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Abstract

In this paper we investigate the computational complexity of a combinatorial problem that arises in the reverse engineering of
protein and gene networks. Our contributions are as follows:

e We abstract a combinatorial version of the problem and observe that this is “equivalent” to the set multicover problem when
the “coverage” factok is a function of the number of elememtsf the universe. An important special case for our application
is the case in which = n — 1.

e We observe that the standard greedy algorithm produces an approximation @tlogt) even ifkis “large” i.ek =n — ¢
for some constant > 0.

e Let 1<a <n denote the maximum number of elements in any given set in our set multicover problem. Then, we show that
a non-trivial analysis of a simple randomized polynomial-time approximation algorithm for this problem yields an expected
approximation ratid=[r (a, k)] that is an increasing function af/ k. The behavior oE[r(a, k)] is roughly as follows: it is
about Ina/ k) whena/k is at least abow ~ 7.39, and for smaller values af it decreases towards 1 as a linear function of
Ja/k with limg,x—0Elr(a, k)] = 1. Our randomized algorithm is a cascade of a deterministic and a randomized rounding
step parameterized by a quantjftyfollowed by a greedy solution for the remaining problem. We also comment about the
impossibility of a significantly faster convergence&if (a, k)] towards 1 for any polynomial-time approximation algorithm.
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1. Introduction

Let [x, y] be the sefx,x + 1,x + 2, ..., y} for integersx andy. The set multicover problem is a well-known
combinatorial problem that can be defined as follows.

Problem nameSC,.
Instance(n, m, k): An universell =[1, n], setsS1, So, ..., S, € U with U;n:lSj =U and a “coverage factor”
(positive integerk.
Valid solutions A subset of indiceg < [1, m] such that, for every elemente U, |j € I : x € §;|>k.
Objective Minimize|I|.
SC; is simply called the Set Cover problem and denote&8ywe will denote an instance &C simply by (n, m)
instead of(n, m, 1).
Both SCandSC; are already well-known in the realm of design and analysis of combinatorial algorithms (e.g., see
[18]). Let 3<a < n denote the maximum number of elements in any setgie maxc1,,{|5:|}. We summarize some
of the known relevant results for them below.

Fact 1 (Feige ()[6]).* AssumingVPZDTIME (n'°9'°9™), instancegn, m) of theSC problem cannot be approx-
imated to within a factor of1 — ¢) Inn for any constan® < ¢ < 1 in polynomial time

(b) (Vazirani[18]) An instancen, m, k) of theSC; problem can b&1l + In a)-approximated in0 (nmk) time by a
simple greedy heuristic that every stepselects a new set that covers the maximum number of those elements that has
not been covered at least k times.\tets also possible to design randomized approximation algorithms with similar
expected approximation ratios

1.1. Summary of results

The combinatorial problems investigated in this paper that arise out of reverse engineering of gene and protei
networks can be shown to be equivalenstg, whenk s a function ofn. One case that is of significant interest is when
kis “large”, i.e.,k = n — ¢ for some constant > 0, but the case of non-constanis also interesting (cf. Questions
(Q1) and (Q2) in Section 2). Our contributions in this paper are as follows:

e In Section 2 we discuss the combinatorial problems (Questions (Q1) and (Q2)) with their biological motivations
that are of relevance to the reverse engineering of protein and gene networks. We then observe, in Section 2.
using a standard duality that these problems are indeed equiva®@}, for appropriate values &

e InLemma 2 in Section 3.1, we observe that the standard greedy alg@ithmroduces an approximation ratio
of Q(logn) even ifkis “large”, i.e.k = n — ¢ for some constant > 0.

e Letl<a <ndenotesthe maximum number of elementsin any given setin our set multicover problem. In Theorem
3 in Section 3.2, we show that a non-trivial analysis of a simple randomized polynomial-time approximation
algorithm for this problem yields an expected approximation r&fic(a, k)] that is an increasing function of
a/k. The behavior of[r(a, k)] is “roughly” as follows: it is about Itu/ k) whena/k is at least abow ~ 7.39,
and for smaller values af/ k it decreases towards 1 as a linear function/af/ k with lim,,t—.o0 E[r(a, k)] = 1.

More preciselyE[r(a, k)] is at most

1+1Ina if k=1,
1+ e ® DB In@/k — 1)) if a/(k—1)>€?~7.39andk > 1,
min {2 +2. % DB 24 (672 4+e7%8). %}
1
~ min {2 +2.e®D/5 24 046. %} if 7 <a/tk—1 <efandk> 1,
1
1+2\/% if a/(k—l)gz1 andk > 1.

4A slightly weaker lower bound under the more standard complexity-theoretic assumptigiiNéf ®as obtained by Raz and Saft8] who
showed that there is a constarguch that it is NP-hard to approximate instanggsn) of the SC problem to within a factor of In n.

5 Note that, fork > 1, the bound orE[r (a, k)] is defined over three regions of valuesagfik — 1), namely[a, e2), [e2, 71‘) and[%, 0). The
boundaries between the regions can be shifted slightly by exact tedious calculations. We omit such straightforward but tedious exact catculations f
simplicity.
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1.2. Summary of analysis techniques

e To prove Lemma 2, we generalize the approach in Johnson’s p@pek straightforward replication of the
sets will not work because of the dependencekain n, but allowing the “misleading” sets to be some-
what larger than the “correct” sets allows a similar approach to go through at the expense of a diminished
constant.

e Our randomized algorithm in Theorem 3 is a cascade of a deterministic and a randomized rounding step parame
terized by a quantity followed by a greedy solution for the remaining problem.

e Our analysis of the randomized algorithm in Theorem 3 uses an amortized analysis of the interaction between the
deterministic and randomized rounding steps with the greedy step. For tight analysis, we found that the standar
Chernoff bounds such as ji,3,12,18]were not always sufficient and hence we had to devise more appropriate
bounds for certain parameter ranges.

1.3. Impossibility of significantly faster convergencé&pf(a, k)] towards 1

It is certainly tempting to investigate the possibility of designing randomized or deterministic approximation algo-
rithms for whichE[r(a, k)] or r(a, k) converges to 1 at significantlyfaster rate as a function af/ k. However, this
may be difficult to achieve and, in particul&tr (a, k)] orr(a, k) cannot be & o(1) for a > k since the set multicover
problem is APX-hard for this case. To illustrate the last assertion, consider the special kase ofn — 1. Then, the
set multicover problem is still APX-hard as shown in the following. One could havel sets of the forn¥\{i} that
cover every element, except one, exaetly 2 times (the last element is coverned 1 times). Moreover, we can have a
family of sets of size exactly 3 that form an instance of the set cover problem restrieted3tdr his restricted problem
is APX-hard, and a solution of siza for that instance gives solution of size+ m — 1 for our instance. Because
m >n/3, this is an approximation-preserving reduction. However, we will not investigate designing tight lower bounds
further in this paper.

2. Motivations

In this section we define a computational problem that arises in the context of experimental design for reverse
engineering of protein and gene networks. We will first pose the problem in linear algebra terms, and then recast i
as a combinatorial question. After that, we will discuss its motivations from systems biology. Finally, we will provide
a precise definition of the combinatorial problems and point out its equivalence to the set multicover problem via a
standard duality.

Our problem is described in terms of two matriceg R**" andB € R**™ such that:

Ais unknown

Bisinitially unknown but each of its columns, denoted®s B, . . ., B, can be retrieved withanit-cost query
the columns oB are ingeneral positioni.e., each subset éf<n columns ofB is linearly independent

the zero structureof the matrixC = AB = (c;;) is known, i.e., a binary matrig® = (cf’j) € {0, 1™ is given,
and it is known that;; = 0 for eachi, j for which c?j =0.

The objective is to obtain as much information as possible aAduthich, in the motivating application, describes
regulatory interactions among genes and/or proteins), while performing “few” queries (each of which may represent
the measuring of a complete pattern of gene expression, done under a different set of experimental conditions). Fc
each query that we perform, we obtain a coluBpand then the matric® tells us that certain rows @ have zero
inner product withs;.

As a concrete example, let us take- 3, m = 5, and suppose that the known information is given by the matrix

01011
Co:|:11100:|

0 0101
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and the two unknown matrices are

-1 1 3 4 3 37 1 1
A=|:2 -1 4:|, B=|:4 5 52 2 16
0 0 -1

00 -5 0 -

(the matrixCg has zero entries wherevaB has a zero entry). Considering the structur€gfwe choose to perform
four queries, corresponding to the four columns 1,3,48,dfus obtaining the following data:

4 37 1 1
{4 52 2 16]. (1)
0 -5 0 —

What can we say about the unknown matkiXLet us first attempt to identify its first row, which we cal. The first

row of the matrixCy tells us that the vectot 1 is orthogonal to the first and second columns of (1) (which are the same
as the first and third columns &)). This is theonly information aboutA that we have available, and it is not enough
information to uniquely determing;, because there is an entire line that is orthogonal to the plane spanned by these
two columns, however, we can still firmenonzero vector in this line, and conclude thatis an unknown multiple

of this vector. This nonzero vector may be obtained by simple linear algebra manipulations. For example, we migh
add a linearly independent column to the two that we had, obtaining a matrix

4 37
B1= |:4 52 0],
0 -5 1

then pick an arbitrary vectmwhose first two entries are zero (to reflect the known orthogonality), let ussgy; O, 1],
and finally solveA1 B = v, thus estimatingl; asvB 1

13/15 -37/60 O
A1=10,0,11B"1=[0,0, 1] [—1/15 1/15 o} =[-1/3,1/3, 11.
-1/3 13 1

Notice that this differs from the unknowy only by a scaling. Similarly, we may employ the last two columns of (1)
to estimate the second rady, of A, again only up to a multiplication by a constant, and we may use the first and third
columns of (1) (which are the same as the first and fourth columB3 tof estimate the last rov4 s.

Notice that there are always intrinsic limits to what can be accomplished: if we multiply each ravkyosome
nonzero number, then the zero structur€€a$ unchanged. Thus, as in the example, the best that we can hope for is
to identify the rows ofA up to scalings (in abstract mathematical terms, as elements of the projective®$pakeTo
better understand these geometric constraints, let us reformulate the problem as follotysd&mote theéth row of
A. Then the specification @® amounts to the specification ofthogonality relationsA; - B; =0 for each pait, j for
which c?/. = 0. Suppose that we decide to query the columrB ioidexed byJ = {j1, ..., j¢}. Then, the information

obtained abouf may be summarized a§ < %L, where “L” indicatesorthogonal complemepand

Ay =span(B;, j € Ji},

Ji={j | jeJandc =0}. 2)
Suppose now that the set of indices of selected quéfies the property:

eachset;,i =1,...,n, has cardinality>n — k, )

for some given integek. Then, because of the general position assumption, the sgagenas dimensiorzn — k,
and hence the spac;tﬁé”L has dimension at mokt

The case: = 1: The most desirable special case (and the one illustrated with the concrete example given above) i
that in whichk = 1. Then dlm%”}l <1, hence eacH; is uniquely determined up to a scalar multiple, which is the best
that could be theoretically achieved. Often, in fact, finding the sign pattern (su¢kas, —, 0,0, —, ...)") for each
row of A is the main experimental goal (this would correspond, in our motivating appllcation, to determining if the
regulatory interactions affecting each given gene or proteiindibitory or catalytic). Assuming that the degenerate



P. Berman et al./Discrete Applied Mathematics 155 (2007)73® 737

caseyfji = {0} does not hold (which would determing = 0), once that an arbitrary nonzero elemein the line

Jf}l has been picked, there are only two sign patterns possiblg, fiihe pattern of and that of-v). If, in addition,

one knows at least one nonzero sigmin then the sign structure of the whole row has beeiguelydetermined (in

the motivating biological question, typically one such sign is indeed known; for example, the diagonal elements
i.e. theith element of each;, are known to be negative, as it represents a degradation rate). Thus, we will be interested
in this question:

find J of minimal cardinality such thatJ;| >n —1, i=1,...,n. (QL)

If queries have variable unit costs (different experiments have a different associated cost), this problem must be modifie
to that of minimizing a suitable linear combination of costs, instead of the number of queries.

The general cask > 1: More generally, suppose that the queries that we performed satisfy (3}, withbut small
k. It is not true anymore that there are only two possible sign patterns for any giyent the number of possibilities
is still very small. For simplicity, let us assume that we know that no entry;af zero (if this is not the case, the
number of possibilities may increase, but the argument is very similar). We wish to prove that the possible number of
signs is much smaller thari 2ndeed, suppose that the queries have been performed, and that we then calculate, base
on the obtaine®;’s, a basiqvy, ..., v} of yf}l (assume diru/f}’l. =k; otherwise pick a smalldq). Thus, the vector

A; is known to have the fornZ’,‘=1 Arv, for some (unknown) real numbets, ..., Aix. We may assume thag # 0

(since, if A; = Y-¥_, 2,v,, the vectorsvy + Y-¥_, 2,v,, with small enoughe, has the same sign pattern 4s and
we are counting the possible sign patterns)lf 0, we may divide byil; and simply count how many sign patterns

there are wheri; = 1; we then double this estimate to include the case 0. Letv, = col (vy,, ..., v,), for each
r=1,..., k. Since no coordinate of; is zero, we know thad; belongs to the s&f = Rk‘l\(Ll U---UL,)where, for
each K s <n, L is the hyperplane ifRk—1 consisting of all those vectorgy, ..., 4x) such thatzlr‘:2 ArVgr = —Ug1.

On each connected component@fsigns patterns are constant. Thus the possible number of sign patterns is upper
bounded by the maximum possible number of connected regions determindd/pgrplanes in dimension— 1. A

result of Schlafli (se@4,14], and alsd15] for a discussion, proof, and relations to Vapnik-Chervonenkis dimension)
states that this number is bounded abovellyy, k — 1), provided thatt — 1<n, where®(n, d) is the number of
possible subsets of anelement set with at mostelements, that is,

4 n n? en\d
vod)=3 (7) <27 <(3)

Doubling the estimate to includg < 0, we have the upper bound2:, k—1). Forexample@(n, 0)=1,®(n, 1)=n+1,
and®(n, 2) = %(n2 + n + 2). Thus we have an estimate of 2 sign patterns whenl (as obtained earlier) 2+ 2
whenk = 2, n% 4+ n + 2 whenk = 3, and so forth. In general, the number grows only polynomially (for fixed k).

These considerations lead us to formulating the generalized problem, for eack: fixed of minimal cardinality
suchthatJ;| >n—kforalli=1, ..., n. Recalling definition (2) of;, we see thaf; = J N T;, whereT; ={; | c?, =0}.
Thus, we can reformulate our question purely combinatorially, as a more general version of Question (Ql) as follows.
Given sets

T, C{1,....m}, i=1,...,n.
and an integek < n, the problem is
findJ C {1, ..., m} of minimal cardinality such that/ N T;| >n — k, 1<i<n. (Q2)

For example, suppose thiat= 1, and pick the matrix’® € {0, 1}”*" in such a way that the columns 6P are the

binary vectors representing all the<{1)-element subsets ¢1, ..., n} (Som = n); in this case, the setmust equal
{1,...,m} and hence has cardinality On the other hand, also with= 1, if we pick the matrixC° in such a way

that the columns of © are the binary vectors representing all the 2-element subsgts.of , n} (som =n(n — 1)/2),

thenJ must again be the set of all columns (because, since there are only two zeros in each column, there can only b
atotal of Z zeros =|J|, in the submatrix indexed hy; but we also have tha?2:n(n — 1), since each of the rows

must have>n — 1 zeros); thus in this case the minimal cardinality 8 — 1)/2.
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2.1. Motivations from systems biology

This work was motivated by a central concern of contemporary cell biology that of unraveling (or “reverse
engineering”) the web of interactions among the components of complex protein and genetic regulatory networks
Notwithstanding the remarkable progress in genetics and molecular biology in the sequencing of the genomes of
number of species, the inference and quantification of interconnections in signaling and genetic networks that ar
critical to cell function is still a challenging practical and theoretical problem. High-throughput technologies allow the
monitoring the expression levels of sets of genes, and the activity states of signaling proteins, providing snapshots of tt
transcriptional and signaling behavior of living cells. Statistical and machine learning techniques, such as clustering, al
often used in order to group genes into co-expression patterns, but they are less able to explain functional interactior
Anintrinsic difficulty in capturing such interactions in intact cells by traditional genetic experiments or pharmacological
interventions is that any perturbation to a particular gene or signaling component may rapidly propagate throughot
the network, causing global changes. The question thus arises of how to use the observed global changes to der
interactions between individual nodes.

This problem has generated an effort by many research groups whose goal is to infer mechanistic relationshiy
underlying the observed behavior of complex molecular networks. We focus our attention here solely on one suc
approach, originally described [f0,11], further elaborated upon {2,16], and reviewed i§5,17]. In this approach,
the architecture of the network is inferred on the basis of observed global responses (hamely, the steady-state cc
centrations in changes in the phosphorylation states or activities of proteins, mRNA levels, or transcription rates) it
response to experimental perturbations (representing the effect of hormones, growth factors, neurotransmitters, or
pharmacological interventions).

In the setup if10,11,16] one assumes that the time evolution of a vector of state variables: (x1(¢), ..., x,(¢))
is described by a system of differential equations:

xl:fl(xla--~7xnsPl,~-aPm).
X2 = fo(X1, .-y Xn> Ply - -s Pm)s

Xn = fu(X1, ..., Xn, Py ---»> Pm)

(invector form, %t = f(x, p)”, and the dot indicates time derivative), where-(p1, ..., p,y) is avector of parameters,
which can be manipulated but remain constant during any given experiment. The compp@emtsthe state vector
represent quantities that can be in principle measured, such as levels of activity of selected proteins or transcriptic
rates of certain genes. The parameggnepresent quantities that can be manipulated, perhaps indirectly, such as levels
of hormones or of enzymes whose half-lives are long compared to the rate at which the variables evolve. A basi
assumption (but segjd 6] for a time-dependent analysis) is that states converge to steady-state values, and these al
the values used for network identification. There is a reference yalofep, which represents “wild type” (that is,
normal) conditions, and a corresponding steady statdathematically,f (x, p) = 0. We are interested in obtaining
information about the Jacobian of the vector fi€lelvaluated atx, p), or at least about the signs of the derivatives
0fi/0x;(x, p). Forexample, if f; /0x; > 0, this means that; has a positive (catalytic) effect upon the rate of formation

of x;. The critical assumption, indeed the main poinfi,11,16] is that, while we may not know the form §fwe

often do know thatertain parameterg ;do not directly affect certain variables. This amounts to a priori biological
knowledge of specificity of enzymes and similar data. In the current paper, this knowledge is summarized by the
binary matrixC° = (c?j) € {0, 1}, where “c?j = 0" means thap; does not appear in the equation fer that is,
ofi/op; =0.

The experimental protocol allows one to perturb any one of the parameters, let us kidyahe, while leaving the
remaining ones constant. (A generalization, to allow for the simultaneous perturbation of more than one paramete
is of course possible.) For the perturbed vegiae p, one then measures the resulting steady-state vectof(p).
Experimentally, this may for instance mean that the concentration of a certain chemical represgntéikapt are
a slightly altered level, compared to the default vae then, the system is allowed to relax to steady state, after
which the complete stateis measured, for example by means of a suitable biological reporting mechanism, such as a
microarray used to measure the expression profile of the varigbl¥mthematically, we suppose that for each vector
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of parameterp in a neighborhood op there is a unique steady stdtep) of the system, wheré is a differentiable
function.
For each of the possibla experiments, in which a givep; is perturbed, we may estimate thésensitivities”

‘/‘ _ 1 B _ .
bij=—(p)~ = & (p+pjej) —<&i(p), i=1....n
opj Pj—Dj

(wheree; € R™ is thejth canonical basis vector). We Btdenote the matrix consisting of tibg’s. (See[10,11]for

a discussion of the fact that division Iy — p;, which is undesirable numerically, is not in fact necessary.) Finally,

we letA be the Jacobian matrixf/ox and letC be the negative of the Jacobian mat@ig/dp. From f(¢(p), p) =0,

taking derivatives with respect to, and using the chain rule, we get thdt= AB. This brings us to the prob-

lem stated in this paper. (The general position assumption is reasonable, since we are dealing with experiment:
data.)

2.2. Combinatorial formulation of questions (Q1) and (Q2)

Problem nameCP;, (thek-Covering problem that captures Question (Q1) and (2))
Instance(m, n, k). U =[1,m] and setd1, T, ..., T, C U withU?_; T; = U.
Valid solutions A subsetU’ C U such thatU’ N T;| >n — k for eachi € [1, n].

Objective Minimize|U’|.

2.3. Equivalence oEP; andSC,_;
We can establish a 1-1 correspondence between an ingtaneek) of CP, and an instancér, m, n — k) of SC,

by definingS; ={ j | i € T;} for eachi € [1, m]. Itis easy to verify that/’ is a solution to the instance &P if and
only if the collection of sets), for eachu € U’ is a solution to the instance &8IC,_;.

3. Approximation algorithms for SCy
An g-approximate solution (or simply arapproximation) of a minimization problem is defined to be a solution with

an objective value no larger thartimes the value of the optimum. It is not difficult to see t&&l;, is NP-complete
even wherk = n — ¢ for some constant > 0.

3.1. Analysis of greedy heuristic f&C; for large k

Johnsor8] provides an example in which the greedy heuristic for some instan&€aiver n elements has an
approximation ratio of at least lgg. This approach can be generalized to show the following result.

Lemma 2. For any fixede > 0, the greedy heuristi¢as described in Fact(b)) has an approximation ratio of at least
(% —0(1))(g;=5)log, n = Q(logn) for some instancér, m, n — c) of SC, .

Proof. We will create an instance &C,_. with n = 20 + y >> ¢ wherea > ¢ is a sufficiently large positive integer

thatis also a power of 4 and=3+-log, o > ¢ is the least positive integer such th&t2> 2+ — c. Notice that by our
choice of paramete% <a<5 =a=0(n)and H-log,n <y <2+log, n = y=0O(logn). LetS=(S1, S, ..., Sz—1}

6CPn,l is known as the hitting set problejm, p. 222]
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be the collection of all distinct non-empty subsetgaf + 1, 2« + y]. Notice that every € [2x + 1, 2« + y] occurs
in exactly 2-1>n — ¢ sets in the collectios.

A collection of our sets corresponding to an optimal cover of our instan8€pf . will consist of the 2+1 — 2 sets
[1, 2]US; and[a+ 1, 2¢] U S; for each sef; € S.Any x € [2a+ 1, 200+ 7] occurs in exactly 2> 2u+ 7y — c=n — c of
these sets. Also, eaahe [1, 2«] occurs in exactly 21 > 20 +y — ¢ =n — ¢ of these sets. Hence, an optimal solution
of this instance oBC,_. uses at most’2! — 2 < 81 — 2 sets. Notice that each set in this optimal cover contains at
mosta + y < 5 + 2+ log, n elements.

Now we specify another collection of sets which will force the greedy heuristic to use a(tdeas)t(% — 0(1)) log, n
sets. Partition1, o] into p = 1+ log, « disjoint setsPy, Py, ..., P, such that P;| = r%cﬂ fori € [1, p]. Observe that
p >log,n. Similarly, partition[o 4+ 1, 2o] into p = 1 4 log, « disjoint setsQ1, Qo, ..., @, such that Q;| = (%oﬂ
fori € [1, pl. Let S = {81, S2, ..., Sp—c} S S. Now, for eachP; U Q; and each distinc§; € S, create a set
T; j = P;U Q; US;. We claim that greedy will pickthe sefg 1, ..., Tvn—c, 721, .. .. Ton—co - s Ty 1o oo, Ty n—c
with g = (% —o(1)log, n < p. This can be shown by induction as follows:

e The greedy must start by picking the s&ig, ..., T1.,—. in some arbitrary order. Until all these sets have been
picked, the unpicked ones have at Ie%’m = %oc elements that have not been covetied c times, whereas each
set in the optimal cover has at most- y = « + 3 + log, « elements and is sufficiently large.

¢ Inductively, suppose that the greedy has picked all $gjswith i <¢ when it considers &, . for possible
consideration. Obviously, , contains at Ieasf;,Zoc = 4%oc elements that are not yet covered ¢ times. On the
other hand, the number of elements that are not yet covered times in any set from our optimal cover is at
most

q-1 4

3 1
Y+ 1_ZZ OC="/+FO(="/+470(
i=1

andg o> y+ 4 o providedy < Iog4(%). Since Iog(%ﬁ") > Iog4(5(7+%) > Iog4(m‘:f97):(% —o(1))log, n,

the inequalityg o« > y + 7o holds forg € [1, (3 — o(1))log, n]. O

3.2. Randomized approximation algorithm B¢

As stated before, an instanée, m, k) of SC;, can be(1 + Ina)-approximated in Qunk) time for anyk where
a = maxsc o {|S]}. In this section, we provide a randomized algorithm with an expected performance ratio better than
(1+ Ina) for largerk. Let ¥ = {81, S2, ..., S}

Our algorithm presented below as well as our subsequent discussions and proofs are formulated with the help of tl
following vector notations:

e All our vectors haven coordinates with théth coordinate indexed with theh setS; of ..
e if V C &, thenv € {0, 1} is the characteristic vector ¥f i.e.,

_ 1 ifS,‘EV,
USi=1o ifsi¢v.

° 1.is the vector of all 1's, i.el = .
e s' ={A € & :i € A} denotes the sets iff that contains a specific elemant

Consider the standard integer programming (IP) formulation of an instaneg k) of SC,[18]:

six>k for eachi € U,

minimize subject to ].xXA € {0.1) foreachA € .
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A linear programming (LP) relaxation of the above formulation is obtained by replacing each constrarD, 1}
by 0< x4 < 1. The following randomized approximation algorithm 8€; can then be designed:

1. Select an appropriate positive constéist 1 in the following manner:

Ina if k=1
In(a/(k — 1)) ifa/(k—1)>€®andk>1
2 if%<a/(k—l)<e2andk>l

1+ \/% otherwise

2. Find a solutiorx to the LP relaxation via any polynomial-time algorithm for solving linear programs[@&)Q.

3. (deterministic rounding) Form a family of set%° = {A € & : fxs >1}.

4, (r?ndomized rounding) Form a family of set&* c & — %° by independent random choices such gt €
4 ] = ﬁxA.

5. (greedy selectiof Form a family of set%? as: whiles’ (c® + ¢! + ¢2) <k for somei € U, insert toC? any
AeS —CO-ct-c2

6. Return® = ¥° U %* U %2 as our solution.

Letr(a, k) denote the performance ratio of the above algorithm.

Theorem 3.7

1+Ina if k=1,
1+ e ® D5 Ina/(k — 1)) if a/(k—1)>€?~7.39 andk > 1,

min{2+2- e *k=D/5 24 (g72 4 98y, a)

Elr(a, b)]< 1
~min{2+2-e*Y/5 24046 ¢} if 2 <a/(k—1) <€ andk > 1,
1+2\/% if a/(k—1)<%andk>1

Let OPT denote the minimum number of sets used by an optimal solution. Obviously; ©Pand OPT> "a—k A
proof of Theorem 3 follows by showing the following upper bound€oin(a, k)] and taking the best of these bounds
for each value of:/(k — 1):

1+1Ina if k=1,
A+ e * DS In@/k — 1)) if a/(k—1)>€® andk > 1,
24+ 2. k=D/5 if a/(k—1) <€ andk > 1,
2+(e—2+e—9/8).% if a/(k — 1) <€ andk > 1,
a ; 1
1+2\/% if a/k<3.
3.2.1.

Proof ofE[r(a, k)]<1+Inaif k=1,

Elr(a, H)1<A+ e * D5 In/(k — 1) if a/(k — 1) >€? andk > 1, and
Elr(a,k)]<2+2-e®DBifa/(k — 1) <€ andk > 1

For our analysis, we use the following notations:

0= xq  if fxa =1, 1o 0 if fxa>1,
A7 10  otherwise A7 1 x4 otherwise

7 The case ok = 1 was known before and included for the sake of completeness only.
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Note thate§ = [x§7< fxG. Thus1x® <10 < B1xO. Definebonus = f1x0 — 1c0. Itis easy to see th&[1(c® + ¢1)] =
plx — bonus.
The contribution of seA to bonusis ﬁxg — cg. This contribution tdonuscan be distributed equally to the elements
in A. Since|A|<a, an elemeni € [1, n] receives a total oéit leastd’ /a of bonus whereb’ = s'(fx® — ¢0). The
random process that forms sét has the following goal from the point of view of eleménpick at leastg’ sets
that containi, whereg’ = k — s'c0. These sets are obtained as successes in Poisson trials whose probabilities of
success add to at least = f(k — s'x9). Let y* be random function denoting the number that eleni@antributes
to the size of¢?; thus, if in the random trials in Step 4 we fouhdsets froms’ then y’ = max{0, k — h}. Thus,
Elr(a, )1=E[L(c® + !+ D)< Lle + Y1 Ely — 2. Letg’ = ﬁ—fls"(c0 — x9). We can parameterize the random

process that forms the s&t from the point of view of elemeritas follows:

¢' is thegoal for the number of sets to be picked;

Pl =Pk —s'x%) = Bg’ + (B — 1)¢' is the sum of probabilities with which sets are picked;
b' Ja is thebonusof i, whereb’ = s/ (x0 — 0 > (f — 1) (k — g' — ¢');

q'>0,¢' >0andg’ + ¢’ <k;

y' measures how much the goahssegl

to boundE[r (a, k)] we need to boun&[y’ — %’].

3.2.1.1. g-Shortage functionk this section we prove some inequalities needed to estiEjafe- %i] tightly. Assume
that we have arandom functidfthat is a sum oN independent 0-1 random variablés LetE[X]=) ", Pr[X;=1]=pu
andg < u be a positive integer. We defilgeshortage functiomsYg“ =max{g — X, 0}. Our goal is to estimatE[Ygf‘].

Lemma 4. EY/]<e Y85 &L,

Proof. Suppose that for some positive numbgrg and someX; we havePr[X; = 1] = p + q. Consider replacing;
with two independent random functio§ o andX; 1 such thaPr[X; o = 1] = p andPr[X; 1 = 1] = ¢. We can show
that after this replacemeE[Y;] increases as follows. In terms of our random functibefore the replacemente
definer; = Pr{X — X; = g — j]. Let X" be the sum of our random functioafter the replacemerandYé be defined

in terms ofX’. Leta = fjjrj, b= Zf;; (j — Drj, andc = §;§ (j — 2)r;. Then,
ElYl=Q-pA—-q a+pl-q) b+ 1~ p)gb+ pgc
=(1-p—q+pg) a+(p+q—2pq) b+ pqc,
EYyl=Q—-p—-qg)a+(p+q) b,
E[Yg] — E[Y¢]=(a — 2b +¢) pq =r1pq>0.

Therefore, we increasE[Yéf‘] if we replace the original independent random functionNoernoulli trials with
probability of succesgs/N, and take the limit fotv — oco. If r; = Pr[X, = j] then it now follows that

: _ N! N—j j J
lim rj= im ——— (1 - ﬂ) (ﬁ) = _’u e
N—oo N—oco (N — j)!j! N N eHj!

where the last equality follows from standard estimates in probability theary.

From now on we will assume the worst-case distributiorYﬁjf so we will assume that the above inequality in
Lemma 4 is actually an equality (as it becomes so in the limit), i.e., we asEuHéﬁ‘q = e‘“Zf’:ol % i . For afixed
B, we will need to estimate the growth E[Yfﬂ] as a function of. Let p, () = egﬂE[Yggﬁ].

1 ei g
Lemma 5. p, (1) = 3{25 &7 &' = i
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Proof.
-1 . —1 -1 .
(1)_‘g2(g"(g—t)_‘g gt gl
Pei = T R TR
i=0 i=0 i=0
g—1 g—1
-y eyt
| | — !
i=0 ! i=1 (l 1)
g-1 g—2
_ Z gz+l B g1+l
il |
i=0 ! i=0 !
_ g—1 gz+l B g—1 gl+l g4
| | — !
i=0 ! i=0 ! (g 1)
__ 8 0
(g—D!

Lemma 6. For > 1, /;f/jl(([f)) is a decreasing function ¢f.
8

Proof. By definition, p,(8) = >"f 3 ! 4 B wherea; = g' (g — i). Let f () = Pe+1(B) andt (B) = fp, (). We need to

show that, for a given fixed, f(ﬁ)/t(ﬁ) is a decreasing function ¢f The derivative off () /¢ (f) is %M

We claim that the numeratg? ()t () —t'(B) f (B) is a polynomial whose coefficients abvays negativewhich then
proves that the derivative is negative (for@l 0). To prove this, it suffices to show thatif f) = 1/ (B)t () —t'(B) f (B)
thenp® (0) < 0 for all k.

Note that®) (0) = kp("’l) (0) for all k, hence

F00) = {(g—i—l)k(g—i—l k) if0<k<g, t(k)(o)z{légk—l(g+l—k) ifO<k<g,

if k> g, ifk>g.
On the other hand,
p=ft-1f,
pl=r"t=1"f,
M= =" f 4 =t f
etc., so it will be enough to prove that
atk, by = F®R® Q) — 1® M) <0

wheneverg >k > h. (By induction, if we have that a derivative pfis a sum of terms of the formt®) f — fk) ()
then taking another derivative of any such term, we get 4 terms, then rearrange to see that the same is true for one mo
derivative ofp.)

Letk = h 4+ d withd > 0. Thena(h + d, h) = (—g?h — g%d + (g + 1)%h)(g + 1)"g"~D, so we need to show
that (g + 1)h < g%(h + d) wheng>h + d andd > 0. Let g(h) = —g%(h + d) + (g + 1)?h for fixed g and
d. We need to show thaj(h) <0 for h<g — d. Sinceq’(h) = (g + 1) — g? >0 it is enough to check at the
maximum valueh = g — d. Thus, we need to show thét + 1)¢(g — d) < g1 always holds for any &d <g.
For d = g this is clear, so we assume from now on that g. Taking Iogarlthms of both sides, we must show that
r(d)=dIn(g +1) +In(g —d) — (d + 1) In g < 0. We claim that’(d) = In(s£1) — d < 0. Once that this is shown,
it will follow from r(d) <r(1) =In(g+ 1) +In(g — 1) — 2Ing and concawty of In (which says thatl) < 0) that
r(d) < 0 as wanted. To show(d) < 0, we note that—T < - T (becausel > 1), so all we need to show is that

1

1
In(g+1)< or, equwalently,H <es—1, But, obviously, 1+ <14 =g<es” =1, O

-1
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The next lemma characterizes the growttEoY; " ] as a function ofy.

gﬁ
] B(_8
<e” /(m)g-

Lemma 7. If g>1andf > 1then = (g 7S

B

Proof. Using Lemmas 5 and 6, we gef(g—l),, =e" [3 pg P <e

1
g = e At O

The last lemma characterizes the impact of “extra probabilities” on the expected value.

Lemma 8. %Z;q] <e 11-YP),

1
Proof. The ratio ise™? times the ratio of two polynomials. The terms of the upper polynomial are larger than the terms
of the lower by a factor at mo$éh;§‘f)g*1 =1+ !S,iﬁ)g*1 <el/f. O

3.2.1.2. Putting all the pieces togethdn this section we put all the pieces together from the previous two subsections
to prove our claim oiE[r (a, k)]. We assume thgt> 2 if k > 1. Because we perform analysis from the point of view of

a fixed element, we will skipi as a superscript as appropriate. As we observed in Section 3.2.1, we need to estimate
Ely — g] andb > (f — 1)(k — g — q). We will also use the notatiorsandq as defined there.

Obviously ifg=0theny=0. First, we consider the caseicf 1 separately. Theg,< 1 and henc&[y - 2]<ef=1
Thus, wherk =1,

Elr(a, k)] = E[1(c° + ¢ + ¢?)]
n bl

<Plr+ 2
a
<BOPT+ OPT= (1 + Ina)OPT.
Otherwise, for the rest of this proof, assume that1. We first consider the “base” casegp# 1 andg = 0. Since
g=0,c0=x% Thus,b = s* (Bc® — O = (p — 1)s'c® = (B — 1)(k — 1). Next, we comput&[y]. Sincep = fig = f,

Ely]=E[vf1=eF.
We postulate that

E[y—ﬂgos <([>’ 1)a(k 1)
el k-1
= <
p—1 a
a
= (p-n>—
E[f—i—ln(ﬂ—l)}Inkil. @

Now we observe the following:

o If a/(k —1)>¢€?, thenf + In(f — 1) >2, or equivalently>2 as is the assumption in this section. Moreover,
B =In(a/(k — 1)) obviously satisfies inequality 4.

e If a/(k —1) < €2, then obviously > 2 by our choice ofi = 2. Moreover = 2 obviously also satisfies inequality
(4) as well.

Thus, for the base casB[1(c? + ¢! + ¢?)]< plx < In(a/(k — 1))OPT.
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Now we consider the “non-base” case when eitherl org > 0. Compared to the base case, in a non-base case we
have bonu% decreased by atlea@t — 1)(g + ¢ — 1)/a. Also,E[y] = E[Y;’] = E[Yfg+(ﬁ_l)q]. We need to calculate
how this compares with the base vaIchleﬁ] using Lemmas 7 and 8.

Be+(f—Dyg
Lemma 9. % e_(g+q_1)/5_

Proof. Firstly, if ¢ > 0, then

Be+(B—Dq L
E[Y, P
¥ e 1)4(1 ﬁ) (by Lemma 8)
1
< e—(ﬁflm(l* 2) (sincefi>2)
<e 92 (sincef>2)
< e /5,

Now we need to bounE[[Ygﬁg]/E Y1

Bg piy
Obviously, ElYe 1 _ s _E% 1 We now observe the following:
B i=2 ﬁ(t 1)
E[Y;] E[Y;Z; 7]

2%,
o If i =2, thentl2 ! — =82 _ B2 1 2p). Sincee#(2 + 2p) is a decreasing function @fand 2+ > 2,

' E[Yf] p(p) —

it follows thate # (2 + 2f) <4e 2 < e /5,
ﬁ
Similarly, if i = 3, then=2 ! — g2 _ o283 6 + 9p%) <334 <25,

Erv/) p1(B)
o . Bl appaB) 3 2 | 3253\ _ 532, 6 _ ~3/5
e Similarly, if i = 4, then E[;f] =e ﬁp‘;(ﬁ) =e @4+ 128 + 1667 + £°) < 23276 <735,
. . EVe'l _ —appsB) _ 4 7502 | 12543 | 62554 —8 _ 4/5
e Similarly, if i = 5, then E[st] =e ﬁpi(ﬂ) =e¥(5+208+ P+ 1526° + BpY) <94e B <75,

Finally, suppose that>6. Then,

Erv/

— i< e%(#) (by Lemma 7)
B/ i-1

6 6 . i
< e—ﬁlg(_> (since( ! 1) is a decreasing function @9
i —

< e‘22<

~1/5

(6]

gl o

6
) (sincee# B is a decreasing function ¢

<e

e Thus,E ]<e (g=D/5,
E[Yl]

E[ylfg+(/f l)q]

e Thus, <e @+e=D/5 O

Elv{]
Summarizing, when bonus is decreased by at st 1)(g +¢q — 1)/a = (f — 1)t /a, we decrease the estimate of
E[y] by multiplying it with at lease~"/>. As a function oft = g + ¢ — 1 we have

—ﬁa_l(k—l—t)g—(ﬁ_l)a(k_l) (e"/S 1+ )

Efv] — b ge—ﬁ—f/5_
[yl —b/a —1
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This is a convex function df so its maximal value must occur at one of the ends of its range. Whehwe have 0,
and wherr =k — 1 we havewe*(k D/5, As a result, our expected performance ratiokfer 1 is given by

Elr(a, OI<pLe + Y Ely' — ]

i=1
<BOPT+ Pk -5
a

<P+ e *D5oPT

1+ e %D In@/k — 1))OPT ifa/(k —1)>€?
2(1+ e *=D/50PT ifa/(k —1) <€?

3.2.2. Proof oE[r(a, k)]<2+ (€2 + e %8) . Lifa/(k — 1) <€

Each set inA € g U €1 is selected with probab|I|ty miifix4, 1}. ThusE[|%o U €1]1< fLlx <5 - OPT. Next we
estimate an upper bound &f|%>|]. For each elemerite [1, n] let the random variable be maxk — d;, O} whered;
is the number of sets ifip U %1 that containi. Clearly,|%2| <> _;_; vi. Thus it suffices to estimat€[v;]. Because our
estimate will not depend anwe will drop this index from v; for notational simplifications. Assume thak [1, n] is
contained irnk — f sets from@&g for somef < k. Then, I<v< f and

f-1
E[v]<ZPrv>J] ZPr[v>]]_Z Priv>f — jl. (5)

Let the random variablg denote the number of sets #y that containi. Considering the constraintx >k and the
fact that we select a sét € .9\ %o with probability fx 4, it follows thatE[y] > f. Now,

Priv=f — jl=Prly <1 —94;)Bf], (6)
where

(1—5/)ﬁf=jEﬁf5j=ﬁf—jf5j=ﬁ];3;]- (7)
By using standard Chernoff’s boutl3,12] we have

Priy < (1— 6,)Bf1<Prly < (1 — 6, Ely]] <€ E15/2 < e=B19/2, ®)
where

Bro; —)? 2

A ek VA Y SR 0 N Y (©)

T A T
Combining Egs. (5), (6), (8) and (9) we gélv] < Z{;& e {B.1D),

Lemma 10. Let X (8, f) = Z{;Ol e (b1 ThenX (2, f) is maximized forf = 2 and this maximum value &2 +
—9/8
e /8,

Proof. X(2,1) =e 1 <e 2+ e %8 The following series of arguments shows tha®, 1)< X (2, 2) forall f > 2:

e (2 fD=f—j+ %.AlSO,C(Z, fif- 1) =1+ (f_fl)z = [#2H/] s an increasing function df
.2 2
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e Clearly,

)
X2 f)= (Z e—C(z,f—l,ﬁ,ec<2,f—1,j>—é<2,f,j>) 4 el@fr-D
Jj=0

. 1 .
< 8_3/4X(2, f-1+ et 1D EX(Z’ f-1+ e t@ff=D
Hence

X2, f-1D<X2,2) N\ et@hI-D < %X(Z, 2) = X2, f)<X(22

X2, f—DSXCOINI2 f, f—D>-InX2,2)+In2= X(2, /) <X(2,2)

o X(2,3)<0.44<X(2,2).
e ((2,4,3)> 156> 0.78+0.694> —In X (2, 2)+In 2. Moreover, sincé(2, f, f —1) increases witl, this implies
(2, f,f—1)>—-InX2,2)+In2forall f>4.Thus,X(2, f)<X(2,2)forall f>4. O

Now we are able to complete the proof on our claimed expected performance ratios as follgwsfL) < e? then
with g = 2 we getE[[|%o U %1[1<2- OPT andE[[|%2/1< (€72 + e ¥8) . a< (e 2+ e 98) . ¢ . OPT by Lemma 10.

3.2.3. Proof oE[r(a, k)] <1+ 2\/% ifa/k<}

For notational simplification, let = \/§> 2. Thus, in our notationf = 1 + o~ and we need to show that

Elr(a, k)1<1+ 2071 + 0~2. As we observed immediately after the statement of Theorem 3,>0RT(wherex
was the solution vector to the LP relaxation) and O;P—’aﬁ = no?. We will also reuse, if necessary, the notations
introduced in Section 3.2.1.

We first focus our attention on a single element,is&pr notational convenience, we will drofrom the superscript
when possible. Le% andfg"1 be the sets ir¥p and %1, respectively, that containgdWe will relate the following
quantities:

p=p =Pk - s'x0) is the sum of probabilities used in Step 4 for the sets that contain
y=y' =|%5]| is the shortage of sets that contaaiter Step 4.

Suppose that > 0 and thau(66| =k — f for some O< f <k. Suppose that elements contained irk — f + p sets,
say the setsy, S, ..., Sk— s+, for somep > 0, out of whichk — f sets, say the sels, S, ..., Si_r, were selected
to be in%}. From the inequality

xXs, +xs, + - +'xSk7f+p>k

and the fact thatj <1forallj,itfollows thatp>xg, ., + x5, , +- - +x5_,,,=f. Letp= f+ pforsomeu>0.
Obviously,E[ |41| 1=p=pp=1+a"Y)f + (1+ a1 Now,

4l =f —
=[A+oaHf+A+aHul -t f = A+a Hu—y
:'1_( o+ A+ >_ y }p
A+obHf+A+obHu) A+ Hf+Q+aHu

- () - e
= A+oh7)  Q+abf+@+adpl?

=1-@+wt- %] E[ |14]1.
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By using standard Chernoff’s bouffit}3,12] we have

N Z Priy>jl

j=1
Pr(|¢}| < <1—<<1+a> 1y p)) E[1€,11]

ef%((l+a)’l+j/p)2p

qu

~.
Il
N

/AN
WK

~.
1
N

e 34j@+n) Y p)p since(x + y)2>4xy for all x andy

Mg

~.
Il
N

o 3@

JURK

<
1
N

[0

N

~
Il
N

_ 1

C2+nt g

<o ———7 sincee' >1+xforx>0

21+ o)~

14w
=—

Therefore on behalf dfwe will select, on averagé€l + «)/2 sets in Step 5; thus the total average number of elements

selected in Step 5 over all elements is at mms‘IZ. Summarizing,

0 1 2 _1 nOCZ 3 1 2
E[|4°+%¢ +%71<x(1+ o )+—+ <14+ —+4+ = )OPT< |14 — ) OPT,
242 20 oc2 o
where the last inequality follows sinee> 2.
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