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Smooth Stabilization Implies Coprime Factorization 

Absfract-This paper shows that coprime right factorizations exist for 
the input-to-state mapping of a continuous-time nonlinear system 
provided that the smooth feedback stabilization problem is solvable for 
this system. In particular, it  follows that feedback linearizable systems 
admit such factorizations. In order to establish the result, a Lyapunov- 
theoretic definition is proposed for bounded input bounded output 
stability. The main technical fact proved relates the notion of stabilizabil- 
ity studied in the state-space nonlinear control literature to a notion of 
stability under bounded control perturbations analogous to those studied 
in operator theoretic approaches to systems; it states that smooth 
stabilization implies smooth input-to-state stabilization. 

such as 

I. INTRODUCTION 

ONSTRUCTIONS of coprime factorizations for nonlinear C systems have been obtained of late in the literature [lo], [ 121, 
[8]. The potential significance of such fraction representations to 
the theory of nonlinear control has been pointed out, for instance, 
in [32], [ I  11, and [9]. Such factorizations are of interest in 
principle when studying the problem of parameterizing compensa- 
tor laws. It has also been pointed out that, in general, factoriza- 
tions for systems can be obtained through a judicious use of 
stabilizing feedback controllers (see [18] for the case of linear 
systems, and [ l l ]  and [8] for the nonlinear case). 

The paper [8] showed that one may always obtain such 
factorizations for the input-to-state maps of certain types of 
continuous-time systems of a rather special form, namely those 
expressible as bounded and input-independent perturbations of 
controllable linear systems. In this paper, we establish that 
factorizations exist under weaker hypotheses, and in doing so we 
make contact with the growing literature on nonlinear feedback 
control. In order to develop the necessary techniques, we must 
also provide what we believe are original definitions of input/ 
output stability. These definitions refine those that had been 
typically used in operator theoretic approaches to nonlinear 
systems analysis (see, e.g., [31], (321, and [SI) and which were 
motivated by analogous linear concepts. Our definitions are more 
natural in the context of Lyapunov stability, and they may be 
relevant as well in areas other than the application to factorization 
problems. 

Even for systems that are linearizable under feedback, it is not 
entirely clear that coprime factorizations should exist. This is 
because the construction of coprime factorizations is based on the 
use of feedback laws of the type 

(or, in operator terms, the diagram in Fig. 1,) while in order to 
feedback-linearize systems one needs in general (but not in the 
special case [5]) a state-dependent term multiplying the control, 
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Fig. I .  

with everywhere invertible but nonconstant f l .  (See, for instance, 
[16] and [14].) Thus, the intuition that “if a system is feedback 
linearizable then it must behave just as a linear system, and hence 
admit factorizations” is not a priori correct and requires careful 
analysis. We shall show that indeed factorizations do exist in this 
case, however, but the argument will be much less trivial. In fact, 
we shall give a general result which relates the existence of 
factorizations to the solution of smooth feedback stabilization 
problem(s). For variants of the latter see, for instance, [171, [301, 
[261, [271, 131, 161, V I ,  P I ,  [221, 111, [21, 1301, 1151, [281, 1291, 
and related references. 

To be precise, we base the existence of factorizations on the 
solution of the following control problem. Assume given a control 
system 

(3) 

with f and g,, . . , g, smooth, and evolving on R”. The controls 
take values in Euclidean space, u ( t )  = (u , ( r ) ,  . . . , ~ , ? ~ ( t ) )  E ii”’ 
for each t. We use the notation G(x) for the matrix having the 
columns g, and write the system also as 

P =f(x) + G (x) U 

We assume that 0 is an equilibrium point for the system, f ( 0 )  = 0. 
The problem of interest is then that of finding a control law as in 
(1) with the property that the resulting regulated system 

. t = f ( x ) +  G ( x ) K ( x )  + G ( x ) u  (4) 

(we write U again as U )  be in some sense bounded input bounded 
output, BIB0 for short (or more accurately, bounded input 
bounded state). We leave the precise technical definition of this 
concept unstated at this point; the details will be included later. 
But at least this should imply that for initial state 0 and arbitrary 
bounded controls U ,  the resulting solution x( .) should exist f o r  all 
t > 0 and in addition that this solution be bounded. Now, the 
slabilization problem is instead that of finding a control law 

u = K ( x )  ( 5 )  

such that 

i = f ( x ) +  G ( X ) K ( X )  

is globally asymptotically stable (GAS for short). For linear 
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systems, it is well known that the two problems are equivalent, in 
the sense that any (linear) stabilizing law ( 5 )  will be such that, 
with the same ti, (1) automatically provides BIBO stability. This 
is basically a restatement of the fact that convolving by an L' 
kernel induces a bounded operator on L -. However, for nonlinear 
systems, this equivalence does not necessarily hold. Even for 
feedback linearizable systems there are counterexamples. For 
instance, consider the scalar single input (n  = m = 1) system 

i= -x+(x2+ 1)u. (6) 

The trivial feedback law u = K ( x )  = 0 already gives asymptotic 
stability. But the corresponding system (4), which is the same as 
the original system, is not BIBO in any sense. Indeed, consider 
the control u = 1 for t 2 0. The resulting equation is 

i = x * - x +  1 

whose solution with initial condition x(0) = 0 diverges to + W. 

This example is, however, instructive in showing our main point, 
namely that any stabilizing feedback law can be modified so as to 
achieve more robustness in the sense of the closed-loop system 
being BIBO. For instance, we may use instead 

U =  - x+u  

which gives 

j= - 2 x - X 3 + u ( x * +  1 ) .  

This new equation is indeed BIBO, since for bounded u and large 
x the cubic term will dominate and make all solutions approach a 
bounded set, in fact for arbitrary initial conditions. 

The rest of this paper makes the above definitions and claims 
precise. Other definitions of smooth stabilization than that used in 
this note are not only possible but even more desirable because 
they tend to be satisfied more often; in particular requiring just 
continuity of ti at the origin. The reason for such interest is 
described in detail in [3] and to some extent in [26]. The results 
given here extend with basically no change to such more general 
notions. Also, note that [8] allows for time-varying systems. For 
simplicity, here we only talk about the time-invariant case. The 
case of systems that are not necessarily linear in controls needs 
further study. However, as far as Theorem 1 is concerned, an 
analog is easily obtained. Indeed, it is only necessary to cascade 
the system with an integrator, and to apply the results for the new 
system (which is now linear in controls). The fact that the system 
enlarged by an integrator is again smoothly stabilizable is related 
to ideas of generalized PD control for mechanical systems as in 
[ 191. An alternative, using feedback laws of the more general type 
(2), is discussed in [27]. 

Finally, we wish to point out that the methods described here 
are currently being extended to deal with the true BIBO problem 
in which there is an output map involved. In principle, this 
extension should follow along the lines of the linear case, treated 
in [18] and independently in [24]. For the particular case of 
bounded perturbations of linear systems, this work has been 
pursued already by C. Desoer (personal communication). For 
related results in the normal form feedback linearizable case, see 
also the independent work [20]. 

11. STATE-SPACE NOTIONS OF STABILITY 

We first recall some standard concepts from stability theory; 
any book on Lyapunov stability can be consulted for these; a 
particularly good reference is [13]. A function -+ R,o is 
said to be of class X if it is continuous strictly increasing and 
satisfies y(0) = 0; it is of class X, if in addition y(s) -+ 03 as s 
+ W. Note that if y is of class X,, then the inverse function y- ' 
is well defined and is again of class X,. A function p:Rz0 X Rz0 
+ is said to be of class XS if for each fixed t the mapping 
p(. , t )  is of class X and for each fixed s it is decreasing to zero on 
t a s t  + W. 

We now provide the basic stability definitions for systems in 
state-space form. Our definition of input-to-state stability is 
intended to capture the idea of bounded input bounded output 
behavior together with decay of states under small inputs. We 
chose the strongest concept under which we can prove a positive 
result; for the application to coprime factorizations using the S- 
stability notion in [8], a weaker concept would be sufficient. We 
believe that the definition given below will be of some importance 
in future stability studies. 

We make the following convention regarding norms: for any 
vector 4 in Euclidean space, I [ (  is its Euclidean norm. For 
measurable functions u taking values in such a space, llull is the 
sup norm 

llull :=  ess.sup. { l u ( t ) ( ,  t > O } .  

This may be infinite; it is finite when u is essentially bounded. 
Definition 2.1: Consider a system (3). It is globally asymptot- 

ically stable (GAS) if there exists a function p(s, t )  of class X.2 
such that, with the control u = 0, given any initial state to the 
solution exists for all t > 0 and it satisfies the estimate 

The system is input-to-state stable (ISS) if there is a function p of 
class XS and there exists a function y of class X such that for 
each measurable essentially bounded control U(. ) and each initial 
state to, the solution exists for each t L 0, and furthermore it 
satisfies 

I x ( 0  < P(I ( 0  I 9  t )  + r ( l l  lb. ( 7 )  

The above definition of GAS is of course equivalent to the usual 
one (stability plus attractivity) but it is much more elegant and 
easier to work with. See [13, def. (24.2) and eq. (26.2)], for the 
equivalence, as well as Lemma 6.1 in Section VI of this paper. 
The definition of an ISS system is a natural generalization of this. 

Note the following interpretation of the estimate (7). For a 
bounded control U, trajectories remain in the ball of radius /3(IC;ol, 
0) + y(lluII). Furthermore, as t increases, all trajectories 
approach (in a Lyapunov stability manner) the smaller ball of 
radius y(llull). Because y is of class X, this is a small 
neighborhood of the origin whenever J J u J J  is small. Of course, a 
maximum could be used instead of a sum in (7), and the definition 
would not change. 

Since y(0) = 0, an ISS system is necessarily GAS. For linear 
systems X = Ax + Bu with asymptotically stable matrix A ,  an 
estimate (7) is obtained from the variation of parameters formula, 
but in general, as remarked above, GAS does not imply ISS. 

The notion of ISS is somewhat related to the classical total 
stability notion, but in the latter case one typically studies only the 
effect of small perturbations (or controls), while here we wish to 
have bounded behavior for arbitrary bounded controls. 

Definition 2.2: The system (3) is smoothly stabilizable if 
there exists a smooth map KW" + R m  with t i (0)  = 0 such that 
(4) is GAS. It is smoothly input-to-state stabilizable if there is 

Note that systems that are linearizable under feedback are 
always smoothly stabilizable. Other such systems are described in 
the currently very active stabilization literature. The main result is 
as follows. 

Theorem I :  Smoothly stabilizability implies smooth input-to- 

The proof of this theorem is given later in this paper. It involves 
the application of an inverse Lyapunov theorem to the GAS 
system obtained from the stabilizing feedback, and the use of a 
stronger control law derived from this. In the most general case, 
the proof is not entirely constructive because of the need to invoke 
the inverse theorem; however, in most cases of interest the 
corresponding Lyapunov functions are readily available, since 
they are used in establishing smooth stabilizability to begin with; 

such a K so that the system (4) becomes ISS. 

state stabilizability . 
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see the references quoted earlier for details. Also, in the particular 
case of systems linearizable under feedback, a Lyapunov function 
is easy to obtain; this case is later worked out in detail as an 
illustration. 

111. INPUT~OUTPUT STABILITY 

Even though in this paper we shall only establish the existence 
of factorizations for those IiO operators that arise from the input- 
to-state behavior of systems given in state-space form, it is useful 
to have a notion of stability that applies to more arbitrary 110 
operators. This general notion of IiO stability will be used in the 
definition of coprime factorizations. Further, it will be related 
below to stability of input-to-state maps by showing that the I/O 
behavior of an ISS system is indeed I/O stable, and that the 
converse holds under appropriate conditions of reachability and 
observability. 

For each integer m we let LE,e denote the set of all measurable 
maps 

U : [0, w ) - t E i m  

which are locally essentially bounded, that is, such that the 
restriction of U to each finite subinterval of [0, 03) is essentially 
bounded. (The subscript e stands for extended.) We let LE be the 
set of all essentially bounded U, that is the set of all U with /\U 11 < 
00, thought of as a Banach space with this norm. 

Given any element U E LE e and any T 2 0, we consider the 
truncations ur and U defined 'as follows: 

, 

and 

if t E [0, T I ,  
if t E ( T ,  w) ' u(t), 

u T ( t )  : = 

Note that uT E LE for each T. Identifying as usual those 
functions which are almost everywhere equal, we have that uo = 
0 and u o  = U. An U0 operator is partially defined mapping 

F : 3 ( F ) + L L , ,  

with B(F) E LE,<, which is causal, i.e., it is such that 

[F(uT)IT=F(U)7 

for each T 2 0 and each U E B(F). Implicit in this definition is 
the requirement that uT E B(F) for each T L 0 whenever U is in 
W F ) .  

The first example of an IiO operator arises from state-space 
systems (3). Pick a fixed initial state to E ;in, which for 
simplicity we always take to be to = 0. Let B be the set of 
controls U E LE,e for which the solution x (  .) of (3) with x(0) = 
lo is defined for all 1. Then the map 

F ( u ) ( f )  : = x(t), 9 ( F )  = a, 

is an I/O operator, the input-fo-state mapping of the system. 

the form 
Memoryless I/O operators are everywhere defined IiO maps of 

F(u)( t )  : = h(u(1)) 

where h:a" + W'. In order for F to be well defined as a map into 
L:,?, one needs that the following property hold for the mapping 
h: 

sup {h(,u), I p ) ~ a } < w  for all a>O. (8) 

If in addition to (8) i t  holds that h(0) = 0, we shall say that h is 
X-bounded. The supremum in (8) is a nondecreasing function of 

12; if i t  vanishes at a = 0 then it can be majorized by a function of 
class X .  Thus, an equivalent definition of X-bounded function h 
is that there must exist a function cy of class X such that 

lh(P)I 5 4 l P I )  

!for each p E $in', and hence the terminology. Observe that any 
(continuous map h such that h(0) = 0 is X-bounded. In particular, 
the feedback laws K in the definition of smooth stabilizability are 
automatically X-bounded. 

More generally, we consider systems with output. These are 
given by an equation such as (3) together with a X-bounded 
mapping 

h : A - P ,  x(t) - y(t)=h(x(f))  (9) 

with some integer p. Taking the initial state to = 0, the 
assignment F ( u ) ( f )  : = h(x(t)) gives the I/O operufor of the 
system. In the particular case when h is the identity, this is the 
same as the input-to-state map. 

Definition 3.1: The I/O operator F is input/output stable 
(10s) if B(F) = LE,, and there exist a function p of class XKld: 
and a function y of class X such that, for each pair of times 0 < T 
5 t ,  

I~(u) ( t ) l  sP(IIUrI17 t -  T)+y(IluTlI) (10) 

for each U E LE,,,. 
(More precisely, since we are dealing with measurable func- 

tions, the above inequality should be interpreted as holding for 
almost all pairs T 5 t.) 

By causality, the norm lluTll in the estimate (10) could be 
replaced by that of the restriction U; of U to the interval [ T, I ] .  

Applied in particular to each pair with T = 0, the definition 
implies that IIF(u)ll i y(llu 1 1 )  for all U. This definition of 10s 
seems to be natural from a Lyapunov theoretic point of view. It 
implies other notions such as that of S-stability given in [8]. The 
latter is the property that for each a > 0 there should exist a b > 0 
such that if llull I a ,  then /lF(u)ll 5 b. If F is IOS, we can 
simply take b : = y(u),  so S-stability holds too. But our definition 
also requires that outputs approach zero if controls do, which is a 
desirable property associated to the intuitive notion of stability. To 
prove this convergence, we argue as follows: assume that u ( t )  + 

0 as d -+ 03, and pick pairs ( T ,  t) with T = t/2 in the above 
definition. Then y = F ( u )  satisfies 

I Y(f)I sP(II U II 2 t m  + r(ll U"? 1 1 )  
and both terms in the right go to zero. 

A memoryless operator corresponding to a X-bounded map h 
is always 10s. More generally, we have the following observa- 
tion, a partial converse of which will be given in Proposition 7.1. 

Proposition 3.2: If the system (3) is ISS, then the system with 
output (3)-(9) is 10s. 

Proof: Assume that there holds an estimate of the type 

I X(f ) I  5 P o 4  Eo I 1  t )  + xo(ll U I l l  (1  1) 

on solutions. Introduce the following function, which is again of 
class XC: 

P(S9 0 : = Po(xo(s), 0. 
Using time invariance, the estimate (1  1) implies that whenever T 
I t and for each control U, 

Ix(0l SPo(lX(T)I, f - T )  +xo(lluTIl). 

Also from ( l l ) ,  and because to = 0, lx(T)I 5 xo(J/uTJJ).  Since 
since Po is increasing in its first argument we conclude that the 
output y ( t )  = h(x( t ) )  satisfies 

Ix(t)l 5 f l ( l l U T I l ,  1 -  ~ ) + x " ( l / u r l o .  
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Thus, the input-to-state mapping is 10s. Since h is X-bounded 
there is a function x of class X such that I h ([) I I x( I [ I) for all [; 
we conclude that 

IY(t)l ~ P ( l i U T l l ,  f -  T)+Y(lluTIl) 

P(s, t )  : = x(2P(s, t ) ) ,  y(s) : = X ( 2 X o @ ) ) .  

for y ( t )  = h(x( t ) )  along solutions, where 

Here and later we use the following general fact, a weak form of 
the triangle inequality which holds for any function y of class X 
and any a, b ,  E kj20: 

y(a+ b)<y(2a) +y(2b) .  (12) 

This is an obvious consequence of the nondecreasing character of 
Y. 

IV. COPRIME FACTORIZATIONS 

Given an I/O operator F:D(F) + LP,,e, if it is one-to-one then 
there exits a well-defined left inverse 

F - '  : a>(F- ' )+D(F) L'&, F-'F=identity on D(F) 

whose domain D(F- I )  is the image im F of F. In this section, we 
use simply juxtaposition FG to denote functional composition 
F 0 G. The operator F is causally invertible if it is one-to-one and 
its inverse F-I is an I/O operator. Causal invertibility is 
equivalent to the following property holding for all U ,  U in the 
domain of F and all T L 0: 

F(u),=F(c)r - ur=Ur. (13) 

Indeed, if F(u)  = F(U) then the left-hand side of (13) holds for 
each T,  and hence vr = V r  for all T, from which it follows that U 
= V and therefore that F is one-to-one. Then causality of the 
inverse is equivalent to (13). 

Given I/O operators 

with B one-to-one, we consider the interconnection diagram in 
Fig. 2 (this is the same as [ 12, Fig. (1. I)]. The diagram is said to 
be well-posed if for each U E LE,e all internal signals are well- 
defined and depend causally on U. More precisely, there must 
exist elements 

u , z E  L 

such that 

m 
m,e' 

y = Pu, (14) 

z=Ay, (15) 

u=Bu+z (16) 

so that U is unique and the induced mapping 

U - D u : =  U (17) 

is an I/O operator (that is, it is causal). 
Note that if the diagram is well-posed then it follows also that Y 

and z are unique because of (14) and (15), respectively, that the 
operator 

U - Nu :=  y (18) 

is causal, since N = PD and P is causal, and finally that also v ++ 

z = ANv is causal, by causality of A .  
Definition 4.1: The I/O operator P:D(P) -+ Lc,e admits a 

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 34. NO. 4,  APRIL 1989 

z 
A 

Fig. 2 

coprime right factorization, iff there exists 10s operators A and 
B with B causally invertible, such that the diagram in Fig. 1 is 
well-posed and so that the induced I/O operators D, N are 10s. 

Lemma 4.2: The operator P admits a coprime right factoriza- 
tion if and only if there exits 10s operators 

A : LL,e-+L&, N :  Lz,e- tLL,e ,  and B, D : LE,p+Lz,e 

such that B and D are causally invertible, D(D-') = D(P) ,  

P=ND- '  (19) 

and, if 1 denotes the identity in L z , e ,  

AN+ BD = I. (20) 

Proof: Assume that a factorization exists, and let A ,  B ,  D ,  
N be as in the definition. We shall prove that the above properties 
hold for these operators. Property (20) follows from (16) together 
with (17) and (15)-(18). 

We next prove that D satisfies (13), so that it is causally 
invertible. Assume that U, U are as there. Let U, y ,  z ,  U, 9, 2 be as 
in the definition of well-posedness, for each of these inputs, 
respectively. From (17) and the causality of D,  we know that also 
ur = Gr, and from here, causality of P and A ,  and (15) and (14), 
also that zr  = Zr. Thus, ur  = 1 7 ~  because of (16), as desired. 

Finally, we prove that D-' has the same domain as P and that 
(19) holds. If U E D(D-'), that is, U = Dv for some U ,  then by 
definition of the operator D we have that there is a y  so that PU = 
y ,  that is U E D(P) .  Conversely, given any U E D(P) ,  let y : = 
Pu, z : = Ay, and U : = Bu - z.  By the uniqueness part of the 
well-posedness statement, U = Du, so that indeed U E a)(D- ' )  
and y = Nu = ND-'U. 

For the converse part of the lemma, assume that A ,  N ,  B ,  D are 
as in the lemma. Let U be arbitrary, and define y : = Nu, U : = 
Dv, and z : = Ay. Since N, D, A are all IOS, these are all well- 
defined. Moreover, property (20) implies that (16) holds. To see 
that the diagram is well-posed, we only need to verify the 
uniqueness statement. So assume that 2, f ,  2 satisfy (14)-(16) 
with the same U ;  we wish to show that U = 6. Since P6 = 9, 6 is 
in the domain of P and hence of D- ' .  Thus, there exists some V 
with DU = 6. Note that PDC = NU by the decomposition P = 
ND- ' .  It follows that: 

U = BC + f= BDU + APQ = BDU + ANU = U. 

Therefore, 6 = DU = Dv = U as desired. 
The main result about factorizations is as follows. 
Theorem 2: If (3) is smoothly stabilizable, then its input-to- 

state mapping admits a coprime factorization. 
Proof: By Theorem 1 ,  we know that there is a smooth 

feedback law K so that (4) is ISS. By Proposition 3.2 (applied with 
h = identity) the input-to-state mapping of the corresponding 
closed-loop system is 10s. In systems terms, this is the mapping U 
++ x in Fig. 1, where P is the input-to-state mapping of the 
original system ( 3 ) .  

The mapping K induces a (memoryless) IOS operator, since it 
is X-bounded. Call A the negative of this operator, which is still 
10s. Let B be the identity operator on LEL,. Then, the diagram in 
Fig. 2 is well-posed, by existence and uniqueness of solutions of 
differential equations, and the stability property of the closed-loop 
system, with in fact y : = x and z : = v - U. The system admits 
a coprime right factorization because N is the same as the input- 
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to-state mapping of the closed-loop system, and in this particular 
case one has the equality 

is a function as needed in the proof of the theorem. Thus, the 
feedback law finally used is U = K ( x )  + U ,  where the ith entry of 
the vector K ( x )  is 

D = I - A N  
1 

so D must also be stable. a(X),+ [P(x)Kod(x)li+2m Lyv(x)L,, v ( x )  (23) 
The above argument applies also in the more general case in 

which the plant P is strongly stabilkable, meaning that an 10s 
operator A exists so that the interconnection in Fig. 2 but without 
the B block is well-posed and stable 01 is well defined for each U 
and the assignment U - y is an 10s I/O operator). Again in that 
case it suffices to define z : = A y  and U : = U - A y ,  with B taken 
as the identity. 

where we are denoting the first closed-loop dynamics by 

f ( x ) = f ( x )  + G ( x ) a ( x ) +  G(x)P(x)Ko4(x). 

Because of the choice (22)  for P,  it holds that L j V ( x )  = 
- 2/+(x)I ', so the above becomes 

V .  THE FEEDBACK LINEAREABLE CASE 

Feedback linearizable systems have been the object of a fair 
amount of study recently. Their theory was studied starting with 
the papers [ 5 ] ,  [16], and [14], and many interesting practical 
systems are of this type, including robotic manipulators with rigid 
links-in which case feedback linearizability is trivial to establish 
(the computed torque approach). 

Since such systems are obviously smoothly stabilizable, at least 
in the case in which the linearization can be globally achieved, 
they provide an immediate illustration of the main result, 
Theorem 1. As pointed out earlier, there are many other classes of 
smoothly stabilizable systems, and their characterization is an 
active research area at present. 

By a (globally) feedback linearizable system we shall mean a 
system of the type (3) for which there exists an invertible 
coordinate change 

z=4(x) 

that is, a diffeomorphism 4:Fin + F i n ,  as well as an everywhere 
invertible m x m matrix of smooth functions p(x), and an n- 
vector a(x) of smooth functions, such that in the z coordinates the 
equations of the closed-loop system under U = a(x) + /3(x)u, 

X = f ( x ) +  G(x)a (x )+  G ( x ) P ( x ) u  

become those of a linear controllable system. (In the case of 
robotic manipulators, for example, p(x) is the inverse of the 
inertia matrix, and one reduces to a parallel connection of double 
integrators.) Thus, there must exist a controllable pair ( A ,  B )  
such that 

4,(x)(f(x) + G(x)c-u(x)) =Ad(x)  

where +* is the Jacobian of 4, and 

4,(x)G(x)P(x) = B .  

To stabilize such a system, one may choose a linear control law 
U = Koz so that A + BK, is asymptotically stable, and then 
express this in the x coordinates, namely use the control law 

u = a ( x ) + P ( x ) K o d ( x ) .  

As remarked in the Introduction, although stabilizing in the state- 
space sense, this feedback will in general not produce an ISS 
system. 

We may apply, however, the construction in the proof of 
Theorem I ,  as follows. First we find a Lyapunov function for the 
closed-loop system. In z coordinates this is done for instance by 
solving the Lyapunov matrix equation 

( A  + BK") ' P  + P ( A  + BK,) = - I (22) 

(prime indicates transpose) for a symmetric positive definite P. 
Then 

V(x) = 4(x)'&(x) 

L 
(Y(x),+ [P(Wod(x)l,-; Id(x)12d(x)'~4*(x)g,(x). (24) 

As an illustration take the unstable but feedback linearizable 
system with m = n = 1 with equations 

i = x + u ( x 2 +  1 )  

One can easily guess in this case the feedback law U = - 2x + U, 
which gives an ISS system, but we wish to proceed systematically, 
applying the above formulas. The system can be linearized simply 
with 4(x) = X, p(x) = (1 + x2)-*, and a = 0. We get then P = 
112 and the feedback law becomes 

2x 
x*+ 1 

U =  x3(x2+ 1) + U 

a sum of two terms the first of which is the smoothly stabilizing 
feedback law and the second being the correction term constructed 
by our theorem. The final closed-loop system is 

i= - x - ( x ~ +  1)2X3+U(X2+ 1) 

which is guaranteed to be ISS. 

VI. PROOF OF THE MAIN THEOREM 

In this section we wish to establish Theorem 1. But first we 
need to review what is basically the classical result that shows that 
the definition of GAS via functions of class Xb: is equivalent to 
the usual definition. Since its proof is very simple and since we 
need the result stated in a form which we have not found explicitly 
in the literature, we include the details here. 

When we say that a function a defined on ii?, is smooth we 
mean that it is smooth at each s > 0. 

Lemma 6.1: Assume that CY is a smooth function of class X,  
and introduce the strictly decreasing differentiable function on (0, 
+ 03) given by 

Let 0 < a : = - limx- + -  q(s) and b : = lim, + ( ) +  q(s)  > 0 (these 
may be + 03). Note that the range of q ,  and hence the domain of 
q - ' ,  is the open interval ( - a ,  6). For (s, t )  E $1," x il,,l define 

if t + q ( s ) r b ,  
if t + 7 (s) < b. 7 - I ( t  + 7 (s)), 

B ( S ,  t )  : = 

(If 6 = + 03, th_e first case never appears.) Let also B(0, t )  = 0, 
and p(s, t )  : = p(s, t )  + s/(l + 2 ) .  Then a) is of class Xd: and 
b) if y ( + )  is a solution of 

N ) =  --Cy(Y(f)), Y ( O ) = Y o r O  (25)  

defined for t 2 0 and withy(/) 2 0 for all t then i t  holds that y ( t )  

Proof: Note first that B (and hence also p)  is continuous, 
5 P(Y0, t ) .  
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since both TJ and T J - ]  are continuous in their domains and lim,,b- 
p - l ( x )  = 0. Further, 

whenever t + TJ(S) < b, and zero for t + q(s) I 6, so F(s, t )  is 
nondecreasing in s; it follows that 0 is strictly increasing in s. 
Similarly, from 

(26) 

whenever t + p(s) < b, and zero for t + p(s) I b, we conclude 
that 0 is nonincreasing in 1. For t large and fixed s, P(s, t )  either 
converges to 0 or becomes identically zero (case b finite). Thus, 0 
is of class XG, and claim a) is proved. 

Consider now any solution y of (25). Such a solution is unique; 
this follows from the fact that one has local uniqueness from each 
initial condition yo # 0 (since a(s) is Lipschitz about any s # 0) 
and if yo = 0 then y = 0, by a simple continuity argument and the 
fact that y ( t )  > 0 whenever y ( t )  > 0. Thus, for arbitrary yo, 
while y ( t )  # 0 necessarily 

a -  % P(s, t ) =  -a(P(s, tN<O 

Y ( o = B ( Y o ,  O<P(Yo,  0 
and i fy(T)  = 0 for some Tthen y ( t )  = 0 for t > T. Hence, the 

We now prove the theorem. Assume then that K I  is as in the 
bound in b) holds for all t and all initial conditions. 

definition of smooth stabilizability. We shall let 

f:= f + G K ,  

and build another smooth mapping K ,  K(0) = 0, so that K2 : = K1 
+ K makes the closed-loop system (4) ISS. Replacingfby f, we 
may thus assume without loss of generality that the original 
system is GAS. 

By standard inverse Lyapunov theorems (see, for instance, 
[13], [21], [23, Theorem 141, or as a particular case of the more 
general constructions in [26] and [3]) there exists a Lyapunov 
function for the system x = f ( x ) ,  that is, a smooth function 

V :  w - + w 2 0  

which is proper, positive definite, and decreases along trajecto- 
ries. More precisely, there exist functions a], a2, a3 of class X, 
such that, for each 5 E W", 

(27) (I E I)  5 VE 1 5 a2 (I E I)  
and 

where L, V denotes the Lie derivative 

Thus, along trajectories x (  e )  of x = f ( x ) ,  there is an estimate 

which is negative for x( t )  # 0 and goes to - 00 if Ix(t)l is large. 
The usual statements of Lyapunov inverse theorems do not 

necessarily provide the estimate (28), with the function a3 in class 
X,, but only a3 in class X or just the statement that 

Lf,V(E)<O for E#O. (29) 

It is easy, however, to modify any given Lyapunov function V so 
that there is indeed an a3 as desired. For completeness, we now 

give the necessary argument. Assume then that (27) and (29) hold; 
we shall construct a W satisfying (27) and (28) with respect to 
some functions a: all of class X,. 

We may assume without loss that a2 is smooth. Consider now 
the smooth map 

a := - L f V :  R"+R20 (30) 

1iI-n aWp(lEl)= +m. 

and let p be any smooth function of class X, such that 

E - ,  

Such a p always exists; for instance, one may first take the 
continuous function 

where x is any continuous function with lims+, x(s) .= 00 and 
x(s) = 0 for s 5 1 ,  and then majorize pa by a strictly increasing 
and smooth p .  Now let a: be any smooth function of class X, SO 
that 

a:(s)linf {a(E)p(lEl), I E l  =SI 

for all s I 0, and pick 

e(s) : = jl p(a; l ( r ) )  dr. 

Note that e is of class X, because both p and a ; * are of class X , 
so also 

a: := e 0 a1 and a: := e 0 a2 

are of class X,. Finally, let W(t) : = e(V(5)).  Then (27) holds 
for Wand a:, a;, and also 

Lf WE) = P(a; ( UE)))Lf 5 - P(I E I)a(E) 5 - a: (I € I). 
In summary, using W if necessary, we may assume that both (27) 
and (28) hold, with functions of class X,. 

Finally, we construct the feedback law needed in the ISS 
definition as follows. Let a be as in (30) and introduce also the 
functions 

(31) bi : = L,; V. 

Letting 

we shall prove that this K provides input-to-state stabilizability . 
Consider the closed-loop system (4), any initial state t o ,  any 

bounded control U, and the corresponding trajectory X (  * )  (which 
is apriori defined at least for small t ) .  Calculate the derivative of 
the same Lyapunov function V along x 

This derivative is defined for almost all t ,  since V(x( t ) )  is 
absolutely continuous. It equals 

2 
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where c( t )  is the expression 

Each of its terms is of the form 

which is nonnegative whenever 

(34) 

for all i, in which case also the expression in (33) is bounded 
above by 

a ( x ( t ) )  -~ 
2 .  

A sufficient condition for (34) to hold is that 

a ( x ( t ) ) r  m II I / .  (35) 

Using the estimate (28 )  we conclude that, along this trajectory 

1 
Ix(t)I >a4(IIuII) * v (x ( t ) ) s  -2 a3(Ix(t)l) (36) 

where cy4 is the function of class X 

q ( s )  : = a;l(ms). 

Consider the further smooth function of class X 

1 
2 

as@) : = - a3(a,'(s)). 

Then, the conclusion is that, for each t ,  

I x W  ~a4(llull) * v ( x ( t ) ) s  - a s ( V x ( t ) ) ) .  ( 3 7 )  

Let c : = a2(a4(11u 11)) and introduce the set 

s :=  { (  E $?"I V( t )<c} .  

Claim: If x(to) E S for some to I 0, then x ( t )  E S for all t 2 

Proof: Otherwise, there exists an E > 0 and some tl  > to 
to. 

such that 
V ( X ( t , ) ) > C + € .  

Let t l  be minimal like this (for this fixed E ) .  Therefore, V(x( t ) )  > 
c for t in a neighborhood of t l .  It follows that the inequality on the 
left-hand side of (37) holds for each f near t l ,  and therefore that 
the absolutely continuous function V(x( t ) )  has a negative deriva- 
tive almost everywhere near t l .  Thus, V(x ( t ) )  > V(x(t , ) )  for 
some t E (to, t l ) ,  contradicting minimality of t l .  So S must indeed 
be invariant, as claimed. 

Note that when x ( t )  E S, necessarily Ix(t)l 5 ? ( \ I  U II), where 
y is the function of class X 

y(s) : = a;' 0 a* 0 a'$. 

Finally, let Po be as in Lemma 6.1 with respect to the function a5, 
and define 

again a function of class XC. 

Claim: For each Eo and each bounded control U as above, there 
exists for the ensuing trajectory x ( . )  a time T > 0 (possib!y T 
+ 00) such that 

1) Ix(t)l 5 /3(IEol, t )  for all 
2 )  x ( t )  E S for all t I T 

< T,  and 

(with the understanding that the second case does not happen if T 
= + 00). Actually, we shall prove that for each t for which the 
solution exists, the above conclusions hold; since the union of S 
and the ball of radius /3(IFol, 0) is compact, this means that 
solutions are in fact defined for all t > 0. The theorem follows 
from this claim, since then / x ( t ) (  is bounded by the largest of 

Since S was proved above to be forward invariant, it is only 
necessary to prove that if V(x ( t ) )  > c for all t in some interval [0, 
T )  then the first case in the claim must hold for such t .  But, as 
before, this will mean that for such t there holds the last inequality 
in (37). By comparison to the solution of ( 2 5 ) ,  the desired estimate 
follows from Lemma 6.1. This completes the proof of Theorem 
1.  

P ( I t O l 9  t )  and r(llull). 

VII. FURTHER FACTS ABOUT I/O STABILITY 

We close by showing that the notion of 1 0 s  operator is closely 
related to that of ISS system, in the sense that under certain 
reachability and observability assumptions the input output notion 
implies internal stability (a converse of Proposition 3.2) and by 
proving that our notion of I/O stability is closed under serial 
interconnections. 

We define a system with outputs (3)-(9) to be strongly 
observable provided that the following property holds: there must 
exist two functions a], a2 of class X such that, for each triple of 
state, control, and output functions on t I 0 

satisfying the equations, the norms of these functions necessarily 
satisfy 

This property is equivalent to observability for linear systems, 
since there exist in that case bounded linear operators L l ,  L2 such 
that (for example) 

that is the state at time 0 can be continuously reconstructed from 
the input and output in the interval [0, 11. By time invariance, an 
estimate as (38) results. For nonlinear systems (or for linear 
infinite-dimensional systems) such similar notions of well-posed 
observability have been studied under various names such as 
algebraic observability or topological observability (see, for 
instance, [ 2 5 ] ,  [33], and [4]). 

Analogously, we define a notion of a strongly reachable 
system (3) as follows. There must be a function aj of class X with 
the following property: for each E E R" there exists a time T > 0 
and a control U so that )I U )I < a?( 1 E I) and so that the solution x (  . ) 
of (3), x(0) = 0, when applying this control satisfies x ( T )  = E .  
In informal terms, the energy needed to control from the origin to 
any given state must be in some sense proportional to how far this 
state is from the origin. Again, for linear finite-dimensional 
systems this is equivalent to the standard reachability concept. 

Proposition 7.1: Assume that (3)-(9) is a strongly reachable 
and strongly observable 10s system with output. Then (3) is ISS. 

Proof: Let a , ,  a2,  a )  be as in the above definitions, and let 
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0, y be as in the definition of 10s. Define 

B ( S ,  t )  := cY2(2P(cY3(S), t ) ) ,  54s) : = al(S)+cY2(2Y(S)). (39) 

Now assume given any to E an, and let U be a control with norm 
bounded by (Y~(( .$~()  which drives 0 to to in time T. Apply any 
control w after time T, and let U be the concatenated control UT = 
U, u T  = w. We let x = x ( . )  and y = y ( . )  be the corresponding 
state and output trajectories (with control U and x(0) = 0). Pick 
any fixed t 2 T. By time invariance, we can apply the strong 
observability estimate to the restrictions of x (  .), y (  .), U (  * )  to r 2 
t ,  to get 

(x ( t ) l  5 a1 (I1 41) + .2(11 r‘ll) sw(ll uTII) + a2(llrr 11). (40) 

By the 10s hypothesis, applied to the pair of times 0 5 T < 7, it 
holds that 

Therefore, since 0 is decreasing in its second variable, also 

l l Y ‘ l l ~ P ~ l l ~ T l l !  t -  T)+r(lluTII). (41) 

It follows from (40) and (41) that, with the definitions (39) 

Ix(t)l ( P ( I E o l 9  t -  T)+T(lluTli) 

for all t 2 T, which is by time invariance equivalent to the 
definition of ISS. w 

A reasonable notion of stability should be closed under 
composition. We show now that our definition indeed satisfies this 
property. 

+ 

LP,,, are both 1 0 s  I/O operators. Then’the composition G o’F is 
also 10s .  

Proof: Pick any 0 I T I t ,  and any U E L:,?. We let y = 
F(u) ,  z = G( U). Let ol ,  y I  be the functions associated to F and 
pz, y2 those associated to G. We shall prove that 

Proposition 7.2: Assume that F L E  e + L L  e and G:LL 

Iz(t)l s P ( l l u T l l ,  t -  T)+y(lluTll) (42) 

with the definitions 

and 

Y(S) :=  02(2Yl(S), O)+Y2(2Yl(S)). 

Let t l  :=  ( t  + T)/2,  so that t - t l  = t i  - T = (t  - T) /2 .  
Applying the definition of 10s to the operator G, with the pair of 
times 0 I t l  < r ,  

I z( t ) l< Pz(l1 Yrl II * t - t i )  + Y ~ ( I I Y ‘ I  11). (43) 

(Note that by causality, just the norm of the restriction of y to the 
finite interval [ t i ,  t ]  could be used in the last term of this 
inequality.) Now fix any time 7 I t l ,  and apply the 10s definition 
to the first operator F now with the pair of times 0 I T I 7: 

the last inequality because 0 is decreasing in the second variable. 

Thus, l \yrl\ l  is bounded by the right-hand side of (44). It follows 
that the last term in (43) is bounded as 

Finally, note that 

the first inequality from the 10s property applied of F, using pairs 
0 I 0 < r ,  7 E [O, f l ]  (note that U” = 0). So the first term in (43) 
is bounded by 
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