mechanism on X relies on enhanced degradation
of X. Since this must be large, one possible way to obtain
an enhanced degradation for X is to have a protease, called Y,
be expressed by a strong constitutive promoter. The protease
Y will cause a degradation rate for X, which is larger if Y
is more abundant in the system. This design is schematically
shown in Figure 6. The expression of gene x is assumed to

Insulation componentZ

p0 x

X

Y

y

p

Fig. 6. Insulation device realization. Post-translational regulation
of X realizes an enhanced degradation. The promoter p0 enables a
large signal amplification. The red part indicates the downstream
component that takes as input the concentration of protein X.

be a two-step process, which incorporates also the mRNA
dynamics. Incorporating these dynamics in the model is
relevant for the current study because they may contribute
to an undesired delay between the Z and X signals. The
reaction of the protease Y with protein X is modeled as
X + Y 
η1

η2 W →β Y, which can be found in standard
references (see [2], for example). The input/output system
model of the insulation component that takes Z as an input
and gives X as an output is given by the following equations

dZ
dt = k(t) − δZ + k−Zp − k+Z(p0,TOT − Zp) (13)

dZp

dt = k+Z(p0,TOT − Zp) − k−Zp (14)
dmX
dt = GZp − δ1mX (15)
dX
dt = νmX − η1YX + η2W − δ2X +

koffC − konX(pTOT − C) (16)
dW
dt = η1XY − η2W − βW (17)
dY
dt = −η1YX + βW + αG − γY + η2W (18)
dC
dt = −koffC + konX(pTOT −C), (19)
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in which the expression of gene z is controlled by a promoter
with activity k(t). These equations will be studied numeri-
cally and analyzed mathematically in a simplified form. The
variable Zp is the concentration of protein Z bound to the
promoter controlling gene x, p0,TOT is the total concentration
of the promoter p0 controlling gene x, mX is the concentration
of messenger RNA of X, C is the concentration of X bound
to the downstream binding sites with total concentration
pTOT , γ is the decay rate of the protease Y. The value of
G is the production rate of X mRNA per unit concentration
of Z bound to the promoter controlling x; the promoter
controlling gene y has strength αG, for some constant α, and
it has the same order of magnitude strength as the promoter
controlling x. The terms in the box in equation (13) represent
the retroactivity r to the input of the insulation component
in Figure 6. The terms in the box in equation (16) represent
the retroactivity s to the output of the insulation component
of Figure 6. For the discussion regarding the attenuation of
the effect of s, it is not relevant what the specific form of
signal Zp(t) is. Let then Zp(t) be any bounded signal v(t).
Since equation (15) takes v(t) as an input, we will have that
mX = Gv̄(t), for a suitable signal v̄(t). Let us assume for the
sake of simplifying the analysis that the protease reaction is
a one step reaction, that is, X+Y→β Y. Therefore, equation
(18) simplifies to dY

dt = αG−γY and equation (16) simplifies
to dX

dt = νmX − βYX − δ2X + koffC − konX(pTOT − C). If we
consider the protease to be at its equilibrium, we have that
Y(t) = αG/γ. As a consequence, the X dynamics becomes

dX
dt = νGv̄(t) − (βαG/γ + δ2)X + koffC − konX(pTOT −C) ,

with C determined by equation (19). By using the same
singular perturbation argument employed in the previous
section, we obtain that the dynamics of X will be after a
fast transient approximatively given by

dX
dt = (νGv̄(t) − (βαG/γ + δ2)X)(1 − d(t)), (20)

in which 0 < d(t) < 1 is the effect of the retroactivity s.
Corollary 1 can be applied to systems (20) and dXr

dt = νGv̄(t)−
(βαG/γ + δ2)Xr (the isolated system dynamics) to conclude
that as G grows X(t) and Xr(t) become close to each other.

Finally, to decrease r we have to guarantee that the
retroactivity measure given in equation (9) is small. This
is seen to be true if (k̄d + Z)2/(p0,TOT k̄d) is very large, in
which 1/k̄d = k+/k− is the affinity of the binding site p0
to Z. Since after a short transient, Zp = (p0,TOT Z)/(k̄d + Z),
for Zp not to be a distorted version of Z, it is enough to
ask that k̄d � Z. This, combined with the requirement that
(k̄d + Z)2/(p0,TOT k̄d) is very large, leads to the requirement
p0,TOT /k̄d � 1. Summarizing, for not having distortion
effects between Z and Zp and small retroactivity r, we need
that k̄d � Z and p0,TOT/k̄d � 1. Simulation results are shown
in Figure 7.

V. C  FW
A modeling framework for systems with retroactivity

was proposed. In the context of transcriptional networks, a
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Fig. 7. Simulation results for different gains G for system in
equations (13-19). In all plots, red (dotted line) is the input Z
to the insulation device, green (solid line) is the output X of the
insulation device in isolation (without the downstream binding sites
p), blue (dashed line) is the output X of the insulation device when
downstream sites p are present. In all plots, k(t) = 0.01(1+ sin(ωt)),
pTOT = 100, koff = kon = 10, δ = 0.01, and ω = 0.005. The
parameter values are δ1 = 0.01, p0,TOT = 1, η1 = η2 = β =
γ = 0.01, k− = 200, k+ = 10, α = 0.1, δ2 = 0.1, ν = 0.1,
and G = 1000, 100, 10, 1. The retroactivity to the output is not
well attenuated for values of the gain G = 1 and the attenuation
capability begins to worsen for G = 10.

retroactivity measure was computed. A mechanism based
on large input amplification and large negative feedback
was shown to attenuate the retroactivity effects. In our
future work, we will experimentally validate in synthetic bio-
molecular systems both the proposed retroactivity measure
and the insulation device mechanism.
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