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A SMOOTH CONVERSE LYAPUNOV THEOREM FOR ROBUST
STABILITY*

YUANDAN LINt, EDUARDO D. SONTAG$, AND YUAN WANG

Abstract. This paper presents a converse Lyapunov function theorem motivated by robust
control analysis and design. Our result is based upon, but generalizes, various aspects of well-
known classical theorems. In a unified and natural manner, it (1) allows arbitrary bounded time-
varying parameters in the system description, (2) deals with global asymptotic stability, (3) results
in smooth (infinitely differentiable) Lyapunov functions, and (4) applies to stability with respect to
not necessarily compact invariant sets.
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1. Introduction. This work is motivated by problems of robust nonlinear sta-
bilization. One of our main contributions is to provide a statement and proof of
a converse Lyapunov function theorem in a form particularly useful for the study of
such feedback control analysis and design problems. We provide a single (and natural)
unified result that

1. applies to stability with respect to not necessarily compact invariant sets;
2. deals with global (as opposed to merely local) asymptotic stability;
3. results in smooth (infinitely differentiable) Lyapunov functions;
4. most importantly, applies to stability in the presence of bounded time-varying

parameters in the system.
(This last property is sometimes called "total stability" and it is equivalent to the
stability of an associated differential inclusion.)

The interest in stability with respect to possibly noncompact sets is motivated by
applications to areas such as output control (one needs to stabilize with respect to the
zero set of the output variables) and Luenberger-type observer design ("detectability"
corresponds to stability with respect to the diagonal set {(x, x)}, as a subset of the
composite state/observer system). Such applications and others are explored in [16,
Chap. 5].

Smooth Lyapunov functions, as opposed to merely continuous or once-
differentiable ones, are required in order to apply "backstepping" techniques in which
a feedback law is built by successively taking directional derivatives of feedback laws
obtained for a simplified system. (See for instance [9] for more on backstepping de-
sign.)

Finally, the effect of parameter uncertainty and the study of associated Lyapunov
functions are topics of interest in robust control theory. An application of the result
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CONVERSE LYAPUNOV THEOREM FOR ROBUST STABILITY 125

proved in this paper to the study of "input to state stability" is provided in [27].

1.1. Organization of paper. The paper is organized as follows. The next sec-
tion provides the basic definitions and the statement of the main result. Actually,
two versions are given, one that applies to global asymptotic stability with respect
to arbitrary invariant sets, but assuming completeness of the system (that is, global
existence of solutions for all inputs) and another version which does not assume com-
pleteness but only applies to the special case of compact invariant sets (in particular,
to the usual case of global asymptotic stability with respect to equilibria).

Equivalent characterizations of stability by means of decay estimates have proved
very useful in control theory (see e.g. [25]) and this is the subject of 3. Some technical
facts about Lyapunov functions, including a result on the smoothing of such functions
around an attracting set, are given in 4. After this, 5 establishes some basic facts
about complete systems needed for the main result.

Section 6 contains the proof of the main result for the general case. Our proof
is based upon, and follows to a great extent, the outline of the one given by Wilson
in [31], who provided in the late 1960s a converse Lyapunov function theorem for
local asymptotic stability with respect to closed sets. There are however some major
differences from that work: we want a global rather than a local result, and several
technical issues appear in that case; moreover, and most importantly, we have to deal
with parameters, which makes the careful analysis of uniform bounds of paramount
importance. (In addition, even for the case of no parameters and local stability,
several critical steps in the proof are only sketched in [31], especially those concerning
Lipschitz properties and smoothness around the attracting set. Later the author of
[21] rederived the results, but only for the case when the invariant set is compact.
Thus it seems useful to have an expository detailed and self-contained proof in the
literature.) A needed technical result on smoothing functions, also based closely on
[31], is placed in an appendix for convenience. Section 7 deals with the compact case,
essentially by reparameterization of trajectories.

An example, motivated by related work of Tsinias and Kalouptsidis in [7] and
[29], is given in 8 to show that the analogous theorems are false for unbounded
parameters.

Obviously in a topic such as this one, there are many connections to previous
work. While it is likely that we have missed many relevant references, we discuss in

9 some relationships between our work and other results in the literature. Relations
to work using "prolongations" are particularly important, and are detailed further in

10.

2. Definitions and statements of main results. Consider the following sys-
tem:

(1) it(t) f(x(t), d(t)),

where for each t E IR, x(t) IRn and d(t) 7), and where 7) is a compact subset of
IR", for some positive integers n and m. The map f :IRn 7) - IRn is assumed to
satisfy the following two properties:

f is continuous.

f is locally Lipschitz on x uniformly on d, that is, for each compact subset K
of IRn there is some constant c so that If(x, d)- f(z, d)l _< c Ix- z for all
x, z K and all d 7), where I’1 denotes the usual Euclidian norm.
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126 YUANDAN LIN, EDUARDO D. SONTAG, AND YUAN WANG

Note that these properties are satisfied, for instance, if f extends to a continuously
differentiable function on a neighborhood of IRn x 7).

Let A4v be the set of all measurable functions from IR to 7). We will call functions
d E lv time-varying parameters. For each d E A/lv, we denote by x(t, xo, d) (and
sometimes simply by x(t) if there is no ambiguity from the context) the solution at
time t of (1) with x(0) x0. This is defined on some maximal interval (To,d Tx+o,d)
with -ec <_ To,d < 0 < T+xo,d -<

Sometimes we will need to consider time-varying parameters d that are defined
only on some interval I C_ IR with 0 I. In those cases, by abuse of notation,
x(t, x0, d) will still be used, but only times t I will be considered.

The system is said to be forward complete if T+xo,d "+’OO for all x0 and all
d A/Iv. It is backward complete if To,d --co for all x0 and all d A/iv, and it is
complete if it is both forward and backward complete.

We say that a closed set A is an invariant set for (1) if

VXo A, Vd Jiv, Tx+o,d +oc and x(t, x0, d) A, Vt _> 0.

Remark 2.1. An equivalent formulation of invariance is in terms of the associated
differential inclusion

(2) 5c e F(x),

where F(x) {/(x, d), d e 7)}. The set .4 is invariant for (1) if and only if it is
invariant with respect to (2) (see e.g. [1]). The notions of stability to be considered
later can be rephrased in terms of (2) as well.

We will use the following notation" for each nonempty subset A of IRn and each
E IRn, we denote

def

the common point-to-set distance, and I l(o -Il is the usual norm.
Let A C_ IR be a closed, invariant set for (1). We emphasize that we do not

require A to be compact. We will assume throughout this work that the following
mild property holds:

(3) sup

This is a minor technical assumption, satisfied in all examples of interest, which will
greatly simplify our statements and proofs. (Of course, this property holds automati-
cally whenever j is compact, and in particular in the important special case in which
4 reduces to an equilibrium point.)

DEFINITION 2.2. System (i) is (absolutely) uniformly globally asymptotically
stable (UGAS) with respect to the closed invariant set ,4 if it is forward complete and
the following two properties hold:

1. Uniform Stability. There exists a lC-function 5(.) such that for any >_ O,

(4) Ix(t, xo, d)[A < for all d E J4v, whenever IxoIA < and t >_ O.

2. Uniform Attraction. For any r, > O, there is a T > O, such that for every
dE.h/Iv,

(5) Ix(t, zo, d)l <

whenever Ix01A < r and t > T.
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CONVERSE LYAPUNOV THEOREM FOR ROBUST STABILITY 127

For the definitions of the standard comparison classes of/Co- and/(:/:-functions,
we refer the reader to the appendices.

Observe that when A is compact the forward completeness assumption is redun-
dant, since in that case property (4) already implies that all solutions are bounded.

In the particular case in which the set :D consists of just one point, the above
definition reduces to the standard notion of set asymptotic stability of differential
equations. (Note, however, that this definition differs from those in [3] and [31],
which are not global.) if, in addition, ,4 consists of just an equilibrium point x0, this
is the usual notion of global asymptotic stability for the solution x(t) Xo.

Remark 2.3. It is an easy exercise to verify that an equivalent definition results
if one replaces A/t by the subset of piecewise constant time-varying parameters.

Remark 2.4. Note that the uniform stability condition is equivalent to the state-
ment that there is a/C-function so that

Ix(t, xo, d)lA <_ 99(Ixo1), Vxo, Vt >_ O, and Vd

(Just let 5-1.)
The following characterization of the UGAS property will be extremely useful.
PROPOSITION 2.5. The system (1) is UGAS with respect to a closed, invariant

set Jt C_ IRn if and only if it is forward complete and there exists a 1C-function
such that, given any initial state xo, the solution x(t, x0, d) satisfies

(6) Ix(t, xo, d)] <_  (Ix0l , t) fo any t >_ O,

for any d
Observe that when A is compact the forward completeness assumption is again

redundant, since in that case property (6) implies that solutions are bounded.
Next we introduce Lyapunov functions with respect to sets. For any differentiable

function V :IRn IR, we use the standard Lie derivative notation

LfdV( dej OV() fd()Ox

where for each d E :D, fd(’) is the vector field defined by f(., d). By "smooth" we
always mean infinitely differentiable.

DEFINITION 2.6. A Lyapunov function for the system (1) with respect to a
nonempty, closed, invariant set .4 C_ ]In i8 a function V ]Rn ]R such that
V is smooth on ]Rn\Jt and satisfies

1. there exist two lC-functions al and a2 such that for any ]Rn,

(7)

2. there exists a continuous, positive definite function a3 such that for any
IRn\A, and any d

(8) LfdV() <_-a3(llA).

A smooth Lyapunov function is one which is smooth on all of ]R.
Remark 2.7. Continuity of V on ]R\A and property 1 in Definition 2.6 imply:

V is continuous on all of ]R;
V(x)=O xA;and
V’ IRn ?- IR_>0 (recall the assumption in equation (3)).
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128 YUANDAN LIN, EDUARDO D. SONTAG, AND YUAN WANG

Our main results will be two converse Lyapunov theorems. The first one is for
general closed, invariant sets and assumes completeness of the system.

THEOREM 2.8. Assume that the system (1) is complete. Let ,4 C_ IRn be a
nonempty, closed, invariant subset for this system. Then, (1) is UGAS with respect
to 4 if and only if there exists a smooth Lyapunov function V with respect to

The following result does not assume completeness but instead applies only to
compact A.

THEOREM 2.9. Let Jt C_ IR be a nonempty, compact, invariant subset for the
system (1). Then, (1) is UGAS with respect to Jt if and only if there exists a smooth
Lyapunov function V with respect to

3. Some preliminaries about UGAS. It will be useful to have a restatement
of the second condition in the definition of UGAS stated in terms of uniform attraction
times.

LEMMA 3.1. The uniform attraction property defined in Definition 2.2 is equiva-
lent to the following: there exists a family of mappings {Tr}r>0 with

for each fixed r > O, Tr lR>o ]R>o is continuous and is strictly decreas-
ing;
for each fixed > O, T(s) is (strictly) increasing as r increases and
lim__, T() ;

such that, for each d

(9) [x(t, xo, d)[A < whenever [xo[A < r and t >_ Tr().

Proof. Sufficiency is clear. Now we show the necessity part. For any r, > 0, let

Ar, e
def__ {T _> 0" V Ix0IA < T, Vt _> T, Vd M, Ix(t, x0, d)lA < } C_ lR>0._

(10)
Then from the assumptions, A, - 0 for any r, > 0. Moreover,

Ar,l C_ A,2 if 1 _< 2, and A2,

Now define r() dej inf A,. Then () < , for any r, > 0, and it satisfies

=’r(l) r(2), if 1 2, and r() =r2(), if ?1

_
?2.

So we can define for any r, > 0,

(11) () def 2

Since (.) is decreasing, (.)is well defined and is locally absolutely continuous.
Also

(12) r() >_ _2 (s) ds
c/2

Furthermore,

ds

(3)
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CONVERSE LYAPUNOV THEOREM FOR ROBUST STABILITY 129

hence r(’) decreases (not necessarily strictly). Since (.)()increases, from the defi-

nition, (.)(e) also increases. Finally, define

r
(14) %() dof ()+

Then it follows that
for any fixed r, T(.) is continuous, maps JR>0 ?- lR>0, and is strictly
decreasing;
for any fixed e, T(e) is increasing as r increases, and lim %(e) .

So the only thing left to be shown is that Tr defined by (14) satisfies (9). To do this,
pick any xo and t with IxoA < r" and t T(e). Then

t T(s) > (s) ().

Hence, by the definition of r(), ]x(t, x0, d)]A < ,as claimed.

3.1. Proof of characterization via decay estimate. We now provide a proof
of Proposition 2.5.
[] Assume that there exists a K-function such that (6) holds. Let

def 0) < OOCl sup3(.,

and choose 5(.) to be any K:-function with

5(e)_<-(e), for any0_<e<c,

where --1 denotes the inverse function of/(.) dej (., 0). (If Cl (:X), we can simply

choose 5(s) de=f )-I(s).) Clearly 5(s) is the desired /(:m-function for the uniform
stability property.

The uniform attraction property follows from the fact that for every fixed r,
lim (r, t) 0.

[] Assume that (1) is UGAS with respect to the closed set A, and let 5 be as
in the definition. Let (.) be the K:-function 5-1(.). As mentioned in Remark 2.4, it
follows that Ix(t, xo, d)l.4 <_ (IxolA) for any x0 E IR, any t _> 0, and any d

Let {T}e(0,) be as in Lemma 3.1, and for each r (0, oc) denote de=f T_I.
Then, for each r (0, oc), lR>0---,lR>0 is again continuous, onto, and strictly
decreasing. We also write (0) +oe, which is consistent with the fact that

lim (t)=
t-,0+

(Note: The property that T(.)(t) increases to oc is not needed here.)
CLAIM. For any IxolA < r, any t >_ O, and any d Adv, x(t, xo, d)lA <_ (t).
Proof. It follows from the definition of the maps T that, for any r, e > 0, and

for any d

IxolA < r, t >_ %(e) Ix(t, xo, d)l < e.

As t T(r(t)) if t > 0, we have, for any such x0 and d,

(15) Ix(t, xo, d)l < (t), Vt > 0.
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130 YUANDAN LIN, EDUARDO D. SONTAG, AND YUAN WANG

The claim follows by combining (15) and the fact that Cr(0)
Now for any s _> 0 and t > 0, let

Because of the definition of and the above claim, we have, for each Xo, d E A4,
and t 2 0,

(17) Ix(t, xo, d)lA t).

If were of class K, we would be done. This may not be the case, so we next
majorize by such a function.

By its definition, for any fixed t, r(., t) is an increasing function (not necessarily
strictly). Also, because for any fixed r E (0, ec), Cr(t) decreases to 0 (this follows

from the fact that lR>0 ?- lR>0 is continuous and strictly decreasing), it follows
that

for any fixed s, (s, t) decreases to 0 as t

Next we construct a function ]R[0, ) JR>0 -- JR>0 with the following properties:
for any fixed t _> 0, (., t) is continuous and strictly increasing;
for any fixed s _> 0, (s, t) decreases to 0 as t ;

t) >_ t).
Such a function always exists; for instance, it can be obtained as follows. Define
first

(18) (8, t) def I
s+l

(e, t)da.

Then (., t) is an absolutely continuous function on every compact subset of lR_>0,
and it satisfies

(8, t) (8, t)s
s+l

de (s, t).

It follows that

t)
08

@(s + 1, t) -(s, t) _> 0, a.e.,

and hence (., t) is increasing. Also since for any fixed s, }(s, .) decreases, so does
(s, .). Note that

}(s, t) _< (s, 0) min { inf
re(s, )

(recall that (0) +), so by the Lebesgue-dominated convergence theorem, for
any fixed s _> 0,

lim (s, t)= lim (e, t)de 0.
cx:
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CONVERSE LYAPUNOV THEOREM FOR ROBUST STABILITY 131

Now we see that the function (s, t) satisfies all of the requirements for (s, t) except
possibly for the strictly increasing property. We define as follows:

(s, t) = (, t)+ (s + 1)(t + 1)

,’(V()) (V(,)) (Ol([,l.A)),
so

(19) L:f,W C t’ V C L]’, V C <_ -(o(11))o(11.)
defWe claim that this is bounded by -&a(llt). Indeed, if s 114 <- a-(1), then

from the first item above and the definition of

()/(o1(8)) >_ 8 _>
()

Clearly it satisfies all the desired properties.
Finally, define

/(8, t) de__.f V/(8, t).

Then it follows that/(s, t) is a A:-function, and for all x0, t, d,

I(t, 0, )1 <_ f(Ix01)v/(Ix0l, t) _< (Ix01, t),

which concludes the proof of Proposition 2.5.

4. Some preliminaries about Lyapunov functions. In this section we pro-
vide some technical results about set Lyapunov functions. A lemma on differential
inequalities is also given, for later reference.

Remark 4.1. One may assume in Definition 2.6 that all of al, a2, a3 are smooth
in (0, +oc) and of class ]C. For al and a2, this is proved simply by finding two
functions 01,02 in A:, smooth in (0, +oc) so that

() _< () _< .() _< (), or ]] .
For a3, a new Lyapunov function W and a function 03 which satisfies (8) with respect
to W, but is smooth in (0, +oc) and of class A:o, can be constructed as follows. First,
pick 03 to be any -function, smooth in (0, +), such that

03(8) <: 8o3(8), ’8 E [0, o-1(1)].
This is possible since a3 is positive definite. Then let

7 lR>_o ---+ lR>_o

be a A:-function, smooth in (0, +oc), such that
"7(r) _> c-l(r) for all r E [0, 1];
/(r) > 03((l(r))/c3(cl(r)) for all r :> 1.

Now define/(s) dej f 3’(r)dr. Note that/ is a AS-function, smooth in (0,
Let W() dej /(V(C)). This is smooth on IRn\A, and/ o al,/ o c2 bound W as in
equation (7). Moreover,
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132 YUANDAN LIN, EDUARDO D. SONTAG, AND YUAN WANG

if instead s > c{ 1(1), then from the second item, also

"/(OZ (8))

In either case, 7(cl(s))a3(s) >_ &3(s), as desired. From now on, whenever necessary,
we assume that al, a2, a3 are/(:-functions, smooth in (0,

4.1. Smoothing of Lyapunov functions. When dealing with control system
design, one often needs to know that V can be taken to be globally smooth, rather
than just smooth outside of A.

PROPOSITION 4.2. If there is a Lyapunov function for (1) with respect to ,4, then
there is also a smooth such Lyap’unov function.

The proof relies on constructing a smooth function of the form W o V, where

IR>_0 IR_>0

is built using a partition of unity.
Again let ,4 c_ IRn be nonempty and closed. For a multi-index co

n(col, co2,..., con), we use COl to denote Y’]i=l coi" The following regularization result
will be needed; it generalizes to arbitrary A the analogous (but simpler, due to com-
pactness) result for equilibria given in [13, Thm. 6].

LEMMA 4.3. Assume that V" IRn ---. lR>_o is C, the restriction Vln\A is
C, and also Vlt 0, VIn\A > 0. Then there exists a t:-function , smooth
on (0, oc) and so that ()(t) -- 0 as t ---. 0+ for each 0,1,..., and having
’(t) > O, Vt > O, such that

defW #oV

is a C function on all of ]Rn.
Proof. Let K1, K2,..., be compact subsets of ]Rn such that A C_ [-Jl int (Ki).

For any k > 1, let

Ik
def (1 _I) cIR

and Io de2 I1. Pick for any k _> 1 a smooth (C) function 7k lR>o --+ [0, 1]
satisfying

/k(t) 0 if t Ik; and
/k(t) > 0 if t E Ik.

Define for any k _> 1,

X ]R x U Ki, V(x) clos Ik
i=1

Then 6k is compact (because of compactness of the sets Ki and continuity of V).
Observe that each derivative 7(ki) has a compact support included in clos Ik, so it is
bounded. For each k 1, 2,..., let ck IR satisfy

1. ck>_l;
2. ck >_ ](DV)(x)l for any multi-index Icol -< k and any x k; and
3. ck _> ]7(i) (t)l, for any _< k and any t e lR>0.
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CONVERSE LYAPUNOV THEOREM FOR ROBUST STABILITY 133

Choose the sequence dk to satisfy

1
(20) 0<dk <

z(t’k"+l"c’)!}
k=1,2,

Let a" IR_>0 - lR>_0 be a C function such that a 0 on [0, 1/2] and a >_ 1 on

[1/2, x). Define 7(0) dej 0 and

(21) 9’(t) dej E dkk(t) - O(t) Vt > O.
k=l

Notice that for any t e (0, 1), if k
def [j

_
1 denotes the largest integer <_ , then

t E I-1 and

tIj if j=k,k-1.

Hence the sum in (21) consists of at most three terms (for t _> 1 the sum is just, a), and so 7 is C at each t E (0, c).
CLAIM. For any >_ O, limt_.0+ ()(t) 0.
Proof. Fix any >_ 0. Given any s > 0, let k0 E be such that > o > 0. Let

1 1 1}T de___.f min 0’ i+l’

1}We will show thatt(0, T) == [(i)(t)l <e. Indeed, as0<t<min k, i+l, 5

it follows that k dej [j
_
max{/+ 1, k0, 3}. So

/(i) (t) --< dk-l(ki)- (t) - dk/(ki) (t)

and noticing that

Ok-1

__
we have

1 1 1 1 < 1
dk-lCk-1 + dkck +(),tl . 2( + 1)! . o

as wanted.
then /(t) > a(t) > 1 > 0; and if t (0, ) thenNote also that ift _> ,

,(t) _> d_-,/_l (t) > 0 with k d=f [j _> 2, so the function

(22) (t) def f
i (s)ds
Jo

is also a K:-function, smooth on (0, c). Furthermore, 3 satisfies 3(i)(t) - 0 as
t -. 0+ for each 0, 1,

Finally, we show that W / o V is C. For this, it is enough to show that
DeW(xn) - 0 as xn - 2 OA, for each multi-index 0 and each sequence {x} C_
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134 YUANDAN LIN, EDUARDO D. SONTAG, AND YUAN WANG

IRn\Jt converging to a point 2 in the boundary of jr. (In general--see, e.g., [4, p. 52]--
if ,4 C_ ]Rn is closed and " IRn -- IR satisfies that lt 0, )I\A is C, and for
each boundary point a of ,4 and all multi-indices o (ol, o2,..., On), it holds that
limx-,a De(x) 0, then ) is C on IR.)

Pick one such 6o and any sequence {x} with x 2 E 0.4. If 1601 0, one only
needs to show that W(x,) -- O, which follows easily from the fact that E K: and

V(xn) -- O. So from now on, we can assume that IOol dej _> 1. As ,4 C_ U=0int Kj,
2 int Kt for some l, and without loss of generality we may assume that there is some
fixed so that

"Xn K, for all n.

Pick any > 0. We will show that there exists some N such that

n > N = IDoW(x)l < e.

Let k , be so that

k>max{i, log9.(),l}
Observe that if t < T, then t 11 U... U Ik.and let T (0, 1/2) be such that T <

As V is CO everywhere, V 0 at A, V(xn) V(2) 0. So there exists N such
that V(xn) < T whenever n > N. Fix an N like this. Then for any n > N,

(V(x,)) 0, vi, w 2,...,

(since % vanishes outside I). Pick any j IN with j _< i, any h E IN with h _< i, and
01,..., 0h multi-indices such that I1 -< i, # 1,..., h. Then for any q IN with
q > k, by the way we chose ca,

since q > k > _> j. Also, if V(xn) Iq, then again by the properties of the sequence
Ck

IDV(x)I _< cq

(since q > k > and xn Kt imply xn K1 U... U Kq, and [01 <- i < k < q).
Therefore, for such q, if V(x) Iq,

(23) _< c3 < cJI/(q) (V(x)) IDV(x)I ]DV(x)I <_ cq

If instead it were the case that V(Xn) I, then /Y)(V(Xn) O, and hence the
inequality (23) still holds. Since

E dq’)/j) (g(xn))
q=k+l
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CONVERSE LYAPUNOV THEOREM FOR ROBUST STABILITY 135

we also have

I(j) (v(x,)) IID’v(x)l ID"v(x)l E dqcqq < E 2q(q+l)!
q=k+l q--k+1

(24) < - (k+l)! 2k(k+l)! < (k+l)!’
q.-k+l

Now observe that

(DW) (x) (D( o V)) (x)

is a sum of _< i! terms (recall 0 < 1001), each of which is of the form

V) (D V) (z),

where 0 < p

_
i, h _< i, and each Icol _< i. Each

(P) (V(x)) ’,/(J) (V(x)) j p- 1 <_ 1,

so (24) applies, and we conclude

(DW)(x)]

_
i! (k / 1)! < ’

(since k > i.) rl

Now let us return to the proof of Proposition 4.2.
Proof of Proposition 4.2. Assume Jr, V, and al,a2,a3 are as defined in Defini-

tion 2.6. Let , W be as in Lemma 4.3. We show that W is a smooth Lyapunov
function as required.

Let &i de o ai, 1, 2. These are again K:-functions, and they satisfy

We define, for s > O,

(8) deaf min (s)]’(t) > 0.
t[al (S), a2

Also let/(0) de2 0. Define &3(s) de__f (8)O3(8)" Then &3 is a continuous, positive
definite function. Also, for any E IRn\A,

LfaW() =/’(V(())LfaV() <_ -’(V())c3(IIA)

which concludes the proof of Proposition 4.2.

4.2. A useful estimate. The following lemma establishes a useful comparison
principle.

LEMMA 4.4. For each continuous and positive definite function a, there exists
a tgE-function/(s, t) with the following property: if y(.) is any (locally) absolutely
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136 YUANDAN LIN, EDUARDO D. SONTAG, AND YUAN WANG

continuous function defined for t >_ 0 and with y(t) >_ 0 for all t, and y(.) satisfies the
differential inequality

(25) )(t) _< -a(y(t)), for almost all t

with y(O) Yo >_ O, then it holds that

<_ t)

for all t >_ O.

Proof. Define for any s > 0, r](s) def fl dr
(r)" This is a strictly decreasing

differentiable function on (0, oc). Without loss of generality, we will assume that
lims_0+ r(s) +oc. If this were not the case, we could consider instead the following
function:

((s) de___f min(s, a(s)}.

This function is again continuous, positive definite, satisfies ((s) _< a(s) for any s _> 0,
and

s dr s dr
lim > lim

r

Moreover, if )(t) <_ -a(y(t)) then also )(t) <_ -((y(t)), so a could be used to bound
solutions.

Let
def

0<a lim r(s).

Then the range of r], and hence also the domain of r-1, is the open interval (-a, oc).
(We allow the possibility that a oc.) For (s, t) E lR_>0 lR_>0, define

de_f f 0, if s--0,t) /-1 (r(s) + t), if s > 0.

We claim that for any y(.) satisfying the conditions in the lemma,

(26) y(t) <_ (Yo, t), for all t >_ 0.

As 9(t) _< -a(y(t)), it follows that y(t) is nonincreasing, and if y(to) 0 for some

to _> 0, then y(t) =_ 0, Vt >_ to. Without loss of generality, assume that Y0 > 0. Let

def
to inf{t y(t) O} <_

It is enough to show (26) holds for t E [0, to).
As r/is strictly decreasing, we only need to show that rl(y(t)) >_ rl(.yo) + t, that

is,

which is equivalent to

(27)

y(t) dr fyo dr>--

VO dr

(t) a(r) >- t.
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CONVERSE LYAPUNOV THEOREM FOR ROBUST STABILITY 137

From (25), one sees that

(------) d- < d- -t.
(())

Changing variables in the integral, this gives (27).
It only remains to show that is of class K;. The function/ is continuous

since both 7 and 7
-1 are continuous in their domains, and limr-oo r/-l(r) 0. It is

strictly increasing in s for each fixed t since both 7 and 7-1 are strictly decreasing.
Finally,/(s, t) 0 as t -- oe by construction. So/ is a/C-function.

5. Some properties of complete systems. We first need to establish some
technical properties that hold for complete systems, and in particular a Lipschitz
continuity fact.

For each E IR and T > 0, let

T/T([) ded {7" 7-x(T,,d), de.h4}.

This is the reachable set of (1) from at time T.
U0<t<T (). If S is a subset of IR, we write

r-<TWe use () to denote

n(s) doU U n()’ n-< (S) doj U n-< ()"

In what follows we use S to denote the closure of S for any subset S of IRn.
PROPOSITION 5.1. Assume that (1) is forward complete. Then for any compact

subset K of IR and any T > O, the set T<T (K) is compact.
To prove Proposition 5.1, we first need to make a couple of technical observations.
LEMMA 5.2. Let K be a compact subset of IRn and let T > O. Then the set

T< (K) is compact if and only if T< () is compact for each K.

Proof. It is clear that the compactness of T<-T (K) implies the compactness of
T4<T () for any c K.

Now assume, for T > 0 and a compact set K, that 7<T () is compact for each
K. Pick any c K, and let b/= {7" d(7, 74-<T ()) < 1}. Then is compact. Let

C be a Lipschitz constant for f with respect to z on , and let r e-cT. For each
d E 2tdz and each 7 with 17- 1 < r, let {= inf{t > 0" Iz(t, , d)- z(t, , d)l >_ }.
Then, using Gronwall’s lemma, one can show that { >_ T, from which it follows that

Thus, for each K, there is a neighborhood 12 of such that 7Z<T (12) is compact.
By compactness of K, it follows that T4<-T (K) is compact. Cl

LEMMA 5.3. For any subset S of ]R and any T > O,

(-) c_ n(s), <- (-) c_ <- (s).

In particular, n<- (-) n<- (S).
Proof. The first conclusion follows from the continuity of solutions on initial

states; see [26, Thm. 1]. The second is immediate from there. El
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138 YUANDAN LIN, EDUARDO D. SONTAG, AND YUAN WANG

We now return to the proof of Proposition 5.1. By Lemma 5.2, it is enough to
show that 7-<T () is compact for each E IRn and each T > 0. Pick any 0 E IRn,
and let - sup{T _> 0" r (0) is compact }.

Note that 7 > 0. This is because lz(t, 0, d) 0] 1 for any 0 t < 1/M and any
d , where

M-max{f(,d)" -0 1, dD}.

We must show that .
Assume that < . Using the same argument as above, one can show that if

(0) is compact for some t > 0 then there is some 5 > 0 such that (*+e) (0) is

compact. om here it follows that " (0) is not compact. By definition, (0)
is compact for any t < .

Let 71 7/2. Then there is some 1 *(0) such that (’-’)(1) is not

compact; otherwise, by Lemma 5.2, (’-’a)(*(0)) would be compact. This, in

turn, would imply that " (0) is compact, since

On the other hand, combining Lemma 5.3 with the fact that s, (, (0)) is compact
for any 0 t < 7 1, one sees that (1) is compact for any 0 t < 1.

Since 1 rl (0), there exists a sequence {z} 1 with z 71 (o). nssgme,
for each n, that z x(l, 0, d) for some d . For each d M and each
s N, we use d to denote the function defined by d(t) d(s + t). Then by
uniqueness, one has that for each n, x(s, z, (d)) K1 for any -71 s 0, where

K1 ’ (o). We want to claim next that, by compactness of KI and Gronwall’s
lemma,

Iz(-l, , (d),,)-0l Iz(-l, 1, (dn)r)-z(-T1, zn, (d),,)l O, as n .
The only potential problem is that the solution x(-7,, (d)) may fail to exist a
priori. However, it is possible to modify f(x, d) outside a neighborhood of K1 x
so that it now has compact support and is hence globally bounded. The modified
dynamics is complete. Now the above limit holds for the modified system, and a
fortiori it also holds for the original system.

Choose n0 such that

1

Let v do, and let o x(-r,, , (do)). Then, by continuity on initial condi-
tions, there is a neighborhood N of contained in B(, 1) such that

1
(29) I (-T1, , (1)7,) w01 < , v 1,

where B(, r) denotes the open ball centered at with radius r. Combining (28) and
(29), one has

X(--T1, , (Vl)1-1
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CONVERSE LYAPUNOV THEOREM FOR ROBUST STABILITY 139

where b/o B(0, 1).
Let 7.2 7.1/2 (7. 7.1)/2. Applying the above argument with 0 replaced by

r/l, 7. replaced by (7.- 7.1), and 7.1 replaced by 7.2, one shows that there exists some

r/. E Tr2 (r/l) such that 7-<’ (r/2) is compact for any 0 <_ t < 7.- a2, and
is not compact, where a2 71 nt- 7"2, and there exist some v2 defined on [0, 7"2) and
some neighborhood/A2 of r/2 contained in B(r/2, 1), such that

z(-7"2, , (V2)r.) C btl, ’ C

By induction, one can get for each k _> 1 a point r/k, a neighborhood
contained in B(r/k, 1), and a function vk defined on [0, 7"k) (where 7"k 2-k7") such
that

7-<(--) 7"(1- 2-k(r/k) is not compact, where rk 7"1 + 7"2 + + 7"k - 7";

X(--Tk, , (Vk)rk) C /aCk-1, for any C
Now define v on [0, 7") by concatenating all the vk’s. That is, v(t) vk(t) for

def
t [ak-l, Crk) (withao 0). ThenvEM. For eachk, let

where vk is the restriction of v to [0, ak). By induction,

for each 0 _< <_ k, from which it follows that k /20 for each k. By compactness
of b/0, there exists some subsequence of {k} converging to some point 0 IRn. For
ease of notation, we still use {k } to denote this convergent subsequence. Our aim is
next to prove that the solution starting at 0 and applying the measurable function
v does not exist for time 7", contradicting forward completeness.

First notice that for any compact set S, there exists some k such that r/k S.
Otherwise, assume that there exists some compact set S such that r/k S for all
k. Let $1 {r/" d(r/, S) _< 1}. The compactness of S implies that there exists some
6 > 0 such that

<tn-- (r/) Sl

for any r/E S and any t e [0, 6]. In particular, it implies that 7-<(’-k) (r/k) C_ S for

k large enough so that 7"- crk < 5. This contradicts the fact that 7-<(’-k) (r/k) is not
compact for each k.

Assume that x(7", 0, v) is defined. By continuity on initial conditions, this would
imply that x(t, k, v) is defined for all t <_ 7" and for all k large enough, and that it
converges uniformly to x(t, 0, v). Thus, x(t, k, v) remains in a compact set for all
t [0, 7"] and all k. But

contradicting what was just proved. So x(7", 0, v) is not defined, which contradicts
the forward completeness of the system. []

Remark 5.4. For T > 0 and IR’, let

n-r() {v. v x(-T, , d), d e and 7
>-T

()= U 7t()"
tel-T,0]
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140 YUANDAN LIN, EDUARDO D. SONTAG, AND YUAN WANG

These are the reachable sets from for the time-reversed system

(30) it(t)--f(x(t), d(t))

Similarly, one defines 7-T(s) and 7->-T (S) for subsets S of ]Rn. If (1) is backward
complete, that is, if (30) is forward complete, and applying Proposition 5.1 to (30),
one concludes, for system (1), that 7>-T (K) is compact for any T > 0 and any
compact subset K of ]Rn. In particular, for systems that are (forward and backward)
complete,

n (K)U
is compact for any compact set K and any T > 0.

Combining the above conclusion and Gronwall’s lemma, one has the following
fact.

PROPOSITION 5.5. Assume that (1) is complete. For any fixed T > 0 and any
compact K c_ IR, there is a constant C > 0 (which only depends on the set K and
T), such that for the trajectories x(t, x0, d) of the system (1),

Ix(t, , d)- x(t, , d)l Cl - 1
for any , K, any t T, and any d .

6. Proof of the first converse Lyapunov theorem.
Proof. [] Pick any x0 and any d 6, and let x(.) be the corresponding

trajectory. Then we have

dV(x(t)) < -(Ix(t)l) < -(V(x(t))) a.e. t > 0

where a is the -function defined by

3(1(’))
Now let be the -function as in Lemma 4.4 with respect to a, and define

(31) (8, t) def_ 1(a(2(8), t)).
Then is a -function, since both 1 and a are -functions. By Lemma 4.4,

V((t)) Z,(V(xo), t) o ,y t O.

Hence

I (t)lA --<  (Ix01 , t), for any t >_ 0.

Therefore the system (1) is UGAS with respect to A, by Proposition 2.5.
[:=] We will show the existence of a not necessarily smooth Lyapunov function;

then the existence of a smooth function will follow from Proposition 4.2. Assume that
the system is UGAS with respect to the set A. Let 5 and Tr be as in Definition 2.2
and Lemma 3.1.

Define g" IR IR by

(32) g() de__f inf {Ix(t,
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CONVERSE LYAPUNOV THEOREM FOR ROBUST STABILITY 141

Note that, by uniqueness of solutions, for each to > 0 and each d, it holds that

x(t- to, x(to, , d), dto) x(t, , d),

where dto is defined by dto (t) d(t + to). Pick any d E J4, E IRn, and tl > 0. Let
1 X(tl, , d). Then for any t < 0, and v 4,

x(t, , v) x(t tl, 1’ Vtl #dt, ),

where

Thus,

d(s+tl), if-t <_s_<0,
vtl #dtl (s) v(s + tl), if s < -t.

g() inf Ix(t, {, v)lat inf Ix(t- tl, 1’ vt#dt,)]at<_O,vEJA t<_O,dEJA

inf Ix(T, 1, vtl dtl)lA > inf Ix(T, 1’T--t,v O,v

(1).
This implies that

(33) g(x(t, , d)) <_ g(), Vt > 0, Vd e A/tz).

Also one has

(34) (ll)-< g()-< I1.
The second half of (34) is obvious from x(0, , d) . On the other hand, if the first
half were not true, then there would be some d A and some to _< 0 such that

5(l1) > Ix(to, , d)l

Pick any 0 < < [l.a so that Ix(to, , d)IA < 5(s). By the uniform stability property,
applied with t -to and xo x(to, , d),

I1 -Ix(-to, x(to, 5, d), dto)l < I1,

which is a contradiction.
def ]an r}For any0<<r, defineK, { <:]IA <

FACT 1. For all and r with 0 < < r, there exists q, <_ O, such that

and t < q,

Proof. If the statement were not true, then there would exist , r with 0 < < r
and three sequences {k} C_ K,, {tk} c_ lR, and da A/[z) with lima__,o t
such that for all k

Ix(t, 5,dk)l4 < r.

Pick k large enough so that --tk > Tr(). Then by the uniform attraction property,

Ikl --Ix(--ta, x(t., , d), (d)t.)l < ,
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142 YUANDAN LIN, EDUARDO D. SONTAG, AND YUAN WANG

which is a contradiction. This proves the fact.
Therefore, for any E K, ,

g() inf{Ix(t , d)lA t E [q,r, 0], d

LEMMA 6.1. The function g() is locally Lipschitz on IR\,4 and continuous
everywhere.

Proof. Fix any 0 IR\-4, and let s I0JA/2. Let/) (0, s) denote the closed
ball centered at 0 and with radius s. Then B (0, s) C_ K, for some 0 < a < r.
Pick a constant C as in Proposition 5.5 with respect to this closed ball and T
Pick any , r e/) (o, s). For any s > 0, there exist some dv, and tv, [qo,, 0] such
that g(r) _> Ix(tv,, r, dv,)lA -s. Thus

(35) g(C)- g(r) _< Ix(t,,, , dv,)lA -Ix(t,,, n, d,,)l / <_ C[- rl /

Note that (35) holds for all > 0, so it follows that

(() (,) < C I(

Similarly, g() g(() <_ C[( ?1. This proves that g is locally Lipschitz on IR’\A.
Note that g is 0 on A, and for E A, IR,

thus g is globally continuous. (We are not claiming that g is locally Lipschitz on IR’,
though.) []

Now define U" IR ---, JR>0 by

(36) U([) de=f sup {g(x(t, , d))k(t)},
t>_O,dE3d9

where k" R>0 lR>0 is any strictly increasing, smooth function that satisfies"
there are two constants 0 < cl < c2 < oe such that k(t) [Cl, c2] for all
t_>0;
there is a bounded, positive decreasing, continuous function -(.), such that

k’(t) >_T(t) for all t_>0.

(For instance, (cl + c2t)/(1 + t) is one example of such a function.) Observe that

() u() _< sup(()(t)) _< () _<

and

(38) U()

_
sup g(x(t,
dEJM

For any ]Rn since

Ix(t, , d)lt _< (11, t), Vd, Vt _> o,

for some/(:/:-function/, and 0 g(x(t, , d)) Ix(t, , d)lA for all t 2 O, it follows
that

lim sup g(x(t, , d)) O.
--*-t-c d
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CONVERSE LYAPUNOV THEOREM FOR ROBUST STABILITY 143

Thus there exists some T E [0, OC) such that

U() sup g(x(t, , d)) k(t).
OtT,dJ’D

In fact, we can get the following explicit bound.
FACT 2. For any 0 < IIA < r,

U() sup g(x(t, , d))k(t),

where t 2c2
Proof. If the statement is not true, then for any

Tr(-z-5(llt)) and some d such that2c2

U() <_ g(x(t, , d))k(t) + .
So we have

(II4) < i
U(C _< i

c- c- g(x(t, , d)) k(t) +
Cl

<_ A (x(t, , d)) + +/- < A Ix(t, , d)l + <
Cl Cl Cl Cl Cl

Taking the limit as s tends to 0 results in a contradiction.
For any compact set K C_ IR\jI, let

deftK maxt <
EK

(Finiteness follows from Fact 2, as K C_ {. 0 < IIA < r} for some r > 0.)
LEMMA 6.2. The function V(.) defined by (36) is locally Lipschitz on IR\A and

continuous everywhere.
Proof. For o A, pick up a compact neighborhood K0 of 0 so that K0 g ,4 0.

By (38), one knows that

U() > r0, VeK0,

for some constant r0 > 0. Let rl ro/(2c2) and let

{ 7’1}KI=KoN r/" Ir/-ol_< -where C is a constant such that

(39) Ix(t, , d) x(t, , d)l <_ C I- 1, v, Ko, 0 t tKo, d .
In what follows we will show that there exists some L > 0 such that for any , r K1,
it holds that

(40) IU() U(/)l _< L I
First of all, for any e K1 and any (0, r0/2), there exists t, [0, tKo] and
d, E Adz) such that

U() <_ g(x(t,, , d,))k(t,) + <_ c2 Ix(t,, , d,)lA + ,
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144 YUANDAN LIN, EDUARDO D. SONTAG, AND YUAN WANG

from which it follows that

It follows from (39) that for any r/E/(1,

By Proposition 5.1 one knows that there exists some compact set K2 such that

x(t, , d) E K2, V K1, Vt [0, tK1], and Vd A/tz)

Again, applying Lemma 6.1 to the compact set K2 {" ]1,4 -> r/2}, one sees that

Ig(x(t,, , d,)) g(x(t,, , d,)) <_ C Ix(Q,, , d,) x(t,, r/,

for some C1 > 0. Therefore, we have the following:

for some constant L that depends only on the compact set K1. Note that the above
holds for any (0, r0/2), thus,

By symmetry, one proves (40).
To prove the continuity of U on ]Rn, note that for any jr, it holds that

U() 0, and so for all r/ IR"

The proof of Lemma 6.2 is thus concluded. V1

We next start proving that U decreases along trajectories. Now pick any A.
Let h0 > 0 be such that

2
Vd T, Vt [0, ho],

where d denotes the constant function d(t) _= d. Such an h0 exists by continuity. Pick
any h E [0, h0]. For each d 7:), let r/d x(h, , d). For any > 0, there exist some

td, and dd, J) such that

(41)

U(r/d) _< g(x(t, r/d, dd,))k(td,) +

g(x(td, + h c, 0d,))k(td + h) (1- k(td, + h)- k(td,))k(td, + h) + e

<_ U() (1- k(td, + h)c2- k(td,) )

D
ow

nl
oa

de
d 

10
/0

7/
14

 to
 1

28
.6

.2
18

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



CONVERSE LYAPUNOV THEOREM FOR ROBUST STABILITY 145

where d,e is the concatenation of d and dd,e. Still for these and h, and for any
r > IIA, define

max Tr cl 5(ix(- d)lA
O<<h,dT)

CLAIM. td,e + h

_
T,h, for all d e 7:) and for all (0, ()).

Proof. If this were not true, then there would exist some l and some

(0, 5(-)) such that ta, + h > T,h, and hence in particular for { h and

d it holds that

ta,e+h > Tr

which implies that

x(ta,, , da,) x(t, + h, v) < 5(]rial

where v is the concatenated function defined by

{ a’
da, (t- h),

if0_<t_<h,
ift > h.

Using (38), one has

g

which is a contradiction, since g < 5() <_ This proves the claim.
From (41), we have for any d E D and for any e > 0 small enough,

U(x(h, , d)) U({) _< -U({)(k(td, + h) k(td,))
C2

U({) k’(td,+Oh)h+e,
C2

where is some number in (0, 1). Hence, by the assumptions made on the function
k, we have

U(x(h, {, d))- U({) < U({) T(td, + eh)h + <_ U() r(T,h) h + .
C2 C2

Again, since can be chosen arbitrarily small, we have

U(x(h, , d)) U({) _< U() T(T,h)h,
C2

Vd e T.

Thus we showed that for any d and any h > 0 small enough,

U(x(h, , d))- U() _<
C2
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146 YUANDAN LIN, EDUARDO D. SONTAG, AND YUAN WANG

Since U is locally Lipschitz on IRn\A, it is differentiable almost everywhere in ]R\A,
and hence for any d E 73 and for any r > IIA,

(43)

(44)

h-.0+ C2

U(x(h, , d))- U() _< lim U()T(T, h)

where

Now define the function c by

((s) sup((s).

Note that ((0) 0 for any r > 0, so ((0) 0. Also, applying to r 2s, we have

(s)>_ c5(s) -(T2(c2 5(s))) >0

for all s > 0. Notice that (44) holds for any r > I[A, so it follows that for every
d 73, LfdU() _< -((IIA) for almost all e IRn\A. Now let

T T ( Cl ((8) dr
c. : \ 2c

for s > 0, and let &(0) 0. Then & is continuous on [0, oc) (the continuity at s 0
is because is bounded and 5(0) 0), and for s > 0, it holds that

because of the monotonicity properties of T and 7. Furthermore,

LfU() <--([[A)--<

for almost all ]Rn \ A.
By Theorem B.1 provided in the appendix, there exists a C function V

IR\A -- lR_>0 such that for almost all

1(11), Vde 73U()
and nfV() < -Iv(:) u()l <

Extend V to IR by letting V]A 0 and again denote the extension by V. Note
that V is continuous on ]Rn. So V is a Lyapunov function, as desired, with

O1 (8) gk((8), 0/2(8 2
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CONVERSE LYAPUNOV THEOREM FOR ROBUST STABILITY 147

7. Proof of the second converse Lyapunov theorem. We need a couple of
lemmas. The first one is trivial, so we omit its proof.

LEMMA 7.1. Let f IRn 7) -- IR be continuous, where T) is a compact
subset of IR. Then there exists a smooth function ai IR -- IR, with af(x) >_ 1
everywhere, such that If(x, d)l

__
af(x) for all x and all d.

Now for any given system

E 2 f(x, d),

not necessarily complete, consider the following system:

1
Eb" af(x----f(x, d).

Note that the system Eb is complete since If(,d)l <: 1 for all x d We let Xb(" Xo d)aS(x
denote the trajectory of b corresponding to the initial state xo and the time-varying
parameter d. The following result is a simple consequence of the fact that the tra-
jectories of E are the same as those of Eb up to a rescaling of time. We provide the
details to show clearly that the uniformity conditions are not violated.

LEMMA 7.2. Assume that A is a compact set. Suppose that system E is UGAS
with respect to jr. Then, system Eb is UGAS with respect to fit.

Proof. Pick a time-varying parameter d A4 and an initial state x0 IR.
Let %(t) denote xb(t, x0, d). Let % (t) denote the solution for t _> 0 of the following
initial value problem:

(45) /- af(%(T)), ’(0) O.

Since af is smooth, and 7b is Lipschitz, af % is locally Lipschitz as well. It follows
that a unique T (t) is at least defined in some interval [0, [). Note that - is strictly
increasing, so [ < +c would imply limt- - (t) +c.

CLAIM. For every trajectory % of Eb, ’ (t) is defined for all t >_ O.
Proof. If the claim is not true, then there exist some trajectory ?b of E and some

t > 0 such that limtt- 7 (t) x. Now for t [0, t), one has

1 dt%(-(t)) a(%(.(t))) f(%(7(t)) d(7(t)))-(t)
(46) f(%(7b(t)), d(’b(t))).
Thus 7b(-(t)) is a solution of E on [0, tl). By the stability of E, it follows that

I((t))l < 6-(Ix01), t e [0, ti),

where xo %(0), and 5 is the function for E as defined in Definition 2.2. (Cf.
Remark 2.4.) Let c 5-1([xolA), and let M suPlel_< a(). (M is finite because
the set {" [1.4 -< c} is a compact set.) From here one sees that [%(t)[ _< Mt for
any t [0, t). This is a contradiction. Thus - (t) is defined for all t _> 0. This
proves the claim.

Since af(s) >_ 1 and, for every trajectory % of E, %(0) 0, it follows that- (.) /(: for each trajectory % of Lb. From (46), one also sees that if %(t) is a
trajectory of Eb, then %(%b (t)) is a trajectory of E, and furthermore,

1"3/b(T,yb(8))l,A ( e V8 O, if Ib(O)l4 6(e).
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148 YUANDAN LIN, EDUARDO D. SONTAG, AND YUAN WANG

It follows that

I’b(t)lA I/b(Tb(Tl(t)))lA < , Vt >_ 0, whenever [,b(0)lA _< 5(s).

This shows that condition (1) of Definition 2.2 holds for Eb, with the same function
5.

Fix any r, s > 0. Pick any x0 with Ixolt < r and any d E A/. Again let /b(t)
denote the corresponding trajectory of Eb. Then

I(t)l I((%(t)))l < -(), vt > 0.

Let

L sup{a/() I1
Then one sees that I-/-(t)l < L, which implies that Tb (t) <_ Lt for all t _> 0. Note that
for the given r, s > 0, by the UGAS property for E, there exists T > 0 such that for
every d

whenever Ib(0)l < r and s > T. This implies that

I’(t)l
whenever Ib(0)l < r and t _> T (T). Combining this with the fact that - (t) < Lt,
one proves that for any d A//7, it holds that

whenever 17(0)1 < r and t >_ LT. Hence we conclude that Eb is UGAS. E!
In Lemma 7.2, the assumption that .A is compact is crucial. Without this as-

sumption, the conclusion may fail as the following example shows.
Ezample 7.3. Consider the following system

(aT) -( +) tnh x, .
(Here f is independent of d.) Let A {(x, y) x 0}. Clearly the system is
UGAS with respect to A. For this system, a natural choice of ay is 2 + ya. Thus, the
corresponding E is as follows"

1 + y2 y
=-(tanhx) 2+y, = 2+y"

However, the system Eb is not UGAS with respect to A. This can be-seen as follows.
Assume that E is UGAS. Then for , there exists some T > 0 such that for any
solution (x(t), (t)) of with x(0)= , it hods that

Since (1 + y)/(2 + ya) 0 as y m, it follows that there exists some y0 > 0 such
that

1 +y2 1
2 + < ’ v 0.
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CONVERSE LYAPUNOV THEOREM FOR ROBUST STABILITY 149

Now consider the trajectory (x(t), y(t)) of ED with x(0) 1, y(0) Y0, where Y0 is as
above. Clearly y(t) >_ Yo for all t > 0, and thus,

l+y2 1 1
5: -(tanh x)

2 +y4 > -(tanh x) >
3T’

which implies that

1 2
[x(T)l >_ 1- -- TThis contradicts (48). From here one sees that ED is not UGAS with respect to

We now prove Theorem 2.9.
The proof of the sufficiency part is the same as in the proof of Theorem 2.8.

Observe that the fact that V() is nonincreasing along trajectories implies, by com-
pactness of A, that trajectories are bounded, so x(t) is defined for all t _> 0. We now
prove necessity.

Let af be a function for f as in Lemma 7.1, and let Eb be the corresponding
system. Then by Lemma 7.2, one knows that the system b is UGAS. Applying Theo-
rem 2.8 to the complete system Eb, one knows that there exists a smooth Lyapunov
function V for b such that

Ol([]jt) V() o2([[j[) V e n
and

for some K:o functions al, a2 and some positive definite function a3, where

() f(, d)
as(

Since af() 1 everywhere, it follows that

Thus, one concludes that V is also a Lyapunov function of E.

8. An example. In general, for a noncompact parameter value set , the con-
verse Lyapunov theorem will fail, even if the vector fields f(, d) are locally Lipschitz
uniformly on d on any compact subset of (for instance, if f is smooth everywhere).
To illustrate this fact, consider the common case of systems affine in controls:

f(x) + (x)d,

where for simplicity we consider only the unconstrained single-input case, that is,. Assume that there would exist a Lyapunov function V for this system in the
sense of Definition 2.6. Then, calculating Lie derivatives, we have that, in particular,

LfV() + dLgV() < 0, V = 0, Yde JR,

which implies that

LgV() O, V 7/: O.
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150 YUANDAN LIN, EDUARDO D. SONTAG, AND YUAN WANG

Thus V must be constant along all the trajectories of the differential equation

(x).

In general, such a property will contradict the properness or the positive definiteness
of V, unless the vector field g is very special. As a way to construct counterexam-
ples, consider the following property of a vector field g, which is motivated by the
prolongation ideas in [28].

Consider the closure W(c0) of the trajectory through 0 with respect to the vector
field g. Note that if 1 E W(0), then the fact that V is constant on trajectories,
coupled with continuity of V, implies that V(I) V(0). Now assume that there is
a chain 0,1,2,... so that for each 1,2,..., E W(_I). Then we conclude
that V() V(0) for all i. If the sequence {} converges to zero (and 0 - 0) or
diverges to infinity, we contradict positive definiteness or properness of V, respectively.
For an example, take the following two-dimensional system, which was used in [7] to
show essentially the same fact.

Let (R) be the spiral that describes the solution of the differential equation

:--x-y, =x-y,

passing through the point (1, 0). Explicitly, (R) can be parameterized as x
e-t cost, y e-t sin t, -c < t < c. In polar coordinates, the spiral is given
by r e-, -c < 0 < c. Let a(x, y) be any nonnegative smooth function which
is zero exactly on the closure of the spiral (R) (that is, (R) plus the origin). (Such a
function always exists since any closed subset of Euclidean space can be described as
the zero set of a smooth function; see for instance [6].) Now consider the system

(49)
ic -x y + xa(x, y)d,
f] x- y + ya(x,y)d.

Note that the system is smooth everywhere. Let 7) IR, and let A be the origin. In
polar coordinates, the system (49) on IR2\{0} satisfies the equations

(50) / -r + ra(r cos O, r sin O)d, =1.

(This can be seen as a system on ]R>o S.) In polar coordinates, then, the trajectory
passing through (r, 0) (1, 0) is precisely the spiral r e-e, for any d A/iz). Pick
any trajectory (r(t), O(t)) with (r(0), 0(0)) (to, 0o), where 0o [0, 2r). Then there
exists some integer k >_ 0 such that ro e-0+2kr.

CLAIM. It holds that

(51) r(t) < e-0+2-t

_
e2k-t, Vt >_O.

Assume that (51) is not true. Then there exists some t > 0 such that

r(t e-O+2k-tl

Note that we also have O(t) 00 +tl. Now let (4(t), (t)) (e-e+k-t, 0o-2kr+
t). Then (4(t), (t)) is a trajectory of the system, and furthermore, (4(0), (0)) and
(r(0), 00) are different points since 4(0) : r(0). However, the points (r(tl), (t))
and (4(t), O(t)) are the same point on the xy plane. This violates the uniqueness of
solutions. Therefore, (51) holds for t _> 0.
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CONVERSE LYAPUNOV THEOREM FOR ROBUST STABILITY 151

Note that in the above discussion, one can always choose k <_ r0 + 1. It then
follows from (51) that for any trajectory of the system with r(0) r0, it holds that

(52) r(t) <_ e2(r+l)-t, Vt _> 0, Fd.

Thus we conclude that the system is UGAS.
However, this system fails to admit a Lyapunov function. In this example, the

vector field g is (xa(x, y), ya(x, y)). Consider the sequence of points in the xy plane
{k } with k (e2kr, 0) for k _> 0. Note that for each k >_ 1,

where (e2k + , 0).
implies that

Therefore, V(C) g(_1) for any j and any k. This

V(k) V(o) Vk >_ 1,

contradicting the properness of V. This shows that it is impossible for the system to
have a Lyapunov function.

It is worthwhile to note that by the same argument, one sees that not only is there
no smooth Lyapunov function for the system, but also there is not even a Lyapunov
function which is merely continuous (in the sense that V is not even smooth away
from A, and the Lie derivative condition is replaced by a condition asking that V
should decrease along trajectories).

In [17], a simple example is given illustrating that uniform global asymptotic
stability with respect merely to constant parameters is also not sufficient to guarantee
the existence of Lyapunov functions.

9. Relation to other work. The study of smooth converse Lyapunov theorems
has a long history. In the special case of stability with respect to equilibria, and for
systems without parameters, the first complete work was that done in the early 1950s
by Massera and Zurzweil; see for instance the papers [18] and [13]. (Although we are
more general because we deal with set stability and time-varying parameters, there is
one important aspect in which our results are weaker than some of this classical work,
especially that of Kurzweil" we assume enough regularity on the original system so
that there are unique solutions and there is continuous dependence. We do so because
lack of regularity is not an issue in the main applications in which we are interested.
Of course, the proofs become much simpler under regularity assumptions.) In the
late 1960s, Wilson, in [31], extended the Massera and Kurzweil results to a converse
Lyapunov function theorem for local asymptotic stability with respect to closed sets.
But some details of critical steps were omitted in [31]. In 1990, Nadzieja [21] rederived
the results given in [31] for the special case when the invariant set is compact. As
explained earlier, our proof is modeled along the lines of [31]. See also the textbooks
[32] and [12] for many of these classical results.

Nondifferentiable Lyapunov functions have been studied in many papers and text-
books. Among these we may mention the classic book [3] by Bhatia and SzegS, as well
as Zubov’s work (see for instance [33]), which study in detail continuous Lyapunov
function characterizations for global asymptotic stability with respect to arbitrary
closed invariant sets. Also, in [29] and [28] and related work, the authors obtained
the existence of continuous Lyapunov functions for systems which are stable, uni-
formly on parameters (or inputs) and with respect to compact sets, assuming various
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152 YUANDAN LIN, EDUARDO D. SONTAG, AND YUAN WANG

additional conditions involving prolongations of dynamical systems. (The next section
provides some more details on the prolongation approach.) Many results on converse
Lyapunov functions with respect to sets can also be found in the many books and
articles by Lakshmikantham and several coauthors. For instance, in [14, Thm. 3.4.1],
a Massera-type proof is provided of a general converse theorem on local asymptotic
stability with respect to two K; functions that provides a Lipschitz Lyapunov func-
tion. As the authors point out, their theorem immediately provides a set-stability
result (when using distance to the set as one of the comparison functions). In a very
recent work [22], the author considered asymptotic stability for systems with merely
measurable right-hand sides, and proved the existence of locally Lipschitz Lyapunov
functions for such systems. Note that in our case, we obtained the existence of locally
Lipschitz Lyapunov functions as an intermediate result, but our regularity assump-
tion on the vector fields made it possible to obtain the existence of smooth Lyapunov
functions.

The questions addressed in this paper are related to studies of "total stability,"
which typically ask about the preservation of stability when considering a new system
ic f(x) + R(x, t), where R(x, t) is a perturbation. (Sometimes the original system
may be allowed to be time varying, that is, it has equations 2 f(z,t); in that
case, its stability can in turn be interpreted in terms of stability of the set {x 0}
for the extended system 2 f(x,z), 2 1.) In [15], Lefschetz discussed stability
with respect to equilibria under perturbations (referred to by the author as quasi-
stability). In [12] and [32] one can find such studies and relationships to the special
case of 2 f(x)+ d(t), with results proved regarding stability under integrable
perturbations (not arbitrary bounded ones).

Under suitable technical conditions, systems with time-varying parameters can
also be treated as general dynamical systems, or general control systems, as in [24],
[33], [23], [10], [11]. In these works, systems were defined in terms of set-valued maps
associated with reachable sets (or attainable sets). A similar treatment was also
adopted in [29] and related work, where the prolongation sets of reachable sets were
used to study stability. In [23], the author established the existence of different types of
Lyapunov functions (not necessarily continuous) for both stability and weak stability
with respect to closed invariant sets, where "weak stability" means the existence of
a stable trajectory from every point outside the invariant set. In [10], the author
provided Lyapunov characterizations for both local asymptotic stability and weak
asymptotic stability. See [11] for an excellent survey of work along these lines.

It is also possible to reformulate stability for systems with time-varying parame-
ters in terms of differential inclusions, as explained earlier; see for example [1] and [2].
The first of these books employs Lyapunov functions in sutficiency characterizations of
viability properties (not the same as stability with respect to all solutions), while the
second one (see Chapter 6, and especially 4) shows various converse theorems that
result in nondifferentiable Lyapunov functions, connecting their existence with the
solution of optimal control problems. In a recent work [20], one can find conclusions
analogous to those in this paper but only for the very special case of linear differential
inclusions, resulting in homogeneous "quasiquadratic" Lyapunov functions. Finally,
let us mention the work [19] on systems with time-varying parameters, in which the
author established, under the assumption of exponential stability, the existence of
differentiable Lyapunov functions on compact sets, for the special case of equilibria.

10. Relations to stability of prolongations. In [7], [8], [28]-[30], the authors
considered various notions of stability for systems of the type (1) (with 7? not nec-
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CONVERSE LYAPUNOV THEOREM FOR ROBUST STABILITY 153

essarily compact). These properties are defined in terms of the "prolongations" of
the original system. The above papers investigated the relationships between such
stability notions and the existence of continuous, not necessarily smooth, Lyapunov
functions. In this section, we briefly discuss relations between UGAS stability and
the notions considered in those papers, with the purpose of clarifying relations to this
related previous work. For more details on the definitions and elementary properties
of prolongation maps and the corresponding stability concepts, we refer the reader to
the papers mentioned above.

We start with some abstract definitions. Let F IR x lR_>0 --, 2, (, t) H
F(, t) C_ IRn be any map from IRn x lR>_0 to the set of subsets of IR. Associated to
F, one defines F and F by

F(, t) {r E IR there exist sequences , E IRn, and t _> 0

with n -- , - r/, t --+ t, r/ F(, t)},

3F(, t) {r/G IR" there exist tl, t2, tk >_ 0 with

k

E ti- t, such that r/G r(r(.., tl), t2)..., tk-1), tk)},
i=1

where F(S, t) de__f Ues F(c, t) for any subset S of IRn.
The map F is called cluster if F F, and F is called transitive if 3F F.
For any system (1), consider the reachable set 7t() defined in 5, seen now as

a set-valued map. The prolongation map F associated with (1) is then defined by
letting F(, t) be the smallest set containing 7t() such that r is both transitive and
cluster. For further discussion regarding the definition of the map F, we refer the
reader to [28] and to the other papers mentioned above.

For subsets A and B of IR", we denote the usual distance between the two sets by
d(A, B) inf {d(, 7): A, r E B} We say that a system (1) is T-stable (we use
here the "T" for the name of the author of [28] who, in turn, was inspired by previous
work [8]) with respect to a closed, invariant set A if the following two properties hold:

There exists a K:-function 5(.) such that for any e > 0,

d(F(,t),4)<e, whenever A_<5(e), and t_>0;

For any r, e > 0, there is a T > 0 such that

d (F(, t), ,4) < e, whenever IIA < r, and t _> T.

Note that this is the same as what is called "global absolute asymptotic stability"
(global AAS) in [28] for the special case when 4 is compact. Clearly, if a system is
T-stable, then it is UGAS. It was shown in [28], under some extra technical assump-
tions but without the compactness of 79, that global AAS implies the existence of a

continuous, not necessarily smooth, Lyapunov function (meaning that V is globally
merely continuous; the condition Lfd V() <_ -c3(lIA) is replaced by a condition that
V should decrease along trajectories).

We will show next that, at least when 79 is compact, UGAS implies (and is
therefore equivalent to) T-stability. So in what follows in this section, we assume that
79 is compact, and also that all systems involved are forward complete. We first need
the following fact.

LEMMA 10.1. For system (1), F(, t) 7t() for any IR and any t > O.
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154 YUANDAN LIN, EDUARDO D. SONTAG, AND YUAN WANG

Proof. First note that the cluster property of F implies that F(, t) is closed for
each E IRn and each t _> 0. Thus it is enough to show that the map 9l" (, t)
74t() is cluster and transitive.

Take 0 E IR and - > 0. (The case when t 0 is trivial.) Pick 70 X)9(0, -).
Then, by definition, there exist sequences {}, {}, and {t} with t 0 such that

0, 0, t 7, and t(n).
Note then that for each n, there exists d such that

1
x(t, n, d) <

Let X(tn, , d). Then tn() and , 0. Let K0 be a compact set
such that n K0 for each n, and let T > 0 be such that t T for any n. Then by
Proposition 5.1, there exists a compact set K such that (K0, T) K1. Let L be a
Lipschitz constant for f with respect to states in gl. Then it follows from Gronwall’s
Lemma that, for n large enough so that - 0l < e-LT, it holds that

Ix(t, o, d)- z(t, n, dn)l o- .]e5T

for any 0 t T. Let n x(7, o, d.). Then

In- nl Ix(, 0, dn)- X(tn, n, dn)l
Ix(. o. d.) x(. n. d.)I + Ix(. n. d.) x(t.. . d.)I
o +M

where M max{]f(, d)], d(, K1) 1, d e }. It then follows that gn
for each n and , o. Thus, we conclude that 0 (o). Hence we showed that
n(0) (o) for any 7 > 0 and any o , that is, the map is cluster.

To show the transitivity of , first note that, by induction, it is enough to show
that

(53)

for any IRn and any tl, t2 _> 0.
Applying Lemma 5.3 to S Rtl (), together with the fact that

one immediately gets (53). Cl

Rewriting the definition of UGAS in terms of reachable sets, one has that a system
(1) is UGAS if and only if the following properties hold:

There exists a/Cc-function 5(.) such that for any a > 0,

d (w(), ) < , whenever clA _< 6(a), and t _> 0;

For any r, > 0, there is a T > 0 such that

d (74t(), A) < , whenever I]A < r, and t _> T.

The following conclusion then follows immediately from the continuity of the
function H d(, A) and Lemma 10.1:

PROPOSITION 10.2. For compact 1), a system (1) is UGAS with respect to ,4 if
and only if it is T-stable.
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CONVERSE LYAPUNOV THEOREM FOR ROBUST STABILITY 155

Remark 10.3. In the special case when ,4 is compact, a UGAS system is always
forward complete. Thus in that case Proposition 10.2 is still true without complete-
ness.

Remark 10.4. The compactness condition on 79 is essential. Without the com-
pactness of 79, Proposition 10.2 is in general not true. For instance, the system defined
by (50) in 8 is UGAS with respect to the origin (0, 0). However the system is not
T-stable, since F(0, t) IR2 for any t > 0. Note that for this example, Rt(0, t) {0}
for any t > 0 which is different from F(0, t). The inconsistency with the conclusion
of Lemma 10.1 is caused by the noncompactness of 79.

Appendix A. Some basic definitions. In this section we recall some standard
concepts from stability theory.

A function 3‘" lR>0 ----. lR>0 is"
a l-function if it is continuous, strictly increasing and 3’(0) 0;
a lo-function if it is a/(:-function and also 3’(s)
a positive definite function if 3’(s) > 0 for all s > 0, and 3’(0) 0.

A function " lR>0 x lR>0 lR>0 is a ICE-function if:
for each fixed t _> 0 the function (., t) is a K:-function, and
for each fixed s _> 0 it is decreasing to zero as t

Note that we are not requiring to be continuous in both variables simultane-
ously; however it turns out in our results that this stronger property will usually
hold.

Appendix B. Smooth approximations of locally Lipschitz functions. In
the proof of the converse Lyapunov theorem, we used a parameterized version of
an approximation theorem given in [31]. For convenience of reference, and to make
this work self-contained and expository, we next provide the needed variation of the
theorem and its proof. (Several details, missing in the proof in [3 1], have been included
as well.)

THEOREM B.1. Let (9 be an open subset of IRn, and let 79 be a compact subset
of IR, and assume given:

a locally Lipschitz function " 0 ---. IR;
acontinuousmapf" IR x79 IRn, (x,d) f(x,d) which is locally
Lipschitz on x uniformly on d;
a continuous function a (9 IR and continuous functions #,

]R>0
such that for each d E 79,

(B.54) Lfd+( < c(), a.e. e O,

where fd is the vector field defined by fd(’) f(’, d). (Recall that VO is defined a.e.,
since is locally Lipschitz, by Rademacher’s theorem, see e.g. [5, p. 216].) -Then there
exists a smooth function q2 (9 ----+ ]1% such that

and for each d 79,

Lfdq2(() < () + (), V( e O.

To prove the theorem, we first need some easy facts about regularization. Let
IRn IR be a smooth nonnegative function which vanishes outside of the unit
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156 YUANDAN LIN, EDUARDO D. SONTAG, AND YUAN WANG

disk and satisfies

(s)ds 1.

For any measurable, locally essentially bounded function (.9 IR and 0 < a _< 1,
define the function o by convolution with (), that is:

(B.55) () deZ f (+as)(s)ds.

We think of this function as defined only for those so that + as E (9 for all Isl <_ 1.
Note that the integral is finite, as the integrand is essentially bounded and of compact
support. The following observation is a standard approximation exercise, so we omit
its proof.

LEMMA B.2. For each compact subset K of (9, there exists some ao > 0 such that
is defined on K, and smooth there, for all a < do. Moreover, if is continuous,

then approaches uniformly on K, as a tends to O.
Now assume that q is a locally Lipschitz function. Then, for each d

is defined almost everywhere, and furthermore, on any compact subset K c_ (9,

where k is a Lipschitz constant for (I) on K. Therefore, for each d (omitting from now
on the lR in integrals)

() / (nfa) ( + as)(s) ds(L)o

is well defined as long as + as 0 for all Isl _< 1. Applying Lemma B.2 to (Lfa),
this is smooth for any a > 0 small.

Suppose that for all d

(8.56) LI( _< a(), a.e. e O,

for some continuous function a. Pick any compact subset K C_ (.9. On this set K, we
have

(La) () J()(+)() _< J( + )()

< ()+ mx ( +)- ().
]sll,K

om here we get the following conclusion.
LEMMA B.3. For any compact subset K of O, (LIa 0) is a C function defined

on K for all a small enough, and, if (B.56) holds for all d and all , then
for any e > 0 given, there exists some ao > 0 such that

(L.)() () +

for all a do, all d , and all K.
The following lemma illustrates the relationship between Lid (0) and (Lia).
LEMMA B.4. On any compact subset K of O,

sup ]Lia()()- (LfaO) ()l 0
de,(eK
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CONVERSE LYAPUNOV THEOREM FOR ROBUST STABILITY 157

as tends to O.
Proof. For each E (9, we use (t, , d) to denote the solution of the differential

equation

f(x, a)

with the initial condition qo(O, , d) . It follows from the assumptions on f and
compactness of K and/9 that there exist some compact neighborhood V of K and
some n > 0 and ao > 0 such that 99(t, + as, d) V for all
co, d D, and ]t rl.

For the Lipschitz function O, we have, for all f, d and

d f O(w(t, , d) + as)(s)
d

o((t, , d))
=o

()()
=o

ds

lim
1 f

o (o((t’ , d) + ) ( + ))()d,

(B.57) (L) () ] La( + as)(s) ds

/ d
((t,+s,d))(s)ds(8.58)

t=0

(B.59) lim
1 /t--.0

[((t, + as, d)) ( +as)] (s)ds.

Notice that the integrand in (B.57) equals that in (B.58) almost everywhere on s
(for each fixed and a) and that (B.59) follows from (B.58) because of the Lebesgue
dominated convergence theorem and the following fact:

1

It IO((t, + s, d)) O( + as)l (s)

k
](t, + s, d) ( + as)] (s) kC(s), Vt e [-r, T1],

where C def
maxey,de ]f(, d)] and k is a Lipschitz constant for on Y.

Now one sees that

nfa ()() (nfa) () t01im t f[((t, , d) + as) ((t, + as, d))](s) ds.

Thus it is enough to show that for any > 0, there exist some 5 > 0 and * > 0 such
that the above integral is bounded by for all d D, K, ]t] < *, and a < 5.
This is basically a standard argument on continuous dependence on initial conditions,
but we provide the details. For 0 T rl, let

(r) d sup{[/((t,,d),d)-/(,d)]" [tr, eV, deD}.

Then (0) 0, and is nondecreasing and continuous at t 0, because

]/((t, , d), d)-/(, d) S C ](t, , d)- S CC4 ]t],

and
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158 YUANDAN LIN, EDUARDO D. SONTAG, AND YUAN WANG

where C3 is a (uniform) Lipschitz constant for f on V1, C4 is an upper bound for
If(, d)l on V1, and V1 is some compact neighborhood of V such that (t, , d) E V1
for any E V, d Z), and It[ < T1. For any E V, d Z), and It[ < T,

I(t, , d)- ( + tf(, d))l _< "r(T) dT <_ It] (It]).
J0

Now for e K, we have

(B.60)

Finally, for e > 0, let 5 and T* be such that

7(T) < and [f(,d)-f(+as, d)l < 3-’
for any K, d E :D, Is _< 1, a < , and Itl < T*. It then follows from (B.60) that

i e d) + as) O((t, + as d))](s)ds < J e(s)ds

for any E K, d :D, Itl < T*, and cr < 5, which implies

[L;d (O,,)(t) (L;d O),,()l < e

for anya<a0, dZ),andK. 0
Combining the previous three lemmas, we obtain the following conclusion.
LEMMA B.5. Let K be a compact subset of (.9. Then for any given > O, there

exists some smooth function defined on K such that

I() o()l < e and Lfd() < c() +

for all
Now we are ready to complete the proof of Theorem B.1. For the open subset (.9

of ]Rn, let {5/i } be a locally finite, countable cover of (9 with/gi compact and b/i C_ (9.

Let {i} be a partition of unity on (9 subordinate to {/gi}. For any given positive
functions #(.) and v(.), let

e min inf #(), inf v()

For each i, it follows from Lemma B.5 that there exists some smooth function
defined on/gi such that

IO()- i()l < 2+1(1 + Ti)
and Lfdi() < ()+ 2
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CONVERSE LYAPUNOV THEOREM FOR ROBUST STABILITY 159

def max{on L/j, where T L/d/i()l E /, d E 7)). We define ’.i/i"
Clearly is a smooth function defined on O, and

<: maxej < #(),
jej

where
For Lfd, one has

<

We conclude that is the desired function.
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