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Abstract.
This paper deals with sparse approximations by means of convex com-

binations of elements from a predetermined “basis” subset S of a function
space. Specifically, the focus is on the rate at which the lowest achievable
error can be reduced as larger subsets of S are allowed when constructing
an approximant. The new results extend those given for Hilbert spaces by
Jones and Barron, including in particular a computationally attractive in-
cremental approximation scheme. Bounds are derived for broad classes of
Banach spaces; in particular, for Lp spaces with 1 < p <∞, the O(n−1/2)
bounds of Barron and Jones are recovered when p = 2.

One motivation for the questions studied here arises from the area of
“artificial neural networks,” where the problem can be stated in terms of
the growth in the number of “neurons” (the elements of S) needed in order
to achieve a desired error rate. The focus on non-Hilbert spaces is due to
the desire to understand approximation in the more “robust” (resistant to
exemplar noise) Lp, 1 ≤ p < 2 norms.

The techniques used borrow from results regarding moduli of smoothness
in functional analysis as well as from the theory of stochastic processes on
function spaces.

1. Introduction

The subject of this paper concerns the problem of approximating elements of a
Banach space X—typically presented as a space of functions—by means of finite
linear combinations of elements from a predetermined subset S of X. In contrast
to classical linear approximation techniques, where optimal approximation is
desired and no penalty is imposed on the number of elements used, we are
interested here in sparse approximants, that is to say, combinations that employ
few elements. In particular, we are interested in understanding the rate at which
the achievable error can be reduced as one increases the number allowed. Such
questions are of obvious interest in areas such as signal representation, numerical
analysis, and neural networks (see below).

AMS classification: 41A25, 46B09, 68T05

Key words and phrases: Banach space, convex combination, neural network, modulus of
smoothness

1



2 Donahue, Gurvits, Darken, and Sontag

Rather than arbitrary linear combinations
∑
i aigi, with ai’s real and gi’s in

S, it turns out to be easier to understand approximations in terms of combina-
tions that are subject to a prescribed upper bound on the total coefficient sum∑
i |ai|. After normalizing S and replacing it by S ∪ −S, one is led to studying

approximations in terms of convex combinations. This is the focus of the current
work.

To explain the known results and our new contributions, we first introduce
some notation.

1.1. Optimal Approximants

Let X be a Banach space, with norm ‖ · ‖. Take any subset S ⊆ X. For each
positive integer n, we let linnS consist of all sums

∑n
i=1 aigi, with g1, . . . , gn in

S and with arbitrary real numbers a1, . . . , an, while we let conS be the set of
such sums with the constraint that all ai ∈ [0, 1] and

∑
i ai = 1. The distances

from an element f ∈ X to these spaces are denoted respectively by

‖linnS − f‖ := inf {‖h− f‖ , h ∈ linnS}

and

‖conS − f‖ := inf {‖h− f‖ , h ∈ conS} .

Of course, always ‖linnS − f‖ ≤ ‖conS − f‖. For each subset S ⊆ X, linS =
∪nlinnS and coS = ∪nconS denote respectively the linear span and the convex
hull of S. We use bars to denote closure in X; thus, for instance, coS is the closed
convex hull of S. Note that saying that f ∈ linS or f ∈ coS is the same as saying
that limn→+∞ ‖linnS − f‖ = 0 and limn→+∞ ‖conS − f‖ = 0 respectively; in
this case, we say for short that f is (linearly or convexly) approximable by S.
These distances as a function of n represent the convergence rates of the best
approximants to the target function f . The study of such rates is standard in
approximation theory (e.g., (Powell 1981)), but the questions addressed here are
not among those classically considered.

Let φ be a positive function on the integers. We say that the space X admits
a (convex) approximation rate φ(n) if for each bounded subset S of X and each
f ∈ coS, ‖conS − f‖ = O(φ(n)). (The constant in this estimate is allowed to,
and in general will, depend on S, typically through an upper bound on the
norm of elements of S.) One could of course also define the analogous linear
approximation rates; we do not do so because at this time we have no nontrivial
results to report in that regard. (The implications of the restriction to convex
approximates is examined in Appendix A.)

Jones (1992) and Barron (1991) showed that every Hilbert space admits an
approximation rate φ(n) = 1/

√
n. One of our objectives is the study of such

rates for non-Hilbert spaces. To date the larger issue of convergence rates in
more general Banach spaces and in the important subclass of Lp, p 6= 2, spaces
has not been addressed. Barron (1992) showed that the same rate is obtained in
the uniform norm, but only for approximation with respect to a particular class
of sets S.
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1.2. Incremental Approximants

Jones (1992) considered the procedure of constructing approximants to f in-
crementally, by forming a convex combination of the last approximant with a
single new element of S; in this case, the convergence rate in L2 is interest-
ingly again O(1/

√
n). Incremental approximants are especially attractive from

a computational point of view. In the neural network context, they correspond
to adding one “neuron” at a time to decrease the residual error. We next define
these concepts precisely.

Again let X be a Banach space with norm ‖ · ‖. Let S ⊆ X. An incremental
sequence (for approximation in coS) is any sequence f1, f2, . . . of elements of
X so that f1 ∈ S and for each n ≥ 1 there is some gn ∈ S so that fn+1 ∈
co ({fn, gn}).

We say that an incremental sequence f1, f2, . . . is greedy (with respect to
f ∈ coS) if

‖fn+1 − f‖ = inf
{
‖h− f‖ | h ∈ co ({fn, g}) , g ∈ S

}
, n = 1, 2, . . . .

The set S is generally not compact, so we cannot expect the infimum to be
attained. Given a positive sequence ε = (ε1, ε2, . . .) of allowed “slack” terms, we
say that an incremental sequence f1, f2, . . . is ε-greedy (with respect to f) if

‖fn+1 − f‖ < inf
{
‖h− f‖ | h ∈ co ({fn, g}) , g ∈ S

}
+ εn , n = 1, 2, . . . .

Let φ be a positive function on the integers. We say that S has an incremental
(convex) scheme with rate φ(n) if there is an incremental schedule ε such that,
for each f in coS and each ε-greedy incremental sequence f1, f2, . . ., it holds that

‖fn − f‖ = O(φ(n))

as n → +∞. Finally, we say that the space X admits incremental (convex)
schemes with rate φ(n) if every bounded subset S of X has an incremental
scheme with rate φ(n).

The intuitive idea behind this definition is that at each stage we attempt
to obtain the best approximant in the restricted subclass consisting of convex
combinations (1−λn)fn+λng, with λn in [0, 1], g in S, and fn being the previous
approximant. It is also possible to select the sequence λ1, λ2, . . . beforehand. We
say that an incremental sequence f1, f2, . . . is ε-greedy (with respect to f) with
convexity schedule λ1, λ2, . . . if

‖fn+1 − f‖ < inf
{
‖ ((1− λn)fn + λng)− f‖ | g ∈ S

}
+ εn , n = 1, 2, . . . .

One could also define the analogous linear incremental schemes, for which one
does not require λn ∈ [0, 1], but, as before, we only report results for the convex
case.

Informally, from now on we refer to the rates for convex approximation as
“optimal rates” and use the terminology “incremental rates” for the best possible
rates for incremental schemes. For any incremental sequence, fn ∈ con(S), so
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clearly optimal rates are always majorized by the corresponding incremental
rates.

The main objective of this paper1 is to analyze both optimal and incremental
rates in broad classes of Banach spaces, specifically including Lp, 1 ≤ p ≤ ∞.
A summary of our rate bounds for the special case of the spaces Lp is given
as Table 1. In general, we find that the worst-case rate of approximation in the
“robust” Lp, 1 ≤ p < 2, norms is worse than that in L2, unless some additional
conditions are imposed on the set S.

Table 1. The order of the worst-case rate of approximation in Lp. “no” means that the
approximants do not converge in the worst case.

p 1 (1, 2) [2,∞) ∞
optimal 1 n−1+1/p n−1/2 1

incremental no n−1+1/p n−1/2
no

1.3. Neural Nets

The problem is of general interest, but we were originally motivated by applica-
tions to “artificial neural networks.” In that context the set S is typically of the
form

S = {g : IRd → IR | ∃ a ∈ IRd, b ∈ IR, s.t. g(x) = ±σ(a · x + b)},

where σ : IR → IR is a fixed function, called the activation or response func-
tion. Typically, σ is a smooth “sigmoidal” function such as the logistic function
(1 + e−x)−1, but it can be discontinuous, such as the Heaviside function (the
characteristic function of [0,∞)). The elements of linnS are called single hidden
layer neural networks (with activation σ and a linear output layer) with n hid-
den units. For neural networks, then, the question that we investigate translates
into the study of how the approximation error scales with the number of hidden
units in the network.

Neural net approximation is a technique widely used in empirical studies.
Mathematically, this is justified by the fact that, for each compact subset M of
IRd, restricting elements of S to M , one has that linS = C0(M), that is, linS is
dense in the set of continuous functions under uniform convergence (and hence
also in most other function spaces). This density result holds under extremely
weak conditions on σ; being locally Riemann integrable and non-polynomial is
enough. See for instance (Leshno et al., 1992).

Spaces Lp with p equal to or slightly greater than one are particularly impor-
tant because of their usefulness for robust estimation (e.g., (Rey 1983)). In the

1 A preliminary version of some of the results presented in this paper appeared as (Darken,
Donahue, Gurvits and Sontag 1993).
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particular context of regression with neural networks, Hanson (1988) presents
experimental results showing the superiority of Lp (p� 2) to L2.

1.4. Connections to Learning Theory

Of course, neural networks are closely associated with learning theory. Let us
imagine that we are attempting to learn a target function that lies in the convex
closure of a predetermined set of basis functions S. Our learned estimate of
the target function will be represented as a convex combination of a subset
of S. For each n in an increasing sequence of values of n, we optimize our
choice of basis functions and their convex weighting over a sufficiently large
data set (the size of which may depend on n). Let us assume that the problem
is “learnable”, e.g., that over the class of probability measures of interest on
the domain of the functions in S, the difference between one’s estimates of the
error based on examples must converge to the true error uniformly over all
possible approximants. Then the generalization error (expected loss over the
true exemplar distribution) must go to zero at least as fast as the order of the
upper bounds in this work. Thus our bounds represent a guarantee of how fast
generalization error will decrease in the limiting case when exemplars are so
cheap that we do not care how many we use during training.

Moreover, since for error functions that are Lp norms our bounds are tight, we
can say something even stronger in this case. For Lp, there exists a set of basis
functions and a function in their convex hull such that no matter how many
examples are used in training, the error can decrease no faster than the bounds
we have provided. Thus, our results exhibit a worst-case speed limitation for
learning.

1.5. Contents of the Paper

It is a triviality that optimal approximants to approximable functions always
converge. However, the rates of convergence depend critically upon the structure
of the space. In some spaces, like L1, there exist target functions for which the
rate can be made arbitrarily slow (Sect. 2.1). In Banach spaces of (Rademacher)
type t with t > 1, however, a rate bound of O(n−1+1/t) is obtained (Sect. 2.2).
For Lp spaces these results specialize to those of Table 1. Particular examples
of Lp spaces are given to show that the orders given in our bounds cannot in
general be sharpened (Sect. 2.3).

Section 3 studies incremental approximation. A particularly interesting aspect
of these results is that the new element of S added to the incremental approxi-
mant is not required to be the best possible choice. Instead, the new element can
meet a less stringent test (Theorem 3.5). Also, the convex combination of the
elements included in the approximant is not optimized. Instead a simple average
is used. (This is an example of a fixed convexity schedule, as defined in Sect. 1.2.)
Thus, our incremental approximants are the simplest yet studied, simpler even
than those of (Jones 1992). Nonetheless, the same worst-case order is obtained
for these approximants on Lp, 1 < p < ∞, as for the optimal approximant.
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In more general spaces, the incremental approximants may not even converge
(Sect. 3.1). However, if the space has a modulus of smoothness of power type
greater than one, or is of Rademacher type t, then rate bounds can be given
(Sects. 3.2 and 3.3).

Both optimal and incremental convergence rates may be improved if S has
special structure (Sect. 4). In particular, we provide some analysis of the situa-
tion where S is a finite-VC dimension set of indicator functions and the sup norm
is to be used, which is a common setting for neural network approximation.

2. Optimal Approximants

In this section we study rates of convergence for optimal convex approximates.
To illustrate the fact that the issue is nontrivial, we begin by identifying a class
of spaces for which the best possible rate φ(n) is constant, that is to say, no
nontrivial rate is possible (Theorem 2.3). This class includes infinite dimensional
L1 and L∞ (or C(X)) spaces.

In Theorem 2.5 we then study general bounds valid for spaces of (Rademacher)
type t. It is well-known that Lp spaces with 1 ≤ p < ∞ are of type min{p, 2}
(Ledoux and Talagrand 1991); on this basis an explicit specialization to Lp is
given in Corollary 2.6.

We then close this section with explicit examples showing that the obtained
bounds are tight.

2.1. Examples of Spaces Where No Rate Bound is Possible

In some spaces, the worst-case rate of convergence of optimal approximants can
be shown to be arbitrarily slow.

Lemma 2.1. Let (an) be a positive, convex (an + an+2 ≥ 2an+1) sequence
converging to 0. Define a0 = 2a1 and bn = an−1 − an. Let S = {a0ek}, where
{ek} is the canonical basis in l1, and consider f = (bn) as an element of l1.
Then f ∈ coS and

‖linNS − f‖ = aN for all N.(2.1)

Proof. Note that
∑∞
n=1 bn/a0 = 1, so clearly f ∈ coS. By convexity (bn) is a

non-increasing sequence, so

‖linNS − f‖ =
∞∑

i=N+1

bi =
∞∑

i=N+1

ai−1 − ai = aN .(2.2)

ut

Consider next the space l∞. Let εk be an enumeration of all {−1, 0, 1}-valued
sequences that are eventually constant, i.e., εk(n) ∈ {−1, 0, 1} for all n ∈ IN, and
for each k there exists an N such that εk(n) = εk(N) for all n > N . For each n,
let gn ∈ l∞ be the sequence gn(k) = εk(n), and define the map T : l1 → l∞ by
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T (en) = gn. The reader may check that T is an isometric embedding. Therefore
T carries the example of Lemma 2.1 into l∞.

What happens in c0, the space of all sequences converging to 0? We will now
construct a projection from T (l1) into c0 that will retain the desired convergence
rate. We will need, however, the extra restriction that the sequence (an) be
strictly convex, i.e., that an + an+2 > 2an+1.

Let bn = an−1 − an as before, and define the auxiliary sequences

cN = min{n ∈ IN | bn < aN}
c̄N = min{n ∈ IN | n > N + 1 and an < bN − bN+1}.

The sequence c is well defined because aN > 0 for all N and bn ↓ 0. Similarly,
c̄ is well defined since an ↓ 0 and by strict convexity bN − bN+1 > 0. Note that
cN ≤ N + 1 < N + 2 ≤ c̄N . Moreover, cN (and hence c̄N ) goes to infinity with
N since bn > 0 for each n while aN ↓ 0.

Next define for each N ∈ IN,

AN = {k ∈ IN | εk(n) = 0 for n < cN and εk(n) = εk(c̄N + 1) for n > c̄N},
and define for convenience the single element set A0 = {k | εk = δk}, where
δk(n) is the sequence that is 1 for n = k and 0 otherwise. Then let A = ∪NAN .

Let P be the projection that sends an element h of l∞ to the sequence
P (h)(k) = h(k) if k ∈ A and P (h)(k) = 0 otherwise. Notice that if εk(n) 6= 0,
then k 6∈ AN for all N such that n < cN . Since cN → ∞, if follows that there
exists for each n only finitely many k’s in A such that εk(n) 6= 0. (Each AN is a
finite set.) Therefore P (gn) = P ◦ T (en) ∈ c0 for each n, i.e., P ◦ T : l1 → c0.

It remains to show that

‖P ◦ T (f)− linNP ◦ T (S)‖ = aN .

Let us introduce the notation h̃ for P ◦T (h), h ∈ l1, and similarly S̃ for P ◦T (S).
It is clear that ‖f̃−linN S̃‖ ≤ aN , since T is an isometry and ‖P‖ = 1. To examine
the bound from below, let f̃N =

∑N
n=1 dnẽmn be an arbitrary element of linN S̃,

where {m1,m2, . . . , mN} is a sampling of IN of size N . We aim to produce a
k0 ∈ A such that f̃N (k0) = 0 and f̃(k0) ≥ aN , since then

‖f̃ − f̃N‖ = sup
k∈A
|f̃(k)− f̃N (k)| ≥ |f̃(k0)− f̃N (k0)| ≥ aN .

Let n0 = min(IN\{m1,m2, . . . , mN}). If n0 < cN , select k0 such that εk0 = δn0 .
If n0 = N + 1 (which is the largest possible value for n0), select k0 such that
εk0(n) = 0 for n ≤ N and = 1 otherwise. It follows from cN ≤ N +1 that k0 ∈ A
in either event, and clearly f̃N (k0) = 0. Moreover, in the first case f̃(k0) = bn0 ≥
aN by the definition of cN , while in the second case, f̃(k0) =

∑∞
n=N+1 bn = aN .

Lastly, consider the case cN ≤ n0 ≤ N . Select k0 so that εk0(n) = 0 if
n ∈ {m1,m2, . . . , mN} or if n > c̄N , and εk0(n) = 1 otherwise. This sequence is
guaranteed to be in AN , and f̃N (k0) = 0. Moreover,

f̃(k0) =
c̄N∑

n=c
N

bnεk0(n) ≥ bN +
c̄N∑

n=N+2

bn.
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The inequality holds because εk0(n) = 1 for at least one n ≤ N , and (bn) is a
decreasing sequence. It then follows from the definition of c̄N that

bN +
c̄N∑

n=N+2

bn = bN + aN+1 − ac̄N > aN ,

so ‖f̃ − f̃N‖ ≥ aN , completing the proof.

Lemma 2.2. Let (an) be a positive, strictly convex (an + an+2 > 2an+1) se-
quence converging to 0. Then there exists a bounded set S ⊂ c0 (with ‖g‖ ≤ 2a1

for all g ∈ S) and f ∈ coS such that

‖f − linNS‖ = aN for all N ∈ IN.

An alternate method of proof is to replace the projection P in the discussion
above with a map T ′ : l∞ → c0 defined by T ′(h)(k) = δkh(k), where δk ↓ 0 is
carefully chosen (as a function of (an)) to preserve the inequality ‖T ′ ◦ T (f) −
linNT ′ ◦ T (S)‖ ≥ aN . The details are left to the reader.

In either method, the constructed base set S ⊂ c0 depends on the rate sequence
(an). It is interesting to compare this with the situation in l1 and l∞, where the
set S is universal, i.e., independent of (an). (Though the limit function f ∈ coS
does vary with (an).)

The preceding discussion showing the absence of a rate bound in l∞ relied
upon an isometric embedding of l1 into l∞. The same argument can be used if
we have only an isomorphic embedding, i.e., a bounded linear map with bounded
inverse. Combining this with the two preceding lemmas gives

Theorem 2.3. Let X be a Banach space with a subspace isomorphic to either
l1 or c0. Then for any positive sequence (an) converging to 0, it is possible to
construct a bounded set S and f ∈ coS such that

‖coNS − f‖ ≥ ‖linNS − f‖ ≥ aN .(2.3)

Proof. If (an) is not convex, then replace it with a strictly convex sequence (ān)
converging to zero such that ān ≥ an for all n. This is a well-known construction,
for example (Stromberg 1981, p. 515). The result then follows from Lemmas 2.1
and 2.2. ut

If a Banach space contains a subspace isomorphic to l1 or c0, then it is not
reflexive. The converse is not true, though there are a variety of results that do
imply the existence of subspaces isomorphic to l1 or c0, and such results combine
with Theorem 2.3 to identify spaces with arbitrarily slow convergence of the type
discussed. For example:

Theorem 2.4. [(Lindenstrauss and Tzafriri 1979, p. 35)] A Banach lattice X
is reflexive if and only if no subspace of X is isomorphic to l1 or c0.
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This theorem implies that examples of arbitrarily slow convergence exist in
L1[0, 1] and C[0, 1], although in these cases it is also easy to construct the embed-
dings directly (Darken et al. 1993). Related results can be found in (Bessaga and
Pelczynski 1958), (Rosenthal 1974), (Rosenthal 1994), and (Gowers preprint).

In Section 3 we will show that a condition somewhat stronger than reflexivity
(uniform smoothness) guarantees convergence of incremental approximates. In
the next section, however, we show that a condition unrelated to reflexivity (the
Rademacher type property) can guarantee convergence of optimal approximants
and even give bounds on convergence rates.

2.2. Bounds for Type t Spaces

We recall some basic definitions first.
A Rademacher sequence (εi)ni=1 is a finite sequence of independent zero mean

random variables taking values from {−1,+1}. Given any Banach space X,
any Rademacher sequence (εi)ni=1, and any fixed finite sequence (fi)ni=1 of el-
ements of X, we can view in a natural manner the expression

∑n
i=1 εifi as a

random variable taking values in X. With this understanding, the space X is
of (Rademacher) type t (with constant C) if for each Rademacher sequence (εi)
and each sequence (fi) it holds that

E
∥∥∥∑ εifi

∥∥∥t ≤ C
∑
‖fi‖t .(2.4)

It is interesting to note that t can never be greater than 2, that Hilbert spaces are
of type 2, and that there exists nonreflexive Banach spaces of type 2 (James 1978).

Theorem 2.5. Let X be a Banach space of type t, where 1 ≤ t ≤ 2. Pick
S ⊂ X, f ∈ co(S), and K > 0 such that ∀g ∈ S, ‖g − f‖ ≤ K. Then for all n,

‖conS − f‖ ≤ KC1/t

n1−1/t
,(2.5)

where C is a constant depending on X but independent of n.

Proof. ∀ε > 0,∃nε, α1, . . . , αnε ∈ IR+, and f1, . . . , fnε ∈ S such that
nε∑
i=0

αi = 1,

nε∑
i=0

αifi + ∆ = f,

and ‖∆‖ < ε. Take ξj to be a sequence of independent random variables on X
taking value fi with probability αi. Then for any β ∈ (0, 1),

E

∥∥∥∥∥∥f − 1
n

n∑
j=1

ξj

∥∥∥∥∥∥
t

(2.6)

=
1
nt

E

∥∥∥∥∥∥
n∑
j=1

(f − ξj −∆) + n∆

∥∥∥∥∥∥
t
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≤ 1
nt

E

(1− β)

∥∥∥∑n
j=1(f − ξj −∆)

∥∥∥
1− β

+ βn
‖∆‖
β

t

≤ 1
nt

(1− β)E


∥∥∥∑n

j=1(f − ξj −∆)
∥∥∥

1− β

t

+ β

(
n ‖∆‖

β

)t
=

1
nt(1− β)t−1

E

∥∥∥∥∥∥
n∑
j=1

(f − ξj −∆)

∥∥∥∥∥∥
t

+
1

βt−1
‖∆‖t ,

which follows because φ(x) = xt is a convex function for 1 ≤ t ≤ 2. Since the
range of ξj has finitely many values and the space is type t, by (Ledoux and
Talagrand 1991, Prop. 9.11, p. 248) it follows that:

E

∥∥∥∥∥∥
n∑
j=1

(f − ξj −∆)

∥∥∥∥∥∥
t

≤ C

n∑
j=1

E ‖f − ξj −∆‖t .(2.7)

On the other hand, we have:

E‖f − ξ1 −∆‖t =
nε∑
i=1

αi‖f − fi −∆‖t(2.8)

≤
nε∑
i=1

αi (‖f − fi‖+ ‖∆‖)t

<

nε∑
i=1

αi(K + ε)t

= (K + ε)t.

Without loss of generality, assume 0 < ε < 1 and take β = ε. Then combining
(2.6), (2.7), and (2.8),

E

∥∥∥∥∥∥f − 1
n

n∑
j=1

ξj

∥∥∥∥∥∥
t

<
C(K + ε)t

nt−1(1− ε)t−1
+ ε.

We conclude that for some realization of the ξj (labeled gj) the inequality must
hold, i.e., ∥∥∥∥∥∥f − 1

n

n∑
j=1

gj

∥∥∥∥∥∥
t

<
C(K + ε)t

nt−1(1− ε)t−1
+ ε.

Taking the infimum with respect to all ε > 0 proves the theorem. ut
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We now give a specialization to Lp, 1 ≤ p < ∞. These spaces are of type
t = min{p, 2}. From (Haagerup 1982) we find that the best value for C in (2.5)
is 1 if 1 ≤ p ≤ 2 and

√
2 [Γ ((p + 1)/2)/

√
π]1/p if 2 < p < ∞. One may use

Stirling’s formula to get an asymptotic formula for the latter expression.

Corollary 2.6. Let X be an Lp space with 1 ≤ p < ∞. Suppose S ⊂ X,
f ∈ coS, and K > 0 such that ∀g ∈ S, ‖g − f‖ ≤ K. Then for all n,

‖conS − f‖ ≤ KCp
n1−1/t

,(2.9)

where t = min{p, 2}, and Cp = 1 if 1 ≤ p ≤ 2 and Cp =
√

2 [Γ ((p + 1)/2)/
√

π]1/p

for 2 < p <∞. For large p, Cp ∼
√

p/e.

2.3. Tightness of Rate Bounds

In this section we show that order of the rate bound given for Lp in (2.9) is
tight. That is, we give specific examples of Lp spaces and subsets S with target
functions f ∈ coS where optimal approximants converge with the specified order.

Theorem 2.7. There exists S ⊆ lp, 1 < p < ∞, and f ∈ coS such that
‖conS − f‖p = Kn−1+1/p where K = supg∈S ‖f − g‖p.

Proof. Let S consist of the elements of the canonical basis for lp. Then f := 0
is in the closed convex hull of S and supg∈S ‖f − g‖p = 1. Let fn be an element
of conS that is to approximate 0. So fn is of the form fn =

∑n
k=1 akgnk , where

each gnk is an element of S, and the ak are non-negative and sum to 1. Without
loss of generality, we may assume the gnk are distinct, since otherwise we would
be effectively working in comS with m < n. Then

‖fn − 0‖p =
n∑
k=1

apk.

It is easy to see that the error is minimized by taking the ak’s all equal, namely
∀k, ak = 1/n (Jensen). Therefore

‖fn − 0‖ ≥ n(1−p)/p = n−1+1/p.

ut

Next we show that the O(n−1/2) bound for Lp, 2 < p < ∞, is tight (see
Corollary 2.6). We borrow from computer science the notation ψ(n) = Ω(φ(n))
to mean that there is a constant C > 0 so that ψ(n)/φ(n) ≥ C for all n large
enough. For the purposes of the next result, we say a space Lp is admissible if
there exists a Rademacher sequence definable on it; for instance, Lp(0, 1) with
the usual Lebesgue measure is one such space.

Proposition 2.8. For any admissible Lp, 2 < p < ∞, there exists a subset S
and an f ∈ coS such that ‖conS − f‖p = Ω(n−1/2).
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Proof. Let ξi, i.i.d. on {-1,+1}, be a Rademacher sequence. Define S = {ξi},
which is a subset of the unit ball in Lp. Using the upper bound of Khintchine’s
Inequality (Khintchine 1923; Ledoux and Talagrand 1991, Lemma 4.1, p. 91),
one can show that 0 ∈ coS. Suppose the best approximation of 0 by a convex
sum of n elements of S is

∑n
i=1 αiξk(i). Then by the lower bound of Khintchine’s

Inequality, ∥∥∥∥∥
n∑
i=1

αiξk(i)

∥∥∥∥∥
Lp

≥ Ap

√∑
i

α2
i = Ap‖(αi)‖l2 .

But we have already given an example in l2 (in the proof of Theorem 2.7) for
which the last term is Ω(n−1/2). ut

3. Incremental Approximants

We now start the study of incremental approximation schemes. Unlike the situ-
ation with optimal approximation, incremental approximations are not guaran-
teed to even converge. In general, the convergence of incremental schemes ap-
pears to be intimately tied to the concept of norm smoothness. In Theorem 3.1
we show that smoothness is equivalent to at least a monotonic decrease of the
error, and then in Theorem 3.4 it is proved that uniform smoothness is a suffi-
cient condition to guarantee convergence. (It is possible to construct a smooth
space with an ε-greedy sequence that does not converge—Appendix D. However,
if an ε-greedy sequence converges, then it can only converge to the desired target
function—Corollary 3.2.)

In Sects. 3.2 and 3.3 we study upper bounds on the rate of convergence for
spaces with modulus of smoothness of power type greater than 1 and for spaces
of (Rademacher) type t, 1 < t ≤ 2. The Lp spaces, 1 < p < ∞, are examples
of spaces with modulus of smoothness of power type t = min(p, 2) (see Ap-
pendix B), which themselves sit inside the more general class of spaces of type
t. (See, for example, (Lindenstrauss and Tzafriri 1979, p. 78; Deville et al. 1993,
p. 166), while (James 1978) shows that the containment is strict. See also (Figiel
and Pisier 1974).) The upper bounds obtained for incremental approximation
error in the power type spaces agree with the bounds for optimal approximation
error obtained in Sect. 2.2 (albeit with a slightly larger constant of proportional-
ity), which were shown to be the best possible in Sect. 2.3. Therefore, little is lost
by using incremental approximates instead of optimal approximates, at least in
worst-case settings. The incremental convergence bounds obtained in Sect. 3.3
for type-t spaces are only slightly weaker than the optimal approximation error
bounds obtained in Sect. 2.2

3.1. Convergence of Greedy Approximants

The first remark is that for some spaces there may not exist any nondecreasing
rate whatsoever. In the terminology given in the introduction, it may be the case
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that there are greedy incremental sequences for f for which ‖fn − f‖ 6→ 0. This
will happen in particular if there are a set S and two elements f 6= fn ∈ coS so
that for each g ∈ S and each h ∈ co ({fn, g}) different from fn, ‖h−f‖ > ‖fn−f‖;
in that case, the successive minimizations result in the sequence fn, fn, . . ., which
doesn’t converge to f . Geometrically, convergence of incremental approximants
can fail to occur if the unit ball for the norm has a sharp corner. This is illustrated
by the example in Fig. 1, for the plane IR2 under the L1 norm. In order to use the
intuition gained from this example, we need a number of standard but perhaps
less-known notions from functional analysis.

�
�
��
@

@
@@��

��
@
@
@@

q (0, 0)
q fn

qg1 qg2

Fig. 1. Incremental approximants may fail to converge in some spaces. Consider approximating
f = (0, 0) by linear combinations of elements from {fn, g1, g2} according to the L1(IR2) metric.
The best approximant by one point is fn. The rotated square is the contour of the norm about
f on which fn lies. The best approximant by a linear combination of fn and g1 or g2 is once
again fn. Thus even though f is in the convex hull of {fn, g1, g2}, incremental approximants
fail to converge or even to decrease monotonically.

If X is a Banach space and f 6= 0 is an element of X, a peak functional for
f is a bounded linear operator, that is, an element F ∈ X∗, that has norm
= 1 and satisfies F (f) = ‖f‖. (The existence for each f 6= 0 of at least one
peak functional is guaranteed by the Hahn-Banach Theorem.) Geometrically,
one may think of the null space of F − ‖f‖ as a hyperplane tangent at f to the
ball centered at the origin of radius ‖f‖. (For Hilbert spaces, there is a unique
peak functional for each f , which can be identified with (1/‖f‖)f acting by
inner products.) The space X is said to be smooth if for each f there is a unique
peak functional. (Roughly, this means that balls in X have no “corners.”) The
modulus of smoothness of any Banach space X is the function ρ : IR≥0 → IR≥0

defined by

ρ(r) :=
1
2
(
sup ‖f‖=‖g‖=1 {‖f + rg‖+ ‖f − rg‖} − 2

)
Note that, by sub-additivity of norms, always ρ(r) ≤ r. For Hilbert spaces,
one has ρ(r) =

√
1 + r2 − 1. A Banach space is said to be uniformly smooth

if ρ(r) = o(r) as r → 0; in particular, Hilbert spaces are uniformly smooth,
but so are Lp spaces with 1 < p < ∞, as is reviewed in Appendix B. (Here
one has an upper bound of the type ρ(r) < crt, for some t > 1, which implies
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uniform smoothness.) As a remark, we point out that uniformly smooth spaces
are reflexive, but the converse implication does not hold.

The next result implies that greedy approximants always result in monotoni-
cally decreasing error if and only if the space is smooth. In particular, if the space
is not smooth, then one can not expect greedy (or even ε-greedy) incremental
sequences to converge. (Since one may always consider the translate S − {f} as
well as a translation by f of all elements in a greedy sequence, no generality is
lost in taking f = 0.)

Theorem 3.1. Let X be Banach space. Then:

1. Assume that X is smooth, and pick any S ⊂ X so that 0 ∈ coS. Then for
each nonzero f ∈ X there is some g ∈ S and some f̃ ∈ co({f, g}) different
from f so that ‖f̃‖ < ‖f‖.

2. Conversely, if X is not smooth, then there exist an S ⊂ X so that 0 ∈ coS
and an f ∈ S so that, for every g ∈ S and every f̃ ∈ co({f, g}) different
from f , ‖f̃‖ > ‖f‖.

Proof. Assume that X is smooth, and let S and f be as in the statement. Let
F be the (unique) peak functional for f . There must be some g ∈ S for which

F (g) < ‖f‖/2 ,(3.10)

since otherwise {h ∈ X | F (h) = ‖f‖/2} would be a hyperplane separating co(S)
from 0 ∈ coS. Define

fλ = (1− λ)f + λg for λ ∈ [0, 1].

We wish to show that ‖fλ‖ < ‖f‖ for some λ ∈ (0, 1], as this will establish the
first part of the Theorem. For this, consider the peak functional Fλ for fλ. Note
that

lim
λ↓0

Fλ(f) = lim
λ↓0

Fλ(fλ) + Fλ(f − fλ) = lim
λ↓0
‖fλ‖ = ‖f‖.(3.11)

The unit ball in X∗ is weak-∗ compact (Alaoglu), so the net (Fλ)λ∈(0,1) (where
λ ↓ 0) has a convergent subnet, say Fλα → F ∗, with ‖F ∗‖ ≤ 1. In particular,
Fλα(f) → F ∗(f), so it follows from (3.11) that F ∗(f) = ‖f‖, and hence F ∗

is a peak functional for f . But X is smooth, so F ∗ = F . Thus there exists
λ0 ∈ (0, 1] such that |Fλ0(g) − F (g)| < ‖f‖/2, which combines with (3.10) to
give Fλ0(g) < ‖f‖. Therefore

‖fλ0‖ = Fλ0(fλ0) = (1− λ0)Fλ0(f) + λ0Fλ0(g) < ‖f‖,

since λ0 > 0. This proves the first assertion.
We now prove the converse. Since X is not smooth, there is some unit vector

f with two distinct peak functionals F and F ′. Since F 6= F ′, there is some
h ∈ X so that F (h) 6= F ′(h). Let

g := h−
(

F (h) + F ′(h)
2

)
f .
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Note that F (g) + F ′(g) = 0 and F ′(g) 6= 0; scaling g, we may assume that
F ′(g) = 2. Consider now the set S = {f, g1, g2}, where g1 = g and g2 = −g; note
that 0 ∈ co S. This provides the needed counterexample, since

‖(1− λ)f + λg1‖ ≥ F ′ ((1− λ)f + λg) = 1 + λ > 1 = ‖f‖

and

‖(1− λ)f + λg2‖ ≥ F ((1− λ)f − λg) = 1 + λ > 1 = ‖f‖

for each λ > 0. ut

It is interesting to remark that, for the set S built in the last part of the proof,
even elements in the affine span of f and g1 (or of f and g2) have norm > 1 if
distinct from f , that is, the inequalities hold in fact for all λ 6= 0. (For λ < 0,
interchange F and F ′ in the last pair of equations.)

It is an easy consequence of the first part of Theorem 3.1 that greedy incre-
mental approximates in a smooth Banach space can converge only to the target
function:

Corollary 3.2. Let X be a smooth Banach space with S ⊂ X. Let f ∈ coS
and suppose f1, f2, . . . is an incremental ε-greedy sequence with respect to f ,
where the schedule ε1, ε2, . . . converges to 0. If the sequence (fn) converges, then
it converges to f .

Proof. Without loss of generality, we may assume that f = 0. Suppose limn fn =
f∞ 6= 0. Then by the first part of Theorem 3.1, there exists g ∈ S and λ ∈ [0, 1]
such that ‖(1 − λ)f∞ + λg‖ < ‖f∞‖. Define δ = ‖f∞‖ − ‖(1 − λ)f∞ + λg‖,
and choose N large enough so ‖f∞ − fn‖ < δ/3 and εn < δ/3 for all n > N .
Fix n > N . Then ‖(1− λ)fn + λg‖ < ‖f∞‖ − 2δ/3, but (fn) is ε-greedy, which
implies ‖fn+1‖ < ‖f∞‖ − δ/3. But this is impossible since by choice of N ,
‖f∞ − fn+1‖ < δ/3. Therefore the limit f∞ = 0, as desired. ut

It is possible, however, to have an ε-greedy sequence that fails to converge.
See Appendix D. This situation is avoided if X is uniformly smooth, as we shall
see below. But first we need a technical lemma that captures the geometric
properties of smoothness necessary to obtain stepwise estimates of convergence.
This lemma is used not only in Theorem 3.4, but also throughout Sect. 3.2.

Lemma 3.3. Let X be a Banach space with modulus of smoothness ρ(u), and
let S ⊂ X. Assume that 0 ∈ co(S) and let f 6= 0 be an element of co(S). Let F
be a peak functional for f . Then

‖(1− λ)f + λg‖ ≤ (1− λ)
[
1 + 2ρ

(
λ‖g‖

(1− λ)‖f‖

)]
‖f‖+ λF (g),(3.12)

for all 0 ≤ λ < 1 and all g ∈ S. Furthermore, for any ε > 0, there exists a g ∈ S
such that F (g) < ε.
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Proof. Pick any 0 ≤ λ < 1 and g ∈ S. If g = 0 then (3.12) is trivially satisfied,
so assume g 6= 0.

Define h = f+ug/‖g‖ and h∗ = f−ug/‖g‖ for u ≥ 0. Then from the definition
of the modulus of smoothness we have

‖h‖+ ‖h∗‖ ≤ 2‖f‖ [1 + ρ(u/‖f‖)] .

But

‖h∗‖ ≥ F

(
f − u

‖g‖g
)

= ‖f‖ − uF (g)/‖g‖.

Therefore

‖h‖ ≤ ‖f‖ (1 + 2ρ(u/‖f‖)) + uF (g)/‖g‖.(3.13)

If we set u = λ‖g‖/(1− λ), we get

(1− λ)f + λg = (1− λ)h,

which combines with (3.13) to prove (3.12).
Finally, given ε > 0, suppose there is no g ∈ S such that F (g) < ε. Then the

affine hyperplane {h ∈ X | F (h) = ε/2} would separate S from 0, contradicting
0 ∈ co(S). ut

Theorem 3.4. Let X be a uniformly smooth Banach space. Let S be a bounded
subset of X and let f ∈ co(S) be given, and let (εn) be an incremental schedule
with

∑∞
k=1 εk <∞. Then any ε-greedy (with respect to f) incremental sequence

(fn) ⊂ co S converges to f .

Proof. Pick K ≥ supg∈S ‖f − g‖, and let (fn) be an ε-greedy incremental
sequence. Define

an := ‖fn − f‖.

We want to show that an → 0. To this end, let a∞ = lim infn→∞ an. Since (fn)
is ε-greedy, an+1 ≤ an + εn and an+m ≤ an +

∑m−1
k=n εk. But

∑∞
k=n εk → 0 as

n→∞, so in fact a∞ = limn→∞ an. Suppose a∞ > 0. Then from the definition
of ε-greedy and (3.12), it follows that

an+1 ≤ inf
λ,g

{
(1− λ)

[
1 + 2ρ

(
λK

(1− λ)an

)]
an + λFn(g − f)

}
+ εn,

where ρ is the modulus of smoothness for X, Fn is the peak functional for
fn − f , and the infimum is taken over all 0 ≤ λ < 1 and g ∈ S. (In relation to
Lemma 3.3, everything here is translated by −f .) The modulus of smoothness
is a non-decreasing function, so certainly

ρ

(
λK

(1− λ)an

)
≤ ρ

(
2λK

(1− λ)a∞

)
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for large enough n. Using this and taking the limit as n → ∞ in the preceding
inequality yields

a∞ ≤ a∞

{
1 + inf

λ
λ

[
4K

a∞

ρ (u(λ))
u(λ)

− 1
]}

,

where u(λ) := (2λK)/ [(1− λ)a∞]. But u(λ) → 0 as λ → 0, so by uniform
smoothness ρ(u)/u → 0 as λ → 0. Therefore the quantity in the infimum is
negative, and a contradiction is reached. Thus, a∞ must be zero. ut

The stepwise selection of λ = λn in the above proof apparently depends upon
the modulus of smoothness ρ(u). We shall see in the next section that if we have
a non-trivial power type estimate on the modulus of smoothness then it suffices
to use λn = 1/(n + 1), i.e., fn+1 becomes a simple average of g1, g2, . . . , gn+1.

3.2. Spaces with Modulus of Smoothness of Power Type Greater than One

We now give rate bounds for incremental approximates that hold for all Ba-
nach spaces with modulus of smoothness of power type greater than one (The-
orems 3.5 and 3.7). Keep in mind that ρ(u) ≤ γut with t > 1 is a sufficient
condition for X to be uniformly smooth, and holds in particular for Lp-spaces if
1 < p <∞. (See Appendix B.)

Theorem 3.5. Let X be a uniformly smooth Banach space having modulus of
smoothness ρ(u) ≤ γut, with t > 1. Let S be a bounded subset of X and let
f ∈ co(S) be given. Select K > 0 such that ‖f − g‖ ≤ K for all g ∈ S, and fix
ε > 0. If the sequences (fn) ⊂ co(S) and (gn) ⊂ S are chosen recursively such
that

f1 ∈ S(3.14)

Fn(gn − f) ≤ 2γ

nt−1‖fn − f‖t−1
((K + ε)t −Kt) := δn(3.15)

fn+1 =
(

n

n + 1

)
fn +

(
1

n + 1

)
gn,(3.16)

(where Fn is the peak functional for fn−f ; we terminate the procedure if fn = f),
then

‖fn − f‖ ≤ (2γt)1/t(K + ε)
n1−1/t

[
1 +

(t− 1) log2 n

2tn

]1/t

.(3.17)

Recall that (3.15) can always be obtained, since otherwise {h ∈ X | Fn(h −
f) = δn/2} would be a hyperplane separating S from f ∈ co(S).
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Proof. Replacing S with S − f allows us to assume without loss of generality
that f = 0 and ‖g‖ ≤ K for all g ∈ S.

Applying Lemma 3.3 with g = gn and λ = 1/(n + 1) yields

‖fn+1‖ ≤
n‖fn‖
n + 1

[
1 + 2ρ

(
‖gn‖
n‖fn‖

)]
+

δn
n + 1

(3.18)

≤ n‖fn‖
n + 1

[
1 +

(
(2γ)1/t(K + ε)

n‖fn‖

)t]
.

If we set

an :=
n‖fn‖

(2γ)1/t(K + ε)

into the previous inequality we obtain

an+1 ≤ an(1 + 1/atn).

Comparing to Lemma C.1, we see that this is half of (C.46). We can get the
rest by applying the triangle inequality to (3.16) and making use of Lemma B.3
(B.38), i.e.,

an+1 ≤ an + 1/(2γ)1/t < an + 3/2.

So to employ Lemma C.1, it remains only to show that (C.47) holds for n = 2
or for n = 1 with a1 ≥ 1. Note first that

a1 =
‖f1‖

(2γ)1/t(K + ε)
<

1
(2γ)1/t

< tt

by Lemma B.3 (B.41). So (3.17) holds for n = 1, and if a1 ≥ 1 then we can apply
Lemma C.1 immediately. Otherwise a1 < 1, in which case

a2 ≤ a1 +
1

(2γ)1/t
<

(
5t− 1

2

)1/t

,

by Lemma B.4, and so (C.47) holds for n = 2.
It follows in either case that

an ≤
(

tn +
t− 1

2
log2 n

)1/t

for all n ≥ 1.

Rewriting in terms of fn proves the theorem. ut

Recall that in Lp spaces, the modulus of smoothness is of power order t,
where t = min(p, 2). The next corollary follows immediately from the preceding
theorem and Lemma B.1.
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Corollary 3.6. Let S be a bounded subset of Lp, 1 < p < ∞, with f ∈ co(S)
given. Define q = p/(p−1) and select K > 0 such that ‖f−g‖ ≤ K for all g ∈ S.
Then for each ε > 0, there exists a sequence (gn) ⊂ S such that the sequence
(fn) ⊂ co(S) defined by

f1 = g1 fn+1 = nfn/(n + 1) + gn/(n + 1)

satisfies

‖f − fn‖ ≤
21/p(K + ε)

n1/q

[
1 +

(p− 1) log2 n

n

]1/p

if 1 < p ≤ 2 and

‖f − fn‖ ≤
(2p− 2)1/2(K + ε)

n1/2

[
1 +

log2 n

n

]1/2

if 2 ≤ p <∞.

We now interpret Theorem 3.5 in terms of ε-greedy sequences. Let f , S, and
X be as in that theorem, and let (fn) be an ε-greedy sequence with respect to
f , which as before we can assume to be 0. Then

‖fn+1‖ ≤ inf
λ,g

{
(1− λ)

[
1 + 2γ

(
λ‖g‖

(1− λ)‖fn‖

)t]
‖fn‖+ λFn(g)

}
+ εn

≤ inf
g

{
n‖fn‖
n + 1

[
1 + 2γ

(
‖g‖

n‖fn‖

)t]
+ Fn(g)/(n + 1)

}
+ εn,

by Lemma 3.3. The outside inequality holds also if (fn) is only ε-greedy with
respect to the convexity schedule λn = 1/(n + 1). Now given that the modulus
of convexity satisfies ρ(u) ≤ γut (t > 1), fix ε > 0, and select an incremental
schedule (εn) satisfying εn ≤ εγ/nt. Then using the fact that ‖g‖ ≤ K for all
g ∈ S and that there exists g ∈ S with Fn(g) smaller than any preassigned
positive value, we get

‖fn+1‖ ≤
n‖fn‖
n + 1

[
1 + 2γ

(
K

n‖fn‖

)t]
+ εγ/nt.

Recalling the definition of δn in (3.15), we see that εγ/nt ≤ δn/(n + 1), and
a comparison with (3.18) shows that the bound obtained in Theorem 3.5 also
holds for the ε-greedy sequence (fn) as well. This proves

Theorem 3.7. Let X be a uniformly smooth Banach space with modulus of
smoothness ρ(u) ≤ γut, with t > 1. Then X admits incremental convex schemes
with rate 1/n1−1/t. Moreover, if the incremental schedule (εn) satisfies εn ≤
εγ/nt where ε is any fixed positive value, and if (fn) is either ε-greedy or ε-greedy
with convexity schedule λn = 1/(n + 1), then the error to the target function at
step n + 1 is bounded above by (3.17).
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The specialization of this result to Lp spaces, analogous to Corollary 3.6, is
straightforward and is left to the reader.

Remark. The only non-constructive step in the proof of Theorem 3.5 is the
determination of g ∈ S such that Fn(g−f) ≤ δn, where Fn is the peak functional
for fn − f . In Lp spaces, Fn can be associated with the function in Lq (q =
p/(p− 1)) defined by

hn(x) := sign(fn − f(x))|fn − f(x)|p−1/‖fn − f‖p−1
p ,

so

Fn(g − f) =
∫

hn(x) (g(x)− f(x)) dx.

This means that to satisfy (3.15), one must find g ∈ S such that∫
hn(x)g(x) dx ≤ δn +

∫
hn(x)f(x) dx.

(We should point out that
∫

hn(x)f(x) dx is likely to be negative.)
The specific details of finding such a g will depend on the neuron class S

under consideration. But as an example, suppose S consists of those functions
g(x) having the form ±σ(a · x + b), where a ∈ IRd, b ∈ IR, σ is a fixed activation
function, and x ∈ IRd is allowed to vary over a subset Ω ⊂ IRd. Then we are left
with finding an a and b such that∣∣∣∣∫

Ω

hn(x)σ(a · x + b) dx

∣∣∣∣ ≥ −∫
Ω

hn(x)f(x) dx− δn.(3.19)

Actually, the condition f ∈ coS implies the existence of an a and b such that the
left hand side of (3.19) is at least as large as −

∫
Ω

hn(x)f(x) dx, so this may be
viewed as a maximization problem. We do not need to find the global maximum,
however, but only a value satisfying the weaker condition (3.19).

3.3. Rate Bounds in Type t Spaces

We turn our attention now to determining rate bounds for incremental approx-
imants in Rademacher type t spaces with 1 < t ≤ 2 (Corollary 3.13). The
constants in the bounds are implicit. Furthermore, the rate bounds for the case
of Lp spaces (not given explicitly) are slightly weaker than those established in
the previous section.

Banach and Saks (1930) showed that if a sequence g1, g2, . . . is weakly conver-
gent to f in Lp(0, 1), 1 < p <∞, then there is a subsequence gk1 , gk2 , . . . that is
Cesaro summable in the norm topology to f , i.e., ‖f −

∑n
i=1 gki/n‖ → 0. This

result was extended to uniformly convex spaces by Kakutani (1938). We give
now a generalization that holds in Banach spaces of type t > 1.
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Definition 3.8 Generalized Banach-Saks Property (GBS).
A Banach space X has the GBS property if for each bounded set S and each
f ∈ coS, there exists a sequence g1, g2, . . . in S such that ‖f −

∑n
k=1 gk/n‖ → 0.

If φ is a given function on IN, we say that X has the GBS(φ) property if for
each f and set S as above one can always find some sequence satisfying the
convergence rate ‖f −

∑n
k=1 gk/n‖ = O(φ(n)).

A probabilistic proof of the GBS(φ) property for arbitrary Banach spaces of
type t > 1 is given below. We will make use of the following basic property of
type t spaces: If a Banach space X is of type t, then for any independent mean
zero random variables ξi ∈ X taking finitely many values, E(‖ξ1 + . . . + ξn‖t) ≤
C
∑n
i=1 E‖ξi‖t (Ledoux and Talagrand 1991, p. 248). We also need the following

result from Ledoux and Talagrand (1991, Theorem 6.20, p. 171).

Theorem 3.9. Suppose that ξi are independent mean zero random variables in
X, E‖ξi‖N ≤ ∞, 1 ≤ i ≤ n, N > 1, N ∈ IN. Then there is a universal constant
K such that

E

∥∥∥∥∥
n∑
i=1

ξi

∥∥∥∥∥
N

≤
(

K
N

log N

[
E

∥∥∥∥∥
n∑
i=1

ξi

∥∥∥∥∥+
(

E max
1≤i≤n

‖ξi‖N
) 1
N

])N
.(3.20)

The following corollary plays a crucial role in our argument.

Corollary 3.10. Suppose that ‖ξi‖ ≤M , and Banach space X is of type t > 1.
Then

E

∥∥∥∥∥
n∑
i=1

ξi

∥∥∥∥∥
N

≤ ANn
N
t ,(3.21)

where An is a constant depending on N , M , and X.

Proof.

E

∥∥∥∥∥
n∑
i=1

ξi

∥∥∥∥∥
N

≤
(

K
N

log N

[
E
(∥∥∥∑ ξi

∥∥∥)+ M
])N

≤
(

K
N

log N

[(
E
∥∥∥∑ ξi

∥∥∥t) 1
t

+ M

])N

≤

K
N

log N

C
1
t

(
n∑
i=1

E‖ξi‖t
) 1

t

+ M

N

≤
(

K
N

log N

)N (
C

1
tMn

1
t + M

)N
≤ ANn

N
t .

ut
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Below we follow a standard construction using the Borel-Cantelli Lemma.

Theorem 3.11. Let us consider a sequence ξi of independent, bounded, zero
mean random variables in a Banach space X of type t > 1. Then with probability
one, ∥∥∥∥∥ 1

n

n∑
i=1

ξi

∥∥∥∥∥ = o(n
1
t−1+ε)(3.22)

for any ε > 0.

Proof. By the Chebyshev inequality, ∀N ∈ IN,

P

{∥∥∥∥∥
n∑
i=1

ξi

∥∥∥∥∥ ≥ δ

}
≤ E

∥∥∥∥∥
n∑
i=1

ξi

∥∥∥∥∥
N
 δ−N

≤ ANn
N
t δ−N .

The second inequality follows from Corollary 3.10. Set δ = anε+1/t, where a > 0
and ε > 0. Then the right hand side of the last inequality becomes ANa−Nn−εN .
For sufficiently large N , Nε > 1 and∑

n≥1

AN

aNnNε
<∞.

Thus by Borel-Cantelli,

∀a > 0, P

{
∃(nk), nk k→∞−→ ∞ s.t.

∥∥∥∥∥ 1
nk

nk∑
i=1

ξi

∥∥∥∥∥ ≥ a(nk)
1
t−1+ε

}
= 0.

Since the union of countably-many zero-measure sets also has zero measure, it
follows that for any (al) converging to 0,

P

{
∃l, ∃(nk), nk

k→∞−→ ∞ s.t.

∥∥∥∥∥ 1
nk

nk∑
i=1

ξi

∥∥∥∥∥ ≥ al(nk)
1
t−1+ε

}
= 0,

which implies that

P

{
lim
n→∞

∥∥ 1
n

∑n
i=1 ξi

∥∥
n

1
t−1+ε

= 0

}
= 1.

ut

We are now ready to investigate the GBS(φ) property. Suppose that f ∈
coS ⊂ X. Then for any ε > 0 there exists a k(ε) < ∞ and gεi ∈ S, αεi > 0 for
1 ≤ i ≤ k(ε) with

∑k(ε)
i=1 αεi = 1 such that∥∥∥∥∥∥f −

k(ε)∑
i=1

αεig
ε
i

∥∥∥∥∥∥ < ε.
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Let f̃ε :=
∑k(ε)
i=1 αεig

ε
i , and consider a positive sequence (εn) such that

1
n

n∑
j=1

εj ≤ n
1
t−1.

Also select a sequence of independent random variables ξj such that P{ξj =
g
εj
i } = α

εj
i for each i, 1 ≤ i ≤ k(εj). Then∥∥∥∥∥∥ 1

n

n∑
j=1

ξj − f

∥∥∥∥∥∥ =

∥∥∥∥∥∥ 1
n

n∑
j=1

(ξj − f̃εj )−
1
n

n∑
j=1

(f − f̃εj )

∥∥∥∥∥∥
≤

∥∥∥∥∥∥ 1
n

n∑
j=1

ηj

∥∥∥∥∥∥+ n
1
t−1.

Here ηj = ξj − f̃εj , so Eηj = 0. Applying Theorem 3.11 immediately yields:

Theorem 3.12. Any Banach space of type t, 1 < t ≤ 2, has the GBS(n
1
t−1+ε)

property for all ε > 0.

This can be restated as:

Corollary 3.13. Let X be a Banach space of type t, 1 < t ≤ 2, and let S be a
bounded subset of X with f ∈ coS. Then for all ε > 0, there exists a sequence
(gi) ⊂ S such that the incremental sequence

fn =
1
n

n∑
i=1

gi =
n− 1

n
fn−1 +

1
n

gn(3.23)

satisfies

‖f − fn‖ = o(n
1
t−1+ε).(3.24)

Remark. The GBS(φ) property guarantees for f ∈ coS and S bounded the
existence of (gn) ⊂ S such that ‖f −

∑n
i=1 gi/n‖ → 0. It is not true in general

that one may pick all the gn distinct. Consider for example the Hilbert space `2

(which is of type 2, i.e., GBS(1/
√

n)) and S = (en), where (en) is an orthonormal
basis. Then coS =

∑
i≥0 αiei where αi ≥ 0 and

∑
αi = 1. But if enk 6= enl ,

(nk 6= nl) then

1
N

N∑
i=1

eni
‖·‖−→ 0.

However, it is possible to give necessary and sufficient conditions for the exis-
tence of a sequence of distinct elements (gi) ⊂ S as above:

Theorem 3.14. Let X be a Banach space of type t, 1 < t ≤ 2, S ⊂ X,
f ∈ coS. There exists a sequence (gi) ⊂ S where ∀i 6= j, gi 6= gj such that
‖
∑

gi/n− f‖ → 0 if and only if for all finite K ⊂ S, f ∈ co(S \K).
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Proof. That f ∈ co(S \K) for all finite K is sufficient follows from the discus-
sion preceding Theorem 3.12. With this condition holding, we are free to choose
the g

εj
i to be distinct for all i and j.

Necessity follows from considering a single finite-cardinality set K ⊂ S such
that f 6∈ co(S \K). Assume there exists a sequence of distinct elements (gi) ⊂ S
such that ‖f −

∑n
i=1 gi/n‖ → 0. We will construct a sequence in co(S \ K)

converging to f , which is a contradiction.
Since |K| < ∞ there must be an r > 0 such that ∀n > r, gn ∈ S \ K. Let

s > r. Then

fs :=
1
s

s∑
i=1

gi =
1
s

r∑
i=1

gi +
1
s

s∑
i=r+1

gi.

As s→∞, the first sum tends to zero, so the second must tend to f . Therefore
the sequence

1
s− r

s∑
i=r+1

gi =
s

s− r

1
s

s∑
i=r+1

gi

must also tend to f . Each element of this sequence is in co(S \K). ut

4. Additional Assumptions on S

In the previous sections we have studied the convergence of convex approximates
from arbitrary bounded sets S as a function of the space X. However, it is
possible to improve the convergence behavior for a given space by imposing
additional assumptions on S. For example, suppose X = Lp(Ω) with 1 ≤ p < 2
and m(Ω) <∞. If there exists h ∈ L2(Ω) such that |g(x)| < h(x) for all x ∈ Ω
and g ∈ S, then S ⊂ L2(Ω) as well, and the convex closure of S is the same
in both Lp(Ω) and L2(Ω). Working in L2(Ω), we can find for each f ∈ coS an
incremental sequence fn converging to f with rate O(1/

√
n). This convergence

rate (with a different constant) then holds in Lp(Ω) as well, though in the latter
space the sequence might not be ε-greedy, especially in view of Theorem 3.1.

At the other end of the Lp spectrum, recall from Theorem 2.3 that there can
be no general rate bound in L∞. However, by restricting S to classes of indicator
functions, we can recover L2-like convergence in L∞. This approach, common
in the artificial neural network community, is especially interesting in pattern
classification applications, and the connections with Vapnik-Chervonenkis (VC)
dimension—first discovered by Barron in (Barron 1992)—are especially intrigu-
ing.

Definition 4.1. Let F be a class of indicator functions on a set X. Let W be
the set of all Y ⊆ X such that for all Z ⊆ Y there exists an f ∈ F such that
f ∩ Y = Z. The “VC (Vapnik-Chervonenkis) dimension of F” is supY ∈W |Y |.

Our bounds (Theorem 4.5) are slightly weaker than those given by (Barron 1992)
(ours are “big O” as compared to “little O”). However, the proof method here



Rates of Convex Approximation 25

seems worthy of note, especially as it makes use of more basic results than the
central limit theorem relied upon in (Barron 1992).

We also explore the implications of good convergence rate bounds on the VC
dimension of the corresponding set S. Good convergence rate bounds for S do
not imply that S has a finite V C dimension (Theorem 4.6), i.e., the converse of
Theorem 4.5 is false. However, if any nontrivial rate bound holds uniformly for
all subsets of S, its VC dimension must be finite (Theorem 4.7).

Definition 4.2. Let F be a class of indicator functions on a set X. Its dual F ′

is defined as the class {evx, x ∈ X} of indicator functions on F , where

evx(f) = f(x) ∀f ∈ F .

Thus, for each element of X there is a unique element of F ′, named evx. Note
that it may be the case that evx = evy for x 6= y. One thinks of evx as the
“evaluation at x operator” for elements of F . Note that evx contains the members
of F which contain x. (If an indicator function takes the value one on an element
of its domain it may be said to “contain” it. In fact, we will identify evx with
{f ∈ F : f(x) = 1}.)

Definition 4.3. Let V C be the operator on classes of indicator functions that
measures the Vapnik-Chervonenkis (VC) dimension. If F is a class of indicator
functions, we define the co-VC dimension by

coV C(F ) := V C(F ′).(4.25)

The next lemma is a consequence of (Ledoux and Talagrand 1991, Theo-
rem 14.15, p. 418).

Lemma 4.4. Denote by M(Ω,Σ) the Banach space of all bounded signed mea-
sures µ on (Ω,Σ) equipped with the norm ‖µ‖ := |µ|(Ω) ≡ µ+(Ω) + µ−(Ω). Let
C ⊂ Σ; consider the operator j : M(Ω,Σ)→ l∞(C) defined by j(µ) = (µ(c))c∈C .
Then V C(C) < ∞ if and only if there exists a constant K such that for any
Rademacher sequence γi and all finite sequences (µi) ⊂M(Ω,Σ),

E

∥∥∥∥∥∑
i

γij(µi)

∥∥∥∥∥ ≤ K

(∑
i

‖µi‖2
)1/2

.(4.26)

If such a K exists, K = K ′
√

V C(C), where K ′ is a universal constant.

Theorem 4.5. Let F be a class of indicator functions on a set X. Then F ⊂
l∞(X). Let coV C(F ) = d <∞. Then for any h ∈ coF , ‖conF−h‖ ≤ K(d/n)1/2,
where K is a universal constant.

Proof. Since h ∈ coF , ∀ε > 0, ∃kε ∈ coF s.t. ‖h − kε‖ < ε. We will neglect
the ε and write merely k where convenient. For some nε, kε =

∑nε
i=1 αifi, where∑nε

i=1 αi = 1, ai > 0, and fi ∈ F . Let Σk := σ(F ′ ∪ ∪nεi=1{{fi}}). M(F,Σk) is a
Banach space of bounded measures on F . The norm of µ ∈M(F,Σk) is ‖µ‖M =
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|µ|(F ) = µ+(F ) + µ−(F ). Define mi ∈ M(F,Σk) to be the probabilistic point-
mass measure with support on fi, i.e., mi assigns measure 1 to sets containing fi
and 0 otherwise. Define µk :=

∑n
i=1 αimi. Let ξl be finite-valued i.i.d. random

variables taking value mi with probability αi. Define j : M(F,Σk)→ l∞(X) by
j(µ) := (µ(evx))x∈X . Note that j is a linear operator. By the triangle inequality,

Eξ

∥∥∥∥∥j
(

n∑
i=1

ξl/n

)
− h

∥∥∥∥∥ ≤ Eξ

∥∥∥∥∥j
(∑

l

(ξl − µk)

)∥∥∥∥∥ /n + ‖h− k‖ .

By a simple inequality (Ledoux and Talagrand, 1991, Lemma 6.3, p. 152),

Eξ

∥∥∥∥∥∑
l

j (ξl − µk)

∥∥∥∥∥ ≤ 2EξEγ

∥∥∥∥∥∑
l

γlj(ξl − µk)

∥∥∥∥∥ ,

where γl are i.i.d. random variables taking values +1 and -1 with equal proba-
bility. Then by Lemma 4.4,

Eγ

∥∥∥∥∥∑
l

γlj(ξl − µk)

∥∥∥∥∥ ≤ K
√

d

√∑
l

‖ξl − µk‖2M .

Since ξl and µk are both probability measures, ‖ξl−µk‖M ≤ ‖ξl‖M+‖µk‖M = 2.
Combining the above, we have

Eξ

∥∥∥∥∥j
(

n∑
i=1

ξl/n

)
− h

∥∥∥∥∥ ≤ 4K
√

d√
n

+ ε.

Since the inequality is true for all ε > 0 it remains true for ε = 0. Since for some
realization of the ξl the inequality must still hold, the theorem is proven. ut

The mere fact of the existence of a convergence rate bound for a set of indicator
functions does not imply that the set has finite VC dimension. We give an
example to make this point.

Theorem 4.6. Let X be a measure space with an infinite number of measurable
sets. Let S denote the set of indicator functions of all measurable sets. Clearly the
VC dimension of S is infinite. However, if f ∈ coS, then f can be approximated
by an element of conS with error less than 1/n (in the uniform metric).

Proof. If f ∈ coS, then clearly 0 ≤ f(x) ≤ 1 for all x ∈ X. Fix n and define

Ak = f−1 ([(k − 1)/n, 1])

for k = 1, 2, . . . , n. (Note that some Ak may be empty.) Let gk be the indicator
function for Ak. Each gk is in S since f must be a measurable function. The
function

fn =
n∑
k=1

(1/n)gk
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is in conS and satisfies

0 ≤ fn(x)− f(x) < 1/n

for all x ∈ X. (Moreover, this shows that coS equals the set of measurable
functions with range in [0, 1].) ut

However, if it is the case that one given convergence rate bound holds for all
finite subsets of a set of indicator functions, then the VC dimension of this set
is finite.

Theorem 4.7. Let F be a set of indicator functions on a set X and C ⊆ F .
Let α(C, r) be the worst-case rate of approximation of a member of the closed
convex hull of C by r elements of C. Assume that there is some function h so
that h(r) → 0 as r → ∞ such that α(C, r) ≤ h(r) for all finite C ⊂ F . Then
V C(F ) <∞.

Proof. We argue by contradiction. Assume that V C(F ) = ∞. Then also
coV C(F ) =∞. Thus, for each integer n there are elements x1, x2, . . . , x2n ∈ X
and functions f1, . . . , fn ∈ F such that (f1, . . . , fn) takes all 2n possible val-
ues on these points. Define Cn := {f1, . . . , fn}. Consider approximating f :=∑n
i=1 fi/n ∈ coCn by r elements of Cn. By the symmetry of f , we can without

loss of generality write the approximant as g =
∑r
i=1 αifi. Then

‖g − f‖sup = sup
X
|g(x)− f(x)|

= sup
X

∣∣∣∣∣
r∑
i=1

(
αi −

1
n

)
fi(x)−

n∑
i=r+1

1
n

fi(x)

∣∣∣∣∣
=

1
2

sup
X

∣∣∣∣∣
r∑
i=1

(
αi −

1
n

)
[2fi(x)− 1]−

n∑
i=r+1

1
n

[2fi(x)− 1]

∣∣∣∣∣
=

1
2

(
r∑
i=1

∣∣∣∣αi − 1
n

∣∣∣∣+ n∑
i=r+1

1
n

)
since there is an element x ∈ X for which 2fi(x) − 1 is of the same sign as
αi − 1/n for 1 ≤ i ≤ r and is negative one for i > r. Thus

‖g − f‖sup ≥
1
2

n− r

n
=

1
2

(
1− r

n

)
.(4.27)

Since the bounding function for the error, h, converges to zero, there exists
q > 0 such that h(q) < 1/4. But the worst-case error approximating elements
of C2q with q functions from this set is greater than [1 − q/(2q)]/2 = 1/4, a
contradiction. This establishes the claim. ut
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A. Implications of the Convexity Assumption

Constraining f to lie within the convex closure of S (instead of the linear span)
effectively reduces the size of the set of approximable functions. Which functions
are being left out? For the case of functions on a real interval under the sup norm
where S is the set of Heavisides, there is a tidy answer.

Define Fv :=

{f : [a, b]→ IR | Var(f) ≤ v, ∀t ∈ [a, b], |f(t)| ≤ v}.(A.28)

Let H be the set of Heavisides on IR, i.e., H = {h : IR → IR | ∃θ, h = I[θ,∞)}.
Define

Hv := {f : IR→ IR | ∃h ∈ H s.t. f = vh or f = −vh(A.29)

or f = vh′ or f = −vh′

where ∀t ∈ [a, b], h′(t) = h(−t)}.

Clearly Hv ⊂ Fv, and a straightforward argument shows that in fact Fv =
co(Hv)sup. By an elementary argument (analogous to the proof of Theorem 4.6),
one can also show that if f ∈ Fv, then ‖conHv − f‖sup = O(1/n).

At this point, it is natural to ask what is the class of functions that can
be uniformly approximated by neural nets with Heaviside activations, that is,
what is the closure of the linear span (not the convex hull) of the maps from Hv

(which is the same for all v of course). This is a classical question; see for instance
(Dieudonné 1960, VII.6): the closure is the set of all regulated functions, that
is, the set of functions f : [a, b] → R for which limx→x−0

f(x) and limx→x+
0

f(x)
exist for all x0 ∈ [a, b) and x0 ∈ (a, b], respectively. Thus, by constraining target
functions to the convex closure of Hv instead of the span, we are losing the ability
to approximate those regulated functions that are not of bounded variation.

In the multivariable case, that is, f : K → IR with K a compact subset of
IRn, the situation is far less clear. If f has “bounded variation with respect to
half-spaces” (i.e., is in the convex hull of the set of all half spaces (Barron 1992)),
and in particular if f admits a Fourier representation

f(x) =
∫

IRn
ei〈ω,x〉f̃(ω)dω

with ∫
IRn
‖ω‖|f̃(ω)|dω <∞,

then by (Barron 1992) there are approximations with rate O(1/
√

n) (since f
is in the convex hull of the Heavisides). But the precise analog of regulated
functions is less obvious. One might expect that piecewise constant functions
can be uniformly approximated, for instance, at least if defined on polyhedral
partitions, but this is false.
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For a counterexample, let f be the characteristic function of the square [−1, 1]2

in IR2, and let K be, for instance, a disc of radius 2 centered on (0, 0). Then
it is impossible to approximate f to within error 1/8 by a one hidden-layer
neural net, that is, a linear combination of terms of the form H(〈w, x〉+ b), with
w ∈ IR2 and b ∈ IR. (Constant terms on K can be included, without loss of
generality, by choosing b appropriately.) This is proved as follows. If there would
exist a function g of this form, that approximates to within 1/8, then close to
the boundary of the disc its values are in the range (−1/8, 1/8), and near the
center of the square it has values > 7/8. Moreover, everywhere the values of
g are in (−1/8, 1/8)

⋃
(7/8,+∞). Now, the function 4g − (1/2) is again in the

same span, and it now has values in (−1, 0) and (3,+∞) in the same regions.
This contradicts (Sontag 1992, Prop. 3.8). (Of course, one can also prove this
directly.)

B. Properties of the Modulus of Smoothness

In this section we collect some inequalities related to power type estimates of
the modulus of smoothness. In particular, the first lemma shows that Lp spaces
are of power type t = min(p, 2). (See Corollary 3.6 and Theorem 3.7.)

Lemma B.1. If X = Lp, 1 ≤ p < ∞, then the modulus of smoothness ρ(u)
satisfies

ρ(u) ≤
{

up/p if 1 ≤ p ≤ 2
(p− 1)u2/2 if 2 ≤ p <∞(B.30)

for all u ≥ 0.

Proof. From the definition of the modulus of smoothness we have

2(ρ(u) + 1) = sup{‖f + g‖+ ‖f − g‖ | ‖f‖ = 1, ‖g‖ = u}
≤ 21/q sup{(‖f + g‖p + ‖f − g‖p)1/p | ‖f‖ = 1, ‖g‖ = u},(B.31)

where q = p/(p − 1). The inequality follows from the concavity of the function
t→ t1/p. Next we make use of some inequalities given by Hanner (1956):

(‖f‖+ ‖g‖)p + | ‖f‖ − ‖g‖ |p ≤ ‖f + g‖p + ‖f − g‖p(B.32)

≤ 2(‖f‖p + ‖g‖p),

for 1 < p ≤ 2. The inequalities hold in the reverse sense if 2 ≤ p < ∞. (The
second inequality above is actually due to Clarkson (1936).) Combining this with
(B.31) yields

ρ(u) ≤


(1 + up)1/p − 1 if 1 ≤ p ≤ 2[
(1 + u)p + |1− u|p

2

]1/p

− 1 if 2 ≤ p <∞
(B.33)
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This result is cited in (Lindenstrauss 1963). It is possible to use the methods in
(Hanner 1956) to show that the above bounds on ρ(u) are tight.

For 1 < p ≤ 2, (B.30) now follows immediately. For p ≥ 2 and 0 ≤ u ≤ 1 a
Taylor series expansion shows(

(1 + u)p + (1− u)p

2

)1/p

≤ p− 1
2

u2 + 1,(B.34)

which proves (B.30) for 2 ≤ p < ∞ and 0 ≤ u ≤ 1. For u > 1, divide by u and
use (B.34) again:(

(u + 1)p + (u− 1)p

2

)1/p

= u

(
(1 + 1/u)p + (1− 1/u)p

2

)1/p

≤ u +
p− 1
2u

≤ p− 1
2

u2 + 1,

for 2 ≤ p <∞ and u > 1. ut

For completeness we note the following result, the proof of which is left to the
reader.

Theorem B.2. Let X be a Banach space. The modulus of smoothness for X
satisfies

ρ(u) ≤ u for all u ≥ 0.(B.35)

Furthermore, if X is L1 or L∞ with dimension at least 2, then

ρ(u) = u for all u ≥ 0.(B.36)

The following technical lemma uses an inequality of Lindenstrauss to pro-
vide several lower bounds on γ as a function of t for spaces with modulus of
smoothness ρ(u) ≤ γut. These are needed in Theorem 3.5.

Lemma B.3. Let X be a Banach space with modulus of smoothness ρ(u) sat-
isfying ρ(u) ≤ γut for all u ≥ 0. Then 1 ≤ t ≤ 2 and

γt ≥
{

[(2− t)t]1−t/2 (t− 1)t−1 if 1 < t < 2
1 if t = 1 or t = 2.

(B.37)

Moreover, for all t ∈ [1, 2],

γ ≥
√

2− 1,(B.38)

γ ≥ 3−t/2,(B.39)

γ ≥ 2t−1/5t/2,(B.40)

γ >
1
t
e−3/2e.(B.41)
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Proof. Lindenstrauss (1963) gives√
1 + u2 − 1 ≤ ρ(u) ≤ γut for all u ≥ 0.(B.42)

Letting u→∞ shows that t ≥ 1, and if t = 1 then γ ≥ 1. Furthermore,

γut ≥
√

1 + u2 − 1 ≥ u2

2 + u2
,

so letting u ↓ 0 proves that t ≤ 2 and if t = 2 then γ ≥ 1/2.
Therefore t satisfies 1 ≤ t ≤ 2, and inequalities (B.37) through (B.41) hold if

t = 1 or t = 2. Next assume 1 < t < 2, and rewrite (B.42) as

γ ≥
√

1 + u2 − 1
ut

for all u ≥ 0.

In particular, this inequality holds if we replace u with
√

(2− t)t/(t− 1), which
gives

γ ≥ (2− t)1−t/2(t− 1)t−1

tt/2
.(B.43)

This completes the proof of (B.37).
Inequality (B.38) follows from (B.42) by setting u = 1. Using u =

√
3 provides

(B.39), and (B.40) is obtained with u =
√

5/2.
To prove (B.41), place the inequality xx ≥ e−1/e into (B.43) to obtain

γ ≥ t−t/2e−1/2ee−1/e.

Then use 1 < t < 2 to complete the proof. ut

These estimates are compared in Figure 2.

Lemma B.4. Let ρ(u) be the modulus of smoothness of a Banach space, and
assume that ρ(u) ≤ γut for all u ≥ 0 (t ∈ [1, 2] is fixed). Then

1 +
1

(2γ)1/t
<

(
5t− 1

2

)1/t

.(B.44)

Proof. Define h(t) to be the right-hand side of (B.44). Then the derivative of
h(t) has the same sign as

5t− 1
2

(
1− log

(
5t− 1

2

))
+

1
2
.(B.45)

But (B.45) is decreasing in t for t > 3/5, so h′(t) = 0 for at most one point
t0 ∈ [1, 2] (in fact t0 ≈ 1.4724), which would be a local maximum for h. In
particular, for any subinterval [t1, t2] ⊂ [1, 2], it must be that

h(t) ≥ min (h(t1), h(t2)) for all t ∈ [t1, t2].
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1
t
e−3/2e

2t−1/5t/2

3−t/2

√
2− 1

1
t
[(2− t)t]1−t/2(t− 1)t−1

2.01.81.61.41.21.0

1.0

0.8

0.6

0.4

0.2

0.0

Fig. 2. Comparison of lower bound estimates on γ (from Lemma B.3) as a function of t.

For our purposes we divide the interval [1, 2] into two subintervals: [1, 5/4] and
[5/4, 2]. Evaluating h at the endpoints yields

h(1) = 2

h(5/4) = (21/8)4/5 > 2.16

h(2) = 3/
√

2 > 2.12.

Therefore h(t) ≥ 2 for t ∈ [1, 5/4], and h(t) ≥ 2.12 for t ∈ [5/4, 2].
To obtain the corresponding upper bounds on the left-hand side of (B.44),

apply (B.39) for t ∈ [1, 5/4], and (B.40) for t ∈ [5/4, 2]. ut

C. A Sequence Inequality

The following lemma may be viewed as pertaining to a discrete analogue of the
differential equation y′ = y1−t, the general solution of which is y(x) = (tx+C)1/t.
It can be used to provide bounds on the convergence rate of sequences having
incremental changes compatible with the estimates from Lemma 3.3, with which
it is combined to produce Theorems 3.5 and 3.7.

Lemma C.1. Let (an) be a nonnegative sequence satisfying

an+1 ≤ an + min
(

3
2

,
1

at−1
n

)
(C.46)
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for all n, where 1 ≤ t ≤ 2. If

an ≤
(

tn +
t− 1

2
log2 n

)1/t

(C.47)

is satisfied for some n ≥ 2, or for n = 1 with a1 ≥ 1, then it is satisfied for all
n′ > n as well.

Proof. Let us take bn := tn + (1/2)(t − 1) log2 n, assume that an ≤ b
1/t
n , and

proceed by induction, i.e., show that an+1 ≤ b
1/t
n+1.

Suppose first that an < 1 and n ≥ 2. Then

b
1/t
n+1 ≥ b

1/t
3 ≥ (6 + (1/2) log2 3)1/2 > 5/2.

The second inequality holds because the function t 7→ (3t+(1/2)(t−1) log2 3)1/t

is decreasing in t for t ∈ [1, 2], and so attains its minimum at t = 2. But then

an+1 ≤ an + 3/2 < 5/2 < b
1/t
n+1,

as desired.
Alternatively, suppose that an ≥ 1. Then since the function x 7→ x(1 + 1/xt)

is nondecreasing for x ≥ 1, we have

an+1 ≤ an(1 + 1/atn) ≤ b1/t
n (1 + 1/bn)

≤ b1/t
n

[
1 +

t

bn
+

t(t− 1)
2b2
n

]1/t

≤
[
t(n + 1) +

t− 1
2

log2(n + 1) +
t− 1
2n
− t− 1

2
log2(1 + 1/n)

]1/t

.

The third inequality above follows from a Taylor series expansion of (1+1/bn)t.
Combining this with the definition of bn+1 and the fact that log2(1+1/n) ≥ 1/n
for n ≥ 1 yields

an+1 ≤ b
1/t
n+1,

concluding the proof. ut

D. An Example of a Smooth Banach Space with Non-Converging
ε-Greedy Sequences

In Sect. 3.1 it was shown that ε-greedy sequences in uniformly smooth spaces
always converge (provided

∑
εk < ∞), and that smoothness is necessary and

sufficient for monotonically decreasing error in incremental approximants. We
now construct an example showing that simple smoothness is insufficient to
guarantee convergence of ε-greedy sequences.
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Let a = (a(n)) be a sequence of real numbers. Define the sequence of functions
(Fn) (the norm sequence) from IRIN to IR+ ∪ {0} recursively by

F1(a) = |a(1)|

Fn(a) = [(Fn−1(a))pn + |a(n)|pn ]1/pn ,

where (pn) is a fixed sequence (called the norm power sequence) with 1 ≤ pn <∞
for all n.

Note that for each a, Fn(a) is nondecreasing with n. Define

X(pn) :=
{

a ∈ IRIN | sup
n

Fn(a) <∞
}

,(D.48)

and for a ∈ X(pn)

‖a‖ := F (a) := lim
n→∞

Fn(a).(D.49)

The reader may verify that X(pn) equipped with the norm (D.49) is a Banach
space. (This space is similar to the modular sequence spaces studied in (Woo
1973).) If (pn) is bounded and pn > 1 for all n, then it can be shown that X(pn)

is smooth. Let us use the notation en ∈ X(pn) to denote the canonical basis
element en(k) = δn(k). (Note that ‖en‖ = 1 for all n independent of (pn).)

Proposition D.1. Let (γn) be a strictly decreasing sequence converging to 1.
Then there exists a norm power sequence (pn) that is non-increasing, converges
to 1, and has pn > 1 for all n, such that the bounded set S = {−γ1e1} ∪
{γnen}n∈IN in X(pn) admits for each incremental schedule (εn) an incremental
sequence (an) ⊂ coS that is ε-greedy with respect to 0 but does not converge.
(Note that 0 ∈ coS.)

Proof. X(pn) is determined by its power sequence (pn). Choose p1 > 1 arbi-
trarily, and recursively select pn ∈ (1, pn−1] to satisfy

inf
0≤λ≤1

[(1− λ)γn−1]
pn + (λγn)pn > 1.(D.50)

This can always be done because the inequality holds for pn = 1 and so by
continuity in pn holds also for all pn sufficiently close to 1.

Now let (εk) be a fixed incremental schedule. We build an ε-greedy (with
respect to 0) sequence (ak) ⊂ S ⊂ coS as follows. Let a1 = γn1en1 be any ε1-
greedy element of S with n1 > 1 (i.e., γn1 < min{1 + ε1, γ1}). Assuming that
ak−1 = γnk−1enk−1 with nk−1 > 1, we will show that we can pick ak = γnkenk
with nk > nk−1 to be εk-greedy. Indeed, suppose that

bk = (1− λ)ak−1 + λgk

is an εk-greedy step, where gk ∈ S. It follows from (D.50) and the monotonicity
of γn that ‖bk‖ > 1, so we can pick nk > nk−1 such that

‖bk‖ > γnk = ‖γnkenk‖.
Therefore, taking ak = γnkenk yields an εk-greedy increment.

We define the sequence (ak) recursively in this manner to complete the con-
struction. ut
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