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Abstract

In this paper we investigate the computational complexity of a combinatorial problem that arises in the reverse engineering of
protein and gene networks. Our contributions are as follows:

• We abstract a combinatorial version of the problem and observe that this is “equivalent” to the set multicover problem when
the “coverage” factork is a function of the number of elementsnof the universe. An important special case for our application
is the case in whichk = n− 1.

• We observe that the standard greedy algorithm produces an approximation ratio of�(logn) even ifk is “large” i.ek = n− c

for some constantc >0.
• Let 1<a<n denote the maximum number of elements in any given set in our set multicover problem. Then, we show that
a non-trivial analysis of a simple randomized polynomial-time approximation algorithm for this problem yields an expected
approximation ratioE[r(a, k)] that is an increasing function ofa/k. The behavior ofE[r(a, k)] is roughly as follows: it is
about ln(a/k)whena/k is at least aboute2 ≈ 7.39, and for smaller values ofa/k it decreases towards 1 as a linear function of√
a/k with lima/k→0E[r(a, k)] = 1. Our randomized algorithm is a cascade of a deterministic and a randomized rounding

step parameterized by a quantity� followed by a greedy solution for the remaining problem. We also comment about the
impossibility of a significantly faster convergence ofE[r(a, k)] towards 1 for any polynomial-time approximation algorithm.
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1. Introduction

Let [x, y] be the set{x, x + 1, x + 2, . . . , y} for integersx andy. The set multicover problem is a well-known
combinatorial problem that can be defined as follows.

Problem name: SCk.
Instance〈n,m, k〉: An universeU =[1, n], setsS1, S2, . . . , Sm ⊆ U with ∪mj=1Sj =U and a “coverage factor”

(positive integer)k.
Valid solutions: A subset of indicesI ⊆ [1,m] such that, for every elementx ∈ U , |j ∈ I : x ∈ Sj |�k.
Objective: Minimize|I |.

SC1 is simply called the Set Cover problem and denoted bySC; we will denote an instance ofSCsimply by〈n,m〉
instead of〈n,m,1〉.
BothSCandSCk are already well-known in the realm of design and analysis of combinatorial algorithms (e.g., see

[18]). Let 3�a <n denote themaximum number of elements in any set, i.e.,a=maxi∈[1,m]{|Si |}.We summarize some
of the known relevant results for them below.

Fact 1 (Feige (a)[6] ).4 AssumingNP�DT IME(nlog log n), instances〈n,m〉 of theSCproblem cannot be approx-
imated to within a factor of(1− �) ln n for any constant0< �<1 in polynomial time.
(b) (Vazirani[18] ) An instance〈n,m, k〉 of theSCk problem can be(1+ ln a)-approximated inO(nmk) time by a

simple greedy heuristic that, at every step, selects a new set that covers themaximum number of those elements that has
not been covered at least k times yet. It is also possible to design randomized approximation algorithms with similar
expected approximation ratios.

1.1. Summary of results

The combinatorial problems investigated in this paper that arise out of reverse engineering of gene and protein
networks can be shown to be equivalent toSCk whenk is a function ofn. One case that is of significant interest is when
k is “large”, i.e.,k = n − c for some constantc >0, but the case of non-constantc is also interesting (cf. Questions
(Q1) and (Q2) in Section 2). Our contributions in this paper are as follows:

• In Section 2 we discuss the combinatorial problems (Questions (Q1) and (Q2)) with their biological motivations
that are of relevance to the reverse engineering of protein and gene networks. We then observe, in Section 2.3,
using a standard duality that these problems are indeed equivalent toSCk for appropriate values ofk.

• In Lemma 2 in Section 3.1, we observe that the standard greedy algorithmSCk produces an approximation ratio
of �(logn) even ifk is “large”, i.e.k = n− c for some constantc >0.

• Let 1<a<ndenotes themaximumnumber of elements in anygiven set in our setmulticover problem. InTheorem
3 in Section 3.2, we show that a non-trivial analysis of a simple randomized polynomial-time approximation
algorithm for this problem yields an expected approximation ratioE[r(a, k)] that is an increasing function of
a/k. The behavior ofE[r(a, k)] is “roughly” as follows: it is about ln(a/k) whena/k is at least aboute2 ≈ 7.39,
and for smaller values ofa/k it decreases towards 1 as a linear function of

√
a/k with lima/k→0E[r(a, k)] = 1.

More precisely,E[r(a, k)] is at most5
1+ ln a if k = 1,
(1+ e−(k−1)/5) ln(a/(k − 1)) if a/(k − 1)�e2 ≈ 7.39 andk >1,

min
{
2+ 2 · e−(k−1)/5,2+ (e−2+ e−9/8) · a

k

}
≈ min

{
2+ 2 · e−(k−1)/5,2+ 0.46 · a

k

}
if
1

4
<a/(k − 1)<e2andk >1,

1+ 2
√
a

k
if a/(k − 1)� 1

4
andk >1.

4A slightly weaker lower bound under the more standard complexity-theoretic assumption of P�=NP was obtained by Raz and Safra[13] who
showed that there is a constantc such that it is NP-hard to approximate instances〈n,m〉 of theSCproblem to within a factor ofc ln n.

5 Note that, fork >1, the bound onE[r(a, k)] is defined over three regions of values ofa/(k − 1), namely[a,e2), [e2, 14) and[ 14 ,0). The
boundaries between the regions can be shifted slightly by exact tedious calculations.We omit such straightforward but tedious exact calculations for
simplicity.
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1.2. Summary of analysis techniques

• To prove Lemma 2, we generalize the approach in Johnson’s paper[8]. A straightforward replication of the
sets will not work because of the dependence ofk on n, but allowing the “misleading” sets to be some-
what larger than the “correct” sets allows a similar approach to go through at the expense of a diminished
constant.

• Our randomized algorithm in Theorem 3 is a cascade of a deterministic and a randomized rounding step parame-
terized by a quantity� followed by a greedy solution for the remaining problem.

• Our analysis of the randomized algorithm in Theorem 3 uses an amortized analysis of the interaction between the
deterministic and randomized rounding steps with the greedy step. For tight analysis, we found that the standard
Chernoff bounds such as in[1,3,12,18]were not always sufficient and hence we had to devise more appropriate
bounds for certain parameter ranges.

1.3. Impossibility of significantly faster convergence ofE[r(a, k)] towards 1

It is certainly tempting to investigate the possibility of designing randomized or deterministic approximation algo-
rithms for whichE[r(a, k)] or r(a, k) converges to 1 at asignificantlyfaster rate as a function ofa/k. However, this
may be difficult to achieve and, in particular,E[r(a, k)] or r(a, k) cannot be 1+ o(1) for a�k since the set multicover
problem is APX-hard for this case. To illustrate the last assertion, consider the special case ofk= a= n− 1. Then, the
set multicover problem is still APX-hard as shown in the following. One could haven− 1 sets of the formV \{i} that
cover every element, except one, exactlyn−2 times (the last element is coveredn−1 times). Moreover, we can have a
family of sets of size exactly 3 that form an instance of the set cover problem restricted toa=3. This restricted problem
is APX-hard, and a solution of sizem for that instance gives solution of sizen + m − 1 for our instance. Because
m�n/3, this is an approximation-preserving reduction. However, we will not investigate designing tight lower bounds
further in this paper.

2. Motivations

In this section we define a computational problem that arises in the context of experimental design for reverse
engineering of protein and gene networks. We will first pose the problem in linear algebra terms, and then recast it
as a combinatorial question. After that, we will discuss its motivations from systems biology. Finally, we will provide
a precise definition of the combinatorial problems and point out its equivalence to the set multicover problem via a
standard duality.
Our problem is described in terms of two matricesA ∈ Rn×n andB ∈ Rn×m such that:

• A is unknown;
• B is initially unknown, but each of its columns, denoted asB1, B2, . . . , Bm, can be retrievedwith aunit-cost query;
• the columns ofB are ingeneral position, i.e., each subset of��n columns ofB is linearly independent;
• thezero structureof the matrixC = AB = (cij ) is known, i.e., a binary matrixC0 = (c0ij ) ∈ {0,1}n×m is given,
and it is known thatcij = 0 for eachi, j for which c0ij = 0.

The objective is to obtain as much information as possible aboutA (which, in the motivating application, describes
regulatory interactions among genes and/or proteins), while performing “few” queries (each of which may represent
the measuring of a complete pattern of gene expression, done under a different set of experimental conditions). For
each query that we perform, we obtain a columnBi , and then the matrixC0 tells us that certain rows ofA have zero
inner product withBi .
As a concrete example, let us taken= 3,m= 5, and suppose that the known information is given by the matrix

C0 =
[0 1 0 1 1
1 1 1 0 0
0 0 1 0 1

]
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and the two unknown matrices are

A=
[−1 1 3
2 −1 4
0 0 −1

]
, B =

[4 3 37 1 10
4 5 52 2 16
0 0 −5 0 −1

]

(the matrixC0 has zero entries whereverABhas a zero entry). Considering the structure ofC0, we choose to perform
four queries, corresponding to the four columns 1,3,4,5 ofB, thus obtaining the following data:[4 37 1 10

4 52 2 16
0 −5 0 −1

]
. (1)

What can we say about the unknown matrixA? Let us first attempt to identify its first row, which we callA1. The first
row of the matrixC0 tells us that the vectorA1 is orthogonal to the first and second columns of (1) (which are the same
as the first and third columns ofB). This is theonly information aboutA that we have available, and it is not enough
information to uniquely determineA1, because there is an entire line that is orthogonal to the plane spanned by these
two columns, however, we can still findsomenonzero vector in this line, and conclude thatA1 is an unknown multiple
of this vector. This nonzero vector may be obtained by simple linear algebra manipulations. For example, we might
add a linearly independent column to the two that we had, obtaining a matrix

B1=
[4 37 0
4 52 0
0 −5 1

]
,

then pick an arbitrary vectorvwhose first two entries are zero (to reflect the knownorthogonality), let us sayv=[0,0,1],
and finally solveA1B = v, thus estimatingA1 asvB−1:

Â1= [0,0,1]B−1= [0,0,1]
[ 13/15 −37/60 0
−1/15 1/15 0
−1/3 1/3 1

]
= [−1/3,1/3,1].

Notice that this differs from the unknownA1 only by a scaling. Similarly, we may employ the last two columns of (1)
to estimate the second rowA2 of A, again only up to a multiplication by a constant, and we may use the first and third
columns of (1) (which are the same as the first and fourth columns ofB) to estimate the last row,A3.
Notice that there are always intrinsic limits to what can be accomplished: if we multiply each row ofA by some

nonzero number, then the zero structure ofC is unchanged. Thus, as in the example, the best that we can hope for is
to identify the rows ofA up to scalings (in abstract mathematical terms, as elements of the projective spacePn−1). To
better understand these geometric constraints, let us reformulate the problem as follows. LetAi denote theith row of
A. Then the specification ofC0 amounts to the specification oforthogonality relationsAi ·Bj = 0 for each pairi, j for
which c0ij = 0. Suppose that we decide to query the columns ofB indexed byJ = {j1, . . . , j�}. Then, the information
obtained aboutAmay be summarized asAi ∈ H⊥

J,i , where “⊥” indicatesorthogonal complement, and
HJ,i = span{Bj , j ∈ Ji},
Ji = {j | j ∈ J andc0ij = 0}. (2)

Suppose now that the set of indices of selected queriesJ has the property:

each setJi, i = 1, . . . , n, has cardinality�n− k, (3)

for some given integerk. Then, because of the general position assumption, the spaceHJ,i has dimension�n − k,
and hence the spaceH⊥

J,i has dimension at mostk.
The casek = 1: The most desirable special case (and the one illustrated with the concrete example given above) is

that in whichk=1. Then dimH⊥
J,i�1, hence eachAi is uniquely determined up to a scalar multiple, which is the best

that could be theoretically achieved. Often, in fact, finding the sign pattern (such as “(+,+,−,0,0,−, . . .)”) for each
row of A is the main experimental goal (this would correspond, in our motivating application, to determining if the
regulatory interactions affecting each given gene or protein areinhibitory or catalytic). Assuming that the degenerate
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caseH⊥
J,i = {0} does not hold (which would determineAi = 0), once that an arbitrary nonzero elementv in the line

H⊥
J,i has been picked, there are only two sign patterns possible forAi (the pattern ofv and that of−v). If, in addition,

one knows at least one nonzero sign inAi , then the sign structure of the whole row has beenuniquelydetermined (in
the motivating biological question, typically one such sign is indeed known; for example, the diagonal elementsaii ,
i.e. theith element of eachAi , are known to be negative, as it represents a degradation rate). Thus, we will be interested
in this question:

find J of minimal cardinality such that|Ji | �n− 1, i = 1, . . . , n. (Q1)

If queries have variable unit costs (different experiments have a different associated cost), this problemmust bemodified
to that of minimizing a suitable linear combination of costs, instead of the number of queries.
The general casek >1: More generally, suppose that the queries that we performed satisfy (3), withk >1 but small

k. It is not true anymore that there are only two possible sign patterns for any givenAi , but the number of possibilities
is still very small. For simplicity, let us assume that we know that no entry ofAi is zero (if this is not the case, the
number of possibilities may increase, but the argument is very similar). We wish to prove that the possible number of
signs is much smaller than 2n. Indeed, suppose that the queries have been performed, and that we then calculate, based
on the obtainedBj ’s, a basis{v1, . . . , vk} ofH⊥

J,i (assume dimH
⊥
J,i = k; otherwise pick a smallerk). Thus, the vector

Ai is known to have the form
∑k
r=1 �rvr for some (unknown) real numbers�1, . . . , �k. We may assume that�1 �= 0

(since, ifAi =∑k
r=2 �rvr , the vectorεv1 +∑k

r=2 �rvr , with small enoughε, has the same sign pattern asAi , and
we are counting the possible sign patterns). If�1>0, we may divide by�1 and simply count how many sign patterns
there are when�1 = 1; we then double this estimate to include the case�1<0. Let vr = col(v1r , . . . , vnr ), for each
r=1, . . . , k. Since no coordinate ofAi is zero, we know thatAi belongs to the setC=Rk−1\(L1∪· · ·∪Ln)where, for
each 1�s�n, Ls is the hyperplane inRk−1 consisting of all those vectors(�2, . . . , �k) such that

∑k
r=2 �rvsr =−vs1.

On each connected component ofC, signs patterns are constant. Thus the possible number of sign patterns is upper
bounded by the maximum possible number of connected regions determined byn hyperplanes in dimensionk − 1. A
result of Schläfli (see[4,14], and also[15] for a discussion, proof, and relations to Vapnik-Chervonenkis dimension)
states that this number is bounded above by�(n, k − 1), provided thatk − 1�n, where�(n, d) is the number of
possible subsets of ann-element set with at mostd elements, that is,

�(n, d)=
d∑
i=0

(n
i

)
� 2

nd

d! �
(en
d

)d
.

Doubling theestimate to include�1<0,wehave theupper bound2�(n, k−1). For example,�(n,0)=1,�(n,1)=n+1,
and�(n,2) = 1

2(n
2 + n + 2). Thus we have an estimate of 2 sign patterns whenk = 1 (as obtained earlier), 2n + 2

whenk = 2, n2+ n+ 2 whenk = 3, and so forth. In general, the number grows only polynomially inn (for fixedk).
These considerations lead us to formulating the generalized problem, for each fixedk: find J of minimal cardinality

such that|Ji | �n−k for all i=1, . . . , n. Recalling definition (2) ofJi , we see thatJi=J ∩Ti , whereTi={j | c0ij =0}.
Thus, we can reformulate our question purely combinatorially, as a more general version of Question (Q1) as follows.
Given sets

Ti ⊆ {1, . . . , m}, i = 1, . . . , n.
and an integerk <n, the problem is

find J ⊆ {1, . . . , m} of minimal cardinality such that|J ∩ Ti | �n− k, 1� i�n. (Q2)

For example, suppose thatk = 1, and pick the matrixC0 ∈ {0,1}n×n in such a way that the columns ofC0 are the
binary vectors representing all the (n−1)-element subsets of{1, . . . , n} (som = n); in this case, the setJmust equal
{1, . . . , m} and hence has cardinalityn. On the other hand, also withk = 1, if we pick the matrixC0 in such a way
that the columns ofC0 are the binary vectors representing all the 2-element subsets of{1, . . . , n} (som= n(n− 1)/2),
thenJmust again be the set of all columns (because, since there are only two zeros in each column, there can only be
a total of 2� zeros,�= |J |, in the submatrix indexed byJ, but we also have that 2��n(n− 1), since each of then rows
must have�n− 1 zeros); thus in this case the minimal cardinality isn(n− 1)/2.
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2.1. Motivations from systems biology

This work was motivated by a central concern of contemporary cell biology that of unraveling (or “reverse
engineering”) the web of interactions among the components of complex protein and genetic regulatory networks.
Notwithstanding the remarkable progress in genetics and molecular biology in the sequencing of the genomes of a
number of species, the inference and quantification of interconnections in signaling and genetic networks that are
critical to cell function is still a challenging practical and theoretical problem. High-throughput technologies allow the
monitoring the expression levels of sets of genes, and the activity states of signaling proteins, providing snapshots of the
transcriptional and signaling behavior of living cells. Statistical andmachine learning techniques, such as clustering, are
often used in order to group genes into co-expression patterns, but they are less able to explain functional interactions.
An intrinsic difficulty in capturing such interactions in intact cells by traditional genetic experiments or pharmacological
interventions is that any perturbation to a particular gene or signaling component may rapidly propagate throughout
the network, causing global changes. The question thus arises of how to use the observed global changes to derive
interactions between individual nodes.
This problem has generated an effort by many research groups whose goal is to infer mechanistic relationships

underlying the observed behavior of complex molecular networks. We focus our attention here solely on one such
approach, originally described in[10,11], further elaborated upon in[2,16], and reviewed in[5,17]. In this approach,
the architecture of the network is inferred on the basis of observed global responses (namely, the steady-state con-
centrations in changes in the phosphorylation states or activities of proteins, mRNA levels, or transcription rates) in
response to experimental perturbations (representing the effect of hormones, growth factors, neurotransmitters, or of
pharmacological interventions).
In the setup in[10,11,16], one assumes that the time evolution of a vector of state variablesx(t)= (x1(t), . . . , xn(t))

is described by a system of differential equations:

ẋ1= f1(x1, . . . , xn, p1, . . . , pm),

ẋ2= f2(x1, . . . , xn, p1, . . . , pm),
...

ẋn = fn(x1, . . . , xn, p1, . . . , pm)

(in vector form, “̇x=f (x, p)”, and the dot indicates time derivative), wherep=(p1, . . . , pm) is a vector of parameters,
which can be manipulated but remain constant during any given experiment. The componentsxi(t) of the state vector
represent quantities that can be in principle measured, such as levels of activity of selected proteins or transcription
rates of certain genes. The parameterspi represent quantities that can bemanipulated, perhaps indirectly, such as levels
of hormones or of enzymes whose half-lives are long compared to the rate at which the variables evolve. A basic
assumption (but see[16] for a time-dependent analysis) is that states converge to steady-state values, and these are
the values used for network identification. There is a reference valuep̄ of p, which represents “wild type” (that is,
normal) conditions, and a corresponding steady statex̄. Mathematically,f (x̄, p̄) = 0. We are interested in obtaining
information about the Jacobian of the vector fieldf evaluated at(x̄, p̄), or at least about the signs of the derivatives
�fi/�xj (x̄, p̄). For example, if�fi/�xj >0, thismeans thatxj has a positive (catalytic) effect upon the rate of formation
of xi . The critical assumption, indeed the main point of[10,11,16], is that, while we may not know the form off, we
often do know thatcertain parameterspjdo not directly affect certain variablesxi .This amounts to a priori biological
knowledge of specificity of enzymes and similar data. In the current paper, this knowledge is summarized by the
binary matrixC0 = (c0ij ) ∈ {0,1}n×m, where “c0ij = 0” means thatpj does not appear in the equation forẋi , that is,

�fi/�pj ≡ 0.
The experimental protocol allows one to perturb any one of the parameters, let us say thekth one, while leaving the

remaining ones constant. (A generalization, to allow for the simultaneous perturbation of more than one parameter,
is of course possible.) For the perturbed vectorp ≈ p̄, one then measures the resulting steady-state vectorx = �(p).
Experimentally, this may for instance mean that the concentration of a certain chemical represented bypk is kept are
a slightly altered level, compared to the default valuep̄k; then, the system is allowed to relax to steady state, after
which the complete statex is measured, for example by means of a suitable biological reporting mechanism, such as a
microarray used to measure the expression profile of the variablesxi . Mathematically, we suppose that for each vector
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of parametersp in a neighborhood of̄p there is a unique steady state�(p) of the system, where� is a differentiable
function.
For each of the possiblemexperiments, in which a givenpj is perturbed, we may estimate then “sensitivities”

bij = ��i
�pj

(p̄) ≈ 1

p̄j − pj
(�i (p̄ + pjej )− �i (p̄)), i = 1, . . . , n

(whereej ∈ Rm is thejth canonical basis vector). We letB denote the matrix consisting of thebij ’s. (See[10,11] for
a discussion of the fact that division bȳpj − pj , which is undesirable numerically, is not in fact necessary.) Finally,
we letA be the Jacobian matrix�f/�x and letC be the negative of the Jacobian matrix�f/�p. Fromf (�(p), p) ≡ 0,
taking derivatives with respect top, and using the chain rule, we get thatC = AB. This brings us to the prob-
lem stated in this paper. (The general position assumption is reasonable, since we are dealing with experimental
data.)

2.2. Combinatorial formulation of questions (Q1) and (Q2)

Problem name: CPk (thek-Covering problem that captures Question (Q1) and (Q2))6

Instance〈m, n, k〉: U = [1,m] and setsT1, T2, . . . , Tn ⊆ U with ∪ni=1 Ti = U .

Valid solutions: A subsetU ′ ⊆ U such that|U ′ ∩ Ti |�n− k for eachi ∈ [1, n].

Objective: Minimize|U ′|.

2.3. Equivalence ofCPk andSCn−k

We can establish a 1–1 correspondence between an instance〈m, n, k〉 ofCPk and an instance〈n,m, n−k〉 ofSCn−k
by definingSi = { j | i ∈ Tj } for eachi ∈ [1,m]. It is easy to verify thatU ′ is a solution to the instance ofCPk if and
only if the collection of setsSu for eachu ∈ U ′ is a solution to the instance ofSCn−k.

3. Approximation algorithms for SCk

An �-approximate solution (or simply an�-approximation) of a minimization problem is defined to be a solution with
an objective value no larger than� times the value of the optimum. It is not difficult to see thatSCk is NP-complete
even whenk = n− c for some constantc >0.

3.1. Analysis of greedy heuristic forSCk for large k

Johnson[8] provides an example in which the greedy heuristic for some instance ofSC over n elements has an
approximation ratio of at least log2 n. This approach can be generalized to show the following result.

Lemma 2. For any fixedc >0, the greedy heuristic(as described in Fact1(b))has an approximation ratio of at least
(12 − o(1))( n−c8n−2)log2 n= �(logn) for some instance〈n,m, n− c〉 ofSCn−c.

Proof. We will create an instance ofSCn−c with n= 2� + � � c where� � c is a sufficiently large positive integer
that is also a power of 4 and�=3+ log2 � � c is the least positive integer such that 2�−1�2�+�−c. Notice that by our
choice of parameters2n5 < �< n

2 ≡ �=�(n)and1+log2 n< �<2+log2 n ≡ �=�(logn). LetS={S1, S2, . . . , S2�−1}

6CPn−1 is known as the hitting set problem[7, p. 222].
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be the collection of all distinct non-empty subsets of[2� + 1,2� + �]. Notice that everyx ∈ [2� + 1,2� + �] occurs
in exactly 2�−1�n− c sets in the collectionS.
A collection of our sets corresponding to an optimal cover of our instance ofSCn−c will consist of the 2�+1− 2 sets

[1, �]∪Si and[�+1,2�]∪Si for each setSi ∈ S. Any x ∈ [2�+1,2�+ �] occurs in exactly 2�>2�+ �− c=n− c of
these sets. Also, eachx ∈ [1,2�] occurs in exactly 2�−1�2�+ �− c= n− c of these sets. Hence, an optimal solution
of this instance ofSCn−c uses at most 2�+1 − 2<8n − 2 sets. Notice that each set in this optimal cover contains at
most� + �< n

2 + 2+ log2 n elements.
Nowwespecify another collection of setswhichwill force the greedy heuristic to use at least(n−c) (12 − o(1)

)
log2 n

sets. Partition[1, �] intop= 1+ log4 � disjoint setsP1, P2, . . . , Pp such that|Pi | =  3
4i

�! for i ∈ [1, p]. Observe that
p> log4 n. Similarly, partition[� + 1,2�] into p = 1+ log4 � disjoint setsQ1,Q2, . . . ,Qp such that|Qi | =  3

4i
�!

for i ∈ [1, p]. Let S′ = {S1, S2, . . . , Sn−c} ⊆ S. Now, for eachPi ∪ Qi and each distinctSj ∈ S′, create a set
Ti,j = Pi ∪Qi ∪ Sj . We claim that greedy will pick the setsT1,1, . . . , T1,n−c, T2,1, . . . , T2,n−c, . . . , Tq,1, . . . , Tq,n−c
with q = (12 − o(1))log2 n<p. This can be shown by induction as follows:

• The greedy must start by picking the setsT1,1, . . . , T1,n−c in some arbitrary order. Until all these sets have been
picked, the unpicked ones have at least3

42�= 3
2� elements that have not been coveredn− c times, whereas each

set in the optimal cover has at most� + � = � + 3+ log2 � elements and� is sufficiently large.
• Inductively, suppose that the greedy has picked all setsTi,j with i < q when it considers aTq,r for possible
consideration. ObviouslyTq,r contains at least34q 2�= 6

4q � elements that are not yet coveredn− c times. On the
other hand, the number of elements that are not yet coveredn − c times in any set from our optimal cover is at
most

� +

1− q−1∑

i=1

3

4i


 � = � + 1

4q−1
� = � + 4

4q
�

and 64q �> �+ 4
4q � providedq < log4(

2�
� ). Since log4(

2�
� )> log4(

4n
5(2+log2 n) )> log4(

4n
10 log2 n

)=(12−o(1))log2 n,
the inequality 64q �> � + 4

4q � holds forq ∈ [1, (12 − o(1))log2 n]. �

3.2. Randomized approximation algorithm forSCk

As stated before, an instance〈n,m, k〉 of SCk can be(1+ ln a)-approximated in O(mnk) time for anyk where
a =maxS∈S {|S|}. In this section, we provide a randomized algorithm with an expected performance ratio better than
(1+ ln a) for largerk. LetS= {S1, S2, . . . , Sm}.
Our algorithm presented below as well as our subsequent discussions and proofs are formulated with the help of the

following vector notations:

• All our vectors havemcoordinates with theith coordinate indexed with theith setSi ofS.
• if V ⊂ S, thenv ∈ {0,1}m is the characteristic vector ofV, i.e.,

vSi =
{
1 if Si ∈ V,
0 if Si /∈V.

• 1 is the vector of all 1’s, i.e.1= s.
• si = {A ∈ S : i ∈ A} denotes the sets inS that contains a specific elementi.

Consider the standard integer programming (IP) formulation of an instance〈n,m, k〉 of SCk[18]:

minimize subject to 1x
six�k for eachi ∈ U,
xA ∈ {0,1} for eachA ∈ S.
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A linear programming (LP) relaxation of the above formulation is obtained by replacing each constraintxA ∈ {0,1}
by 0�xA�1. The following randomized approximation algorithm forSCk can then be designed:

1. Select an appropriate positive constant�>1 in the following manner:

� =



ln a if k = 1
ln(a/(k − 1)) if a/(k − 1)�e2 andk >1
2 if 14 <a/(k − 1)<e2 andk >1

1+
√
a
k

otherwise

2. Find a solutionx to the LP relaxation via any polynomial-time algorithm for solving linear programs (e.g.[9]).
3. (deterministic rounding) Form a family of setsC0 = {A ∈ S : �xA�1}.
4. (randomized rounding) Form a family of setsC1 ⊂ S − C0 by independent random choices such thatPr[A ∈

C1] = �xA.
5. (greedy selection) Form a family of setsC2 as: whilesi(c0 + c1 + c2)< k for somei ∈ U , insert toC2 any
A ∈ Si − C0 − C1− C2.

6. ReturnC= C0 ∪ C1 ∪ C2 as our solution.
Let r(a, k) denote the performance ratio of the above algorithm.

Theorem 3.7

E[r(a, k)]�




1+ ln a if k = 1,
(1+ e−(k−1)/5) ln(a/(k − 1)) if a/(k − 1)�e2 ≈ 7.39 andk >1,

min
{
2+ 2 · e−(k−1)/5,2+ (e−2+ e−9/8) · a

k

}
≈ min

{
2+ 2 · e−(k−1)/5,2+ 0.46 · a

k

}
if
1

4
<a/(k − 1)<e2 andk >1,

1+ 2
√
a

k
if a/(k − 1)� 1

4 andk >1.

Let OPT denote the minimum number of sets used by an optimal solution. Obviously, OPT�1x and OPT� nk
a
. A

proof of Theorem 3 follows by showing the following upper bounds onE[r(a, k)] and taking the best of these bounds
for each value ofa/(k − 1):

1+ ln a if k = 1,
(1+ e−(k−1)/5) ln(a/(k − 1)) if a/(k − 1)�e2 andk >1,

2+ 2 · e−(k−1)/5 if a/(k − 1)<e2 andk >1,

2+ (e−2+ e−9/8) · a
k

if a/(k − 1)<e2 andk >1,

1+ 2
√
a

k
if a/k� 1

2.

3.2.1.
Proof ofE[r(a, k)]�1+ ln a if k = 1,
E[r(a, k)]�(1+ e−(k−1)/5) ln(a/(k − 1)) if a/(k − 1)�e2 andk >1, and
E[r(a, k)]�2+ 2 · e−(k−1)/5 if a/(k − 1)<e2 andk >1
For our analysis, we use the following notations:

x0A =
{
xA if �xA�1,
0 otherwise,

x1A =
{
0 if �xA�1,
xA otherwise.

7 The case ofk = 1 was known before and included for the sake of completeness only.
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Note thatc0A= x0A!��x0A. Thus1x
0�1c0��1x0. Definebonus = �1x0− 1c0. It is easy to see thatE[1(c0+ c1)] =

�1x − bonus.
The contribution of setA tobonusis �x0A− c0A. This contribution tobonuscan be distributed equally to the elements

in A. Since|A|�a, an elementi ∈ [1, n] receives a total ofat leastbi/a of bonus, wherebi = si(�x0 − c0). The
random process that forms setC1 has the following goal from the point of view of elementi: pick at leastgi sets
that containi, wheregi = k − sic0. These sets are obtained as successes in Poisson trials whose probabilities of
success add to at leastpi = �(k − six0). Let yi be random function denoting the number that elementi contributes
to the size ofC2; thus, if in the random trials in Step 4 we foundh sets fromSi thenyi = max{0, k − h}. Thus,
E[r(a, k)] =E[1(c0+ c1+ c2)]��1x +∑n

i=1E[yi − bi

a
]. Letqi = �

�−1s
i(c0− x0). We can parameterize the random

process that forms the setC2 from the point of view of elementi as follows:

• gi is thegoal for the number of sets to be picked;
• pi = �(k − six0)= �gi + (� − 1)qi is the sum of probabilities with which sets are picked;
• bi/a is thebonusof i, wherebi = si(�x0 − c0)�(� − 1)(k − gi − qi);
• qi�0, gi�0 andgi + qi�k;
• yi measures how much the goal ismissed;

• to boundE[r(a, k)] we need to boundE[yi − bi

a
].

3.2.1.1. g-Shortage functionsIn this section we prove some inequalities needed to estimateE[yi− bi

a
] tightly.Assume

that we have a random functionX that is a sumofN independent 0–1 randomvariablesXi . LetE[X]=∑iPr[Xi=1]=	
andg < 	 be a positive integer. We defineg-shortage functionasY 	

g =max{g −X,0}. Our goal is to estimateE[Y 	
g ].

Lemma 4. E[Y 	
g ]<e−	∑g−1

i=0
g−i
i! 	i .

Proof. Suppose that for some positive numbersp, q and someXi we havePr[Xi =1]=p+ q. Consider replacingXi
with two independent random functionsXi,0 andXi,1 such thatPr[Xi,0= 1] = p andPr[Xi,1= 1] = q. We can show
that after this replacementE[Y 	

g ] increases as follows. In terms of our random functionsbefore the replacementwe
definerj = Pr[X −Xi = g − j ]. LetX′ be the sum of our random functionsafter the replacementandY ′

g be defined

in terms ofX′. Let a =∑g−1
j=1 jrj , b =∑g−1

j=2 (j − 1)rj , andc =∑g−1
j=3 (j − 2)rj . Then,

E[Y ′
g] = (1− p)(1− q) a + p(1− q) b + (1− p)qb + pqc

= (1− p − q + pq) a + (p + q − 2pq) b + pqc,

E[Yg] = (1− p − q) a + (p + q) b,

E[Y ′
g] − E[Yg] = (a − 2b + c) pq = r1pq�0.

Therefore, we increaseE[Y 	
g ] if we replace the original independent random function byN Bernoulli trialswith

probability of success	/N , and take the limit forN → ∞. If rj = Pr[Xg = j ] then it now follows that

lim
N→∞ rj = lim

N→∞
N !

(N − j)!j !
(
1− 	

N

)N−j( 	

N

)j = 	j

e	j ! ,

where the last equality follows from standard estimates in probability theory.�

From now on we will assume the worst-case distribution ofY
	
g , so we will assume that the above inequality in

Lemma 4 is actually an equality (as it becomes so in the limit), i.e., we assumeE[Y 	
g ] = e−	∑g−1

i=0
g−i
i! 	i . For a fixed

�, we will need to estimate the growth ofE[Yg�g ] as a function ofg. Let
g(�)= eg�E[Yg�g ].

Lemma 5. 
g(1)=
∑g−1
i=0

g−i
i! g

i = gg

(g−1)! .
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Proof.


g(1)=
g−1∑
i=0

gi(g − i)

i! =
g−1∑
i=0

gi+1

i! −
g−1∑
i=0

gii

i!

=
g−1∑
i=0

gi+1

i! −
g−1∑
i=1

gi

(i − 1)!

=
g−1∑
i=0

gi+1

i! −
g−2∑
i=0

gi+1

i!

=
g−1∑
i=0

gi+1

i! −

g−1∑
i=0

gi+1

i! − gg

(g − 1)!




= gg

(g − 1)! �

Lemma 6. For �>1,

g+1(�)
�
g(�)

is a decreasing function of�.

Proof. By definition,
g(�)=
∑g−1
i=0

ai
i! �i whereai = gi(g − i). Letf (�)= 
g+1(�) andt (�)= �
g(�). We need to

show that, for a given fixedg, f (�)/t (�) is a decreasing function of�. The derivative off (�)/t (�) is f
′(�)t (�)−t ′(�)f (�)

(t (�))2
.

We claim that the numeratorf ′(�)t (�)− t ′(�)f (�) is a polynomial whose coefficients arealways negative, which then
proves that the derivative is negative (for all�>0). To prove this, it suffices to show that ifp(�)=f ′(�)t (�)−t ′(�)f (�)
thenp(k)(0)<0 for all k.
Note thatt (k)(0)= k
(k−1)g (0) for all k, hence

f (k)(0)=
{
(g + 1)k(g + 1− k) if 0�k�g,
0 if k >g,

t(k)(0)=
{
kgk−1(g + 1− k) if 0�k�g,
0 if k >g.

On the other hand,

p′ = f ′t − t ′f ,

p′′ = f ′′t − t ′′f ,

p′′′ = f ′′′t − t ′′′f + f ′′t ′ − t ′′f ′

etc., so it will be enough to prove that

a(k, h)= f (k)t (h)(0)− t (k)f (h)(0)<0

wheneverg�k >h. (By induction, if we have that a derivative ofp is a sum of terms of the formt (k)f (h) − f (k)t (h),
then taking another derivative of any such term, we get 4 terms, then rearrange to see that the same is true for one more
derivative ofp.)
Let � = h + d with d >0. Thena(h + d, h) = (−gdh − gdd + (g + 1)dh)(g + 1)hg(h−1), so we need to show

that (g + 1)dh < gd(h + d) when g�h + d and d >0. Let q(h) = −gd(h + d) + (g + 1)dh for fixed g and
d. We need to show thatq(h)<0 for h�g − d. Sinceq ′(h) = (g + 1)d − gd >0 it is enough to check at the
maximum valueh = g − d. Thus, we need to show that(g + 1)d(g − d)<gd+1 always holds for any 1�d�g.
For d = g this is clear, so we assume from now on thatd <g. Taking logarithms of both sides, we must show that
r(d)= d ln(g+ 1)+ ln(g− d)− (d + 1) ln g <0. We claim thatr ′(d)= ln( g+1

g
)− 1

g−d <0. Once that this is shown,
it will follow from r(d)< r(1) = ln(g + 1) + ln(g − 1) − 2 lng and concavity of ln (which says thatr(1)<0) that
r(d)<0 as wanted. To showr ′(d)<0, we note that− 1

g−d < − 1
g−1 (becaused�1), so all we need to show is that

ln( g+1
g
)< 1

g−1, or, equivalently,1+ 1
g
<e

1
g−1 . But, obviously, 1+ 1

g
<1+ 1

g−1 <e
1
g−1 . �



744 P. Berman et al. /Discrete Applied Mathematics 155 (2007) 733–749

The next lemma characterizes the growth ofE[Ygxg ] as a function ofg.

Lemma 7. If g >1 and�>1 then
E[Yg�g ]

E[Y (g−1)�g−1 ] �e−�(
g
g−1)

g.

Proof. Using Lemmas 5 and 6, we getE[Yg�g ]
E[Y (g−1)�g−1 ] = e−��


g(�)
�
g−1(�)

�e−��

g(1)


g−1(1) = e−��( g
g−1)

g. �

The last lemma characterizes the impact of “extra probabilities” on the expected value.

Lemma 8. E[Yg�+qg ]
E[Yg�g ] <e−q(1−1/�).

Proof. The ratio ise−q times the ratio of two polynomials. The terms of the upper polynomial are larger than the terms
of the lower by a factor at most( g�+q

g� )g−1= (1+ q

g� )
g−1<eq/�. �

3.2.1.2. Putting all the pieces togetherIn this section we put all the pieces together from the previous two subsections
to prove our claim onE[r(a, k)]. We assume that��2 if k >1. Because we perform analysis from the point of view of
a fixed elementi, we will skip i as a superscript as appropriate. As we observed in Section 3.2.1, we need to estimate
E[y − b

a
] andb�(� − 1)(k − g − q). We will also use the notationsp andq as defined there.

Obviously ifg=0 theny=0. First, we consider the case ofk=1 separately. Then,g�1 and henceE[y− b
a
]�e−�= 1

a
.

Thus, whenk = 1,
E[r(a, k)] = E[1(c0 + c1+ c2)]

��1x +
n∑
i=1

E
[
yi − bi

a

]

��1x + n

a

��OPT+OPT= (1+ ln a)OPT.
Otherwise, for the rest of this proof, assume thatk >1. We first consider the “base” case ofg = 1 andq = 0. Since

q = 0, c0 = x0. Thus,b = si(�c0 − c0)= (� − 1)sic0 = (� − 1)(k − 1). Next, we computeE[y]. Sincep = �g = �,

E[y] = E[Y �
1 ] = e−�.

We postulate that

E
[
y − b

a

]
�0≡ e−� � (� − 1)(k − 1)

a

≡ e−�

� − 1� k − 1
a

≡ e�(� − 1)� a

k − 1
≡ � + ln(� − 1)� ln

a

k − 1. (4)

Now we observe the following:

• If a/(k − 1)�e2, then� + ln(� − 1)�2, or equivalently,��2 as is the assumption in this section. Moreover,
� = ln(a/(k − 1)) obviously satisfies inequality 4.

• If a/(k−1)<e2, then obviously��2 by our choice of�=2. Moreover,�=2 obviously also satisfies inequality
(4) as well.

Thus, for the base case,E[1(c0 + c1+ c2)]��1x� ln(a/(k − 1))OPT.
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Now we consider the “non-base” case when eitherg >1 orq >0. Compared to the base case, in a non-base case we

have bonusb
a
decreased by at least(�− 1)(g+ q − 1)/a. Also,E[y] = E[Ypg ] = E[Y �g+(�−1)q

g ]. We need to calculate
how this compares with the base value ofE[Y �

1 ] using Lemmas 7 and 8.

Lemma 9. E[Y �g+(�−1)q
g ]
E[Y �

1 ]
�e−(g+q−1)/5.

Proof. Firstly, if q >0, then

E[Y �g+(�−1)q
g ]
E[Y �g

g ]
<e

−(�−1)q
(
1− 1�

)
(by Lemma 8)

�e
−(�−1)q

(
1−12

)
(since��2)

�e−q/2 (since��2)
< e−q/5.

Now we need to boundE[Y �g
g ]/E[Y �

1 ].
Obviously,

E[Y �g
g ]

E[Y �
1 ]

= �g
i=2

E[Y �i
i ]

E[Y �(i−1)
i−1 ] . We now observe the following:

• If i = 2, thenE[Y 2�2 ]
E[Y �

1 ]
= e−� 
2(�)


1(�)
= e−�(2+ 2�). Sincee−�(2+ 2�) is a decreasing function of� and 2+ �>2,

it follows thate−�(2+ 2�)<4e−2<e−1/5.
• Similarly, if i = 3, thenE[Y 3�3 ]

E[Y �
1 ]

= e−2� 
3(�)

1(�)

= e−2�(3+ 6� + 9
2�
2)<33e−4<e−2/5.

• Similarly, if i = 4, thenE[Y 4�4 ]
E[Y �

1 ]
= e−3� 
4(�)


1(�)
= e−3�(4+ 12� + 16�2+ 32

3 �3)< 532
3 e−6<e−3/5.

• Similarly, if i = 5, thenE[Y 5�5 ]
E[Y �

1 ]
= e−4� 
5(�)


1(�)
= e−4�(5+ 20� + 75

2 �2+ 125
3 �3+ 625

24 �4)<945e−8<e−4/5.
• Finally, suppose thati�6. Then,

E[Y �i
i ]

E[Y �(i−1)
i−1 ]

�e−��

(
i

i − 1
)i

(by Lemma 7)

< e−��

(
6

5

)6 (
since

(
i

i − 1
)i
is a decreasing function ofi

)

�e−22
(
6

5

)6
(sincee−�� is a decreasing function of�)

< e−1/5.

• Thus,E[Y �g
g ]

E[Y �
1 ]

�e−(g−1)/5.

• Thus,E[Y �g+(�−1)q
g ]
E[Y �

1 ]
�e−(g+q−1)/5. �

Summarizing, when bonus is decreased by at most(�− 1)(g+ q − 1)/a = (�− 1)t/a, we decrease the estimate of
E[y] by multiplying it with at leaste−t/5. As a function oft = g + q − 1 we have

E[y] − b/a�e−�−t/5− � − 1
a

(k − 1− t)� (� − 1)(k − 1)
a

(
e−t/5− 1+ t

k − 1
)
.
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This is a convex function oft, so its maximal value must occur at one of the ends of its range. Whent = 0 we have 0,
and whent = k − 1 we have(�−1)(k−1)

a
e−(k−1)/5. As a result, our expected performance ratio fork >1 is given by

E[r(a, k)]��1x +
n∑
i=1

E[yi − bi

a
]

��OPT+ �nk

a
e−(k−1)/5

��(1+ e−(k−1)/5)OPT

�
{
(1+ e−(k−1)/5) ln(a/(k − 1))OPT if a/(k − 1)�e2

2(1+ e−(k−1)/5)OPT if a/(k − 1)<e2

3.2.2. Proof ofE[r(a, k)]�2+ (e−2+ e−9/8) · a
k
if a/(k − 1)<e2

Each set inA ∈ C0 ∪ C1 is selected with probability min{�xA,1}. ThusE[|C0 ∪ C1|]��1x�� · OPT. Next we
estimate an upper bound onE[|C2|]. For each elementi ∈ [1, n] let the random variable
i be max{k− di,0} wheredi
is the number of sets inC0 ∪C1 that containi. Clearly,|C2|�∑s

i=1 
i . Thus it suffices to estimateE[
i]. Because our
estimate will not depend oni, we will drop this indexi from 
i for notational simplifications. Assume thati ∈ [1, n] is
contained ink − f sets fromC0 for somef <k. Then, 1�
�f and

E[
]�
∞∑
j=1

Pr[
�j ] =
f∑
j=1

Pr[
�j ] =
f−1∑
j=0

Pr[
�f − j ]. (5)

Let the random variabley denote the number of sets inC1 that containi. Considering the constraintsix�k and the
fact that we select a setA ∈ S\C0 with probability�xA, it follows thatE[y]��f . Now,

Pr[
�f − j ] = Pr[y < (1− �j )�f ], (6)

where

(1− �j )�f = j ≡ �f �j = �f − j ≡ �j = �f − j

�f
. (7)

By using standard Chernoff’s bound[1,3,12], we have

Pr[y < (1− �j )�f ]�Pr[y < (1− �j )E[y]]<e−E[y]�2j /2�e−�f �2j /2, (8)

where

�f �2j
2

= (�f − j)2

2�f
= f

2
� − j + j2

2�f
= �(�, f, j). (9)

Combining Eqs. (5), (6), (8) and (9) we getE[
]<∑f−1
j=0 e−�(�,f,j).

Lemma 10. LetX(�, f )=∑f−1
j=0 e−�(�,f,j). ThenX(2, f ) is maximized forf = 2 and this maximum value ise−2+

e−9/8.

Proof. X(2,1)= e−1<e−2+ e−9/8. The following series of arguments shows thatX(2, f )�X(2,2) for all f >2:

• �(2, f, j)= f − j + j2

4f . Also, �(2, f, f − 1)= 1+ (f−1)2
4f = f+2+1/f

4 is an increasing function off.

• �(2, p + 1, j)− �(2, p, j)= 1+ j2

4

(
1

p+1 − 1
p

)
= 1− j2

4p(p+1) >
3
4 for all p�1.
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• Clearly,

X(2, f )=

f−2∑
j=0

e−�(2,f−1,j) · e�(2,f−1,j)−�(2,f,j)


+ e−�(2,f,f−1)

< e−3/4X(2, f − 1)+ e−�(2,f,f−1) < 1
2
X(2, f − 1)+ e−�(2,f,f−1)

Hence

X(2, f − 1)�X(2,2) ∧ e−�(2,f,f−1) < 1
2
X(2,2) $⇒ X(2, f )<X(2,2)

≡
X(2, f − 1)�X(2,2)∧ �(2, f, f − 1)>− lnX(2,2)+ ln 2$⇒ X(2, f )<X(2,2)

• X(2,3)<0.44<X(2,2).
• �(2,4,3)>1.56>0.78+0.694>− lnX(2,2)+ ln 2.Moreover, since�(2, f, f −1) increaseswithf, this implies

�(2, f, f − 1)>− lnX(2,2)+ ln 2 for all f �4. Thus,X(2, f )<X(2,2) for all f �4. �

Nowwe are able to complete the proof on our claimed expected performance ratios as follows. Ifa/(k−1)�e2 then
with � = 2 we getE[[|C0 ∪C1|]�2 ·OPT andE[[|C2|]�(e−2+ e−9/8) · a�(e−2+ e−9/8) · a

k
·OPT by Lemma 10.

3.2.3. Proof ofE[r(a, k)]�1+ 2
√
a
k
if a/k� 1

2

For notational simplification, let� =
√
k
a
�2. Thus, in our notation,� = 1 + �−1 and we need to show that

E[r(a, k)]�1 + 2�−1 + �−2. As we observed immediately after the statement of Theorem 3, OPT�1x (wherex
was the solution vector to the LP relaxation) and OPT� nk

a
= n�2. We will also reuse, if necessary, the notations

introduced in Section 3.2.1.
We first focus our attention on a single element, sayi. For notational convenience, we will dropi from the superscript

when possible. LetCi0 andC
i
1 be the sets inC0 andC1, respectively, that containedi. We will relate the following

quantities:

• p = pi = �(k − six0) is the sum of probabilities used in Step 4 for the sets that containi;
• y = yi = |Ci2| is the shortage of sets that containi after Step 4.

Suppose thaty >0 and that|Ci0| = k − f for some 0<f �k. Suppose that elementi is contained ink − f + 
 sets,
say the setsS1, S2, . . . , Sk−f+
, for some
>0, out of whichk − f sets, say the setsS1, S2, . . . , Sk−f , were selected
to be inCi0. From the inequality

xS1 + xS2 + · · · + xSk−f+
 �k

and the fact thatxj �1 for all j, it follows that
�xSk−f+1+xSk−f+2+· · ·+xSk−f+
 �f . Let
=f +	 for some	�0.
Obviously,E[ |Ci1| ] = p = �
 = (1+ �−1)f + (1+ �−1)	. Now,

|Ci1| = f − y

= [(1+ �−1)f + (1+ �−1)	] − �−1f − (1+ �−1)	 − y

=
[
1−

(
�−1f + (1+ �−1)	

(1+ �−1)f + (1+ �−1)	

)
− y

(1+ �−1)f + (1+ �−1)	

]
p

<

[
1−

(
�−1f

(1+ �−1)f

)
− y

(1+ �−1)f + (1+ �−1)	

]
p

=
[
1− (1+ �)−1− y

p

]
E[ |Ci1|].
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By using standard Chernoff’s bound[1,3,12], we have

E[|Ci2|] =
∞∑
j=1

Pr[y�j ]

<

∞∑
j=1

Pr[|Ci1|�
(
1−

(
(1+ �)−1+ j

p

))
E[|Ci1|]]

�
∞∑
j=1

e−
1
2

(
(1+�)−1+j/p)2p

<

∞∑
j=1

e−
1
2 (4j (1+�)−1/p)p since(x + y)2�4xy for all x andy

=
∞∑
j=1

e−
1
2(4j (1+�)−1)

=
∞∑
j=1

[e2(1+�)−1]−j

= 1

e2(1+�)−1 − 1
� 1

2(1+ �)−1
sinceex >1+ x for x >0

= 1+ �

2
.

Therefore on behalf ofi we will select, on average,(1+ �)/2 sets in Step 5; thus the total average number of elements
selected in Step 5 over all elements is at mostn�/2. Summarizing,

E[|C0 + C1+ C2|]�1x(1+ �−1)+ n�2

2�
+ n�2

2�2
�
(
1+ 3

2�
+ 1

�2

)
OPT�

(
1+ 2

�

)
OPT,

where the last inequality follows since��2.
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